Seminario de Probabilidad y Estadística

Viernes 10:30hs - Salón de seminarios del piso 14, CMAT

Contacto: Alejandro Cholaquidis (acholaquidis@hotmail.com)

Próximas Charlas

Dia 2020-12-11 10:30:00-03:00
Hora 2020-12-11 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/2301522749

A Computational Framework for Evaluating the Role of Mobility on the Propagation of Epidemics on Point Processes

F. Baccelli (INRIA)

This work is focused on SIS epidemic dynamics (also known as the contact process)
on stationary Poisson point processes of the Euclidean plane, when the infection
rate of a susceptible point is proportional to the number of infected points in a
ball around it. Two models are discussed, the first with a static point process,
and the second where points are subject to some random motion. For both models,
we use conservation equations for moment measures to analyze the stationary point
processes of infected and susceptible points. A heuristic factorization of the third
moment measure is then proposed to derive simple polynomial equations allowing one
to derive closed form approximations for the fraction of infected nodes and the
steady state. These polynomial equations also lead to a phase diagram which
tentatively delineates the regions of the space of parameters (population density,
infection radius, infection and recovery rate, and motion rate) where the epidemic
survives and those where there is extinction. According to this phase diagram, the
survival of the epidemic is not always an increasing function of the motion rate.
These results are substantiated by simulations on large two-dimensional tori.
These simulations show that the polynomial equations accurately predict the fraction
of infected nodes when the epidemic survives. The phase diagram is also partly
substantiated by the simulation of the mean survival time of the epidemic on large
tori. The phase diagram accurately predicts the parameter regions where the mean
survival time increases or decreases with the motion rate.

F. Baccelli and N. Ramesan (INRIA and UT Austin)


Charlas Anteriores

Dia 2020-12-04 10:30:00-03:00
Hora 2020-12-04 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/2301522749

Los métodos de corrección del ingreso reportado y las mediciones de desigualdad. Un análisis para Uruguay en base a datos concatenados de encuestas y registros tributarios

Andrea Vigorito (UdelaR)

Se adujunta en pdf

Lustig-Vigorito SPE.pdf
Dia 2020-11-27 10:30:00-03:00
Hora 2020-11-27 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/2301522749

Límite fluido para la fase de agrupación del proceso zero range con condensación

Daniela Cuesta (UBA)

En este trabajo probamos que la dinámica de agrupación del proceso zero range en una cantidad finita de sitios y cantidad de partículas N tendiendo a infinito es descripta por un límite fluido, cuando el tiempo es escalado linealmente en N. Según este límite, a un tiempo finito determinado por la distribución inicial de partículas y de las tasas del paseo aleatorio subyacente, se alcanza un estado en el que la totalidad de las partículas se concentra en sitios que reciben peso maximal bajo la medida invariante de dicho paseo aleatorio. 
Trabajo en colaboración con I. Armendáriz, J. Beltrán y M. Jara
Dia 2020-11-20 10:30:00-03:00
Hora 2020-11-20 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/2301522749

Límite en distribución para el tiempo de cobertura normalizado del árbol binario

Santiago Juan Saglietti (Technion Israel y PUC Santiago)

Consideramos un paseo al azar a tiempo continuo en el árbol binario de n generaciones con tasas de transición todas iguales a 1 y estudiamos su tiempo de cobertura, es decir el tiempo que le lleva al paseo visitar todos los vértices del árbol. Probamos que, al normalizarlo por  2^{n+1}n y luego recentrarlo por (log2)n-log n, el tiempo de cobertura converge en distribución cuando el número n de generaciones del árbol tiende a infinito. Más aún, identificamos la distribución límite como la correspondiente a una traslación aleatoria de una variable aleatoria Gumbel, donde la distribución de la traslación está caracterizada por ser la única solución de una cierta ecuación distribucional específica. Nuestro método se basa en una comparación con la estructura de valores extremos correspondientes al Campo Libre Gaussiano discreto (discrete Gaussian Free Field) en el árbol. Trabajo conjunto con Aser Cortines y Oren Louidor.

Dia 2020-11-13 10:30:00-03:00
Hora 2020-11-13 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/2301522749

Desarrollo en tiempo pequeño para la densidad de transición: Aplicación a la difusión de Wright-Fisher.

José R. León (IMERL)

En esta charla usaremos un método probabilístico para encontrar el desarrollo asintótico de la densidad de transición de una difusión. 
Aplicaremos el resultado a la difusión de Wright-Fisher, un modelo muy  usado en genética de poblaciones. Compararemos el resultado con algunos intentos no probabilísticos desarrollados el siglo pasado y  haremos comentarios diversos sobre la aplicación de las expansiones para hacer estadística paramétrica, por medio de la aproximación de la función de verosimilitud. Concluiremos con varios comentarios de posible trabajo futuro.



Dia 2020-11-06 10:30:00-03:00
Hora 2020-11-06 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/2301522749

"Educación superior: factores que afectan el desempeño académico y el abandono".

Alina Machado (UdelaR)

El crecimiento de la matrícula en la Udelar en los últimos 15 años ha sido persistente, y aunque el egreso universitario es creciente, existe un alto nivel de abandono temprano (que se ubica entre un 20% - 40%). El trabajo analiza los factores que inciden en el desempeño y en el abandono temprano en la Facultad de Ciencias Económicas y de Administración (FCEA). Se busca profundizar en el efecto de los factores cognitivos, de personalidad, institucionales y “vocacionales” en las decisiones de permanencia en estos servicios. Para ello se explota la información que surge de las pruebas diagnósticas al ingreso en FCEA en marzo 2018, datos provenientes de registros administrativos sobre actividades realizadas por los estudiantes, e información que se recabó a través de una encuesta, a una muestra de 697 estudiantes de la generación 2018. Estos jóvenes fueron consultados sobre su trayectoria académica, permanencia o abandono, y en este último caso, acerca de los motivos para abandonar. Adicionalmente, los estudiantes de la muestra fueron invitados a participar de una serie de actividades, cuyo objetivo fue profundizar sobre sus características de personalidad y habilidades cognitivas. Los resultados indican que los rasgos de la personalidad y las habilidades cognitivas influyen una vez que se controla por otras características relevantes, señalando que las políticas que promuevan la retención de estudiantes deben ser diferentes en su contenido, contemplando hacia quienes van dirigidas.    

Dia 2020-10-30 10:30:00-03:00
Hora 2020-10-30 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/2301522749

Sobre el número de vueltas del movimiento Browniano en el plano

Stella Brassesco (Instituto Venezolano de Investigaciones Científicas Departamento de Matemáticas)

Se adjunta pdf con resumen.

resumenBM2M.pdf
Dia 2020-10-23 10:30:00-03:00
Hora 2020-10-23 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/2301522749

Un modelo para los errores de pronóstico de producción de potencia eólica basado en ecuaciones diferenciales estocásticas

Marco Scavino (Udelar)

El pronóstico confiable de la generación de energía eólica es crucial para aplicaciones como la asignación de reservas de energía, la optimización del precio de la electricidad y la programación de operaciones de las centrales eléctricas convencionales. Se propone modelar los errores de pronóstico de potencia eólica utilizando ecuaciones diferenciales estocásticas paramétricas. En este enfoque, el modelo contiene un término de seguimiento de la derivada del pronóstico respecto del tiempo, un parámetro de reversión a la media variable en el tiempo y un término de difusión dependiente del estado del sistema. La metodología desarrollada permite, dado un pronóstico, simular trayectorias futuras de producción de potencia eólica y obtener bandas de confianza empíricas con la precisión deseada. Las técnicas implementadas son independientes de la tecnología de pronóstico y permiten comparaciones entre diferentes proveedores de pronósticos. Se analiza el desempeño del modelo con datos de producción eólica y pronósticos en Uruguay entre abril y diciembre de 2019.  

La presentación se basa en el trabajo:   

Renzo Caballero, Ahmed Kebaier, Marco Scavino, Raúl Tempone (2020). A Derivative Tracking Model for Wind Power Forecast Error (https://arxiv.org/abs/2006.15907

Dia 2020-10-16 10:30:00-03:00
Hora 2020-10-16 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/2301522749

Near optimal estimation of the mean in Hilbert space

Roberto Imbuzeiro Oliveira (IMPA)

In this talk, we discuss an estimator that, given a n-point i.i.d. sample from a distribution P over Hilbert space (with finite second moment), produces an estimate of the sample mean with the following properties.

(P0) The estimator does not require knowledge of distribution parameters.

(P1) Fix a confidence level 1-\alpha. Fix also 0<\delta<1/2 and assume an adversarial contamination model where up to \delta n sample points may be modified arbitrarily. Our estimator achieves (non-asymptotically) the minimax-optimal error for this problem, up to a constant factor.

(P2) Our estimator can be computed in a number of Hilbert space operations that grows at most polynomially in n.

A recent construction due to Lugosi and Mendelson gives an estimator satisfying (P0) and (P1), but not (P2). Other estimators had been shown to satisfy (P1) and (P2), but not (P0). It had been conjectured that no near-minimax estimator could satisfy the three properties. A novel "PAC-Bayesian" analysis will show that the conjecture is false, and that a variant of previous estimator actually works. The idea behind our estimator is based on the standard "trimmed mean".

Dia 2020-10-09 10:30:00-03:00
Hora 2020-10-09 10:30:00-03:00
Lugarhttps://us02web.zoom.us/j/3498487602

Vigilancia epidemiológica del COVID-19 en las fronteras uruguayas y análisis de su transmisión en el interior del país.

Daiana Mir (Centro Universitario Regional del Litoral Norte)

La aparición de brotes epidémicos genera un conjunto de preguntas, cuyas respuestas son fundamentales para su control y/o mitigación, y en donde la secuenciación del patógeno de interés puede ser la estrategia para responderlas. La información obtenida a partir de las secuencias genómicas y sus metadatos asociados (epidemiológicos y clínicos) son cruciales para entender los brotes de enfermedades infecciosas y ayudar a diseñar políticas de vigilancia y prevención. En esta charla intentaré contar los resultados que hemos obtenido en el marco del proyecto Frontera, cuyo principal objetivo es la caracterización de las introducciones de SARS-CoV-2 en Uruguay desde los países limítrofes y la inferencia de la dinámica de circulación viral en el interior del país utilizando técnicas de secuenciado masivo y análisis filogenético.

Dia 2020-10-02 10:30:00-03:00
Hora 2020-10-02 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/2301522749

Box ball systems, soliton components and hydrodynamics

Pablo Ferrari (UBA)

The box-ball system is a transport cellular automaton of balls on the integers introduced by Takahashi and Satsuma in 1990 as a discrete analogue of the KdV equation. The dynamics conserves solitons, solitary waves travelling at speed proportional to its size and conserve shape and speed even after colliding with other solitons. A ball configuration has soliton components that are fully conserved by the dynamics. The dynamic of each component is just a shift. 
A random initial ball configuration with translation invariant distribution and independent translation invariant components is invariant for the dynamics. The soliton decomposition of a product measure with density less than 1/2 has independent components, and those are explicitly described. In this case, the decomposition is related to the tree induced by the random walk with increments given by the ball configuration. 
In the translation invariant case, the asymptotic speeds of solitons are computed and shown to satisfy an universal system of linear equations corresponding to the Generalized Gibbs Ensemble of conservative systems.
The talk will require familiarity with basic concepts in stochastic processes. 

The talk is based on joint work with Chi Nguyen, Leo Rolla, Minmin Wang and Davide Gabrielli.  arXiv 1806.02798, 1812.02437 and 1906.06405.
Dia 2020-09-25 10:30:00-03:00
Hora 2020-09-25 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/6389219662

Distancia de Fermat: teoría y aplicaciones.

Pablo Groisman (UBA)

Consideraremos el siguiente problema. Sean Q = {q_1, ..., q_n} puntos iid con densidad común f soportada en una superficie. Se trata de definir una distancia en Q que capture tanto la geometría intrínseca de la superficie como la función de densidad f. Propondremos una posible solución y mostraremos su comportamiento asintótico cuando n tiende a infinito. Esta distancia resulta valiosa en tareas como clustering, reducción de dimensión, regresión no-paramétrica, etc. Las demostraciones involucran el estudio de geodésicas en un modelo de Percolación de primera pasada no-homogéneo. Contaremos además aplicaciones en problemas de transporte óptimo, estimación de densidad y homología persistente en los que estamos trabajando.
Dia 2020-09-11 10:30:00-03:00
Hora 2020-09-11 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/6389219662

Coordinación y puesta a punto

. (.)

Estimados

Este viernes tenemos un seminario de coordinación e información sobre las actividades del grupo de probabilidad y estadística en el semestre.

La idea es que cada uno de nosotros (todos están invitados a participar) contemos en 5 minutos:

- en que curso estamos trabajando

- pasamos algún pique de la virtualidad

- mencionar los proyectos de investigación en que estamos

- si alguno de ellos es covid-related

Luego, si tenemos tiempo, hacemos una instancia de discusión y propuestas

saludos, nos vemos!

Alejandro, Paola y Ernesto.

Dia 2020-09-11 10:30:00-03:00
Hora 2020-09-11 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/6389219662

ID para el seminario de mañana ID: 638 921 9662

. (.)

Había un error en la ID que mandé en la invitación al seminario, de probabilidad y estadística,

es la que siempre usamos: (que queda fija para todo el semestre)

https://salavirtual-udelar.zoom.us/j/6389219662

Meeting ID: 638 921 9662

saludos

Dia 2020-09-04 10:30:00-03:00
Hora 2020-09-04 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/6389219662

Dimensión de probabilidades estacionarias para productos de matrices 3x3 i.i.d.

Pablo Lessa (FING)

En un trabajo en progreso con François Ledrappier apuntamos a calcular la dimensión de medidas naturales asociadas a productos de matrices i.i.d.
En esta charla intentaré contar los resultados que hemos obtenido así como resultados recientes de Hochman y Solomyak, Feng, y Rappaport sobre el mismo problema.
Dia 2020-07-31 10:30:00-03:00
Hora 2020-07-31 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/6389219662

Reporte sobre los mercados financieros en el contexto de la pandemia derivada de la enfermedad por COVID-19

Andrés Sosa (Departamento de Métodos Cuantitativos - FCEA- UdelaR)

 La pandemia global de Covid 19 es un fenómeno extraordinario que genera una crisis a todo nivel. Sin lugar a duda, la economı́a se encuentra muy afectada y presenta gran incertidumbre sobre su futuro. Los distintos mercados financieros sufrieron fuertes turbulencias que se expresaron  mediante pérdidas generalizadas. La presentación tiene como objetivo observar de manera descriptiva ciertas puntos claves que sucedieron en los mercados financieros internacionales. A su vez, analizar la evolución de las variables locales más destacadas en el mercado de cambio, el mercado de dinero y el mercado de valores en Uruguay.
Dia 2020-07-24 10:30:00-03:00
Hora 2020-07-24 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/6389219662

La frontera seca en el Sistema Urbano Nacional Aportes para la comprensión de la movilidad de personas desde y hacia ciudades limítrofes con Brasil

Leonardo Altmann y Martín Delgado Filppini (Instituto de Urbanismo - FADU)

 
En el marco de la colaboración del Instituto de Urbanismo con el modelado de la epidemia del COVID 19, se presentan dos aspectos para la comprensión de la movilidad de personas en los centros urbanos próximos a la frontera con Brasil. La primera parte recupera la indagación del sistema urbano uruguayo (a partir del análisis combinado de movilidad por motivos laborales, de transporte colectivo interurbano y flujos de vehículos) con énfasis en el territorio lindante con Brasil. La segunda parte realiza un procesamiento y análisis de los datos de traslado por trabajo (recabado en el Censo INE 2011) en las ciudades de frontera, destacando las de Rivera y Artigas. Finalmente, luego de plantearse algunos aspectos conclusivos, se indican temas a ser profundizados a futuro.  
Dia 2020-07-17 10:30:00-03:00
Hora 2020-07-17 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/6389219662

Notas de bitácora sobre la epidemia de Covid 19 en Uruguay

Ernesto Mordecki (CMAT)

Presentamos algunos temas que se han discutido en el ámbito de la comisión de la
academia de Ciencias primero y del Gach después, y algunas reflexiones personales,
con el objetivo de entender y modelar la pandemia en Uruguay, como ser:
(-1) ¿Esta pandemia es una guerra de algún tipo?
(0) Consideraciones generales sobre la pandemia y la contribución de los científicos
(1) Una visión internacional de la pandemia
(2) Los modelos SIR y SEIR y la saturación de los CTI, el problema de la estimación de parámetros.
(3) el cálculo del R con Epiestim,
(4) el tema del clima y la BCG,
(5) ...
Más que una conferencia científica se trata de un relato de las distintas etapas de trabajo desde el 13 de marzo
Dia 2020-07-10 10:30:00-03:00
Hora 2020-07-10 10:30:00-03:00
Lugarhttps://us02web.zoom.us/j/9432620988

Protocolos óptimos e inteligencia artificial para testeo eficiente de COVID-19

Mauricio Velasco (Universidad de los Andes, Colombia,)

Cómo enfrentar el COVID-19?  Hay muchas estrategias propuestas pero la mayor parte requiere como ingrediente clave pruebas de infecciones activas (PCR) que permitan determinar rápidamente a las personas infectadas. El problema es que las pruebas PCR son costosas y lentas. En esta charla hablaré de mecanismos de pruebas en grupos (pool testing) que permiten testear a cantidades mucho más grandes de personas con la misma cantidad de pruebas y con mínima pérdida de precisión. Más precisamente presentaré dos resultados principales (conjuntos con A.M. Forero y J.M. Pedraza de biofísica uniandes):

(1) Una clasificación de los protocolos óptimos de testeo de grupos cuando los grupos permitidos tienen tamaño acotado c<=10 (el rango de interés para el caso específico del COVID 19)

(2) Un mecanismo de online learning para poder "aprender" la prevalencia en la medida en que llegan las muestras que nos permite dar garantías teóricas a todo el proceso (basado en el algoritmo de "Multiplicative Weights Update")

Esta charla será autocontenida y asumirá sólo conocimientos básicos de probabilidad.

Dia 2020-07-03 10:30:00-03:00
Hora 2020-07-03 10:30:00-03:00
Lugarhttps://us02web.zoom.us/j/9432620988

Un modelo estocástico para la epidemia basado en las historias individuales de pacientes infectados con Sars-CoV-2.

Enrique Cabaña (Udelar)

RESUMEN
En este trabajo se diseña un modelo SIR para un país o región con clases sugeridas por el tipo de datos que es esperable obtener por parte de los sistemas nacionales o regionales de salud.
Las transiciones se realizan por medio de adelgazamientos aleatorios (random thinnings) y el resultado es una cadena de Markov, parcialmente oculta.
Los parámetros de la parte visible se estiman fácilmente por máxima verosimilitud, y se consideran dos métodos de diferente grado de dificultad computacional para estimar los de la parte oculta.
Las realizaciones del modelo suponiendo que se mantienen o que varían las condiciones estimadas permiten predecir cualitativamente la evolución de la epidemia, y obtener límites de confianza para el número de personas en cada una de las clases.
Dia 2020-06-26 10:30:00-03:00
Hora 2020-06-26 10:30:00-03:00
Lugarhttps://us02web.zoom.us/j/9432620988

Modelo de Propagación de la COVID-19 por simulación.

Jorge Visca (Udelar)

Se presentará un modelo basado en agentes para la propagación de la COVID-19. El modelo considera un escenario de pocos infectados, una población mayormente susceptible, la aparición de focos moderadamente intensos (superspreaders) y donde la propagación condicionada por la movilidad. La simulación también considera la existencia de un equipo de rastreadores de contactos y su efecto sobre el comportamiento de los agentes y el consecuente impacto en la propagación de la enfermedad. 

Dia 2020-06-19 10:30:00-03:00
Hora 2020-06-19 10:30:00-03:00
Lugarhttps://us02web.zoom.us/j/9432620988

Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold

Rodrigo M. Corder (University of Sao Paulo)

Abstract: As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads, the susceptible subpopulation is depleted causing the incidence of new cases to decline. Variation in individual susceptibility or exposure to infection exacerbates this effect. Individuals that are more susceptible or more exposed tend to be infected earlier, depleting the susceptible subpopulation of those who are at higher risk of infection. This selective depletion of susceptibles intensifies the deceleration in incidence. Eventually, susceptible numbers become low enough to prevent epidemic growth or, in other words, the herd immunity threshold (HIT) is reached. Although estimates vary, simple calculations suggest that herd immunity to SARS-CoV-2 requires 60-70% of the population to be immune. By fitting epidemiological models that allow for heterogeneity to SARS-CoV-2 outbreaks across the globe, we show that variation in susceptibility or exposure to infection reduces these estimates. Accurate measurements of heterogeneity are therefore of paramount importance in controlling the COVID-19 pandemic.

Dia 2020-06-12 10:30:00-03:00
Hora 2020-06-12 10:30:00-03:00
Lugarhttps://us02web.zoom.us/j/9432620988

Evidencia del efecto de la implementación de medidas de control sobre la evolución de la pandemia por SARS-CoV-2.

Alicia Alemán (Udelar)

El objetivo principal de esta presentación es mostrar y debatir lo presentado en la NOTA 4 de GUIAD-COVID. La misma se refiere a una búsqueda y análisis sistematizado del efecto de las principales medidas implementadas en el mundo para el control de la pandemia producida por el SARS-CoV-2. Se presentan los resultados de una revisión bibliográfica rápida de la evidencia de alta calidad (revisiones sistemáticas, estudios aleatorizados, estudios observacionales, modelos matemáticos) para determinar el impacto cuantitativo que han tenido estas acciones. La presentación intentará discutir también sobre en qué lugar en la evolución de la enfermedad impactan estas medidas y cuáles de los parámetros de los modelos matemáticos se ven modificados por la implementación de las misma

Dia 2020-06-05 10:30:00-03:00
Hora 2020-06-05 10:30:00-03:00
Lugarhttps://us02web.zoom.us/j/9432620988

Modelling the COVID 19 pandemic requires a model... but also data! M

Marc Lavielle (Inria & Ecole Polytechnique, France)

We propose to build a SIR-type model for the Covid-19 data provided by the Johns-Hopkins University. The data available for each country are the daily number of confirmed cases and the daily number of deaths. The model is adapted in order to fit the data at an aggregated level like a country. In other words, the parameters of the model change from country to country to reflect differences in dynamics. In particular, the model integrates a time-dependent transmission rate, whose variations can be thought to be related to the public health measures taken by the country in question. A piecewise linear model is used for the transmission rate to take into account these possible variations. The proposed model may seem simple, but it should be understood that it does not pretend to describe the spread of the pandemic in a precise and detailed manner. Its role is to adjust the available data: its complexity is therefore adjusted to the amount of information available in the data. Indeed very few parameters are needed to properly describe the outcome of interest, and the prediction proves stable over time. The model, the parameter estimation algorithm, the method for model selection as well as several plotting routines have been implemented in an interactive, easy to use, web application that allows to visualize the data and the fitted model for several countries (http://shiny.webpopix.org/covidix/app2/). The data used in this application are updated frequently in order to be able to follow on a day-to-day basis what the model predicts for several countries.

Dia 2020-05-29 10:30:00-03:00
Hora 2020-05-29 10:30:00-03:00
Lugarhttps://us02web.zoom.us/j/9432620988

Agrupamiento de muestras para test masivos.

Daniel Fraiman (Universidad de San Andrés.)

En 1943 Dorfman introdujo el problema de cómo utilizar la menor cantidad de reactivos/tests para identificar a los infectados de una población.  Variantes a este problema se han desarrollado en distintas áreas. En esta charla presentaremos los principales antecedentes, agrupamiento secuencial, no secuencial y con errores de clasificación. Para luego concentrarnos en el problema de agrupamientos secuenciales anidados (generalización de Dorfman). Se agrupan m1 muestras, si da positiva el test se separa ese grupo en m2 grupos de igual tamaño, y así sucesivamente. Los tamaños de los grupos están caracterizados por m = (m1,…,mk) y en la etapa k+1 se testea individualmente.  Presentaremos la esperanza y la varianza del número de test a realizar con esta estrategia, y soporte a la siguiente conjetura. La estrategia que minimiza el número de tests, que depende de p, es de la forma (3^k,3^{k-1},...,3) o (3^{k-1}4,3^{k-1},...,3), donde k es el valor entero de log3(1/log3(1/(1-p))). 

Trabajo conjunto con Inés Armendáriz, Pablo Ferrari y Silvina Ponce Dawson.

Dia 2020-05-22 10:30:00-03:00
Hora 2020-05-22 10:30:00-03:00
Lugarhttps://us02web.zoom.us/j/9432620988

Estimación del infra-reporte en datos de recuentos. Aplicación a la CoVID-19.

Alejandra Cabaña (Universitat Autònoma de Barcelona)

El fenómeno de el infra-reporte en el contexto de la investigación biomédica es un hecho conocido y ha sido ampliamente estudiado.
Estudiamos la serie temporal Y_1,...,Y_n de los recuentos diarios de personas infectadas a partir de la información disponible ( en diferentes países/regiones la información es diferente, debido a la falta de protocolos para la recolección de datos)  usando una modificación de la metodología propuesta en Fernández-Fontelo et.al. (2016) Under-reported data analysis with INAR-hidden Markov chains
Statistics in Medicine (2016), VOL 35, Issue 26, 4875-4890), donde se propone un mecanismo muy simple para modelar el fenómeno del infra-reporte.   El procedimiento se describe con detalles en el citado artículo, y en https://underreported.cs.upc.edu/technicals/the-model/.
La idea es que, aunque observamos la serie   Y_1, ....,Y_n, hay un proceso oculto ${X_n}$ ( el número real diario de individuos con las mismas características clínicas de las observaciones, que no es observable puesto que no se hacen tests diarios a toda la población de interés)  con una estructura auto-regresiva de orden 1, para datos enteros y con innovaciones Poisson:  Po-INAR(1).  
En la charla explicaré cómo es el modelo básico, y qué modificaciones hemos tenido que hacer para que el modelo se ajuste razonablemente a los datos que tenemos, y mostraré ejemplos con datos de la pandemia en algunas regiones de España y en Uruguay.
Dia 2020-05-15 10:30:00-03:00
Hora 2020-05-15 10:30:00-03:00
Lugarhttps://us02web.zoom.us/j/9432620988

Un modelo minimalista para intentar entender la evolución del Covid-19 en Uruguay.

Nicolás Wschebor (Udelar)

 Se presentará un modelo minimalista para analizar el comportamiento pasado e intentar predecir la evolución futura de la epidemia de Covid-19 en Uruguay. El modelo considerado es un modelo de compartimentos SEIR diferenciando infectados documentados e indocumentados. El mismo es tratado de manera determinística. Se observa que en la etapa actual de evolución de la epidemia en Uruguay el modelo puede resolverse analíticamente y sus soluciones explícitas pueden ser comparadas con los datos disponibles de individuos infectados documentados. Se observa una descripción precisa de la evolución de la epidemia que permite dar una explicación muy simple del comportamiento subexponencial observado en Uruguay. Asimismo, se presentarán resultados preliminares con miras a predecir la evolución de la epidemia incorporando la información de movilidad de Google.

Dia 2020-05-08 11:00:00-03:00
Hora 2020-05-08 11:00:00-03:00
LugarSalón de seminarios del piso 14, CMAT

Por que es tan difícil calcular la fatalidad de COVID-19

Antonio Montalban (Berkeley)

"Seminario interdisciplinario de matemática, probabilidad, estadística, epidemiología, biología ...con el objetivo de intentar comprender la pandemia causada por el virus SARS-CoV-2",

http://www.cmat.edu.uy/~mordecki/seminario/

La ID para conectarse por zoom es 943 262 0988

Dia 2020-05-08 11:00:00-03:00
Hora 2020-05-08 11:00:00-03:00
Lugarzoom: 9432620988

Por que es tan difícil calcular la fatalidad de COVID-19

Antonio Montalban (Berkeley)

Analizamos la pregunta: ¿cuánta gente se moriría si la epidemia se
acabara a causa del contagio y no de una vacuna? Hay un par de valores
epidemiológicos que necesitamos saber antes de responder esa pregunta.
Uno de ello es el famoso R0. Aprovechamos a explicar como se calcula R0.

Dia 2020-04-24 10:30:00-03:00
Hora 2020-04-24 10:30:00-03:00
Lugarzoom: 9432620988

Estimación del porcentaje de reporte de casos de COVID-19 en Uruguay

Paola Bermolen (Udelar)

Autores: Daniel Herrera, Paola Bermolen, Ma. Inés Fariello (en el marco del trabajo del grupo GUIAD-Covid19 https://guiad-covid.github.io/)
Resumen:
Esta nota es un primer aporte en la estimación del estado de avance de la enfermedad en el país. En particular, se presenta una metodología para la estimación del porcentaje de los casos sintomáticos reales que ha sido reportado (porcentaje de reporte) en Uruguay, a partir de los casos críticos con COVID-19. Se asume que los casos críticos reportados, debido a la intensa atención médica que reciben se detectan mucho mejor que los casos no críticos, siendo entonces un medida más confiable. Debido al retraso entre la aparición de síntomas y que un caso llega a estado crítico, esta metodología estima el porcentaje de reporte hasta hace aproximadamente unos diez días. La metodología permite además dar intervalos de incertidumbre, así como analizar el impacto de los parámetros utilizados en dicha estimación. Finalmente, se analiza cómo una información pública más detallada sobre aparición de síntomas, ingresos y egresos a CTI así como edades de los pacientes, entre otras, pueden ayudar a obtener estimaciones más precisas o para las poblaciones más susceptibles