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Abstract. We review two methods aiming to compute the distribution of the
maximum of a Gaussian process: an updated version of the Rice series and the

so-called “direct method”. The Rice series applies to one-parameter processes
while the direct method can be used also for multi-parameter random fields.

1. Introduction

Let X = {X(t) : t ∈ T} be a real-valued Gaussian random function and M =
supt∈T X(t) its supremum. Our aim in this paper is to review without proofs some
of the results on the computation of the probability distribution of the random
variable M , that is, the function

F (u) = P (M ≤ u), u ∈ R.

In all cases, we will assume that the parameter domain T is a subset of Eu-
clidean space possessing some geometric regularity and the paths t  X(t) are
continuously differentiable of some order. If T is one-dimensional we will call X
a “random process”, if it has dimension greater than 1, we will call it a “random
field”.

Exact useful formulas for the function F exist only for a short list of Gauss-
ian processes. They are based upon ad-hoc methods and the general question
of computing or getting good estimations of this distribution remains, generally
speaking, an open problem, interesting both from the point of view of the mathe-
matical theory and the applications.

In the first half of the 1970’s, a number of fundamental inequalities on the
tail of the distribution of M , that is 1 − F (u), as well as asymptotic results as
u → +∞ were proved, starting with a paper by Landau and Shepp [19] followed
by a long list of papers and books. A partial account of this work are: Marcus
and Shepp [23], Sudakov and Tsirelson [29], Borell [14] [15], Fernique [18], Ledoux
and Talagrand [21], Berman [12] [13], Adler [2], Talagrand [31], Ledoux [20] and
Lifshits [22].

A typical inequality, proved independently by Borell and Sudakov-Tsirelson,
states that if T is countable, the Gaussian process X is centered and almost surely
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its paths are bounded, then

σ2 = sup
t∈T

V ar(X(t)) < +∞

and for every u > 0,

P
(
|M − µ(M)| > u

)
≤ exp

(
− u2

2σ2

)
,

where µ(M) is a median of the distribution of M . Of course, this extends imme-
diately to separable bounded Gaussian processes.

These classical inequalities are essential for the development of most of the
mathematical theory. However, in a wide number of applications they are not
good enough since there appear certain constants (such as the median above) for
which the estimations one is able to obtain differ substantially from the true values
and as a consequence, the relative error that one gets for the tail probability of M
becomes exponentially large (for large values of u).

The bounds given by these results can be applied to a wide class of Gaussian
processes, but become inaccurate for given ones or for special classes of Gaussian
processes. This situation implies that for statistical applications the usual practice
is to estimate the distribution of M by simulation of the paths, which is expensive
for continuous parameter processes and poor from theoretical viewpoint if one is
willing to understand a number of natural problems, such as changing the values
of certain parameters in the probability law of the random process or field.

Since the 1990’s several methods have been introduced to obtain more precise
results under certain restrictions on the process X . These are interesting from
the point of view of the mathematical theory as well as in applications. Some
examples of these contributions are the double sum method (see Piterbarg [27]);
the Euler-Poincaré Characteristic (EPC) approximation, Taylor, Takemura and
Adler [33], Adler and Taylor [3]; the tube method, Sun [30], the Rice method,
revisited by Azäıs and Delmas [5], the Rice series, Azäıs and Wschebor [6] and the
“direct method” [9],[10].

In this paper, we describe the results that one can obtain using the Rice series
and the direct method and the main theorems in which they are based.

The Rice series concerns only one-parameter processes. The main point is to
write the function F as the sum of a series whose terms are computed from the
moments of up-crossings of the process. Its application to real cases requires to
consider numerical problems, some of which appear to be very difficult and remain
unsolved for the time being. For certain classes of processes, it is numerically effi-
cient to compute the function F using the Rice series, we mention some examples.

With respect to the direct method, one would like to write, whenever it is
possible

P (M > u) = A(u) exp
(
− 1

2

u2

σ2

)
+ B(u) (1.1)

where A(u) is a known function having polynomially bounded growth as u → +∞
and B(u) is an error bounded by a centered Gaussian density with variance σ2

1 ,
σ2
1 < σ2. We will call the first (respectively the second) term in the right-hand

side of (1.1) the “first (resp second) order approximation of P (M > u).”
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Generally speaking, both A(u) and the exponential order of B(u) remain un-
known, excepting very special cases. The only situation in which this author knows
a precise result is the following:

Let X be a centered stationary Gaussian processes defined on the interval [0, T ],
λ0 = 1, λ8 < +∞, the joint distribution of X(s), X(t), X ′(s), X ′(t), X ′′(s), X ′′(t)
is non-degenerate, plus some additional condition on the covariance, such as being
decreasing for 0 < t < T . Under these conditions, one has as u → +∞:

P (M > u) = 1− Φ(u) +

√
λ2

2π
Tϕ(u)

− 3
√
3(λ4 − λ2

2)
9
2

2πλ
9
2
2 (λ2λ6 − λ2

4)

T

u5
ϕ

(√
λ4

λ4 − λ2
2

u

)
[1 + o(1)] .

Here and in what follows, Φ (resp. ϕ ) denotes the standard normal distribution
(resp. density), and for a stationary process, λk its k-th spectral moment. This
equivalence was proved in [26] for sufficiently small length T and in [4] for any T .

In [3], [33] first order is computed by means of the expectation of the EPC of
the excursion set Eu := {t ∈ T : X(t) > u}. This works for large values of u, and
in certain cases, these authors have also given bounds on the exponential order of
B(u) as u → +∞. We will describe some related results using the direct method,
which also allows to estimate the tail probabilities for any fixed u−value.

2. The Rice Series

We use the following notations:

• In this section, X = {X(t) : t ∈ [0, T ]} denotes a real-valued random
process defined on the interval [0,T] of the real line having C1 paths.

• If ξ is a random variable taking values in Rd, we denote pξ(z) the value at
the point z ∈ Rd of the density of its probability distribution, whenever it
exists.

• Uu = Uu(X , [0, T ]) is the number of up-crossings of the level u by the
function X(.) on the interval [0, T ], that is:
Uu = ]{t ∈ [0, T ] : X(t) = u,X ′(t) > 0}.

• For integers k,m, k ≥ 0,m ≥ 1 we put k[m] = k(k − 1)...(k −m+ 1).

• ν̃m := E(U
[m]
u χ{X(0)≤u}) (m = 1, 2, ...) denotes the factorial moment of

order m of the number of up-crossings of the path over interval [0, T ]
restricted to the paths starting below the level u at t = 0.

• νm := E(U
[m]
u ) (m = 1, 2, ...) denotes the factorial moment of order m of

the total number of up-crossings of the path over interval [0, T ]. Note that
ν̃m ≤ νm.

The Rice formulas to compute νm and ν̃m, whenever they hold true are the
following:

νm =

∫
[0,T ]m

E
(
X ′+(t1)...X

′+(tm)
∣∣X(t1) = ... = X(tm) = u

)
× pX(t1),...,X(tm)(u, ..., u)dt1...dtm.

(2.1)
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ν̃m =

∫
[0,T ]m

dt1...dtm∫ u

−∞
E
(
X ′+(t1)...X

′+(tm)
∣∣X(0) = x,X(t1) = ... = X(tm) = u

)
× pX(0),X(t1),...,X(tm)(x, u, ..., u)dx

(2.2)

For conditions which assure the validity of these formulas, either for Gaussian
processes or non-Gaussian ones, as well as for proofs, one can see [11], Ch. 3.
Notice that these formulas are valid for each value of u, so that one has to make
an appropriate choice of the versions, both for the conditional expectation and the
density. For Gaussian processes, the density is the usual normal density function
and the conditional expectation is the one obtained using the regression formulas.

The basic result that relates the distribution of the maximum with the factorial
moments of the number of up-crossings, via the Rice series, is the following:

Theorem 2.1. Assume that a.s. the paths of the stochastic process X are of class
C∞ and that the density pXT/2

(.) is bounded by some constant D.

(i) If there exists a sequence of positive numbers {ck}k=1,2,... such that:

γk := P
(
‖X(2k−1)‖∞ ≥ ck.T

−(2k−1)
)
+

Dck
22k−1 (2k − 1)!

= o
(
2−k

)
(k → ∞) (2.3)

then

1− F (u) = P (X(0) > u) +
∞∑

m=1

(−1)
m+1 ν̃m

m!
(2.4)

(ii) In formula (2.4) the error when one replaces the infinite sum by its m0-th
partial sum is bounded by γ∗

m0+1 where:

γ∗
m := sup

k≥m

(
2k+1γk

)
.

The series in the right-hand side of (2.4) is called the “Rice Series”. We make
several remarks on Theorem 2.1 below:

(1) The proof of this theorem can be found in [6].
(2) At first glance, the statement of Theorem 2.1 does not appear to be very

useful in practice, for various reasons, the first one being that one has
to check the existence of a sequence {ck}k=1,2,... such that the hypothesis

(2.3) holds true.
In fact, this can be done for some general classes of random processes,

that is, one can reduce the existence of the sequence {ck} to some natural
conditions on the law of the process. This is the case of Theorem 2.2
below, in which this is done for stationary Gaussian processes having a
sufficiently regular covariance function.

Other interesting cases can also be considered with respect to formula
(2.4), even if some related numerical problems remain still unsolved. Two
relevant examples are the following:

• Gaussian processes possessing continuous but not C∞ paths. Then
we can proceed as follows: 1) regularize the paths by means of some
linear deterministic device (such as convolution with an appropriate
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kernel); 2) apply the Rice series to compute the distribution of the
new process obtained in this way and 3) estimate the error that the
regularization has produced. This appears to be a promising method
to compute the distribution of M in many interesting Gaussian cases.
(see [11], chap. 4 for an example of this kind of procedure).

• Consider in dimension 1 a strong solution of a stochastic differential
equation with regular coefficients excited with Brownian motion. Un-
der fairly general conditions one can regularize the solution and prove
the existence of the sequence {ck} for the regularized process, hence
use the Rice series to compute the distribution of its maximum (see
[11], chap. 5). The drawback is that even when the Rice formulas
hold true, in this case one is unable to compute numerically the fac-
torial moments of up-crossings. This remains an open problem: one
has to find numerical methods adapted to this kind of computation
in non-Gaussian cases, which do not exist for the time being.

(3) Using formula (2.4) to compute the distribution of M in a concrete case
implies first that we have to replace the infinite sum by a finite one, that
is, to choose the number m0 of terms to sum up and second, to compute
the factorial moments ν̃m, 1 ≤ m ≤ m0.

With respect to the choice of m0 the Rice series has the nice enveloping
property that if one replaces the infinite sum by its m0-partial sum, then
the error is bounded by the absolute value of the m0-th term i.e. ν̃m0/m0!.
Moreover, if m0 is odd (respectively even), replacing the infinite sum by
the m0- partial sum in (2.4) gives an upper (resp. lower) bound for the tail
1−F (u) (see again [6] for a proof; notice that the Rice series has alternate
signs but is not a Leibnitz series).

Since one is going to compute the terms up to them0-th one, this gives a
step by step bound for this source of error, allowing an adaptive procedure
not to surpass a given bound.

It turns out that in interesting cases, this adaptive procedure ends up
after computing a few terms of the Rice series, implying that the cost of
the computation becomes much smaller than simulation of the paths or
using m0 from a priori estimation of the error. We will return to this point
below.

The second point refers to the computation of the factorial moments.
As mentioned above, in the non-Gaussian case, even when Rice formulas
hold true, the computation of the integrands becomes intractable.

For Gaussian processes, this can be handled in a variety of situations,
even though there remain a number of unsolved numerical analysis prob-
lems. In any case, for m ≥ 2, one must use some numerical approximation
procedure, whose complexity increases rapidly with m, so that an essen-
tial practical question is that the number of terms needed not to surpass
a given error bound, remains small.

By the way, for Gaussian stationary processes possessing some path
regularity, we have reasonably simple analytic formulas for the moments
of up-crossings for m = 1 and m = 2 (see for example [16]), but notice that
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the requirement X(0) ≤ u in the formula for ν̃m implies that the relevant
process to compute the integrals is non-stationary even if the starting X
is stationary.

(4) The Rice series as a tool to compute the distribution of the maximum of
Gaussian processes has been used since a long time for certain Gaussian
stationary processes (see [24], [25]). In fact, to verify the convergence of the
series and the validity of the equality in these special cases requires lengthy
calculations, and is not easier than the proofs of the general theorems 2.1
and 2.2.

(5) For Gaussian processes, we can relax the C∞ requirement for the paths
to Cp differentiability. In this case, we can not write an equality such as
(2.4), but one can give upper and lower bounds for the approximation of
the distribution of M ([6]).

Let us now turn to the application of Theorem 2.1 to Gaussian stationary
processes.

Theorem 2.2. Let X = {X(t) : t ∈ R} be Gaussian, centered and stationary, with
covariance Γ normalized by Γ(0) = 1. Assume that Γ has a Taylor expansion at the
origin which is absolutely convergent at t = 2T. Then the conclusion of Theorem
2.1 holds true, so that the Rice series converges and F (u) can be computed by
means of (2.4).

The proof can be found in [6]. It consists in showing that the sequence {ck}
defined by:

ck := (Bkλ4k−2)
1/2 if

λ4k

λ4k−2
≤ Bk

ck := (λ4k)
1/2 if

λ4k

λ4k−2
> Bk.

where B = 4 log 2, verifies the condition required in Theorem 2.1.
Notice that any centered Gaussian stationary process with bounded spectrum

verifies the condition in Theorem 2.2 for any value of the length interval T .

3. Computation of Moments, Numerical Problems, and Examples

We assume now that the process X is Gaussian. The use of the Rice series
implies the computation of the factorial moments ν̃m. This leads to use numeri-
cal approximation, and for m ≥ 2, Montecarlo methods are in principle the most
efficient for the calculation of the integrals. An efficient procedure requires under-
standing the behavior of the integrands

Ã(u; t1, ..., tm) =∫ u

−∞
E
(
X ′+(t1)...X

′+(tm)
∣∣X(0) = x,X(t1) = ... = X(tm) = u

)
× pX(0),X(t1),...,X(tm)(x, u, ..., u)dx

near the diagonal

Dm = {(t1, ..., tm) ∈ [0, T ]m, ti = tj for some pair i, j, i 6= j},
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where the density collapses and the conditional expectation tends to zero.
It turns out that the integrand Ã(u; t1, ..., tm) approaches zero near the diagonal,

with a speed that grows rapidly with m and it is convenient to use importance
sampling when applying Montecarlo to compute the integral, taking into account
the vanishing order of the integrand. We list some of the results that can be useful
for this purpose (For proofs, see [6] or [11]):

• We start with m = 2, case in which we have a satisfactory general result.
Suppose that X has C5 paths and that for each t ∈ [0, T ] the joint distri-
bution of X(t), X ′(t), X(2)(t), X(3)(t) does not degenerate. Then

Ã(u; t1, t2) ≈ J(t∗)(t2 − t1)
4 as t1, t2 → t∗ (3.1)

where J(.) is a continuous non-zero function depending on u, which can
be expressed (in a complicated form) in terms of the mean and covariance
functions of the process and its derivatives.

• For m ≥ 3, we have the following result for centered processes and u = 0.
A general result describing the behavior of the integrand near the diagonal
for non-centered Gaussian processes or u 6= 0 does not exist at present.

Assume that X is centered, has C2m−1 paths and that for each pairwise
distinct values of the parameter t1, t2, ..., tm ∈ [0, T ] the joint distribu-
tion of (X(th), X

′(th), ...., X
(2m−1)(th), h = 1, 2, ...,m) is non-degenerate.

Then as t1, t2, ..., tm → t∗, one has:

Ã(0; t1, ..., tm) ≈ Jm(t∗)
∏

1≤i<j≤m

(tj − ti)
4

where Jm is a continuous non-zero function of t.

One should notice that the last result describes the behavior of Ã(0; t1, ..., tm)
when t1, ..., tm all approach the same value t∗. From this and the non-degeneracy
hypothesis, one can obtain the order of the integrand when (t1, ..., tm) approaches
the diagonal Dm in some other form.

Let us now turn to numerical questions and some few examples. Suppose that
we want to compute P (M > u) with an error bounded by δ, where δ > 0 is a
given positive number.

To proceed by simulation of the paths, we approximate the paths by means
of the polygonal corresponding to a uniform partition of the domain in n inter-
vals of length T/n and estimate the error in the distribution when replacing the
actual maximum M by the maximum M (n) on the partition points. Then we
estimate P (M (n) > u) using standard simulation of stationary Gaussian random
variables, choosing the number of replications so that the mean square error re-
mains controlled. The total mean number of elementary operations required to
get a mean square error bounded by δ in the estimation of P (M > u) takes the
form (const) δ−5/2 log(1/δ). On the other hand, the enveloping property of the
Rice series implies that the actual number of terms required by the application of
Theorem 2.1 can be much smaller than the one resulting from this or from the a
priori bound for γ∗

m.
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More precisely, suppose that we have obtained each numerical approximation
ν̃∗m of ν̃m with a precision η

|ν̃∗m − ν̃m| ≤ η,

and that we stop when
ν̃∗m0+1

(m0 + 1)!
≤ η. (3.2)

Then it follows that∣∣∣∣∣
∞∑

m=1

(−1)
m+1 ν̃m

m!
−

m0∑
m=1

(−1)
m+1 ν̃∗m

m!

∣∣∣∣∣ ≤ (e+ 1)η.

Putting η = δ/(e+ 1), we get the desired bound.
Next, we give the results of the evaluation of P (MT > u) using up to three

terms in the Rice series in a certain number of cases. In fact, in the statistical
literature, the “Davies bound” [17] has been widely used. It is based upon the
obvious inequality

P (M > u) ≤ P (X(0) > u) + ν1

Notice that the right-hand side of this inequality is obtained by taking only one
term in the Rice series - this already gives an upper bound for P (M > u) - and
replacing ν̃1 by its upper bound ν1. For fixed T and high level u the Davies bound is
sharp. But when both T and u are fixed, the situation becomes essentially different
and using more than one term of the Rice series supplies a remarkable improvement
in the computation. Generally speaking, for fixed u, increasing length T requires
more terms in the Rice series to keep the error below a given bound.

We consider three stationary Gaussian processes for which Rice formulas can
be applied for every m = 1, 2, .. in order to compute ν̃m. One can show that
Rice formula is valid for Gaussian processes whenever the joint distribution of
X(t1), ..., X(tm) does not degenerate for (t1, ..., tm) 6∈ Dm (see [11], Chap. 3 for a
proof). This non-degeneracy condition holds true for any stationary process such
that the spectrum is not purely atomic (see [16] for a proof). This condition is
verified in the examples since their spectrum have a density.

The examples are the following, given by their covariance functions.

(1) Γ1(t) = exp(−t2/2)
(2) Γ2(t) = (cosh(t))−1

(3) Γ3(t) =
(
31/2t

)−1
sin(31/2t)

Notice that in the three cases one has λ0 = λ2 = 1.
Γ1 and Γ3 have analytic extensions to the whole plane, so that Theorem 2.2

applies for any length T of the parameter interval. Theorem 2.2 applies only for
length smaller than π/4 since the meromorphic extension of Γ2(.) has poles at the
points iπ/2 + kπi, k an integer.

The numerical results are taken from [6] where one can find details and some
extensions. They correspond to T = 1, 4, 6, 8, 10, u = −2,−1, 0, 1, 2, 3 using three
terms of the Rices series. If T ≤ 8, the error in the computation of P (M > u) is
smaller than 0, 01 in all cases, excepting for u = 0.

In all cases, a lower-bound (resp. an upper-bound) is given using two (resp.
three) terms of the Rices series. (In fact, in these computations, for simpler and
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faster calculation instead of ν̃3, ν3 has been used, providing a slightly weaker
upper-bound).

4. The Direct Method

We start with some notation and hypotheses that concern the Gaussian field X
and the parameter set T , a subset of Euclidean space Rd.

We assume that T satisfies the following conditions [A1]:

(1) T is compact.
(2) T is the disjoint union of Sd, Sd−1..., S0, where Sj is an orientable C3 man-

ifold of dimension j without boundary.

The Sj ’s will be called faces. Sd0 , d0 ≤ d is the non empty face having largest
dimension. σj denotes the j-dimensional geometric measure on Sj .

Each Sj has an atlas such that the second derivatives of the inverse functions of
all charts (viewed as diffeomorphisms from an open set in Rj to Sj) are bounded
by a fixed constant. For t ∈ Sj , we denote Lt the maximum curvature of Sj at
the point t. It follows that Lt is bounded for t ∈ T .

Notice that the decomposition

T = Sd ∪ ... ∪ S0

is not unique. Quite general domains will satisfy these assumptions on T : as
typical examples, smooth manifolds with boundary, convex polyhedra, unions of
these kind of sets that verify the conditions, as well as smooth deformations of
these sets.

As for X we make assumptions A2-A5 which can be verified using well-known
results:

[A2]: X is defined on an open set containing T and has C2 paths

[A3]: for every t ∈ T the distribution of
(
X(t), X ′(t)

)
does not degenerate; for

every s, t ∈ T , s 6= t, the distribution of
(
X(s), X(t)

)
does not degenerate

[A4]: Almost surely the maximum of X(.) on T is attained at a single point.

For t ∈ Sj , X
′
j(t) X ′

j,N (t) denote respectively the derivative along Sj and the

normal derivative. Both quantities are viewed as vectors in Rd, and the density
of their distribution will be expressed respectively with respect to an orthonormal
basis of the tangent space Tt,j of Sj at the point t, or its orthogonal complement
Nt,j . X ′′

j (t) denotes the second derivative of X along Sj , at the point t ∈ Sj

and will be viewed as a matrix expressed in an orthonormal basis of Tt,j . Similar
notations will be used for any function defined on Sj .

[A5]: Almost surely, for every j = 1, ..., d there is no point t in Sj such that
X ′

j(t) = 0, det(X ′′
j (t)) = 0.

4.1. The density of M . The fundamental property that we will use is a repre-
sentation of the density of the maximum, given by the next theorem. See [9] for a
proof.
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Theorem 4.1. Let M = maxt∈T X(t). Under assumptions A1 to A5, the distri-
bution of M has the density

pM (x) =
∑
t∈S0

E
(
χAx

∣∣X(t) = x
)
pX(t)(x)

+
d∑

j=1

∫
Sj

E
(
|det(X ′′

j (t))|χAx

∣∣X(t) = x,X ′
j(t) = 0

)
pX(t),X′

j(t)
(x, 0)σj(dt),

where Ax = {M ≤ x}.

We make some remarks concerning Theorem 4.1:

(1) Originally, this result was obtained for T an interval on the real line, with
the aim of studying the regularity of the distribution of M . In fact, one
can obtain very strong results concerning this regularity for one-parameter
Gaussian processes, exploiting equalities of type (4.1) (see [7]).

The equality is stated in terms of the density, but it is obvious that
integrating once, one obtains a similar equality for the distribution of the
maximum.

These exact formulas are only implicit in what concerns pM , since the
maximumM appears in the right-hand side, inside the event Ax. However,
they can be used to obtain estimations of the density (and the distribu-
tion). The most obvious way to do this is to replace the indicator functions
by 1; this already provides some non-trivial upper-bounds.

The simplest example is the following (see [11], Ch. 7): Let X be a
Gaussian, centered process defined on [0, 1] with unit variance and suffi-
cient regular paths. Denote by r(s, t) = E(X(s)X(t)) its covariance and

rij(s, t) =
∂i+j

∂is∂jtr(s, t). We also assume the non-degeneracy condition that

r11(t, t) = E
[
(X ′(t))2

]
does not vanish. By means of the deterministic

time change, given by

Y (t) = X(γ−1(t)) where γ(t) =

∫ t

0

√
r11(s, s)ds,

one can check that the process {Y (t)} has “unit speed”, i.e., E[(Y ′(t))2] ≡
1. So, to study the distribution of the maximum, we can also assume that
the original process has “unit speed”, which means that V ar(X ′(t)) ≡ 1,
changing at the same time the domain [0, 1] into an interval of length
L = γ−1(1). Then one can prove that:

pM (u) ≤ p+(u) := ϕ(u)

[
1 + (2π)−1/2

∫ L

0

C(t)ϕ(u/C(t)) + uΦ(u/C(t))dt

]
,

(4.1)
with

C(t) :=
√
r22(t, t)− 1.

In particular, if the process X is stationary, the above bound can be
simplified, since C(t) =

√
λ4 − 1 and L = 1/

√
λ2.

We will see some more refined bounds in what follows, when instead of
1 we replace the indicator function χAx by some other upper-bound.
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(2) One can replace |det(X ′′
j (t))| in the above conditional expectation by

(−1)j det(X ′′
j (t)), since under the conditioning and whenever the event

{M ≤ x} holds true, X ′′
j (t) is negative semi-definite.

(3) One should be careful in using formula (4.1) since its form depends on the
choice of an atlas of charts of each manifold Sj and put them together
to compute the integral, for example, using a partition of unity. It is not
difficult to see that in fact the result is independent of that choice (see [11]
chapters 6 and 7).

4.2. A general bound for the density pM . We introduce some further nota-
tions. For t in Sj , j ≤ d0 we define Ct,j as the closed convex cone generated by
the set of directions: {λ ∈ Rd : ‖λ‖ = 1 ;∃ sn ∈ S, (n = 1, 2, ...) such that sn →
t, t−sn

‖t−sn‖ → λ as n → +∞}, whenever this set is non-empty and Ct,j = {0} if it is

empty. We will denote by Ĉt,j the dual cone of Ct,j , that is:

Ĉt,j := {z ∈ Rd : 〈z, λ〉 ≥ 0 for all λ ∈ Ct,j}.

Notice that these definitions easily imply that Tt,j ⊂ Ct,j and Ĉt,j ⊂ Nt,j . We
will say that the function X(.) has an “extended outward” derivative at the point

t in Sj , j ≤ d0 if X ′
j,N (t) ∈ Ĉt,j . An instant reflection shows that the name

corresponds to the directions in which the function increases.
The next theorem is easy to prove.

Theorem 4.2. Under assumptions A1 to A5, one has :

(a) pM (x) ≤ p(x) where

p(x) :=
∑
t∈S0

E
(
χX′(t)∈Ĉt,0

∣∣X(t) = x
)
pX(t)(x) +

d0∑
j=1

∫
Sj

E
(
|det(X ′′

j (t))|χX′
j,N (t)∈Ĉt,j

∣∣X(t) = x,X ′
j(t) = 0

)
pX(t),X′

j(t)
(x, 0)σj(dt).

(4.2)

(b) P{M > u} ≤
∫ +∞

u

p(x)dx.

The actual interest of this Theorem depends on the feasibility of computing
p(x). It turns out that this can be done in some relevant cases. The results can

be compared with the approximation of P{M > u} by means of
∫ +∞
u

pE(x)dx

given in [3] and [33] where pE(x) is obtained on replacing in the formula for p(x),

|det(X ′′
j (t))| by (−1)j det(X ′′

j (t)). Under certain general conditions,
∫ +∞
u

pE(x)dx
is the expected value of the Euler-Poincaré characteristic (EPC) of the excursion
set Eu = {t ∈ T : X(t) > u}. The advantage of pE(x) over p(x) is that one
can have nice expressions for it for a large number of random fields (see [1]).
Conversely p(x) has the advantage that it is an upper-bound of the true density
pM (x). Hence, upon integrating once, it provides an upper-bound for the tail
probability, for every u value. On the other hand, it is clear from the definitions
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that

|pE(x)− pM (x)| ≤ p(x)− pM (x)

that is, the error when replacing pM (x) by p(x) is an upper-bound of the error
when replacing by pE(x).

4.3. Computing p(x). In this subsection we will give a tractable formula for
p(x), under certain assumptions on the random field X and the parameter set T .

We will assume that the process X is centered Gaussian, with a covariance
function having the form

E
(
X(s)X(t)

)
= ρ
(
‖s− t‖2

)
, (4.3)

where ρ : R+ → R is of class C4 . Without loss of generality, we assume that ρ(0) =
1. Assumption (4.3) is equivalent to saying that the law of X is invariant under
orthogonal linear transformations and translations of the underlying parameter
space Rd. We will also assume that the function ρ

(
‖s − t‖2

)
is a covariance for

every dimension d. This is equivalent to saying that ρ : R+ → R is the Laplace
transform of a finite Borel measure on R+ (see [28]).

As for the set T , we assume it has a polyhedral shape. More precisely, we mean
that each Sj(j = 1, ..., d) is a union of subsets of affine manifolds of dimension j
in Rd. For short, we write ρ′ for ρ′(0) and ρ′′ for ρ′′(0).

We denote by Hn (resp. H̄n) the Hermite (resp. probabilistic Hermite) poly-
nomials, that is, defined for n = 0, 1, 2, ... as:

Hn(x) := ex
2(

− ∂

∂x

)n
e−x2

, Hn(x) := ex
2/2
(
− ∂

∂x

)n
e−x2/2.

We will also need the integrals In(v) =
∫ +∞
v

e−t2/2Hn(t)dt (n = 0, 1, 2, ...). An
elementary computation gives:

In(v) = 2e−v2/2

[n−1
2 ]∑

k=0

2k
(n− 1)!!

(n− 1− 2k)!!
Hn−1−2k(v)

+ χ{n even} 2
n
2 (n− 1)!!

√
2π(1− Φ(x))

where for each positive integer m, m!! is defined by

m!! =
∏

(m− 2p), p : integer, 0 < m− 2p ≤ m, 0!! = 1.

We are now ready to state the expression for p(x) (see [9] for a proof):

Theorem 4.3. Assume that the random field X is centered Gaussian, satisfies
A1-A5 and has a covariance having the form (4.3) which verifies the conditions
of the beginning of this subsection. Moreover, let T have polyhedral shape. Then
p(x) can be expressed by means of the formula:

p(x) = ϕ(x)

∑
t∈S0

σ̂0(t) +

d0∑
j=1

[( |ρ′|
π

)j/2
Hj(x) +Rj(x)

]
gj

 , (4.4)

where
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• gj is a geometric parameter of the face Sj defined by

gj =

∫
Sj

σ̂j(t)σj(dt), (4.5)

where σ̂j(t) is the normalized solid angle of the cone Ĉt,j in Nt,j, that is:

σ̂j(t) =
σd−j−1(Ĉt,j ∩ Sd−j−1)

σd−j−1(Sd−j−1)
for j = 0, ..., d− 1, (4.6)

σ̂d(t) = 1. (4.7)

Notice that for convex or other usual polyhedra, each Sj can be partitioned
into a finite number of pieces such that σ̂j(t) is constant in each one of
them, so that gj is equal to the sum of this constants multiplied by the
j-dimensional geometric measure of the corresponding pieces.

• For j = 1, ..., d,

Rj(x) =
( 2ρ′′
π|ρ′|

) j
2
Γ((j + 1)/2

π

∫ +∞

−∞
Tj(v) exp

(
− y2

2

)
dy (4.8)

where

v := − 1√
2

(
(1− γ2)1/2y − γx

)
with γ := |ρ′|(ρ′′)−1/2, (4.9)

Tj(v) :=

[ j−1∑
k=0

H2
k(v)

2kk!

]
e−v2/2 − Hj(v)

2j(j − 1)!
Ij−1(v), (4.10)

.

We make some remarks on Theorem 4.3:

(1) The “principal term” is

ϕ(x)

∑
t∈S0

σ̂0(t) +

d0∑
j=1

[( |ρ′|
π

)j/2
Hj(x)

]
gj

 , (4.11)

which is the product of a standard normal density times a polynomial with
degree d0. Integrating once, we get -in our special case- the formula for
the expectation of the EPC of the excursion set given in Adler and Taylor
(2007).

(2) The “complementary term”

ϕ(x)

d0∑
j=1

Rj(x)gj , (4.12)

can be computed by means of a formula, as it follows from the statement
of the theorem. These formulas will be in general quite unpleasant due
to the complicated form of Tj(v). However, for low dimensions they are
simple. For example:

T1(v) =
√
2π
[
ϕ(v)− v(1− Φ(v))

]
, (4.13)

T2(v) = 2
√
2πϕ(v), (4.14)
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T3(v) =

√
π

2

[
3(2v2 + 1)ϕ(v)− (2v2 − 3)v(1− Φ(v))

]
. (4.15)

(3) One can prove that the complementary term (4.12) is equivalent, as x →
+∞, to

ϕ(x) gd0K x2d0−4 e
− 1

2
γ2

3−γ2 x2

, (4.16)

where the constant K is given by:

K = 23d0−2 Γ
(
d0+1

2

)
√
π(2πγ)d0/2(d0 − 1)!

ρ′′d0/4
( γ

3− γ2

)2d0−4
. (4.17)

4.4. On the error p(x)−pM (x). Next, we present the statement of two theorems
in which “second order approximation” appears for random fields. For proofs and
other more complicated results, especially in what concerns the geometry of the
parameter set T , see [9].

The next theorem gives sufficient conditions to ensure that the error

p(x)− pM (x)

is bounded by a constant times a Gaussian density having strictly smaller variance
than the maximum variance of X . We assume that the maximum of the variance is
not attained in S\Sd0 . This excludes constant variance or some other stationary-
like condition. For parameter dimension d0 > 1, a related result is Theorem 3.3
of [33].

Theorem 4.4. Assume that the random field X satisfies conditions A1-A5. With
no loss of generality, we assume that maxt∈T V ar(X(t)) = 1. Assume that

max
t∈T\Sd0

V ar(X(t)) < 1.

Then there exist positive constants C, δ such that for every x > 0,

p(x)− pM (x) ≤ Cϕ(x(1 + δ)). (4.18)

In our last result we show a general class of random fields for which we compute
the exact asymptotic exponential order of the error. For the time being, it is the
only general case with d0 > 1 in which we are able to do this.

We assume that the random field X is centered, satisfies A1-A5, its law is
isotropic and stationary so that the covariance has the form (4.3), and verifies the
conditions in subsection 4.3. To simplify somewhat the computations, with no loss
of generality, we add the normalization ρ′ = −1/2.

Theorem 4.5. Assume that X is centered, satisfies the conditions above and T
is convex. Then

lim
x→+∞

− 2

x2
log
[
p(x)− pM (x)

]
= 1 +

1

12ρ′′ − 1
. (4.19)
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