Seminarios

Próximas Charlas

Dia 2024-04-19 10:30:00-03:00
Hora 2024-04-19 10:30:00-03:00
LugarLA CHARLA SERÁ VIRTUAL

Penaliza y reinarás

Mariela Sued. (Atención, charla virtual) (UBA)

En esta charla presentamos diferentes problemas de selección de modelos y un marco teórico unificado que permite resolver estos y muchos otros problemas interesantes.
Dia 2024-04-19 14:30:00-03:00
Hora 2024-04-19 14:30:00-03:00
LugarSalón de seminarios del IMERL

Clases de isotopía de homeomorfismos de Brouwer relativas a r>0 órbitas

Nelson Schuback (Sorbonne Universite)

Este trabajo investiga las similitudes entre los homeomorfismos de Brouwer (homeomorfismos del plano que preservan la orientación y no tienen puntos fijos) y los mapas de tiempo-1 de flujos autónomos no singulares en el plano (aquí llamados simplemente flujos). Nos interesa la pregunta: Sea f un homeomorfismo de Brouwer y sean O1,...,Or órbitas de f. ¿Podemos hacer una isotopía de f a un flujo F fijando todas las órbitas O1,...,Or?

El primero en trabajar en este problema fue M. Handel, seguido años después por F. Le Roux y J. Bavard. Utilizando la llamada teoría homotópica de Brouwer, consiguieron demostrar que la respuesta a esta pregunta es sí, si r=1,2 ó 3, pero no si r>3. Estos resultados son muy útiles, ya que nos permiten importar algunas propiedades rígidas y bien comprendidas de los flujos al contexto de los homeomorfismos. Sin embargo, existen muy pocas o ninguna conexión entre la maquinaria desarrollada en estos trabajos y las herramientas modernas que se utilizan actualmente en la dinámica topológica de superficies, como por ejemplo la teoría de Brouwer foliada.

Nuestro objetivo es primero: construir una nueva estructura para esta teoría, más natural e intuitiva, preferencialmente basado en la teoría de Brouwer foliada y la noción de trayectorias transversales. A partir de aquí, queremos explorar nuevos conceptos que esta construcción nos permite investigar. En particular, mostramos que ahora es possible distinguir clases de isotopía de Brouwer (isotopías que no crean puntos fijos) de un homeomorfismo del plano relativas a sus órbitas O1,...,Or.

Dia 2024-04-26 14:30:00-03:00
Hora 2024-04-26 14:30:00-03:00
LugarSalón de seminarios del IMERL

Minimalidad de las foliaciones fuertes para parcialmente hiperbólicos.

Rafael Potrie (FCIEN, Udelar)

Mostramos que para un abierto y denso en la topología C^1 de parcialmente hiperbólicos con central de dimensión 1, o bien existe un atractor propio, o bien ambas foliaciones fuertes son minimales, recuperando un resultado válido en el contexto de dinámica homogénea, en este contexto no lineal (bajo condiciones genéricas). En ocasiones, no es necesario pedir hipótesis genéricas (por ejemplo, para difeomorfismos de Anosov en T3 suficientemente regulares). Si hay tiempo, explicaré algunas consecuencias en sus propiedades estadísticas. Se basa en una serie de trabajos conjuntos (en varias combinaciones) con A. Avila, S. Crovisier, A. Eskin, A. Wilkinson y Z. Zhang.