

Distribución *p*-ádica de puntos CM y aplicaciones diofantinas, parte 2

Sebastián Herrero (joint with Ricardo Menares and Juan Rivera-Letelier)

LATeN, September 2021

Notation

$$\mathbb{H} = \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}$$
$$\mathsf{\Gamma} = \operatorname{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

 $j:\mathbb{H}
ightarrow \mathbb{C}$ modular function with

$$j(z) = q^{-1} + 744 + \sum_{n=1}^{\infty} c_n q^n$$
, where $q := e^{2\pi i z}$.

Facts:

- j is a Hauptmodul for Γ .
- $\bigcirc j(z)$ is the *j*-invariant of the elliptic curve $E_z \simeq \mathbb{C}/(\mathbb{Z} + z\mathbb{Z})$.

CM points and singular moduli

z in \mathbb{H} is a CM point if $\mathbb{Q}(z)$ is quadratic (imaginary) over \mathbb{Q} .

Theorem (From CM theory)

If z is CM then j(z) is an algebraic integer.

If z is CM, we call j(z) a singular modulus (following Kronecker).

Are there only finitely many singular moduli that are algebraic units?

Motivation: In

An effective "Theorem of André" for CM-points on a plane curve (2013) Bilu, Masser and Zannier proved that there are no pairs (j_1, j_2) of singular moduli on $X_1 \cdot X_2 = 1$.

Habegger's theorem

In

Singular moduli that are algebraic units (2015)

Habegger proved the there are at most finitely many singular moduli that are algebraic units.

Habegger's proof does not give a numerical bound for the number of singular moduli that are algebraic units.

Natural question: Is there any such singular unit?

Refinements

🚺 In

No singular modulus is a unit (2018)

Bilu, Habegger and Kühne proved that there are no singular units.

≥ Let Φ_m(X, Y) denote the m-th modular polynomial (m ≥ 1 integer).

Singular units and isogenies between CM elliptic curves (2019) Y. Li proved that $\Phi_m(j_1, j_2)$ is never an algebraic unit for j_1, j_2 singular moduli.

Differences of singular moduli

Habegger's work (2015) implies the following result: given an algebraic integer α there are at most finitely many singular moduli j such that $j - \alpha$ is an algebraic unit.

Example: If $\alpha = 1$ then

$$j\left(\frac{1+i\sqrt{3}}{2}\right) - \alpha = 0 - 1 = -1$$

is an algebraic unit.

In the case $\alpha = j_2$ is a singular modulus we have, by Y. Li's theorem with m = 1, that $j_1 - j_2$ is never an algebraic unit.

Fact: Differences of singular moduli are very special.

More on CM points

For z CM, define

 $D = \text{Disc}(z) = \text{discriminant of min. poly. of } z \text{ over } \mathbb{Z}.$

Then z is of the form

$$\frac{-b+\sqrt{D}}{2a}$$

with $a, b, c \in \mathbb{Z}$ coprime, a > 0, $D = b^2 - 4ac < 0$.

 Γ acts on the set CM_D of CM points of discriminant D and we define

 $\Lambda_D = \Gamma \backslash \mathrm{CM}_D.$

Theorem (CM theory)

 Λ_D is finite of cardinality h(D) (class number) and $j(\Lambda_D)$ is a full Galois orbit.

S. Herrero

Norms of differences

Given α in $\overline{\mathbb{Q}}$ define

$$\operatorname{Nm}(\alpha) = \prod_{\sigma: \mathbb{Q}(\alpha) \hookrightarrow \overline{\mathbb{Q}}} \sigma(\alpha).$$

Then $j_1 - j_2$ is an algebraic unit if and only if $Nm(j_1 - j_2) = \pm 1$.

In

On singular moduli (1985)

Gross and Zagier gave an *arithmetic formula* for $Nm(j_1 - j_2)$ under certain hypotheses.

It is not clear how to use Gross and Zagier's formula (or extensions of it) to prove *directly* that $j_1 - j_2$ is never an algebraic unit.

Singular S-units

Fix S a finite set of prime numbers.

An algebraic integer is an S-unit if no primes outside S divide $Nm(\alpha)$.

Theorem (H–Menares–Rivera-Letelier, 2021)

There are at most finitely many singular moduli that are S-units.

Note that every non-zero singular modulus is an S-unit for some finite set S.

Numerics: A. Sutherland's table¹

D	$\prod_{z\in\Lambda_D} j(z)$	D	$\prod_{z \in \Lambda_D} j(z)$	D	$\prod_{z\in\Lambda_D} j(z)$
-3	0	-32	$2^{6}5^{6}23^{3}$	-63	$-3^{6}5^{12}17^{3}41^{3}47^{3}$
-4	$2^{6}3^{3}$	-35	$-2^{30}5^{3}$	-64	$-2^3 3^6 2 3^3 4 7^3$
-7	$-3^{3}5^{3}$	-36	$-2^{12}3^{3}11^{3}23^{3}$	-67	$-2^{15}3^35^311^3$
$^{-8}$	$2^{6}5^{3}$	-39	$3^{15}17^323^329^3$	-68	$-2^{24}5^{12}17^{3}47^{3}$
-11	-2^{15}	-40	$2^{12}3^65^329^3$	-71	$-11^9 17^6 23^3 41^3 47^3 53^3$
-12	$2^4 3^3 5^3$	-43	$-2^{18}3^35^3$	-72	$2^{12}5^{6}29^{3}53^{3}$
-15	$-3^{6}5^{3}11^{3}$	-44	$2^{12}11^317^329^3$	-75	$2^{30}3^65^111^3$
-16	$2^3 3^3 11^3$	-47	$-5^{15}11^{6}23^{3}29^{3}$	-76	$2^{12}3^{9}41^{3}53^{3}$
-19	$-2^{15}3^3$	-48	$2^4 3^9 5^6 11^3$	-79	$-3^{15}17^329^347^353^359^3$
-20	$-2^{12}5^{3}11^{3}$	-51	$2^{33}3^{6}$	-80	$2^{12}5^{6}11^{3}17^{6}59^{3}$
-23	$-5^{9}11^{3}17^{3}$	-52	$-2^{12}3^{6}5^{6}23^{3}$	-83	$-2^{48}5^9$
-24	$2^{12}3^{6}17^{3}$	-55	$-3^{12}5^{6}11^{3}29^{3}41^{3}$	-84	$-2^{24}3^{15}47^359^3$
-27	$-2^{15}3^{1}5^{3}$	-56	$2^{24}11^{6}17^{3}41^{3}$	-87	$3^{18}5^{18}23^353^359^3$
-28	$3^3 5^3 17^3$	-59	$-2^{48}11^3$	-88	$2^{12}3^65^617^341^3$
-31	$-3^9 11^3 17^3 23^3$	-60	$3^6 5^3 29^3 41^3$	-91	$-2^{30}3^{6}17^{3}$

¹https://math.mit.edu/ drew/NormsOfSingularModuli2000.pdf

S. Herrero

Question

- It seems like $j\left(\frac{1+\sqrt{-11}}{2}\right) = -2^{15}$ is the only singular modulus that is an *S*-unit for *S* a singleton. Is this the case?
- A. Sutherland checked this *conjecture* for discriminants D in $] 10^5, -3]$ (private communication).

Difference of singular moduli

Fix S a finite set of prime numbers.

Theorem (H–Menares–Rivera-Letelier, 2021)

Given a singular modulus j_2 , there are at most finitely many singular moduli j_1 such that $j_1 - j_2$ is an S-unit.

We use Habegger's original strategy together with the new ingredient that for every prime number p, singular moduli are p-adically disperse.

Habegger's strategy (for singular units)

Habegger considered the absolute logarithmic Weil height

$$h(a) = rac{1}{[\mathcal{K}:\mathbb{Q}]}\sum_{v\in\mathcal{M}_{\mathcal{K}}}d_v\log\max\{1,|a|_v\}$$

for a in K a number field, where

- M_K is the set of places of K,
- $|\cdot|_{v}$ is a representative absolute value extending $|\cdot|_{p}$ with p prime or ∞ (the usual field norms on \mathbb{Q}),

•
$$d_v = [K_v : \mathbb{Q}_p].$$

First ingredient: For j a singular modulus of discriminant D we have

$$h(j) \ge A \log |D| + B,$$

with A, B absolute constants, A > 0.

This follows from results of Colmez (1989), and Nakkajima and Taguchi (1991).

14/31

Second ingredient: A density estimate for the number of singular moduli around 0. Given $\varepsilon > 0$ find r > 0 small such that

$$rac{1}{h(D)}\left(j(\Lambda_D)\cap B(0,r)
ight)\leq arepsilon ext{ for }D
ightarrow -\infty.$$

This follows from the following equidistribution theorem for CM points.

Theorem (Duke (1988) + Clozel and Ullmo (2004)) When $D \rightarrow -\infty$ we have

$$\frac{1}{h(D)}\sum_{z\in\Lambda_D}\delta_z\to\frac{3}{\pi}\frac{dxdy}{y^2}$$

weakly on $\Gamma \setminus \mathbb{H}$.

This step is not effective.

Third ingredient: An estimate for the Archimedean distance between a singular modulus and 0. For j a nonzero singular modulus of discriminant D we have

$$-\log|j| \le c_\infty \log|D|,$$

with $c_{\infty} > 0$ absolute constant.

In the " $(j - \alpha)$ version" of Habegger's theorem (α algebraic integer) one needs David and Hirata-Kohno's deep lower bound for linear forms on n = 2 elliptic logarithms (2009).

Putting everything together

If j is a singular unit of discriminant D, then

$$\begin{array}{rcl} A \log |D| + B & \leq & h(j) \\ & = & \frac{1}{[K:\mathbb{Q}]} \sum\limits_{\nu \in M_K} d_\nu \log \max\{1, |j|_\nu\} \\ & = & \frac{1}{[K:\mathbb{Q}]} \sum\limits_{\nu \in M_K^\infty} d_\nu \log \max\{1, |j|_\nu\} \\ & = & -\frac{1}{[K:\mathbb{Q}]} \sum\limits_{\nu \in M_K^\infty, |j|_\nu < 1} d_\nu \log |j|_\nu, \end{array}$$

by the product formula. For $\varepsilon > 0$ convenient we get

$$-rac{1}{[\mathcal{K}:\mathbb{Q}]}\sum_{oldsymbol{v}\in\mathcal{M}^\infty_\mathcal{K},|j|_{oldsymbol{v}}<1}d_oldsymbol{v}\log|j|_oldsymbol{v}\leq A_arepsilon\log|D|+B_arepsilon$$

with $A_{\varepsilon} < A$. Hence |D| is bounded and the result follows.

Our proof (for singular S-units)

We use Habegger's strategy. For p prime, fix an extension of $|\cdot|_p$ to $\overline{\mathbb{Q}}$.

First ingredient: For j a singular modulus of discriminant D we have

 $h(j) \ge A \log |D| + B,$

with A, B absolute constants, A > 0.

Second ingredient: A *p*-adic density estimate for the number of singular moduli around 0. Given $\varepsilon > 0$ find r > 0 small such that

$$rac{1}{h(D)}\left(j(\Lambda_D)\cap B_p(0,r)
ight)\leq arepsilon ext{ for } D
ightarrow -\infty.$$

Third ingredient: An estimate for the p-adic distance between a singular modulus and 0. For j a nonzero singular modulus of discriminant D we have

$$-\log |\mathbf{j}|_{\mathbf{p}} \leq c_{\mathbf{p}} \log |D|,$$

with $c_p > 0$ absolute constant.

Putting everything together

If j is a singular unit of discriminant D, then

$$\begin{array}{rcl} A \log |D| + B & \leq & h(j) \\ & = & \frac{1}{[K:\mathbb{Q}]} \sum\limits_{\nu \in M_K} d_\nu \log \max\{1, |j|_\nu\} \\ & = & \frac{1}{[K:\mathbb{Q}]} \sum\limits_{\nu \in M_K^\infty \cup M_K^S} d_\nu \log \max\{1, |j|_\nu\} \\ & = & -\frac{1}{[K:\mathbb{Q}]} \sum\limits_{\nu \in M_K^\infty \cup M_K^S, |j|_\nu < 1} d_\nu \log |j|_\nu, \end{array}$$

by the product formula. For $\varepsilon > 0$ convenient we get

$$-\frac{1}{[\mathcal{K}:\mathbb{Q}]}\sum_{\nu\in\mathcal{M}_{\mathcal{K}}^{\infty}\cup\mathcal{M}_{\mathcal{K}}^{\mathcal{S}},|j|_{\nu}<1}d_{\nu}\log|j|_{\nu}\leq A_{\varepsilon,\mathcal{S}}\log|D|+B_{\varepsilon,\mathcal{S}}$$

with $A_{\varepsilon,S} < A$. Hence |D| is bounded and the result follows.

Singular moduli are *p*-adically disperse

Theorem (H–Menares–Rivera-Letelier, 2021)

Given $\varepsilon > 0$ there exists r > 0 small such that

$$rac{1}{h(D)}\left(j(\Lambda_D)\cap B_p(0,r)
ight)\leq arepsilon ext{ for }D
ightarrow -\infty.$$

This follows from our identification of all limit measures of CM points in the *p*-adic setting.

p-adic distribution of CM points

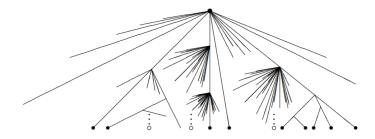
For simplicity, restrict to D < 0 fundamental discriminant.

We have
$$j(\Lambda_D) \subset \overline{\mathbb{Q}} \subset \mathbb{C}_{\rho} \subset \mathbb{A}^1_{\operatorname{Berk}}$$
.

 $\mathbb{A}^1_{\operatorname{Berk}}$ can be defined as the set of multiplicative semi-norms on $\mathbb{C}_p[X]$ extending $|\cdot|_p$ on \mathbb{C}_p , with a suitable topology (locally compact, arc-connected), and

$$\mathbb{C}_{p} \hookrightarrow \mathbb{A}^{1}_{\mathrm{Berk}}, \qquad z \mapsto \iota(z)$$

is defined by $\iota(z)(f) = |f(z)|_p$ for f in $\mathbb{C}_p[X]$. \mathbb{C}_p is dense in $\mathbb{A}^1_{\text{Berk}}$. Above the unit disc in \mathbb{C}_p we have the following $\mathsf{picture}^2$



At the top we have the Gauss point ζ defined by

$$\zeta(a_0 + a_1X + \ldots + a_nX^n) = \max\{|a_0|_p, |a_1|_p, \ldots, |a_n|_p\}.$$

²Illustration of Joe Silverman

Convergence towards the Gauss point

Theorem (H–Menares–Rivera-Letelier, 2020)

• For fundamental discriminants D < 0 with $\left(\frac{D}{p}\right) = 1$ we have

$$\frac{1}{h(D)}\sum_{z\in\Lambda_D}\delta_{j(z)}\to\delta_{\zeta}$$

weakly on \mathbb{A}^1_{Berk} .

2 This is not the case for fundamental discriminants D < 0 with $\left(\frac{D}{p}\right) \neq 1$.

The case
$$\left(rac{D}{p}
ight)
eq 1$$

Let \mathcal{O}_D denote the ring of integers of $\mathbb{Q}(\sqrt{D})$. Then

$$\Lambda_D = \{E \text{ ell. curve over } \overline{\mathbb{Q}} \text{ with } \operatorname{End}(E) \simeq \mathcal{O}_D\} \subset Y(\overline{\mathbb{Q}})$$

where $Y(\overline{\mathbb{Q}})$ is the (open) moduli space of elliptic curves over $\overline{\mathbb{Q}}$.

Let \mathfrak{D} be the *p*-adic discriminant of the ring of integers $\mathcal{O}_{\mathfrak{D}}$ of $\mathbb{Q}_p(\sqrt{D})$. Then $D \in \mathfrak{D}$, $\mathcal{O}_D \subset \mathcal{O}_{\mathfrak{D}}$ and

 $\Lambda_D \subset \Lambda_{\mathfrak{D}} = \{ E \text{ ell. curve over } \overline{\mathbb{Q}}_p \text{ with } \operatorname{End}(\widehat{E}) \simeq \mathcal{O}_{\mathfrak{D}} \} \subset Y(\overline{\mathbb{Q}}_p)$

where \widehat{E} is the formal group of E.

The case $\left(\frac{D}{p}\right) \neq 1$

Every (fundamental) discriminant D < 0 with $\left(\frac{D}{p}\right) \neq 1$ belongs to some *p*-adic (fundamental) discriminant \mathfrak{D} .

Theorem (H–Menares–Rivera-Letelier, 2021)

For a p-adic discriminant \mathfrak{D} the set $\Lambda_{\mathfrak{D}}$ is compact and there exists a (unique) Borel probability measure $\nu_{\mathfrak{D}}$ with support $\Lambda_{\mathfrak{D}}$ such that for fundamental discriminants D < 0 with $D \in \mathfrak{D}$ we have

$$\frac{1}{h(D)}\sum_{z\in\Lambda_D}\delta_{j(z)}\to\nu_{\mathfrak{D}}$$

weakly on $Y(\overline{\mathbb{Q}}_p)$.

There are 3 (for p > 2) or 7 (for p = 2) *p*-adic fundamental discriminants.

Singular moduli are *p*-adically disperse

Theorem (H–Menares–Rivera-Letelier, 2021)

None of the limit measures of ${\rm CM}$ poins in the p-adic topology has an atom in $\mathbb{C}_p.$

This implies our second ingredient.

Theorem (H–Menares–Rivera-Letelier, 2021)

Given $\varepsilon > 0$ there exists r > 0 small such that

$$\frac{1}{h(D)}\left(j(\Lambda_D)\cap B_p(0,r)\right)\leq \varepsilon \text{ for } D\to -\infty.$$

The last ingredient

Theorem (H–Menares–Rivera-Letelier, 2021)

For j a nonzero singular modulus of discriminant D we have

 $-\log |\mathbf{j}|_{\mathbf{p}} \leq c_{\mathbf{p}} \log |D|,$

with $c_p > 0$ absolute constant.

The proof uses ideas of F. Charles (2018) and results of Gross (1986): deformation theory of elliptic curves, formal groups/modules, and canonical/quasi-canonical liftings.

With the three main ingredients, we get the result! The strategy is essentially the same for differences of singular moduli that are *S*-units.

Final comments

In

On singular moduli that are S-units (2020)

F. Campagna shows that $S_0 = \{p \text{ prime }, p \equiv 1 \mod 3\}$ every singular *S*-unit is a singular unit, hence there are none.

We can use Campagna's result to extend ours to certain classes of infinite sets S of prime numbers (larger than S_0).

Other modular functions

Habegger asked us³: What about the λ -invariants? These are Hauptmoduln for $\Gamma(2)$.

General question: What about more general Hauptmoduln?

The method seems to extend without major difficulties to the case of differences of singular moduli that are *S*-units for any Hauptmodul of a genus zero subgroup of $\operatorname{GL}_2^+(\mathbb{Q})$ that is algebraically related to the *j*-function.

³(private communication)

Examples

1 The λ -invariants: there are six of them, they satisfy

$$2^8(1-\lambda+\lambda^2)^3-j\lambda^2(1-\lambda)^2=0.$$

In

```
The lambda invariant at CM points (2018)
```

Yang, Yin and Yu chose a particular lambda invariant λ_0 and proved that $\lambda_0(z)$ is an algebraic unit for infinitely many CM points z.

2 Weber functions $\mathbf{f}, \mathbf{f}_1, \mathbf{f}_2$ are roots of

$$(X^{24} \pm 16)^3 - X^{24}j = 0.$$

Weber's computations show that infinitely many singular moduli for these functions are algebraic units.

Note that 0 is not a singular modulus for any of these functions.

30 / 31

Thanks for your attention!

¡Muchas gracias!

