Variedades tóricas proyectivas y dualidad - Mathias Bourel (2007)
La teoría de dualidad de variedades proyectivas, en particular de cónicas planas, es un tema clásico de la geometría. Por otro lado, y bajo distintas apariencias, las variedades proyectivas duales han sido consideradas en varias ramas de la matemática. En este trabajo nos concentramos en el estudio de la dualidad en el contexto de las variedades tóricas proyectivas. En particular, clasificamos y damos una descripción completa de las variedades tóricas autoduales. Esta clasificación nos permite construir familias infinitas de variedades tóricas autoduales no lisas, ampliando de este modo las familias de variedades autoduales conocidas hasta el momento.
https://www.cmat.edu.uy/biblioteca/monografias-y-tesis/tesis-de-maestria/variedades-toricas-proyectivas-y-dualidad-mathias-bourel.pdf/view
https://www.cmat.edu.uy/@@site-logo/log-cmat.png
Variedades tóricas proyectivas y dualidad - Mathias Bourel (2007)
La teoría de dualidad de variedades proyectivas, en particular de cónicas planas, es un tema clásico de la geometría. Por otro lado, y bajo distintas apariencias, las variedades proyectivas duales han sido consideradas en varias ramas de la matemática. En este trabajo nos concentramos en el estudio de la dualidad en el contexto de las variedades tóricas proyectivas. En particular, clasificamos y damos una descripción completa de las variedades tóricas autoduales. Esta clasificación nos permite construir familias infinitas de variedades tóricas autoduales no lisas, ampliando de este modo las familias de variedades autoduales conocidas hasta el momento.