Reiris Ithurralde Martín, Dr.

Reiris Ithurralde Martín, Dr.
Int. 114
Oficina 3, Piso 15

Estudio y posdocs

  • Posdoc              Junior Scientist, Max Planck Institute for gravitational physics (Alemania, Golm) 2009-2015.

  • Posdoc              Moore instructor, MIT (US, Massachusetts) 2006-2009. 

  • PHD                    State University of New York at Stony Brook (SUNYSB), 2005.

  • Licenciatura      Facultad de Ciencias, (UDELAR-FCIEN), 1996.



 Geometría y Relatividad General (RG) - algunos temas,

  • Ecuaciones diferenciales parciales, elípticas e hiperbólicas 

  • Problema de valores iniciales en RG

  • Soluciones estáticas y estacionarias en RG

  • Desigualdades de agujeros negros en RG

  • Superficies mínimas y la geometría de datos iniciales

  • Tres variedades y geometrización en tiempo largo por la ecuaciones de Einstein



  1. A classification theorem for compact Cauchy horizons in vacuum spacetimes. Submitted for publication (con Ignacio Bustamante). 

  2. On the existence of Killing fields in smooth spacetimes with a compact Cauchy horizon. Classical and Quantum GravityVolume 17Number 24 (con Ignacio Bustamante) [pdf]

  3. A complete classification of S1-symmetric static vacuum black holes. Class. Quantum Grav. 36 225012, 2019. (con Javier Peraza) [pdf]

  4. A classification theorem for static vacuum black holes Part I: the study of the lapse. [pdf] (Accepted in Pure and Applied Mathematical Quarterly).

  5. A classification theorem for static vacuum black holes Part II: the study of the asymptotic. [pdf] (Accepted in Pure and Applied Mathematical Quarterly).

  6. On static solutions of the Einstein - Scalar Field equations. General Relativity and Gravitation 2016. M. Gen Relativ Gravit (2017) 49: 46. [pdf]

  7. The asymptotic of static isolated systems and a generalised uniqueness for Schwarzschild. Classical and Quantum Gravity, Volume 32, Number 19, 08 October 2015, pp. 195001-195016. [pdf]

  8. The area-angular momentum inequality for black holes in cosmological spacetimes. Classical and Quantum Gravity, Volume 32, Number 14. (con Mar\'ia Eugenia Gabach y Walter Simon). [pdf]

  9. On Ricci curvature and volume growth in dimension three. J. Differential Geom. Volume 99, Number 2 (2015), 313-357. [pdf]

  10. On the shape of bodies in General Relativistic regimes. Gen. Rel. and Grav. 46 (2014) 1777. [pdf]

  11. Stationary solutions and asymptotic flatness I. Class. Quantum Grav. 31 (2014) 155012. [pdf]

  12. Stationary solutions and asymptotic flatness II. Class. Quantum Grav. 31 (2014) 155013. [pdf]

  13. Perturbations of extreme Kerr-Newman black-holes and their evolution. Annales Henri Poincare (2014) 1-31. [pdf]

  14. On extreme Kerr-throat spheres and zero temperature black-holes. Class.Quant.Grav. 31 (2014) 025001. [pdf]

  15. Shape of rotating black holes. Phys. Rev. D 88, 044031 (2013) (con Maria Eugenia Gabach). [pdf]

  16. Global and uniqueness properties of static and stationary space-times with outer trapped surfaces. Communications in Mathematical Physics (2013) 322: 633-666, 33 pp (con Marc Mars). [pdf]

  17.  Proof of the area-angular momentum-charge inequality for axisymmetric black holes. Classical and Quantum Gravity, (2013) 30, 065017, 29 pp (con Maria Gabach y Jos\'e Jaramillo). [pdf]

  18. Static solutions from the point of view of comparison geometry. J. Math. Phys. 53 (2012), no. 1, 012501, 31 pp. [pdf]

  19.  Area-charge inequalities for black holes. Classical Quantum Gravity 29 (2012), no. 3, 035013, 15 pp (con Sergio Dain y Jos\'e Jaramillo). [pdf]

  20. Area - Angular momentum inequality for axisymmetric black holes. Physical Review Letters. 07/2011; 107, 051101 (con Sergio Dain). [pdf]

  21. Black hole Area-Angular momentum inequality in non-vacuum space-times. Physical Review D - 84, 121503(R) (2011) (con Sergio Dain y Jos\'e Jaramillo). [pdf]

  22. Linear perturbations for the vacuum axisymmetric Einstein equations. Ann. Henri Poincar\'e 12 (2011), no. 1, 49-65 (con Sergio Dain). [pdf]

  23. Scalar curvature isoperimetric collapse and General Relativity in the Constant Mean Curvature gauge. Contemporary Mathematics 554. Fourth international conference on Complex Analysis and Dynamical Systems, May 18-22-2009. Nahariya Israel. [pdf]

  24. The ground state and the long-time evolution in the CMC Einstein flow. Ann. Henri Poincar\'e 10 (2010), no. 8, 1559-1604.[pdf]

  25. Energy and volume: a proof of the positivity of ADM mass using the Yamabe invariant of three-manifolds. Comm. Math. Phys. 287 (2009), no. 1, 383-393. [pdf]

  26. On the long time spectrum of the reduced volume in cosmological solutions of the Einstein equations. Gen. Relativity Gravitation 41 (2009), no. 5, 1083-1106. [pdf]

  27. General K=-1 Friedman-Lema\^itre models and the averaging problem in cosmology. Classical Quantum Gravity 25 (2008), no. 8, 085001, 26 pp. [pdf]

  28. A differentiable calculus on the space of loops and connections. Geometric methods for quantum field theory (Villa de Leyva, 1999), 489-497, World Sci. Publ. River Edge, NJ, 2001.

  29. A Calculus in Differentiable Spaces and Its Applications to Loops. Classical Quantum Gravity 16 (1999), no. 8, 2697-2708. (con P. Spallanzani). [pdf]



  1. Isolated systems are asymptotically… flat | CQG+. [pdf]

  2. The spin limit for cosmological black holes | CQG+. [pdf]

  3. Developments in axisymmetric gravity. [pdf]



  1. Geometric relations of stable minimal surfaces and applications. [pdf]

  2. A note on scalar curvature and the convexity of boundaries. [pdf]

  3. Scalar curvature and isoerimetric collapse in dimension three. [pdf]