Reiris Ithurralde Martín, Dr.

Reiris Ithurralde Martín, Dr.
Int 117
Oficina 6, Piso 15


Plan de trabajo [PDF]



  • PHD                    State University of New York at Stony Brook (SUNYSB), 2005.

  • Licenciatura      Facultad de Ciencias, (UDELAR-FCIEN), 1996.



  • Profesor agregado cargo CSIC, (CMAT), 20016-

  • Junior Scientist, Max Planck Institute for Gravitational Physics (AEI, Potsdam-Alemania) 2009-2015

  • Moore instructor, Massachusetts Institute of Technology (MIT) 2006-2009.


Áreas de investigación

 Geometría y Relatividad General (RG) - algunos temas,

  • Ecuaciones diferenciales parciales, elípticas e hiperbólicas 

  • Problema de valores iniciales en RG

  • Soluciones estáticas y estacionarias en RG

  • Desigualdades de agujeros negros en RG

  • Superficies mínimas y la geometría de datos iniciales

  • Tres variedades y geometrización en tiempo largo por la ecuaciones de Einstein


Publicaciones y PDFs 

  1. On static solutions of the Einstein - Scalar Field equations. General Relativity and Gravitation 2016. M. Gen Relativ Gravit (2017) 49: 46. [PDF]

  2. The asymptotic of static isolated systems and a generalised uniqueness for Schwarzschild. Classical and Quantum Gravity, Volume 32, Number 19, 08 October 2015, pp. 195001-195016. [PDF]

  3. The area-angular momentum inequality for black holes in cosmological spacetimes. Classical and Quantum Gravity, Volume 32, Number 14. (con Mar\'ia Eugenia Gabach y Walter Simon). [PDF]

  4. On Ricci curvature and volume growth in dimension three. J. Differential Geom. Volume 99, Number 2 (2015), 313-357. [PDF]

  5. On the shape of bodies in General Relativistic regimes. Gen. Rel. and Grav. 46 (2014) 1777. [PDF]

  6. Stationary solutions and asymptotic flatness I. Class. Quantum Grav. 31 (2014) 155012. [PDF]

  7. Stationary solutions and asymptotic flatness II. Class. Quantum Grav. 31 (2014) 155013. [PDF]

  8. Perturbations of extreme Kerr-Newman black-holes and their evolution. Annales Henri Poincare (2014) 1-31. [PDF]

  9. On extreme Kerr-throat spheres and zero temperature black-holes. Class.Quant.Grav. 31 (2014) 025001. [PDF]

  10. Shape of rotating black holes. Phys. Rev. D 88, 044031 (2013) (con Maria Eugenia Gabach). [PDF]

  11. Global and uniqueness properties of static and stationary space-times with outer trapped surfaces. Communications in Mathematical Physics (2013) 322: 633-666, 33 pp (con Marc Mars). [PDF]

  12.  Proof of the area-angular momentum-charge inequality for axisymmetric black holes. Classical and Quantum Gravity, (2013) 30, 065017, 29 pp (con Maria Gabach y Jos\'e Jaramillo). [PDF]

  13. Static solutions from the point of view of comparison geometry. J. Math. Phys. 53 (2012), no. 1, 012501, 31 pp. [PDF]

  14.  Area-charge inequalities for black holes. Classical Quantum Gravity 29 (2012), no. 3, 035013, 15 pp (con Sergio Dain y Jos\'e Jaramillo). [PDF]

  15. Area - Angular momentum inequality for axisymmetric black holes. Physical Review Letters. 07/2011; 107, 051101 (con Sergio Dain). [PDF]

  16. Black hole Area-Angular momentum inequality in non-vacuum space-times. Physical Review D - 84, 121503(R) (2011) (con Sergio Dain y Jos\'e Jaramillo). [PDF]

  17. Linear perturbations for the vacuum axisymmetric Einstein equations. Ann. Henri Poincar\'e 12 (2011), no. 1, 49-65 (con Sergio Dain). [PDF]

  18. Scalar curvature isoperimetric collapse and General Relativity in the Constant Mean Curvature gauge. Contemporary Mathematics 554. Fourth international conference on Complex Analysis and Dynamical Systems, May 18-22-2009. Nahariya Israel. [PDF]

  19. The ground state and the long-time evolution in the CMC Einstein flow. Ann. Henri Poincar\'e 10 (2010), no. 8, 1559-1604.[PDF]

  20. Energy and volume: a proof of the positivity of ADM mass using the Yamabe invariant of three-manifolds. Comm. Math. Phys. 287 (2009), no. 1, 383-393. [PDF]

  21. On the long time spectrum of the reduced volume in cosmological solutions of the Einstein equations. Gen. Relativity Gravitation 41 (2009), no. 5, 1083-1106. [PDF]

  22. General K=-1 Friedman-Lema\^itre models and the averaging problem in cosmology. Classical Quantum Gravity 25 (2008), no. 8, 085001, 26 pp. [PDF]

  23. A differentiable calculus on the space of loops and connections. Geometric methods for quantum field theory (Villa de Leyva, 1999), 489-497, World Sci. Publ. River Edge, NJ, 2001.

  24. A Calculus in Differentiable Spaces and Its Applications to Loops. Classical Quantum Gravity 16 (1999), no. 8, 2697-2708. (con P. Spallanzani). [PDF]



  1. Isolated systems are asymptotically… flat | CQG+. [PDF]

  2. The spin limit for cosmological black holes | CQG+. [PDF]

  3. Developments in axisymmetric gravity. [PDF]


Preprints and PDFs

  1. Geometric relations of stable minimal surfaces and applications. [PDF]

  2. A note on scalar curvature and the convexity of boundaries. [PDF]

  3. Scalar curvature and isoerimetric collapse in dimension three. [PDF]

  4. A classification theorem for static solutions of the Einstein equation. [PDF]