Seminario de Probabilidad y Estadística

Viernes 10:30hs - Salón de seminarios del piso 14, CMAT

Contacto: Alejandro Cholaquidis (acholaquidis@hotmail.com)

Próximas Charlas


Charlas Anteriores

Dia 2021-09-24 10:30:00-03:00
Hora 2021-09-24 10:30:00-03:00
Lugarzoom

“Aproximación de distribuciones quasi-estacionarias con sistemas de caminatas al azar reforzadas”

Nicolás Fraiman (University of North Carolina)

“En un trabajo conjunto con Amarjit Budhiraja y Adam Waterbury proponemos esquemas de approximación para distribuciones quasi-estacionarias de cadenas de Markov basados en un sistema de caminatas al azar que interactuan a través de la medida total de ocupación. Nuestro esquema combina características de el proceso de Fleming and Viot (1979) y del método de Aldous, Flannery, and Palacios (1998). En esta charla les voy a contar la descripción formal y las propiedades de convergencia del método.”

Dia 2021-09-10 10:30:00-03:00
Hora 2021-09-10 10:30:00-03:00
Lugarzoom

The Slow Bond Random Walk and the Snapping Out Brownian Motion.

Tertuliano Franco (Universidade Federal da Bahia, Brasil)

We consider a continuous time symmetric random walk on the integers, whose rates are equal to 1/2 for all bonds, except for the bond of vertices {−1, 0}, which associated rate is given by \alpha n^{-\beta}/2 , where \alpha and \beta are parameters of the model. We prove here a functional central limit theorem for the random walk with a slow bond: if \beta<1, then it converges to the usual Brownian motion. If \beta>1, then it converges to the reflected Brownian motion. And at the critical value \beta = 1, it converges to the snapping out Brownian motion (SNOB) of parameter k = 2 \alpha, which is a Brownian type-process recently constructed by Lejay (2016). We also provide Berry-Esseen estimates in the dual bounded Lipschitz metric for the weak convergence of one-dimensional distributions, which we believe to be sharp.
Talk based on a joint work with D. Erhard and D. Silva.

Dia 2021-09-03 10:30:00-03:00
Hora 2021-09-03 10:30:00-03:00
Lugarzoom

Modelos bayesianos de variables ocultas para el análisis de series temporales en estudios de aprendizaje sensoriomotor

Pablo Iturralde (Universidad Católica del Uruguay)

En los estudios de control y/o aprendizaje sensoriomotor se utilizan observaciones experimentales relacionadas al movimiento de los sujetos.  Sin embargo, el objeto último de análisis es el sistema nervioso, y el control que este ejerce sobre el movimiento del organismo.   En esta charla presentaré dos aplicaciones de técnicas de inferencia bayesiana sobre modelos de variables ocultas para estimar cantidades no observables que ofrecen información respecto del proceso de aprendizaje.  El modelo experimental de aprendizaje sensoriomotor utilizado es una caminadora de dos cintas, donde los sujetos se adaptan a caminar con distintas velocidades en cada pierna.  La primera aplicación utiliza cadenas de Markov para modelar la percepción de los sujetos sobre las condiciones ambientales en las que se encuentran, donde la percepción es caracterizada mediante funciones psicométricas que pueden variar en el tiempo.  En la segunda aplicación la actividad muscular de los sujetos durante el aprendizaje, registrada mediante electromiografía, es modelada como un sistema lineal invariante en el tiempo de orden y parámetros desconocidos.  Mediante el algoritmo expectation-maximization se infieren valores para los parámetros del sistema, y se obtienen las constantes de tiempo características del proceso.

Dia 2021-08-27 10:30:00-03:00
Hora 2021-08-27 10:30:00-03:00
Lugarzoom

Costo óptimo de la protección social mediante subsidios directos y microseguros

Pablo Azcue (Universidad Torcuato Di Tella)


Kovacevic y Pflug (2011) introdujeron el modelo de crecimiento del capital de los hogares sujeto a pérdidas grandes en tiempos de Poisson -descrito como fracciones aleatorias del capital- y discutieron la probabilidad de que un hogar se mantenga por encima de la línea de pobreza, mediante microseguros. Dado que los microseguros por sí solos no son suficientes para evitar la trampa de la pobreza, Contró et al (2021+) propusieron algunas soluciones de seguros para los hogares con ingresos más bajos (incluyendo subsidios gubernamentales), cuando la evolución del capital de los hogares se modela mediante un proceso de Poisson compuesto.
En este trabajo se considera que el capital de los hogares sigue un modelo como el de Kovacevic y Pflug (2011). Estudiamos el problema en el que el gobierno optimiza la esperanza del costo descontado de mantener el capital del hogar por encima de la línea de pobreza mediante inyección de capital (como subsidio directo). También analizamos el impacto de un microseguro "estatal" obligatorio sobre este costo óptimo. Utilizando el método de programación dinámica, derivamos la ecuación de Hamilton-Jacobi-Bellman asociada al problema de controlar el monto del subsidio a inyectar en cada momento. Encontramos en los ejemplos numéricos que existe un nivel óptimo de inyección por encima de la línea de pobreza. En algunos casos especiales, es posible derivar soluciones de forma cerrada por el costo descontado.

Dia 2021-08-20 10:30:00-03:00
Hora 2021-08-20 10:30:00-03:00
Lugarzoom

Algunas aplicaciones de procesamiento de señales y aprendizaje automático a la biomedicina.

Federico Lecumberry (Udelar)

"En esta charla voy a presentar algunos trabajos que he realizado en los últimos años en el desarrollo de fundamentos y aplicaciones del procesamiento de señales y aprendizaje automático en áreas de la biomedicina. Comenzaré presentando en general las líneas de investigación y luego profundizaré en algunos proyectos específicos. En especial discutiremos dominios como la microscopía o datos genómicos, o aplicaciones a la extracción de parámetros carniceros o análisis de la evolución de virus."

Dia 2021-07-02 10:30:00-03:00
Hora 2021-07-02 10:30:00-03:00
Lugarzoom

Regresión Lineal Funcional

Alejandro Cholaquidis (Udear)

El estudio teórico y práctico de métodos estadísticos donde los datos disponibles son funciones (en lugar números reales o vectores) se conoce como Análisis de Datos Funcionales. Se popularizó a finales de los 90, siendo el libro de Ramsay y Silverman del 97 un mojón importante y una referencia ineludible. Es un área de gran desarrollo hoy en día, donde varios problemas clásicos (como la regresión lineal) se han abordado desde una perspectiva funcional. Usualmente se asume que los datos están en el espacio L^2[0,1] por lo fácilmente generalizable que resultan algunas ideas de la estadística finito dimensional. Sin embargo, esta suposición tiene varias limitaciones, por ejemplo, al ser un espacio de clases de equivalencia, no tiene sentido preguntarse el valor de una función en un determinado t\in [0,1]. Es por esta y otras limitaciones que surge la idea de considerar que los datos están en otro espacio de funciones, denominado RKHS por sus siglas en inglés, donde, entre otras buenas propiedades, la evaluación de una función es un funcional lineal y continuo (facilitando por ejemplo hacer selección de variables).
El objetivo de la charla es presentar primero el modelo clásico de regresión lineal funcional, luego introduciremos los RKHS, y la regresión lineal funcional en los RKHS. Veremos la relación entre los dos modelos y que limitaciones y ventajas tiene uno frente al otro. Asimismo presentaremos un estimador, consistente bajo ciertas hipótesis, de la función de regresión.

Dia 2021-06-25 10:30:00-03:00
Hora 2021-06-25 10:30:00-03:00
Lugarzoom

Redes neuronales artificiales como modelos del cerebro

Juan C. Valle Lisboa (Udelar)

Las redes neuronales artificiales (RNAs) nacieron como modelos computacionales de la actividad mental, buscando emular de manera aproximada el funcionamiento del cerebro. Su uso como herramientas para la inteligencia artificial ha oscilado históricamente entre el entusiasmo y el descrédito; hoy en día son las herramientas más potentes para la realización automática de diversas tareas que requieren inteligencia como el procesamiento del lenguaje natural, la clasificación y etiquetado de imágenes, la realización de predicciones de diversas series temporales, programar, jugar juegos y robótica, entre otros. En el seminario discutiré a través de ejemplos las fortalezas de las RNAs como modelos de la cognición, del aprendizaje y de la actividad cerebral. Luego de hacer una breve presentación de las historia de la aplicación de las RNA como modelos neurocognitivos presentaré algunos de los éxitos recientes en dar cuenta de la actividad cerebral. Luego revisaré algunos problemas que entiendo están abiertos junto con algunas simulaciones preliminares utilizando redes recurrentes. En particular me enfoco en la posibilidad de entrenar estos modelos para que aprendan algunas funciones simples de manera exacta. Veremos que a pesar del resonante éxito de las RNAs, algunos problemas simples siguen siendo difíciles. La discusión se enfocará en los desafíos que estos problemas simples revelan acerca de los límites de la computación neural.

Dia 2021-06-18 10:30:00-03:00
Hora 2021-06-18 10:30:00-03:00
Lugarzoom

El fenómeno de "doble descenso" en regresiones

Soledad Villar (Johns Hopkins University)

Aprendizaje automático (machine learning) y en particular aprendizaje profundo (deep learning) son de las áreas de investigación más activas en los últimos tiempos. Una característica particular en aprendizaje profundo es que modelos con una cantidad enorme de parámetros (incluso mayor que la cantidad de datos de entrenamiento) generalizan bien a datos no observados. Un artículo de Belkin y colaboradores publicado en PNAS en 2019 identifica un fenómeno conocido como "descenso doble". El artículo muestra empíricamente que (1) el riesgo (es decir, el valor esperado del error en datos de testeo) puede crecer arbitrariamente en función del número de parámetros, obteniendo un pico cuando el número de parámetros p es cercano al número de muestras n, y (2) el riesgo es decreciente con el número de parámetros en el régimen p>n, incluso con valores menores que los obtenidos con menos parámetros que muestras. Este fenómeno tiene una explicación simple para regresiones lineales y puede ser evitado con regularización.
En esta charla explicaré el fenómeno de descenso doble, y un trabajo reciente donde proveemos cotas no asintóticas para el riesgo cuando los datos son pre-procesados con reducción a componentes principales. Si el tiempo es suficiente mostraremos un ejemplo donde considerar un número creciente de parámetros es equivalente a utilizar un modelo basado en procesos gaussianos.

Dia 2021-06-11 10:30:00-03:00
Hora 2021-06-11 10:30:00-03:00
Lugarzoom

Memoria corta versus memoria larga. Un nuevo test de hipótesis.

Juan Kalemkerian (Udelar)

Cuando un proceso estocástico estacionario y centrado tiene una función de autocorrelación que tiende a cero lentamente (cuando la distancia temporal entre dos observaciones tiende a infinito) se dice que el proceso tiene memoria (o dependencia) "larga" y si tiende a cero rápidamente se dice que el proceso tiene memoria "corta". Actualmente existen pocos test de hipótesis en donde se plantea la hipótesis nula de que el proceso es de memoria corta versus el modelo tiene memoria larga. El primero de ellos fue desarrollado por Lo en 1991. En esta charla mostraré el planteamiento de un nuevo test de hipótesis basado en los procesos iterados de Ornstein--Uhlenbeck fraccionarios de orden 2. Veremos su implementación, sus resultados teóricos asintóticos y su performance a través de simulaciones comparándolo con el test de Lo y el test basado en el estadístico V/S planteado por Giraitis, Kokoszka, Leipus y Teysière en 2003.  

Dia 2021-06-04 10:30:00-03:00
Hora 2021-06-04 10:30:00-03:00
Lugarzoom

La ecuación hipoelíptica de Kolmogorov y su relación con la fórmula de Feynman-Kac para la ecuación del calor con enfriamiento

José Rafael León (Udelar)

Se adjunta resumen

Resumen.pdf
Dia 2021-05-28 10:30:00-03:00
Hora 2021-05-28 10:30:00-03:00
Lugarzoom

Predicción de función de genes a partir de su ubicación en cinco organismos eucariotas

Flavio Pazos Obregón (IIBCE)

La función biológica de la mayoría de los genes es desconocida y su determinación experimental (considerando únicamente los genes ya conocidos) tomaría siglos, por lo que su predicción automática ha tomado gran relevancia. Los mejores resultados en la predicción de funciones de genes se obtienen mediante métodos de aprendizaje automático integrando datos de distinta naturaleza, típicamente, variables derivadas de la secuencia, los patrones de expresión de los genes o la estructura tridimensional de las proteínas que éstos codifican.

En este trabajo (*) utilizamos técnicas de aprendizaje automático para poner a prueba una hipótesis biológica: la función de un gen eucariota se puede inferir a partir de su ubicación relativa en el genoma al que pertenece. Para ello implementamos una serie de clasificadores jerárquicos multiclase que predicen funciones de genes en cinco organismos modelo (Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus and Homo sapiens). Para entrenar los clasificadores utilizamos únicamente variables predictivas derivadas de la ubicación de los genes en sus respectivos genomas. Obtuvimos resultados consistentes con la existencia de niveles de organización espacial que se suelen considerar exclusivos de los genomas procariotas.

(*) Local enrichment in GO terms is enough to predict gene function in five model organisms evidencing high level of genome organization in eukaryotes.

Silvera D, Soto P, Guerberoff G, Yankilevich P, Cantera R & Pazos Obregón F

Dia 2021-05-21 10:30:00-03:00
Hora 2021-05-21 10:30:00-03:00
Lugarzoom

Parada óptima bilateral para procesos de Lévy.

Facuando Oliú (Udelar)

La investigaciòn de los problemas en lo que actualmente se llama teoría estocástica de control òptimo comenzó entre 1940 y 1950. Uno de los aspectos de esta teoría es que el número de observaciones no está fijo y el tiempo en que finaliza la observación de estas lo fija el observador.

 El observador comienza en un punto x y debe elegir cuándo parar y así obtener una recompensa g(x). Los problemas en donde g tiene soporte en una semirrecta ya han sido bastante estudiados. Es por esto que en esta charla hablaré de la resolución de problemas (con técnicas relacionadas a la teoría potencial) en el caso de que g tenga soporte en toda la recta.

Dia 2021-05-14 10:30:00-03:00
Hora 2021-05-14 10:30:00-03:00
Lugarhttps://salavirtual-udelar.zoom.us/j/89466045708

Resolución del problema inverso de transferencia del calor aplicado al proceso de temple – método, modelo y aplicaciones

Diego N. Passarella (UdelaR)

El proceso de temple por inmersión es ampliamente utilizado en la industria siderúrgica para modificar las propiedades mecánicas de las piezas a tratar. La dureza y la resistencia del material tratado son incrementadas, aunque como contrapartida, el proceso induce distorsiones geométricas indeseables en las piezas. El modelado del proceso de temple involucra la resolución de tres fenómenos físicos distintos: (i) la transferencia de energía de la pieza al medio de temple, (ii) las transformaciones metalúrgicas y (iii) las deformaciones inducidas. Los fenómenos (ii) y (iii) son fuertemente dependientes de (i), por lo que este trabajo se centra en la identificación y modelado de los fenómenos de transferencia de calor durante el proceso de inmersión. Se parte de una revisión de modelos físicos adecuados para cada etapa, los cuales son ajustados a partir de un conjunto de ensayos experimentales. Para el ajuste del modelo, es necesario identificar la condición de contorno de flujo de calor en la frontera pieza-medio. Este problema inverso es resuelto por un método iterativo de correcciones sucesivas de una función de transferencia semilla. Este método permite obtener la función flujo de calor en la frontera hasta convergencia de los valores de temperatura simulados en el centro de la pieza, con los experimentales.

Esta presentación se centra en el método de resolución inversa del problema de transferencia de calor, aunque también se comentan detalles sobre el procesamiento de señales experimentales y el ajuste de los parámetros físicos del modelo. Se comenta someramente la implementación del modelo de transferencia en una simulación de flujo multifásico líquido-vapor y su aplicación simplificada en un caso industrial.

Dia 2021-05-07 10:30:00-03:00
Hora 2021-05-07 10:30:00-03:00
LugarSalón de seminarios del piso 14, CMAT

Análisis de los tiros ejecutados en la Liga Uruguaya de Basketball temporada 2019-2020

Ignacio Álvarez y Andres Sosa (Facultad de Ciencias Económicas y de Administración -- Universidad de la República)

La analítica de deporte o Sport Analytics es un área de conocimiento que integra diferentes ciencias básicas y aplicadas con el fin de evaluar el rendimiento de jugadores y equipos en distintas competencias deportivas. En los últimos años se extraen una gran cantidad de datos en eventos deportivos  de diferente naturaleza. Esta disponibilidad  ha colaborado en la creciente cantidad de trabajos de investigación que vinculan técnicas matemáticas, estadísticas y computacionales. Los objetivos que se procuran con estos estudios son variados, sin embargo se destaca la posible  utilidad para  jugadores, cuerpo técnico y demás personas vinculadas a equipos  con el fin de asesorar sobre diferentes  estrategias que mejoren el desempeño competitivo.

El Basketball es uno de los deportes más conocidos y practicados del mundo, sobre todo por el gran impacto de la National Basketball Association (NBA), además se destaca por ser uno de los deportes que más ingresos genera. En cuanto a las particularidades en su dinámica de juego, este deporte se destaca poder combinar la secuencia de situaciones de juego bien delimitadas y las posesiones del balón. Es posible que estas características colaboren en que el basketball presente un gran volumen de datos  disponibles desde hace varios años.

En Uruguay, los datos sobre eventos de cada partido están disponibles en forma instantánea en la pagina web de FIBA LiveStats  y posteriormente quedan guardados además en el sitio web de la  Federación Uruguaya de BasketBall  (FUBB). Sin embargo,  a pesar de la cantidad de investigaciones a nivel internacional, la relevancia de la temática y la existencia de datos disponibles, no encontramos desarrollos de análisis estadísticos basados en la información que se genera en cada partido de la liga a nivel local. En este trabajo nos propusimos analizar los tiros ejecutados en la Liga Uruguaya de Basketball 2019-2020 (LUB 19-20) desde una perspectiva de equipos. La idea es proponer  una serie de elementos que permitan analizar las fortalezas y las debilidades de los equipos (tanto en ataque como en defensa) desde el simple análisis de la denominada Carta de tiro hasta diferentes visualizaciones en el comportamiento de los tiros ejecutados en el transcurso de un partido. 
Se propone un modelo espacial para la probabilidad de acierto de un tiro al aro dependiendo de la posición en la cancha que el tiro se realiza. Se construye una aplicación web que permite visualizar el patrón espacial de cada equipo en base al modelo y compararlo con el patrón observado por todos los equipos juntos.  Todos los análisis estadísticos se realizan en el programa  R   y para la  obtención de datos desde la web se utilizan las herramientas de las bibliotecas  jsonlite  y rvest.
Dia 2021-04-23 10:30:00-03:00
Hora 2021-04-23 10:30:00-03:00
Lugarzoom

Non-Markovian optimal stopping time problems

Alberto Ohashi (Universidade de Brasilia)

In this talk, we present a discretization scheme to solve continuous-time optimal stopping problems based on fully non-Markovian continuous processes adapted to the Brownian motion filtration. The approximations satisfy suitable variational inequalities which allow us to construct near optimal stopping times and optimal values in full generality. Explicit rates of convergence are presented for optimal values based on reward functionals of path-dependent SDEs driven by fractional Brownian motion. If time permits, we also discuss precise error estimates for the associate Monte Carlo approximation. 

Dia 2021-04-23 10:30:00-03:00
Hora 2021-04-23 10:30:00-03:00
Lugarzoom

Sistemas de polinomios aleatorios aleatorios invariantes.

Federico Dalmao. (DMEL)

La charla de Alberto Ohashi, inicialmente programada para mañana viernes 23 de abril 10.30 am, se suspende, en su lugar la dará Federico Dalmao. 


Resumen: las raíces de polinomios aleatorios se han estudiado intensamente durante casi un siglo. En el caso de sistemas polinomiales aleatorios, los primeros resultados importantes datan de los años 90, cuando Kostlan, Shub y Smale calcularon (con argumentos geométricos/analíticos) el número medio de raíces en el caso en que los coeficientes de los polinomios del sistema son normales centrados y con las varianzas elegidas de modo que que la distribución de los polinomios sea invariante por isometrías.

Kostan en 2002 describió todas las distribuciones invariantes por isometrías en el espacio de polinomios.

En esta charla describiremos estos antecedentes y nos preocuparemos por la distribución del número de raíces de tales sistemas. Los casos concretos a tratar son los sistemas de Kostlan-Shub-Smale, los armónicos esféricos aleatorios y los polinomios Real Fubini Study systems.

Dia 2021-04-16 10:30:00-03:00
Hora 2021-04-16 10:30:00-03:00
Lugarzoom

Inferencia de modelos multiepidémicos de la pandemia de COVID-19 en Uruguay: avances, limitaciones y algunas ideas

Horacio Botti (Departamento de Biofísica, Facultad de Medicina;)

En noviembre de 2020 presentamos un estudio de la dinámica de la pandemia por COVID-19 y el efecto de algunas medidas no farmacéuticas (NPIs), como el testeo, rastreo y aislamiento y la disminución de la movilidad en Uruguay en el período del trece de marzo al ocho de octubre del año 2020. Con el aval del Comité de Ética en Investigación de la Facultad de Medicina de la Universidad de la República, usamos datos públicos reportados por el SINAE y por Google para inferir modelos epidémicos y el índice de reproducción R diario. R fue estimado usando EpiEstim y mostró dos máximos los días 8 y 102 (R0 = 3.6 ± 2.2 y Rt = 3.1 ± 0.8) y picos los días 132 (Rt = 2.01 ± 0.3), 174 (Rt = 1.54 ± 0.2) y 204 (Rt = 1.45 ± 0.1). Se crearon múltiples modelos tomando propuestas previas e incorporando aspectos originales los que fueron estimados con COPASI. Los principales modelos estimados se caracterizan por tener ocho módulos SEIR encadenados. Se pusieron a prueba modelos que incorporan cambios debidos a la movilidad y/o al trazado de contactos. Usamos el criterio de información de Akaike (AIC) para seleccionar modelos. Los parámetros y especies estimadas brindaron información sobre aspectos de la dinámica de la epidemia. Tomados en conjunto, nuestros resultados nos permiten concluir que el trazado de contactos tuvo una eficacia variable y explica en gran medida el éxito relativo del control epidémico dado el escaso número de casos de ese período. Los resultados muestran que dicho control es delicado y que debe mantenerse el esfuerzo por mejorar  el testeo, rastreo y aislamiento ya que un control pobre estaba ya ocurriendo en el período último de estudio y que mayores esfuerzos de control serían pronto necesarios. Del estudio surgen hipótesis que relacionan el Rt con la movilidad en hogares y el trabajo y la necesidad de colaborar para completar el trabajo con el estudio de la etapa de descontrol progresivo que siguió al 8 de octubre de 2020 y explorar hipótesis algo más complejas.

Dia 2021-04-09 10:30:00-03:00
Hora 2021-04-09 10:30:00-03:00
Lugarzoom

Un método de elementos finitos para cristales líquidos nemáticos uniaxiales

Juan Pablo Borthagaray (Departamento de Matemática y Estadística del Litoral)

La de cristal líquido es una mesofase de la materia en la que se tiene un nivel de orden macroscópico entre la de una fase líquida y la de una sólida. Un sólido cristalino típicamente presenta tanto orden traslacional (las moléculas se ordenan formando un retículo) como orientacional (moléculas vecinas tienen orientaciones similares). Los cristales líquidos nemáticos no tienen un orden traslacional fuerte, pero sus moléculas sí mantienen un cierto orden orientacional.  

En el llamado modelo de tensores-Q de Landau-de Gennes para cristales líquidos nemáticos uniaxiales, la orientación de las moléculas está dada por un campo tensorial de rango uno y su grado de orientación por un campo escalar. En la charla vamos a discutir éste y otros modelos para cristales líquidos nemáticos y a presentar una discretización de este modelo mediante el método de elementos finitos. Este método preserva cierta estructura básica del problema, y vamos a discutir su consistencia, estabilidad y convergencia. También vamos a presentar varias simulaciones en 2d y 3d, que muestran la capacidad del método de lidiar con los llamados "defectos" del cristal líquido y en la extensión del método para representar la inclusión de partículas en suspensión y/o el efecto de campos externos.

La charla está basada en trabajos en conjunto con Ricardo Nochetto (University of Maryland) y Shawn Walker (Louisiana State University).

Dia 2021-03-26 10:30:00-03:00
Hora 2021-03-26 10:30:00-03:00
Lugarzoom

Modelo SIR discreto con transiciones aleatorias, para el efecto de la vacunación en una epidemia

Enrique Cabaña (Udelar)

Con motivo de la presentación de un modelo de simulación interactivo muy simple para las trayectorias de un modelo de epidemia con vacunación, de libre acceso en Internet, se discutirán modelos de diverso grado de complejidad, y algunos escenarios simulados.

Dia 2021-03-19 10:30:00-03:00
Hora 2021-03-19 10:30:00-03:00
Lugarzoom

Tendencias y ciclos en la economía uruguaya, 1870-2019

Luis Bértola (Udelar)

Trabajos anteriores han mostrado la existencia, a lo largo del período 1870-2000, de ciclos económicos de aproximadamente 15-20 años de duración en la economía uruguaya, rasgo que comparte con otras economías de la región. Estos ciclos han tenido importantes repercusiones en el plano político-institucional, lo que los convierte en un tema de mayor interés. Este trabajo, basado en mejoras introducidas a las series históricas existentes y en una extensión de las mismas hasta 2019, busca determinar si el patrón cíclico antes identificado se mantiene presente hasta 2019. Se utiliza la metodología de modelos estructurales de series temporales (inicialmente propuesto por Harvey, 1989) para estimar los componentes inobservables de tendencia y ciclos. Una vez identificado los ciclos, se los busca correlacionar con otras variables, como los ciclos del mundo relevante, de los términos de intercambio y de la formación bruta de capital fijo.

Se constata que efectivamente el ciclo económico antes identificado se mantiene vigente hasta la actualidad, con una fuerte fase expansiva a inicios del siglo XXI, que entró en una fase de fuerte ralentización durante varios años, hasta que irrumpiera la pandemia.

Las correlaciones móviles entre el PIB uruguayo y el del resto del mundo son erráticas, aunque son mayormente significativas con posterioridad a mediados de los años 50 y hasta mediados de los 60 y con posterioridad a los años 90 Las correlaciones móviles entre PIB y los términos de intercambio muestran una evolución fluctuante, significativa y alta entre 1942 y 1970 y a partir de mediados de los 90. En el caso de la formación bruta de capital fijo las correlaciones son altas en todo el período, con alguna breve interrupción.