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The Distribution of the
Maximum of a Gaussian Process:
Rice Method Revisited

Jean-Marc Azäıs and Mario Wschebor

ABSTRACT This paper deals with the problem of obtaining methods to compute
the distribution of the maximum of a one-parameter stochastic process on a fixed
interval, mainly in the Gaussian case. The main point is the relationship between the
values of the maximum and crossings of the paths, via the so-called Rice’s formulae
for the factorial moments of crossings.

We prove that for some general classes of Gaussian process the so-called “Rice se-
ries” is convergent and can be used to compute the distribution of the maximum. It
turns out that the formulae are adapted to the numerical computation of this distri-
bution and becomes more efficient than other numerical methods, namely simulation
of the paths or standard bounds on the tails of the distribution.

We have included some relevant numerical examples to illustrate the power of the
method.

1 Introduction

Let X = {Xt : t ∈ IR} be a stochastic process with real values and continuous
paths defined on a probability space (Ω,�, P ) and MT := max{Xt : t ∈ [0, T ]}.

The computation of the distribution function of the random variable MT

F (T, u) := P (MT ≤ u), u ∈ IR

by means of a closed formula based upon natural parameters of the process X
is known only for a very restricted number of stochastic processes (and trivial
functions of them): the Brownian Motion {Wt : t ≥ 0}; the Brownian Bridge,
Bt := Wt − tW1 (0 ≤ t ≤ 1); Bt −

∫ 1

0
Bsds ([19]); the Brownian Motion with a

linear drift ([46]);
∫ t

0
Wsds+yt ([34], [26] [27]); the stationary Gaussian processes

with covariance equal to:

1. r(t) = e−|t| (Ornstein–Uhlenbeck process, [22]),
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2. r(t) = (1 − |t|)+, T a positive integer (Slepian process, [48, 45]),

3. r(t) even, periodic with period 2, r(t) = 1−α|t| for 0 ≤ |t| ≤ 1, 0 < α ≤ 2,
([47]),

4. r(t) = 1−|t|/1−β∨−β/1−β , |t| < 1−β/β, 0 < β ≤ 1/2, T = (1−β)/β
([17]),

5. r(t) = cos t.

Given the interest in F (T, u) for a large diversity of theoretical and technical
purposes an extensive literature has been developed, of which we give a sample
of references pointing to various directions:

1. Obtaining inequalities for F (T, u) : [49]; [28]; [36]; [25]; [13]; [30]; [52] and
references therein. A general review of a certain number of classical results
is in [1], [2].

2. Describing the behaviour of F (T, u) under various asymptotics : [43]; [41],
[42]; [29]; [9], [10], [11]; [51]; [12] ; [50]; [56]; [7].

3. Studying the regularity of the distribution of MT : [57]; [53]; [54]; [32];
[23]; [6] and references therein.

Generally speaking, even though important results are associated with prob-
lems 1) 2) and 3) they only give limited answers to the computation of F (T, u)
for fixed T and u. As a consequence, Monte-Carlo methods based on the sim-
ulation of the paths of the continuous parameter process X are widely used,
even though they have well-known difficulties : a) they are poor for theoretical
purposes ; b) for continuous parameter random processes they are expensive
from the point of view of the number of elementary computations needed to
assure that the error is below a given bound and c) they always depend on the
quality of the random number generator being employed.

The approach in this paper is based upon expressing F (T, u) by means of
a series (The “Rice series”) whose terms contain the factorial moments of the
number of upcrossings. The underlying ideas have been known for a long time
([44], [49], [37]).

The main new result in this paper is that we have been able to prove the
convergence of that series in a general framework instead of considering only
some particular processes. This provides a method that can be widely applied.

A typical application is Theorem 2.2 that states that if a stationary Gaussian
process has a covariance which has a Taylor expansion at zero that is absolutely
convergent at t = 2T , then F (T, u) can be computed by means of the Rice
series. On the other hand, even though Theorems 2.1 and 2.3 below do not
refer specifically to Gaussian processes, in practice, at present we are able to
apply them to the numerical computation of F (T, u) only in Gaussian cases.
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In the section “Numerical examples” we include a comparison between the
complexities of the computations of F (T, u) using the Rice series versus Monte-
Carlo method, in the relevant case of a general class of stationary Gaussian
processes. It shows that the use of Rice series is a priori better. More important
is the fact that the Rice series is self-controlling for the numerical errors. This
implies that the a posteriori number of computations may be much smaller than
the one required by simulation. In fact, in relevant cases for standard bounds
for the error, the actual computation is performed with a few terms in the Rice
series.

As examples we give tables for F (T, u) for a number of Gaussian processes.
When the length of the interval T increases, one needs an increasing mumber
of terms in the Rice series not to surpass a given bound for the approximation
error. For small values of T and large values of the level u, one can use the
so-called “Davies bound”(1977), or more accurately, the first term in the Rice
series to obtain approximations for F (T, u). But as T increases, for moderate
values of u the “Davies bound” is far from the true value and one requires
computation of the successive terms. The numerical results are shown in the
case of four Gaussian stationary processes for which no closed formula is known.

A new asymptotic approximation of F (T, u) as u → +∞ was recently ob-
tained [7]. It extends to any T a previous result by [41] for sufficiently small
T .

One of the key points in the computation is the numerical approximation of
the factorial moments of upcrossings by means of Rice integral formulae. For
that purpose, the main difficulty is the precise description of the behaviour of
the integrands appearing in these formulae near the diagonal, which is again an
old subject that is interesting on its own — see [8], [18] — and remains widely
open. We have included in the Section “Computation of Moments” some new
results, that give partial answers and are helpful to improve the numerical
methods.

The extension to processes with non-smooth trajectories can be done by
smoothing the paths by means of a deterministic device, applying the previous
methods to the regularized process and estimating the error as a function of
the smoothing width. We have not included these type of results here since for
the time being they do not appear to be of practical use.

The Note [4] contains a part of the results in the present paper, without
proofs.

Notation

Let f : I −→ IR be a function defined on the interval I of the real numbers,

Cu(f ; I) := {t ∈ I : f(t) = u},

Nu(f ; I) := � (Cu(f ; I))
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denote respectively the set of roots of the equation f(t) = u on the interval I
and the number of these roots, with the convention Nu(f ; I) = +∞ if the set
Cu is infinite. Nu(f ; I) is called the number of “crossings” of f with the “level”
u on the interval I. In what follows, I will be the interval [0, T ] if it is not stated
otherwise.

In the same way, if f is a differentiable function the number of “upcrossings”
of f is defined by means of

Uu(f ; I) := �({t ∈ I : f(t) = u, f ′(t) > 0}).

‖f‖p denotes the norm of f in Lp(I, λ), 1 ≤ p ≤ +∞, λ the Lebesgue measure.
The joint density of the finite set of random variables X1, . . . , Xn at the point
(x1, . . . , xn) will be denoted pX1,... ,Xn

(x1, . . . , xn) whenever it exists. φ(t) :=
(2π)−1/2exp(−t2/2) is the density of the standard normal distribution, Φ(t) :=∫ t

∞
φ(u)du its distribution function. |I| is the length of I. x+ = sup{x, 0}.

If A is a matrix, AT denotes its transpose, and if A is a square matrix,
det(A) its determinant. V ar(ξ) is the variance matrix of the (finite dimensional)
random vector ξ and Cov(ξ, η) the covariance of ξ and η.

For m and k, positive integers, k ≤ m, define the factorial kth power of m by

m[k] := m(m− 1)...(m− k + 1)

For other real values of m and k we put m[k] := 0.
If k is an integer, k ≥ 1, the “diagonal of Ik ” is the set

Dk(I) := {(t1, ..., tk) ∈ Ik, tj = th for some pair (j, h), j �= h}.

f (m) is the m-th derivative of the function f . δjh = 0 or 1 according as j �= h
or j = h.

2 The Distribution of the Maximum and the Rice
Series

We introduce the notation

νm := E((Uu)[m]1I{X0≤u}); ν̃m := E((Uu)[m]) (m = 1, 2, ...)

where Uu = Uu(X, [0, T ]). νm is the factorial moment of the number of upcross-
ings of the process X with the level u on the interval [0, T ], starting below u at
t = 0.
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The Rice formula to compute νm, whenever it holds, is

νm

=
∫

[0,T ]m
dt1...dtm

∫ u

−∞
dxE

(
(X ′

t1)
+...(X ′

tm
)+/X0 = x,Xt1 = · · · = Xtm

= u
)

pX0,Xt1 ,...,Xtm
(x, u, ..., u) (2.1)

=
∫

[0,T ]m
dt1...dtm

∫ u

−∞
dx

∫
[0,+∞)m

x′1...x
′
m

pX0,Xt1 ,...,Xtm ,X′
t1

,...,X′
tm

(x, u, ..., u, x′1, ..., x
′
m)dx′1...dx

′
m. (2.2)

(Conditions for this formula to hold true that suffice for our present purposes
as well as proofs can be found, for example, in [35] and in [55].

This section contains two main results. The first is Theorem 2.1 that requires
the process to have C∞ paths and contains a general condition enabling us
to compute F (T, u) as the sum of a series. The second is Theorem 2.2 that
illustrates the same situation for Gaussian stationary processes from conditions
on the covariance. As for Theorem 2.3, it contains upper and lower bounds on
F (T, u) for processes with Ck−paths verifying some additional conditions.

Theorem 2.1. Assume that a.s. the paths of the stochastic process X are of
class C∞ and that the density pXT/2 is bounded by some constant D.

(i) If there exists a sequence of positive numbers {ck}k=1,2,... such that

γk := P
(
‖X(2k−1)‖∞ ≥ ck.T

2k−1
)

+
Dck

22k−1 (2k − 1)!
= o(2−k)(k → ∞),

(2.3)

then

1 − F (T, u) = P (X0 > u) +
∞∑

m=1

(−1)m+1 νm

m!
. (2.4)

(ii) In formula (2.4) the error when one replaces the infinite sum by its m0-th
partial sum is bounded by γ∗m0+1 where

γ∗m := sup
k≥m

(
2k+1γk

)
.

We will call the series in the right-hand side of (2.4) the “Rice Series”. For
the proof we will assume, with no loss of generality that T = 1.

We start with the following lemma on the remainder for polynomial interpo-
lation ([21], Th. 3.1.1 ).

Lemma 2.1. a) Let I be an interval in the real line, f : I −→ IR a function of
class Ck, k a positive integer, t1, ..., tk, k points in I and let P (t) be the (unique)
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interpolation polynomial of degree k− 1 such that for i = 1, ..., k: f(ti) = P (ti),
taking into account possible multiplicities.

Then, for t ∈ I

f(t) − P (t) =
1
k!

(t− t1)....(t− tk)f (k)(ξ)

where

min(t1, ..., tk, t) ≤ ξ ≤ max(t1, ..., tk, t).

b) If f is of class Ck and has k zeros in I = [0, 1] (taking into account possible
multiplicities), then

|f(1/2)| ≤ 1
k!2k

‖f (k)‖∞.

The next combinatorial lemma plays the central role in what follows. A proof
is given in [33].

Lemma 2.2. Let ξ be a non-negative integer-valued random variable having
finite moments of all orders. Let k,m,M(k ≥ 0,m ≥ 1,M ≥ 1) be integers and
denote

pk := P (ξ = k) ; µm := E(ξ[m]) ; SM :=
M∑

m=1

(−1)m+1µm

m!
.

Then
(i) For each M ,

S2M ≤
2M∑
k=1

pk ≤
∞∑

k=1

pk ≤ S2M+1. (2.5)

(ii) The sequence {SM ;M = 1, 2, ...} has a finite limit if and only if µm/m! →
0 as m → ∞, and in that case

P (ξ ≥ 1) =
∞∑

k=1

pk =
∞∑

m=1

(−1)m+1 µm

m!
. (2.6)

Remark. A by-product of Lemma 2.2 that will be used in the sequel is the
following: if in (2.6) one replaces the infinite sum by the M−partial sum, the
absolute value µM+1/((M + 1)!) of the first neglected term is an upper-bound
for the error in the computation of P (ξ ≥ 1).

Lemma 2.3. With the same notation as in Lemma 2.2 we have the equality

E(ξ[m]) = m

∞∑
k=m

(k − 1)[m−1]P (ξ ≥ k) (m = 1, 2, ...).
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Proof. Check the identity

j[m] = m

j−1∑
k=m−1

(k)[m−1]

for each pair of integers j,m. So,

E(ξ[m]) =
∞∑

j=m

j[m]P (ξ = j) =
∞∑

j=m

P (ξ = j)m
j∑

k=m

(k − 1)[m−1]

= m

∞∑
k=m

(k − 1)[m−1]P (ξ ≥ k).

Lemma 2.4. Suppose that a.s. the paths of the process X belong to C∞ and
that pX1/2 is bounded by the constant D. Then for any sequence {ck, k = 1, 2, ...}
of positive numbers, one has

E((Uu)[m]) ≤ m

∞∑
k=m

(k − 1)[m−1]

[
P

(
‖X(2k−1)‖∞ ≥ ck

)
+

Dck
22k−1 (2k − 1)!

]
.

(2.7)

Proof. Because of Lemma 2.3 it is enough to prove that P (Uu ≥ k) is bounded
by the expression in brackets in the right-hand member of (2.7). We have

P (Uu ≥ k) ≤ P (‖X(2k−1)‖∞ ≥ ck) + P (Uu ≥ k, ‖X(2k−1)‖∞ < ck).

Clearly,

{Uu ≥ k} ⊂ {Nu(X; I) ≥ 2k − 1}.

Applying Lemma 2.1 to the function X(.) − u and replacing in its statement k
by 2k − 1, we obtain

{Uu ≥ k, ‖X(2k−1)‖∞ < ck} ⊂ {|X1/2 − u| ≤ ck
22k−1 (2k − 1)!

}.

The remaining is clear.

Proof of Theorem 2.1. We use the notation ν̃m := E(U [m]
u ) (m = 1, 2, ...).

Using Lemma 2.4 and the hypothesis we obtain

ν̃m

m!
≤ 1

m!

∞∑
k=m

k[m]γ∗m2−(k+1) =
γ∗m
m!

2−(m+1)

[(
1

1 − x

)(m)

|x=1/2

]
= γ∗m.
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Since νm ≤ ν̃m we can apply Lemma 2.2 to the random variable ξ = Uu1I{X0≤u}
and the result follows from γ∗m → 0.

Remarks. One can replace condition pXT/2(x) ≤ D for all x by pXT/2(x) ≤ D
for x in some neighbourhood of u. In this case, the statement of Theorem 2.1
holds if one adds in (ii) that the error is bounded by γ∗m0+1 for m0 large enough.
The proof is similar. Also, one may replace the one-dimensional density pXT/2

by pXt
for some other t ∈ (0, T ), introducing into the bounds the corresponding

modifications.
The application of Theorem 2.1 requires an adequate choice of the sequence

{ck, k = 1, 2, ...} that depends on the available description of the process X.
The whole procedure will have some practical interest for the computation of
P (M > u) only if we get appropriate bounds for the quantities γ∗m and the
factorial moments νm can be actually computed by means of Rice formulae (or
by some other procedure). The next theorem shows how this can be done in
the case of a general class of Gaussian stationary processes.

Theorem 2.2. Let X be Gaussian, centered and stationary, with covariance
Γ.

Assume that Γ has a Taylor expansion at the origin that is absolutely conver-
gent at t = 2T. Then the conclusion of Theorem 2.1 holds true so that the Rice
series converges and F (T, u) can be computed by means of (2.4)

Proof. Again we assume with no loss of generality that T = 1 and that
Γ(0) = 1.

Note that the hypotheses implies that the spectral moments λk exist and are
finite for every k = 0, 1, 2, . . . .

We will prove a stronger result, assuming

H1 : λ2k ≤ C1(k!)2.

It is easy to verify that if Γ has a Taylor expansion at zero that is absolutely
convergent at t = 2, then H1 holds true. (In fact, both conditions are only
slightly different, since H1 implies that the Taylor expansion of Γ at zero is
absolutely convergent in {|t| < 2}).

Let us check that the hypotheses of Theorem 2.1 hold true.
First, pX1/2(x) ≤ D = (2π)−1/2.
Second, let us show a sequence {ck} that satisfies (2.3). We have

P (‖X(2k−1)‖∞ ≥ ck) ≤ P (|X(2k−1)
0 | ≥ ck) + 2P (Uck

(X(2k−1), I) ≥ 1)

≤ P (|Z| ≥ ckλ
−1/2
4k−2) + 2E(Uck

(X(2k−1), I)), (2.8)

where Z is standard normal.
Note that {X(2k−1)

t ; t ∈ IR} is a Gaussian stationary centered process with
covariance function −Γ(4k−2)(.). So we can use Rice’s formula for the expec-
tation of the number of upcrossings of a stationary centered Gaussian process
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(see for example [14] to compute the second term in the right-hand member of
(2.8)). Using the inequality 1 − Φ(x) ≤ (1/x)φ(x) valid for x > 0, one gets

P (‖X(2k−1)‖∞ ≥ ck) ≤
[√

2
π

λ
1/2
4k−2

ck
+ (1/π)

(
λ4k

λ4k−2

)1/2
]

exp
(
− c2k

2λ4k−2

)
.

(2.9)

Choose

ck := (B1kλ4k−2)1/2 if
λ4k

λ4k−2
≤ B1k,

ck := (λ4k)1/2 if
λ4k

λ4k−2
> B1k.

Using hypothesis H1, if B1 > 1,

P (‖X(2k−1)‖∞ ≥ ck) ≤
[√

2
π

+
1
π

(B1k)1/2

]
e−

B1k
2 .

Finally, choosing B1 := 4 log(2),

γk ≤
√

2
π

(1 + 2(C1/2
1 + 1)k)2−2k (k = 1, 2, ...),

so that (2.3) is satisfied. As a byproduct, note that

γ∗m ≤
√

8
π

(1 + 2(C1/2
1 + 1)m)2−m (m = 1, 2, ...). (2.10)

Remarks. a) If one is willing to use Rice formulae to compute the factorial
moments νm, it is enough to verify that the distribution of

Xt1 , ..., Xtk
, X ′

t1 , ..., X
′
tk

is non-degenerate for any choice of k = 1, 2, ... (t1, ..., tk) ∈ Ik\Dk(I). For
Gaussian stationary processes a sufficient condition for non-degeneracy is the
spectral measure not to be purely atomic (see [14] for a proof). The same kind
of argument permits us to show that the conclusion remains if the spectral
measure is purely atomic and the set of its atoms has an acumulation point in
IR. Sufficient conditions for the finiteness of νm are given by Lemma 1.2 in [40].

b) If instead of requiring the paths of the process X to be of class C∞, one
relaxes this condition up to a certain order of differentiability, one can still get
upper and lower bounds for P (M > u).
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Theorem 2.3. Let X = {Xt : t ∈ I} be a real-valued stochastic process. Sup-
pose that pXt(x) is bounded for t ∈ I, x ∈ IR and that the paths of X are of
class Cp+1. Then

if 2K + 1 < p/2 : P (M > u) ≤ P (X0 > u) +
2K+1∑
m=1

(−1)m+1 νm

m!

and

if 2K < p/2 : P (M > u) ≤ P (X0 > u) +
2K∑

m=1

(−1)m+1 νm

m!
.

Note that all the moments in the above formulae are finite.

The proof is a straightforward application of Lemma 2.2 above and Lemma
1.2 in [40].

When the level u is high, one can deduce from the foregoing arguments the
results in [41], [42], which were until recently the sharpest known asymptotic
bounds for the tail of the distribution of the maximum on a fixed interval of
general Gaussian stationary processes with regular paths (for a refinement, see
[7]). Here, only the first term in the Rice series takes part in the equivalent of
P (M > u) as u → +∞. More precisely, if λ4 < ∞, it is not hard to prove that

0 ≤
√
λ2

2π
φ(u) − ν1 ≤ (const)e

−u2(1+η)
2 ,

ν2 ≤ (const)e−
u2(1+η)

2 ,

for a certain η > 0. Lemma 2.2 above implies that

0 ≤ 1 − Φ(u) +

√
λ2

2π
φ(u) − P (M > u) ≤ (const)e−

u2(1+η)
2 , (2.11)

which is Piterbarg’s result.

3 Computation of Moments

An efficient numerical computation of the factorial moments of crossings is asso-
ciated to a fine description of the behaviour as the k-tuple (t1, ..., tk) approaches
the diagonal Dk(I) of the integrands

Ã+
t1,...,tk

(u, ..., u) =∫
[0,+∞)m

x′1...x
′
mpXt1 ,...,Xtm ,X′

t1
,...,X′

tm
(u, ..., u, x′1, ...x

′
m)dx′1...dx

′
m.
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At1,...,tk
(u) =∫ u

−∞
dx

∫
[0,+∞)m

x′1...x
′
mpX0,Xt1 ,...,Xtm ,X′

t1
,...,X′

tm
(x, u, ..., u, x′1, ..., x

′
m)dx′1...dx

′
m

that appear respectively in Rice formulae for the kth-factorial moment of up-
crossings or the kth-factorial moment of upcrossings with the additional condi-
tion that X0 ≤ u (see formula(2.2)).

For example in [3] it is proved that if X is Gaussian, stationary, centered
and λ8 < ∞, then the integrand Ã+

s,t(u, u) in the computation of ν̃2 — the
second factorial moment of the number of upcrossings — satisfies

Ã+
s,t(u, u) � 1

1296

(
λ2λ6 − λ2

4

)3/2

(λ4 − λ2
2)

1/2
π2 λ2

2

exp
(
−1

2
λ4

λ4 − λ2
2

u2

)
(t− s)4, (3.1)

as t− s → 0.
The asymptotic formula (3.1) can be extended to non-stationary Gaussian

processes, obtaining an equivalence of the form

Ã+
s,t(u, u) � J(t̃)(t− s)4 as s, t → t̃, (3.2)

where J(t̃) is a continuous non-zero function of t̃ depending on u, that can be
expressed in terms of the mean and covariance functions of the process and
its derivatives. We give a proof of an equivalence of the form (3.2) in the next
proposition.

One can profit of this equivalence to improve the numerical methods to com-
pute ν2 (the second factorial moment of the number of upcrossings restricted
to X0 ≤ u). Equivalence formulae such as (3.1) or (3.2) can be used to avoid
numerical degeneracies near the diagonal D2(I). Note that even in case X is
stationary at the departure, under conditioning on X0, the process that must
be taken into account in the actual computation of the factorial moments of
upcrossings that appear in the Rice series(2.4) will be non-stationary, so that
equivalence (3.2) is the appropriate tool.

Proposition 3.1. Suppose that X is a Gaussian process with C5 paths and
that for each t ∈ I the joint distribution of Xt, X

′
t, X

(2)
t , X

(3)
t does not degener-

ate.Then (3.2) holds true.

Proof. Denote by ξ =
(
ξ1
ξ2

)
a two-dimensional random vector having as

probability distribution the conditional distribution of
(X′

s

X′
t

)
given Xs = Xt = u.

One has

Ã+
s,t(u, u) = E

(
ξ+
1 ξ

+
2

)
pXs,Xt(u, u). (3.3)

Put τ = t− s and check the following Taylor expansions around the point s:

E (ξ1) = m1τ +m2τ
2 + L1τ

3, (3.4)
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E (ξ2) = −m1τ +m′
2τ

2 + L2τ
3, (3.5)

V ar(ξ) =
(

aτ2 + bτ3 + cτ4 + ρ11τ
5 − aτ2 − b+b′

2 τ3 + dτ4 + ρ12τ
5

−aτ2 − b+b′

2 τ3 + dτ4 + ρ12τ5 aτ2 + b′τ3 + c′τ4 + ρ22τ5

)
,

(3.6)

where m1, m2, m′
2, a, b, c, d, b

′, c′ are continuous functions of s and L1, L2,
ρ11, ρ12, ρ22 are bounded functions of s and t. Equations (3.4), (3.5) and (3.6)
follow directly from the regression formulae of the pair

(X′
s

X′
t

)
on the condition

Xs = Xt = u.
Note that (as in [8] or [6])

V ar(ξ1) =
detV ar(Xs, Xt, X

′
s)

T

detV ar(Xs, Xt)T
=

detV ar(Xs, X
′
s, Xt −Xs − (t− s)X ′

s)
T

detV ar(Xs, Xt −Xs)T
.

A direct computation gives

detV ar(Xs, Xt)T
≈ τ2 detV ar(Xs, X

′
s)

T (3.7)

V ar(ξ1) ≈

1
4

detV ar(Xs, X
′
s, X

(2)
s )T

detV ar(Xs, X ′
s)T

τ2

where ≈ denotes equivalence as τ → 0. So,

a =
1
4

detV ar(Xs, X
′
s, X

(2)
s )T

detV ar(Xs, X ′
s)T

which is a continuous non-vanishing function for s ∈ I. Note that the coefficient
of τ3 in the Taylor expansion of Cov(ξ1, ξ2) is equal to − b+b′

2 . This follows either
by direct computation or noting that detV ar(ξ) is a symmetric function of the
pair s, t.

Put

∆(s, t) = detV ar(ξ).

The behaviour of ∆(s, t) as s, t → t̃ can be obtained by noting that

∆(s, t) =
detV ar(Xs, Xt, X

′
s, X

′
t)

T

detV ar(Xs, Xt)T

and applying Lemma 3.2 in [6] or Lemma 4.3, p.76 in [42] which provide an
equivalent for the numerator, so that

∆(s, t) ≈ ∆(t̃)τ6, (3.8)
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with

∆(t̃) =
1

144

detV ar(Xt̃, X
′
t̃
, X

(2)

t̃
, X

(3)

t̃
)T

detV ar(Xt̃, X
′
t̃
)T

.

The non-degeneracy hypothesis implies that ∆(t̃) is continuous and non-zero.
Then

E
(
ξ+
1 ξ

+
2

)
=

1

2π [∆(s, t)]1/2

∫ +∞

0

∫ +∞

0

xy exp
[
− 1

2∆(s, t)
F (x, y)

]
dxdy

(3.9)

where

F (x, y) = V ar(ξ2)(x−E(ξ1))2 + V ar(ξ1)(y − E(ξ2))2

−2Cov(ξ1, ξ2)(x− E(ξ1))(y − E(ξ2)).

Substituting the expansions (3.4), (3.5), (3.6) in the integrand of (3.9) and
making the change of variables x = τ2v, y = τ2w we get, as s, t → t̃:

E
(
ξ+
1 ξ

+
2

)
≈

τ5

2π
[
∆(t̃)

]1/2

∫ +∞

0

∫ +∞

0

vw exp
[
− 1

2∆(t̃)
F (v, w)

]
dvdw. (3.10)

∆(t̃) can also be expressed in terms of the functions a, b, c, d, b′, c′:

∆(t̃) = a(c+ c′ + 2d) −
(
b− b′

2

)2

and

F (v, w) = a (v −m2 + w −m′
2)

2 +m2
1(c+ c′ + 2d)

−m1(b− b′)(v + w −m2 −m′
2).

The functions a, b, c, d, b’, c’,m1,m2 that appear in these formulae are all eval-
uated at the point t̃.

Replacing (3.10) and (3.7) into (3.3) one gets (3.2).
For k ≥ 3, the general behaviour of the functions At1,...,tk

(u) and Ã+
t1,...,tk

(u,
..., u) when (t1, ..., tk) approaches the diagonal is not known. Proposition 3.3
, even though it contains restrictive conditions (it requires E{Xt} = 0 and
u = 0) can be applied to improve the efficiency in the computation of the
kth-factorial moments by means of a Monte-Carlo method, via the use of im-
portance sampling. More precisely, when computing the integral of Ã+

t1,...,tk
(u)

over Ik, instead of choosing at random the point (t1, t2, ..., tk) in the cube Ik

with a uniform distribution, we do it with a probability law that has a density
proportional to the function

∏
1≤i<j≤k (tj − ti)

4. For its proof we will use the
following auxiliary proposition, that has its own interest and extends (3.8) to
any k.
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Proposition 3.2. Suppose that X = {Xt : t ∈ I} is a Gaussian process defined
on the interval I of the real line with C2k−1 paths, k an integer, k ≥ 2, and that
the joint distribution of

(
Xt, X

′
t, ...., X

(2k−1)
t

)
is non-degenerate for each t ∈ I.

Then, if t1, t2, ...., tk → t∗ :

∆ = detV ar(Xt1 , X
′
t1 , ..., Xtk

, X ′
tk

)T

≈

detV ar(Xt∗ , X
′
t∗ , ..., X

(2k−1)
t∗ )T

[2!.3!....(2k − 1)!]2
∏

1≤i<j≤k

(tj − ti)
8
. (3.11)

Proof. With no loss of generality, we consider only k−tuples (t1, t2, ...., tk)
such that ti �= tj if i �= j.

Suppose f : I −→ IR is a function of class C2m , m ≥ 1, and t1, t2, ...., tm are
pairwise different points in I. We use the following notation for interpolating
polynomials:
Pm(t; f) is the polynomial of degree 2m− 1 such that

Pm(tj ; f) = f(tj) and P ′
m(t; f) = f ′(tj) for j = 1, ...,m.

Qm(t; f) is the polynomial of degree 2m− 2 such that

Qm(tj ; f) = f(tj) for j = 1, ...,m ; Q′
m(t; f) = f ′(tj) for j = 1, ...,m− 1.

From Lemma 2.1 we know that

f(t) − Pm(t; f) =
1

(2m)!
(t− t1)2....(t− tm)2f (2m)(ξ), (3.12)

f(t) −Qm(t; f) =
1

(2m− 1)!
(t− t1)2....(t− tm−1)2(t− tm)f (2m−1)(η), (3.13)

where

ξ = ξ(t1, t2, ...., tm, t), η = η(t1, t2, ...., tm, t)

and

min(t1, t2, ...., tm, t) ≤ ξ, η ≤ max(t1, t2, ...., tm, t).

Note that the function

g(t) = f (2m−1)(η(t1, t2, ...., tm, t)) =
(2m− 1)! [f(t) −Qm(t; f)]

(t− t1)2....(t− tm−1)2(t− tm)

is differentiable at the point t = tm and, differentiating in (3.13),

f ′(tm) −Q′
m(tm; f)

=
1

(2m− 1)!
(tm − t1)2....(tm − tm−1)2f (2m−1)(η(t1, t2, ...., tm, tm)). (3.14)
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Put

ξm = ξ(t1, t2, ...., tm, tm), ηm = η(t1, t2, ...., tm, tm).

Since Pm(t; f) is a linear functional of

(f(t1), ..., f(tm), f ′(t1), ..., f ′(tm))

and Qm(t; f) is a linear functional of

(f(t1), ..., f(tm), f ′(t1), ..., f ′(tm−1))

with coefficients depending (in both cases) only on t1, t2, ...., tm, t, it follows
that

∆ = detV ar
(
Xt1 , X

′
t1 , Xt2 − P1(t2;X), X ′

t2 −Q′
2(t2, X),

..., Xtk
− Pk−1(tk;X), X ′

tk
−Q′

k(tk;X)
)T

= detV ar
(
Xt1 , X

′
t1 ,

1
2!

(t2 − t1)2X
(2)
ξ1
,

1
3!

(t2 − t1)2X(3)
η2
, ...,

1
(2k − 2)!

(tk − t1)2

...(tk − tk−1)2X
(2k−2)
ξk−1

,
1

(2k − 1)!
(tk − t1)2...(tk − tk−1)2X(2k−1)

ηk−1

)T

=
∆̃

[2!...(2k − 1)!]2
∏

1≤i<j≤k

(tj − ti)8

with

∆̃ = detV ar
(
Xt1 , X

′
t1 , X

(2)
ξ1
, X(3)

η2
, ..., X

(2k−2)
ξk−1

, X(2k−1)
ηk−1

)T

→ detV ar(Xt∗ , X
′
t∗ , ..., X

(2k−1)
t∗ )T

as t1, t2, ...., tk → t∗. This proves (3.11).

Proposition 3.3. Suppose that X is a centered Gaussian process with C2k−1

paths and that for each pairwise distinct values of the parameter t1, t2, ..., tk ∈ I

the joint distribution of (Xth
, X ′

th
, ...., X

(2k−1)
th

, h = 1, 2, ..., k) is non-degenerate.
Then, as t1, t2, ..., tk → t∗,

Ã+
t1,...,tk

(0, ..., 0) ≈ Jk(t∗)
∏

1≤i<j≤k

(tj − ti)4

where Jk(t) is a continuous non-zero function of t.

Proof. Introduce the notation

Dk(t) = detV ar(Xt, X
′
t, ...., X

(k)
t )T .
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In the same way as in the proof of Proposition 3.2 and with a simpler compu-
tation, it follows that as t1, t2, ..., tk → t∗,

detV ar(Xt1 , Xt2 , ..., Xtk
)T

≈

1
[2!.....(k − 1)!]2

 ∏
1≤i<j≤k

(tj − ti)2

 . Dk−1(t∗).

(3.15)

For pairwise different values t1, t2, ..., tk, let Z = (Z1, ..., Zk)T be a random
vector having the conditional distribution of (X ′

t1 , ...., X
′
tk

)T given Xt1 = Xt2 =
... = Xtk

= 0. The (Gaussian) distribution of Z is centered and we denote its
covariance matrix by Σ. Also put

Σ−1 =
1

det(Σ)
(
σij

)
i,j=1,...,k

,

σij being the cofactor of the position (i, j) in the matrix Σ. Then, one can write

Ã+
t1,...,tk

(0, ..., 0) = E
{
Z+

1 ...Z
+
k

}
. pXt1 ,...,Xtk

(0, ..., 0) (3.16)

and

Ã+
t1,...,tk

(0, ..., 0) =
1

(2π)
k
2 (det(Σ))

1
2

∫
(R+)k

x1...xkexp
[
−F (x1, ..., xk)

2.det(Σ)

]
dx1...dxk

(3.17)

where

F (x1, ..., xk) =
k∑

i,j=1

σijxixj .

Letting t1, t2, ..., tk → t∗ and using (3.11) and (3.15) we get

det(Σ) =
detV ar(Xt1 , X

′
t1 , ..., Xtk

, X ′
tk

)T

detV ar(Xt1 , ..., Xtk
)T

≈

1
[k!.....(2k − 1)!]2

 ∏
1≤i<j≤k

(tj − ti)6

 .
D2k−1(t∗)
Dk−1(t∗)

.

We consider now the behaviour of the σij(i, j = 1, ..., k). Let us first look at σ11.
Using the same method as above, now applied to the cofactor of the position
(1, 1) in Σ, one has
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σ11 =
detV ar(Xt1 , Xt2 , ..., Xtk

, X ′
t2 , ..., X

′
tk

)T

detV ar(Xt1 , ..., Xtk
)T

≈

1
[2!...(2k−2)!]2

[∏
2≤i<j≤k(tj − ti)8

] [∏
2≤h≤k(t1 − th)4

]
D2k−2(t∗)

1
[2!.....(k−1)!]2

[∏
1≤i<j≤k(tj − ti)2

]
Dk−1(t∗)

=
1

[k!...(2k − 2)!]2

 ∏
2≤i<j≤k

(tj − ti)6

 ∏
2≤h≤k

(t1 − th)2

 D2k−2(t∗)
Dk−1(t∗)

.

A similar computation holds for σii, i = 2, ..., k.
Consider now σ12. One has

σ12 =

− det
[
E

{
(Xt1 , Xt2 , ..., Xtk

, X ′
t2 , ..., X

′
tk

)T .(Xt1 , Xt2 , ..., Xtk
, X ′

t1 , X
′
t3 , ..., X

′
tk

)
}]

detV ar(Xt1 , ..., Xtk
)T

=
det

[
E

{
(Xt2 , X

′
t2 , ..., Xtk

, X ′
tk
, Xt1)

T .(Xt1 , X
′
t1 , Xt3 , X

′
t3 , ..., Xtk

, X ′
tk
, Xt2)

}]
detV ar(Xt1 , ..., Xtk

)T

≈

1
[k!...(2k − 2)!]2

 ∏
3≤i<j≤k

(tj − ti)6


×

 ∏
3≤h≤k

(t1 − th)4(t2 − th)4

 (t2 − t1)2.
D2k−2(t∗)
Dk−1(t∗)

.

A similar computation applies to all the cofactors σij , i �= j.
Perform in the integral in (3.17) the change of variables

xj =

 i=k∏
i=1,i 
=j

(ti − tj)2

 . yj j = 1, ..., k

and the integral becomes: ∏
1≤i<j≤k

(tj − ti)8

∫
(R+)k

y1...yk exp
[
− 1

2.det(Σ)
G(y1, ..., yk)

]
dy1...dyk

where

G(y1, ..., yk) =
k∑

i,j=1

σij

 h=k∏
h=1,h 
=i

(th − ti)2

 h=k∏
h=1,h 
=j

(th − tj)2

 yi yj
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so that, as t1, t2, ..., tk → t∗,

G(y1, ..., yk)
det(Σ)

≈ [(2k − 1)!]2
D2k−2(t∗)
D2k−1(t∗)

(
i=k∑
i=1

yi

)2

.

Now, passage to the limit under the integral sign in (3.17), which is easily
justified by application of the Lebesgue Theorem, leads to

E
{
Z+

1 ...Z
+
k

}
≈

1

(2π)
k
2
k!...(2k − 1)!

 ∏
1≤i<j≤k

|tj − ti|5
(

Dk−1(t∗)
D2k−1(t∗)

) 1
2

Ik(α∗)

where Ik(α), α > 0 is

Ik(α) =
∫

(R+)k

y1...yk exp

−α

2

(
i=k∑
i=1

yi

)2
 dy1...dyk =

1
αk

Ik(1)

and

α∗ = [(2k − 1)!]2
D2k−2(t∗)
D2k−1(t∗)

.

Substituting into (3.16) one gets the result with

Jk(t) =
2!...(2k − 2)!

[2π(2k − 1)!]2k−1

Ik(1)

[D2k−1(t)]
1
2

[
D2k−1(t)
D2k−2(t)

]k

.

This finishes the proof.

4 Numerical Examples

4.1 Comparison with the Monte-Carlo method

First, let us compare the numerical computation based upon Theorem 2.1 with
the Monte-Carlo method based on simulation of the paths. We do this for
stationary Gaussian processes that satisfy the hypotheses of Theorem 2.2 and
also the non-degeneracy condition that ensures that one is able to compute the
factorial moments of crossings by means of Rice formulae.

Suppose that we want to compute P (M > u) with an error bounded by δ,
where δ > 0 is a given positive number.

To proceed by simulation, we discretize the paths by means of a uniform
partition {tj := j/n, j = 0, 1, ..., n}. Denote

M (n) := sup
0≤j≤n

Xtj .
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Using Taylor’s formula at the time where the maximum M of X(.) occurs,
one gets

0 ≤ M −M (n) ≤ ‖X ′′‖∞/(2n2).

It follows that

0 ≤ P (M > u) − P (M (n) > u) = P (M > u,M (n) ≤ u)

≤ P (u < M ≤ u+ ‖X ′′‖∞/(2n2)).

If we admit that the distribution of M has a locally bounded density (which
is a well-known fact under the mentioned hypotheses) the above suggests that
a number of n = (const)δ−1/2 points is required if one wants the mean error
P (M > u) − P (M (n) > u) to be bounded by δ.

On the other hand, to estimate P (M (n) > u) by Monte-Carlo with a mean
square error smaller than δ, we require the simulation of N = (const)δ−2 Gaus-
sian n-tuples (Xt1 , ..., Xtn

) from the distribution determined by the given sta-
tionary process. Performing each simulation demands (const)nlog(n) elemen-
tary operations ([24]). Summing up, the total mean number of elementary op-
erations required to get a mean square error bounded by δ in the estimation of
P (M > u) has the form (const)δ−5/2log(1/δ).

Suppose now that we apply Theorem 2.1 to a Gaussian stationary centered
process verifying the hypotheses of Theorem 2.2 and the non-degeneracy condi-
tion. The bound for γ∗m in Equation (2.10) implies that computing a partial sum
with (const)log(1/δ) terms assures that the tail in the Rice series is bounded by
δ. If one computes each νm by means of a Monte-Carlo method for the multiple
integrals appearing in the Rice formulae, then the number of elementary oper-
ations for the whole procedure will have the form (const)δ−2log(1/δ). Hence,
this is better than simulation as δ tends to zero.

As usual, for given δ > 0, the value of the generic constants decides the
comparison between both methods.

More important is the fact that the enveloping property of the Rice series
implies that the actual number of terms required by the application of Theorem
2.1 can be much smaller than the one resulting from the a priori bound on γ∗m.
More precisely, suppose that we have obtained each numerical approximation
ν∗m of νm with a precision η,

|ν∗m − νm| ≤ η,

and that we stop when

ν∗m0+1

(m0 + 1)!
≤ η. (4.1)

Then, it follows that∣∣∣∣∣
∞∑

m=1

(−1)m+1 νm

m!
−

m0∑
m=1

(−1)m+1 ν
∗
m

m!

∣∣∣∣∣ ≤ (e+ 1)η.
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Putting η = δ/(e+ 1), we get the desired bound. In other words one can profit
from the successive numerical approximations of νm to determine a new m0

which turns out to be — in certain interesting examples — much smaller than
the one deduced from the a priori bound on γ∗m.

4.2 Comparison with usual bounds

Next, we will give the results of the evaluation of P (MT > u) using up to
three terms in the Rice series in a certain number of typical cases. We compare
these results with the classical evaluation using what is often called the “Davies
bound [20]”. In fact this bound seems to have been widely used since the work
of Rice [44]. It is an upper-bound with no control on the error, given by

P (M > u) ≤ P (X0 > u) + E
(
Uu([0, T ])

)
. (4.2)

The above mentioned result by Piterbarg (2.11) shows that in fact, for fixed T
and high level u this bound is sharp. In general, using more than one term of
the Rice series supplies a remarkable improvement in the computation.

We consider several stationary centered Gaussian processes listed in the fol-
lowing table, where the covariances and the corresponding spectral densities are
indicated.

process covariance spectral density

X1 Γ1(t) = exp(−t2/2) f1(x) = (2π)−1/2exp(−x2/2)

X2 Γ2(t) = (ch(t))−1 f2(x) =
(
2ch((πx)/2)

)−1

X3 Γ3(t) =
(
31/2t

)−1
sin(31/2t) f3(x) = 12−1/21I{−

√
3<x<

√
3}

X4 Γ4(t) = e−|
√

5t|(
√

5
3
|t|3 + 2t2 +

√
5|t| + 1) f4(x) = 104

√
5π

(5 + x2)−4

In all cases, λ0 = λ2 = 1 to be able to compare the various results. Note that
Γ1 and Γ3 have analytic extensions to the whole plane, so that Theorem 2.2
applies to the processes X1 and X3. On the other hand, even though all spectral
moments of the process X2 are finite, Theorem 2.2 applies only for a length T
smaller than π/4 since the meromorphic extension of Γ2(.) has poles at the
points iπ/2 + kπi, k an integer. With respect to Γ4(.) notice that it is obtained
as the convolution Γ5 ∗Γ5 ∗Γ5 ∗Γ5 where Γ5(t) := e−|t| is the covariance of the
Ornstein–Uhlenbeck process, plus a change of scale to get λ0 = λ2 = 1. The
process X4 has λ6 < ∞ and λ8 = ∞ and its paths are C3. So, for the processes
X2 and X4 we apply Theorem 2.3 to compute F (T, u).

Table 1.1 contains the results for T = 1, 4, 6, 8, 10 and the values u = −2,−1, 0,
1, 2, 3 using three terms of the Rice series. A single value is given when a pre-
cision of 10−2 is met; otherwise the lower-bound and the upper-bound given
by two or three terms of the Rice series respectively, are diplayed. The calcu-
lation uses a deterministic evaluation of the first two moments ν1 and ν2 using
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Length of the time interval T
u 1 4 6 8 10
-2 0.99 1.00 1.00 1.00 1.00

0.99 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
0.99 1.00 1.00 1.00 1.00

-1 0.93 1.00 1.00 0.99-1.00 0.98-1.00
0.93 0.99 1.00 0.99-1.00 0.98-1.00
0.93 1.00 1.00 1.00 0.99
0.93 1.00 1.00 0.99-1.00 0.98-1.00

0 0.65 0.90 0.95 0.95-0.99 0.90-1.00
0.65 0.89 0.94-0.95 0.93-0.99 0.87-1.00
0.656 0.919 0.97 0.98-0.99 0.92-1.00
0.65 0.89 0.94-0.95 0.94-0.99 0.88-1.00

1 0.25 0.49 0.61 0.69-0.70 0.74-0.77
0.25 0.48 0.58 0.66-0.68 0.70-0.76
0.26 0.51 0.62 0.71 0.76-0.78
0.25 0.48 0.59 0.67-0.69 0.72-0.77

2 0.04 0.11 0.15 0.18 0.22
0.04 0.11 0.14 0.18 0.21
0.04 0.11 0.15 0.19 0.22
0.04 0.11 0.14 0.18 0.22

3 0.00 0.01 0.01 0.02 0.02
0.00 0.01 0.01 0.02 0.02
0.00 0.01 0.01 0.02 0.02
0.00 0.01 0.01 0.02 0.02

Table 1.1. Values of P (M > u) for the different processes. Each cell contains, from
top to bottom, the values corresponding to stationary centered Gaussian processes
with covariances Γ1, Γ2, Γ3 and Γ4 respectively. The calculation uses three terms of
the Rice series for the upper-bound and two terms for the lower-bound. Both bounds
are rounded up to two decimals and when they differ, both are displayed.

a program (see [16]) and a Monte-Carlo evaluation of ν3. In fact, for simpler
and faster calculation, ν̃3 has been evaluated instead of ν3, providing a slightly
weaker bound.

In addition Figures 4.1 to 4.4 show the behavior of four bounds, namely, from
the highest to the lowest:

• The Davies bound (D) defined by formula (4.2).

• One, three, or two terms of the Rice series (R1, R3, R2 in the sequel) that
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Figure 4.1. For the process with covariance Γ1 and the level u = 1, representation
of the three upper-bounds D, R1, R3 and the lower-bound R2 (from top to bottom)
as a function of the length T of the interval

is

P (X0 > u) +
K∑

m=1

(−1)m+1 νm

m!

with K = 1, 3 or 2.

Note that the bound D differs from R1 due to the difference between ν1 and
ν̃1. These bounds are evaluated for T = 4, 6, 8, 10, 15 and also for T = 20 and
T = 40 when they fall in the range [0, 1]. Between these values an ordinary
spline interpolation has been performed.

In addition we illustrate the complete detailed calculation in three chosen
cases. They correspond to zero and positive levels u. For u negative, it is easy
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Figure 4.2. For the process with covariance Γ2 and the level u = 0, representation
of the three upper-bounds: D, R1, R3 and the lower-bound R2 (from top to bottom)
as a function of the length T of the interval
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Figure 4.3. For the process with covariance Γ3 and the level u = 2, representation
of the three upper-bounds: D, R1, R3 and the lower-bound R2 (from top to bottom)
as a function of the length T of the interval.

to check that the Davies bound is often greater than 1, thus non-informative.

• For u = 0, T = 6, Γ = Γ1, we have P (X0 > u) = 0.5, ν̃1 = 0.955,
ν1 = 0.602, ν2/2 = .150, ν̃3/6 = 0.004, so that

D = 1.455 , R1 = 1.103 , R3 = 0.957 , R2 = 0.953.

R2 and R3 give a rather good evaluation of the probability, the Davies
bound gives no information.

• For u = 1.5, T = 15, Γ = Γ2, we have P (X0 > u) = 0.067, ν̃1 = 0.517,
ν1 = 0.488, ν2/2 = 0.08, ν̃3/6 = 0.013, so that

D = 0.584 , R1 = 0.555 , R3 = 0.488 , R2 = 0.475.

In this case the Davies bound is not sharp and a very clear improvement
is provided by the two bounds R2 and R3.

• For u = 2, T = 10, Γ = Γ3, we have P (X0 > u) = 0.023, ν̃1 = 0.215,
ν1 = 0.211, ν2/2 = 0.014, ν̃3/6 = 310−4, so that

D = 0.238 , R1 = 0.234 , R3 = 0.220. , R2 = 0.220.

In this case the Davies bound is rather sharp.

As a conclusion, these numerical results show that it is worth using several
terms of the Rice series. In particular the first three terms are relatively easy to
compute and provide a good evaluation of the distribution of M under a rather
broad set of conditions.
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Figure 4.4. For the process with covariance Γ4 and the level u = 1.5, representation
of the three upper-bounds: D, R1, R3 and the lower-bound R2 (from top to bottom)
as a function of the length T of the interval.
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346 J.-M. Azäıs and M. Wschebor

[26] Goldman, M., On the first passage of the integrated Wiener process, The
Annals Math. Statist. 42, No. 6 (1971), 2150–2155.

[27] Lachal, A., Sur le premier instant de passage de l’intégrale du mouvement
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