Problema circular de tres cuerpos restricto: órbitas periódicas y superficies de sección transversales - Favio Pirán (2022)
El problema de tres cuerpos es un problema simple de relevancia histórica: determinar el movimiento de tres cuerpos modelados como masas puntuales cuyo movimiento queda determinado por la ley de gravitación universal de Newton. A fines de siglo XX, ante la pregunta sobre la integrabilidad de este problema, Poincaré prueba que bajo ciertas restricciones éste resulta no integrable, dando lugar a los orígenes de la teoría del caos. Para esta prueba construye por métodos perturbativos una superficie de sección transversal que permite una traducción de la dinámica a un mapa de retorno conservativo. \( \\ \) La simplificación del problema que nos interesa consiste en considerar uno de los cuerpos con asa despreciable, restringirse a movimientos en el plano, y asumir que el movimiento de los cuerpos de masa no despreciable queda descrito por círculos concéntricos centrados en su centro de masa. Siguiendo con la filosofía de Poincaré, se piensa a este problema como la perturbación de uno más sencillo y de esta forma Conley construye a mediados de siglo XX un anillo de sección transversal para energías suficientemente bajas, usando como borde del anillo dos órbitas periódicas especiales. \( \\ \) Este problema sigue siendo material de estudio y en este sentido es que en las últimas décadas se ha intentado dar resultados no perturbativos. Un camino en esta dirección surge de la interacción de la teoría de curvas pseudoholomorfas y geometría de contacto. La tesis intenta dar un recuento histórico con una visión moderna de ciertos abordajes al problema, finalizando con una lectura informal de la aplicación de resultados notables de Wysocki, Hofer y Zehnder en esta búsqueda, no perturbativa, de superficies de sección globales para el problema de tres cuerpos restricto planar-circular.
https://www.cmat.edu.uy/biblioteca/monografias-y-tesis/tesis-de-maestria/tesismaestriafavio.pdf/view
https://www.cmat.edu.uy/@@site-logo/log-cmat.png
Problema circular de tres cuerpos restricto: órbitas periódicas y superficies de sección transversales - Favio Pirán (2022)
El problema de tres cuerpos es un problema simple de relevancia histórica: determinar el movimiento de tres cuerpos modelados como masas puntuales cuyo movimiento queda determinado por la ley de gravitación universal de Newton. A fines de siglo XX, ante la pregunta sobre la integrabilidad de este problema, Poincaré prueba que bajo ciertas restricciones éste resulta no integrable, dando lugar a los orígenes de la teoría del caos. Para esta prueba construye por métodos perturbativos una superficie de sección transversal que permite una traducción de la dinámica a un mapa de retorno conservativo. \( \\ \) La simplificación del problema que nos interesa consiste en considerar uno de los cuerpos con asa despreciable, restringirse a movimientos en el plano, y asumir que el movimiento de los cuerpos de masa no despreciable queda descrito por círculos concéntricos centrados en su centro de masa. Siguiendo con la filosofía de Poincaré, se piensa a este problema como la perturbación de uno más sencillo y de esta forma Conley construye a mediados de siglo XX un anillo de sección transversal para energías suficientemente bajas, usando como borde del anillo dos órbitas periódicas especiales. \( \\ \) Este problema sigue siendo material de estudio y en este sentido es que en las últimas décadas se ha intentado dar resultados no perturbativos. Un camino en esta dirección surge de la interacción de la teoría de curvas pseudoholomorfas y geometría de contacto. La tesis intenta dar un recuento histórico con una visión moderna de ciertos abordajes al problema, finalizando con una lectura informal de la aplicación de resultados notables de Wysocki, Hofer y Zehnder en esta búsqueda, no perturbativa, de superficies de sección globales para el problema de tres cuerpos restricto planar-circular.