Novedades para la detección de caos en el anillo
Dia | 2025-04-25 14:30:00-03:00 |
Hora | 2025-04-25 14:30:00-03:00 |
Lugar | Salón de seminarios del IMERL |
Novedades para la detección de caos en el anillo
Alejandro Passeggi (CMAT - FCIEN)
La irrupción de la teoría del caos en la matemática es paradigmática: rompe con la idea de que se puede integrar (implícita o explícitamente) las ecuaciones diferenciales, para lo cual muchas herramientas algebraicas se crearon a lo largo de los siglos 17, 18 y 19 (y se siguen creando). El mensaje del padre de la teoría del caos es claro: se precisa de una descripción topológica de las soluciones y por eso desarrollar la teoría de dimensiones bajas, donde existen herramientas topológicas fuertes fue un camino natural. Un espacio fundamental para esto es el anillo o cilindro, involucrado en famosas ecuaciones diferenciales como el problema de los 3 cuerpos y las ecuaciones forzadas de segundo órden.
En esta charla discutiremos qué sucedió con la misión de determinar si estas ecuaciones diferenciales presentan caos o no. Hablaremos también de dos importantes modelos: familias de mapas y billares.