On a conjecture of Darmon–Rotger in the adjoint CM case

Seminario Latinoamericano de Teoría de Números

Francesc Castella

University of California Santa Barbara

April 22, 2021

On a conjecture of Darmon-Rotger in the adjoint CM case

Outline

Kato classes

Generalised Kato classes

Main result

Ideas from the proof

University of California Santa Barbara

- E/\mathbb{Q} elliptic curve of conductor N.
- $p \nmid 2N$ good ordinary prime for E.
- $V_{\rho}E := (\varprojlim_n E[\rho^n]) \otimes \mathbb{Q}_{\rho}$

Theorem (Kato's ERL)

There is a class $\kappa_p^{ ext{Kato}} \in \mathrm{H}^1(\mathbb{Q}, V_p E)$ such that

$$\exp^*_{\mathrm{BK}}(\mathrm{Loc}_{\rho}(\kappa_{
ho}^{\mathrm{Kato}}))\doteq rac{L(E,1)}{\Omega_E}$$

where $\operatorname{Loc}_p : \operatorname{H}^1(\mathbb{Q}, V_p E) \to \operatorname{H}^1(\mathbb{Q}_p, V_p E)$ is the restriction maps at p, and

 $\exp^*_{\mathrm{BK}} : \mathrm{H}^1(\mathbb{Q}_{\rho}, V_{\rho}E) \to \mathbb{Q}_{\rho}$

is Bloch–Kato's dual exponential map.

• E/\mathbb{Q} elliptic curve of conductor N.

- $p \nmid 2N$ good ordinary prime for *E*.
- $V_p E := (\varprojlim_n E[p^n]) \otimes \mathbb{Q}_p$

Theorem (Kato's ERL)

There is a class $\kappa_p^{ ext{Kato}} \in \mathrm{H}^1(\mathbb{Q}, V_p E)$ such that

$$\exp^*_{\mathrm{BK}}(\operatorname{Loc}_{\rho}(\kappa^{\operatorname{Kato}}_{\rho})) \doteq rac{L(E,1)}{\Omega_E}$$

where $\operatorname{Loc}_p : \operatorname{H}^1(\mathbb{Q}, V_p E) \to \operatorname{H}^1(\mathbb{Q}_p, V_p E)$ is the restriction maps at p, and

$$\exp^*_{\mathrm{BK}} : \mathrm{H}^1(\mathbb{Q}_{\rho}, V_{\rho}E) \to \mathbb{Q}_{\rho}$$

is Bloch–Kato's dual exponential map.

- E/\mathbb{Q} elliptic curve of conductor N.
- $p \nmid 2N$ good ordinary prime for E.
- $V_p E := (\varprojlim_n E[p^n]) \otimes \mathbb{Q}_p.$

Theorem (Kato's ERL)

There is a class $\kappa_{
m
ho}^{
m Kato}\in {
m H}^1({\mathbb Q},V_{
m
ho}{
m E})$ such that

$$\exp_{\mathrm{BK}}^*(\mathrm{Loc}_p(\kappa_p^{\mathrm{Kato}})) \doteq \frac{L(E,1)}{\Omega_E}$$

where $\operatorname{Loc}_p : \operatorname{H}^1(\mathbb{Q}, V_p E) \to \operatorname{H}^1(\mathbb{Q}_p, V_p E)$ is the restriction maps at p, and

$$\exp^*_{\mathrm{BK}} : \mathrm{H}^1(\mathbb{Q}_{\rho}, V_{\rho}E) \to \mathbb{Q}_{\rho}$$

is Bloch-Kato's dual exponential map.

- E/\mathbb{Q} elliptic curve of conductor N.
- $p \nmid 2N$ good ordinary prime for E.
- $V_{\rho}E := (\varprojlim_n E[\rho^n]) \otimes \mathbb{Q}_{\rho}.$

Theorem (Kato's ERL)

There is a class $\kappa_p^{ ext{Kato}} \in \mathrm{H}^1(\mathbb{Q}, V_p E)$ such that

$$\exp^*_{\rm BK}({\rm Loc}_{\rho}(\kappa_{\rho}^{\rm Kato})) \doteq \frac{L(E,1)}{\Omega_E}$$

where $\operatorname{Loc}_p : \operatorname{H}^1(\mathbb{Q}, V_p E) \to \operatorname{H}^1(\mathbb{Q}_p, V_p E)$ is the restriction maps at p, and

$$\exp^*_{\mathrm{BK}} : \mathrm{H}^1(\mathbb{Q}_p, V_p E) \to \mathbb{Q}_p$$

is Bloch-Kato's dual exponential map.

- E/\mathbb{Q} elliptic curve of conductor N.
- $p \nmid 2N$ good ordinary prime for *E*.
- $V_{\rho}E := (\varprojlim_n E[\rho^n]) \otimes \mathbb{Q}_{\rho}.$

Theorem (Kato's ERL)

There is a class $\kappa_p^{\text{Kato}} \in \mathrm{H}^1(\mathbb{Q}, V_p E)$ such that

$$\exp^*_{\rm BK}(\operatorname{Loc}_p(\kappa_p^{\rm Kato})) \doteq \frac{L(E,1)}{\Omega_E}$$

where $\operatorname{Loc}_p : \operatorname{H}^1(\mathbb{Q}, V_p E) \to \operatorname{H}^1(\mathbb{Q}_p, V_p E)$ is the restriction maps at p, and

$$\exp_{\mathrm{BK}}^* : \mathrm{H}^1(\mathbb{Q}_p, V_p E) \to \mathbb{Q}_p$$

is Bloch-Kato's dual exponential map.

- E/\mathbb{Q} elliptic curve of conductor N.
- $p \nmid 2N$ good ordinary prime for *E*.
- $V_{\rho}E := (\varprojlim_n E[\rho^n]) \otimes \mathbb{Q}_{\rho}.$

Theorem (Kato's ERL)

There is a class $\kappa_p^{\mathrm{Kato}} \in \mathrm{H}^1(\mathbb{Q}, V_p E)$ such that

$$\exp^*_{\rm BK}(\operatorname{Loc}_p(\kappa_p^{\rm Kato})) \doteq \frac{L(E,1)}{\Omega_E}$$

where $Loc_p : H^1(\mathbb{Q}, V_pE) \to H^1(\mathbb{Q}_p, V_pE)$ is the restriction maps at p, and

$$\exp^*_{\mathrm{BK}}:\mathrm{H}^1(\mathbb{Q}_
ho,V_
ho E) o \mathbb{Q}_
ho$$

is Bloch-Kato's dual exponential map.

Let $\operatorname{Sel}(\mathbb{Q}, V_p E) \subset \operatorname{H}^1(\mathbb{Q}, V_p E)$ be the *p*-adic Selmer group of *E*:

 $0 \to E(\mathbb{Q}) \otimes \mathbb{Q}_p \to \operatorname{Sel}(\mathbb{Q}, V_p E) \to (\varprojlim \operatorname{III}(E/\mathbb{Q})[p^n]) \otimes \mathbb{Q}_p \to 0.$

By Kato's ERL, $L(E, 1) = 0 \iff \kappa_p^{\text{Kato}} \in \text{Sel}(\mathbb{Q}, V_p E).$

Conjecture (Perrin-Riou, 1993)

Suppose that L(E, 1) = 0. Then the following are equivalent:

(1) $\kappa_p^{\text{Kato}} \neq 0$.

(2) $\operatorname{ord}_{s=1}L(E,s) = 1.$

(3) $\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 1$ and $\#\operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$.

Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is any generator.

Let $\operatorname{Sel}(\mathbb{Q}, V_p E) \subset \operatorname{H}^1(\mathbb{Q}, V_p E)$ be the *p*-adic Selmer group of *E*:

 $0 \to E(\mathbb{Q}) \otimes \mathbb{Q}_p \to \operatorname{Sel}(\mathbb{Q}, V_p E) \to (\varprojlim \operatorname{III}(E/\mathbb{Q})[p^n]) \otimes \mathbb{Q}_p \to 0.$

By Kato's ERL, $L(E, 1) = 0 \iff \kappa_p^{\text{Kato}} \in \text{Sel}(\mathbb{Q}, V_p E).$

Conjecture (Perrin-Riou, 1993)

Suppose that L(E, 1) = 0. Then the following are equivalent:

(1)
$$\kappa_p^{\text{Kato}} \neq 0.$$

(2) $\operatorname{ord}_{s=1}L(E,s) = 1.$

(3) $\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 1$ and $\# \operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$.

Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is any generator.

Let $\operatorname{Sel}(\mathbb{Q}, V_p E) \subset \operatorname{H}^1(\mathbb{Q}, V_p E)$ be the *p*-adic Selmer group of *E*:

 $0 \to E(\mathbb{Q}) \otimes \mathbb{Q}_p \to \operatorname{Sel}(\mathbb{Q}, V_p E) \to (\varprojlim \operatorname{III}(E/\mathbb{Q})[p^n]) \otimes \mathbb{Q}_p \to 0.$

By Kato's ERL, $L(E, 1) = 0 \iff \kappa_p^{\text{Kato}} \in \text{Sel}(\mathbb{Q}, V_p E).$

Conjecture (Perrin-Riou, 1993)

Suppose that L(E, 1) = 0. Then the following are equivalent:

(1) $\kappa_p^{\text{Kato}} \neq 0.$

(2) $\operatorname{ord}_{s=1} L(E, s) = 1.$

(3) $\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 1$ and $\# \operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$.

Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is any generator.

Let $\operatorname{Sel}(\mathbb{Q}, V_p E) \subset \operatorname{H}^1(\mathbb{Q}, V_p E)$ be the *p*-adic Selmer group of *E*:

 $0 \to E(\mathbb{Q}) \otimes \mathbb{Q}_p \to \operatorname{Sel}(\mathbb{Q}, V_p E) \to (\varprojlim \operatorname{III}(E/\mathbb{Q})[p^n]) \otimes \mathbb{Q}_p \to 0.$

By Kato's ERL, $L(E, 1) = 0 \iff \kappa_p^{\text{Kato}} \in \text{Sel}(\mathbb{Q}, V_p E).$

Conjecture (Perrin-Riou, 1993)

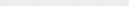
Suppose that L(E, 1) = 0. Then the following are equivalent:

(1) $\kappa_p^{\text{Kato}} \neq 0.$

(2) $\operatorname{ord}_{s=1}L(E,s) = 1.$

(3) $\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 1$ and $\#\operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$.

Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is any generator.



Let $\operatorname{Sel}(\mathbb{Q}, V_p E) \subset \operatorname{H}^1(\mathbb{Q}, V_p E)$ be the *p*-adic Selmer group of *E*:

 $0 \to E(\mathbb{Q}) \otimes \mathbb{Q}_p \to \operatorname{Sel}(\mathbb{Q}, V_p E) \to (\varprojlim \operatorname{III}(E/\mathbb{Q})[p^n]) \otimes \mathbb{Q}_p \to 0.$

By Kato's ERL, $L(E, 1) = 0 \iff \kappa_p^{\text{Kato}} \in \text{Sel}(\mathbb{Q}, V_p E).$

Conjecture (Perrin-Riou, 1993)

Suppose that L(E, 1) = 0. Then the following are equivalent:

(1)
$$\kappa_p^{\text{Kato}} \neq 0.$$

(2) $\operatorname{ord}_{s=1}L(E,s) = 1.$

(3) $\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 1$ and $\# \operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$.

Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is any generator.

Let $\operatorname{Sel}(\mathbb{Q}, V_p E) \subset \operatorname{H}^1(\mathbb{Q}, V_p E)$ be the *p*-adic Selmer group of *E*:

 $0 \to E(\mathbb{Q}) \otimes \mathbb{Q}_p \to \operatorname{Sel}(\mathbb{Q}, V_p E) \to (\varprojlim \operatorname{III}(E/\mathbb{Q})[p^n]) \otimes \mathbb{Q}_p \to 0.$

By Kato's ERL, $L(E, 1) = 0 \iff \kappa_p^{\text{Kato}} \in \text{Sel}(\mathbb{Q}, V_p E).$

Conjecture (Perrin-Riou, 1993)

Suppose that L(E, 1) = 0. Then the following are equivalent:

- (1) $\kappa_p^{\text{Kato}} \neq 0.$
- (2) $\operatorname{ord}_{s=1} L(E, s) = 1.$

(3) $\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 1$ and $\# \operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$.

Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is any generator.

Let $\operatorname{Sel}(\mathbb{Q}, V_p E) \subset \operatorname{H}^1(\mathbb{Q}, V_p E)$ be the *p*-adic Selmer group of *E*:

 $0 \to E(\mathbb{Q}) \otimes \mathbb{Q}_p \to \operatorname{Sel}(\mathbb{Q}, V_p E) \to (\varprojlim \operatorname{III}(E/\mathbb{Q})[p^n]) \otimes \mathbb{Q}_p \to 0.$

By Kato's ERL, $L(E, 1) = 0 \iff \kappa_p^{\text{Kato}} \in \text{Sel}(\mathbb{Q}, V_p E).$

Conjecture (Perrin-Riou, 1993)

Suppose that L(E, 1) = 0. Then the following are equivalent:

(1)
$$\kappa_p^{\text{Kato}} \neq 0.$$

(2) $\operatorname{ord}_{s=1} L(E, s) = 1.$

(3) $\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 1$ and $\# \operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$.

Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is any generator.

Let $\operatorname{Sel}(\mathbb{Q}, V_p E) \subset \operatorname{H}^1(\mathbb{Q}, V_p E)$ be the *p*-adic Selmer group of *E*:

 $0 \to E(\mathbb{Q}) \otimes \mathbb{Q}_p \to \operatorname{Sel}(\mathbb{Q}, V_p E) \to (\varprojlim \operatorname{III}(E/\mathbb{Q})[p^n]) \otimes \mathbb{Q}_p \to 0.$

By Kato's ERL, $L(E, 1) = 0 \iff \kappa_p^{\text{Kato}} \in \text{Sel}(\mathbb{Q}, V_p E).$

Conjecture (Perrin-Riou, 1993)

Suppose that L(E, 1) = 0. Then the following are equivalent:

(1)
$$\kappa_p^{\text{Kato}} \neq 0.$$

(2) $\operatorname{ord}_{s=1}L(E, s) = 1.$
(3) $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q}) = 1$ and $\#\operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty.$
Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is any generator.

Conjecture (Perrin-Riou, 1993)

- Assume L(E, 1) = 0. Then TFAE:
- (1) $\kappa_p^{\text{Kato}} \neq 0.$
- (2) $\operatorname{ord}_{s=1} L(E, s) = 1.$
- (3) $\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 1$ and $\# \operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$.

Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is a generator.

Remarks

- (2) ⇔ (3) : proved by Gross–Zagier, Kolyvagin; Skinner, W. Zhang, etc..
- (3) \Leftrightarrow (1) : proved by Bertolini–Darmon–Venerucci, etc..
- As a consequence, if $\operatorname{ord}_{s=1}L(E,s) \ge 2$ then $\kappa_p^{\text{Kato}} = 0!$

Conjecture (Perrin-Riou, 1993) Assume L(E, 1) = 0. Then TFAE: (1) $\kappa_p^{\text{Kato}} \neq 0$. (2) $\operatorname{ord}_{s=1}L(E, s) = 1$. (3) $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q}) = 1$ and $\#\operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$. Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is a generator.

Remarks

- (2) ⇔ (3) : proved by Gross–Zagier, Kolyvagin; Skinner, W. Zhang, etc..
- (3) \Leftrightarrow (1) : proved by Bertolini–Darmon–Venerucci, etc..
- As a consequence, if $\operatorname{ord}_{s=1}L(E,s) \ge 2$ then $\kappa_{p}^{\text{Kato}} = 0!$

Conjecture (Perrin-Riou, 1993) Assume L(E, 1) = 0. Then TFAE: (1) $\kappa_p^{\text{Kato}} \neq 0$. (2) $\operatorname{ord}_{s=1}L(E, s) = 1$. (3) $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q}) = 1$ and $\#\operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$. Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is a generator.

Remarks

- (2) ⇔ (3) : proved by Gross–Zagier, Kolyvagin; Skinner, W. Zhang, etc..
- (3) \Leftrightarrow (1) : proved by Bertolini–Darmon–Venerucci, etc..
- As a consequence, if $\operatorname{ord}_{s=1}L(E,s) \ge 2$ then $\kappa_p^{\text{Kato}} = 0!$

Conjecture (Perrin-Riou, 1993) Assume L(E, 1) = 0. Then TFAE: (1) $\kappa_p^{\text{Kato}} \neq 0$. (2) $\operatorname{ord}_{s=1}L(E, s) = 1$. (3) $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q}) = 1$ and $\#\operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$. Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is a generator.

Remarks

- (2) ⇔ (3) : proved by Gross–Zagier, Kolyvagin; Skinner, W. Zhang, etc..
- (3) \Leftrightarrow (1) : proved by Bertolini–Darmon–Venerucci, etc..
- As a consequence, if $\operatorname{ord}_{s=1} L(E, s) \ge 2$ then $\kappa_p^{\text{Kato}} = 0!$

Conjecture (Perrin-Riou, 1993) Assume L(E, 1) = 0. Then TFAE: (1) $\kappa_p^{\text{Kato}} \neq 0$. (2) $\operatorname{ord}_{s=1}L(E, s) = 1$. (3) $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q}) = 1$ and $\#\operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$. Moreover, in that case $\log_E(\kappa_p^{\text{Kato}}) = \log_E(P)^2 \pmod{\mathbb{Q}^{\times}}$, where $P \in E(\mathbb{Q}) \otimes \mathbb{Q}$ is a generator.

Remarks

- (2) ⇔ (3) : proved by Gross–Zagier, Kolyvagin; Skinner, W. Zhang, etc..
- (3) \Leftrightarrow (1) : proved by Bertolini–Darmon–Venerucci, etc..
- As a consequence, if $\operatorname{ord}_{s=1} L(E, s) \ge 2$ then $\kappa_p^{\text{Kato}} = 0!$

Outline

Kato classes

Generalised Kato classes

Main result

Ideas from the proof

・ロト・日本・日本・日本・日本・日本

University of California Santa Barbara

Generalised Kato classes are attached to

- a triple of eigenforms $(f, g, h) \in S_2(N_f) \times S_1(N_g, \epsilon) \times S_1(N_h, \overline{\epsilon})$,
- a choice of roots $(\gamma, \delta) \in \{\alpha_g, \beta_g\} \times \{\alpha_h, \beta_h\}.$

Theorem (Darmon–Rotger's ERL)

There is a generalised Kato class

 $\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}),$

where $V_{fgh} = V_f \otimes V_g \otimes V_h$, such that

 $\exp^*_{\mathrm{BK}}(\mathrm{Loc}_{m{
ho}}(\kappa_{\gamma,\delta}(f,g,h)))\doteq L(1,f\otimes g\otimes h).$

Note: Roughly speaking, $\kappa_{\gamma,\delta}(f,g,h) = \lim_{k \to 1} AJ_{\rho}(\Delta^{tg_k h_k})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generalised Kato classes are attached to

- a triple of eigenforms $(f, g, h) \in S_2(N_f) \times S_1(N_g, \epsilon) \times S_1(N_h, \overline{\epsilon})$,
- a choice of roots $(\gamma, \delta) \in \{\alpha_g, \beta_g\} \times \{\alpha_h, \beta_h\}.$

Theorem (Darmon–Rotger's ERL)

There is a generalised Kato class

 $\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathsf{fgh}}),$

where $V_{fgh} = V_f \otimes V_g \otimes V_h$, such that

 $\exp^*_{\mathrm{BK}}(\operatorname{Loc}_p(\kappa_{\gamma,\delta}(f,g,h))) \doteq L(1,f\otimes g\otimes h).$

Note: Roughly speaking, $\kappa_{\gamma,\delta}(f,g,h) = \lim_{k\to 1} AJ_{\rho}(\Delta^{fg_kh_k})$

Generalised Kato classes are attached to

- a triple of eigenforms $(f, g, h) \in S_2(N_f) \times S_1(N_g, \epsilon) \times S_1(N_h, \overline{\epsilon})$,
- a choice of roots $(\gamma, \delta) \in \{\alpha_g, \beta_g\} \times \{\alpha_h, \beta_h\}.$

Theorem (Darmon–Rotger's ERL)

There is a generalised Kato class

 $\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathsf{fgh}}),$

where $V_{fgh} = V_f \otimes V_g \otimes V_h$, such that

 $\exp^*_{\mathrm{BK}}(\operatorname{Loc}_p(\kappa_{\gamma,\delta}(f,g,h)))\doteq L(1,f\otimes g\otimes h).$

Note: Roughly speaking, $\kappa_{\gamma,\delta}(f,g,h) = \lim_{k\to 1} AJ_p(\Delta^{fg_kh_k})$.

Generalised Kato classes are attached to

- a triple of eigenforms $(f, g, h) \in S_2(N_f) \times S_1(N_g, \epsilon) \times S_1(N_h, \overline{\epsilon})$,
- a choice of roots $(\gamma, \delta) \in \{\alpha_g, \beta_g\} \times \{\alpha_h, \beta_h\}.$

Theorem (Darmon-Rotger's ERL)

There is a generalised Kato class

 $\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}),$

where $V_{fgh} = V_f \otimes V_g \otimes V_h$, such that

 $\exp^*_{\mathrm{BK}}(\operatorname{Loc}_p(\kappa_{\gamma,\delta}(f,g,h))) \doteq L(1,f\otimes g\otimes h).$

Note: Roughly speaking, $\kappa_{\gamma,\delta}(f,g,h) = \lim_{k\to 1} AJ_p(\Delta^{fg_kh_k})$.

Generalised Kato classes are attached to

- a triple of eigenforms $(f, g, h) \in S_2(N_f) \times S_1(N_g, \epsilon) \times S_1(N_h, \overline{\epsilon})$,
- a choice of roots $(\gamma, \delta) \in \{\alpha_g, \beta_g\} \times \{\alpha_h, \beta_h\}.$

Theorem (Darmon-Rotger's ERL)

There is a generalised Kato class

$$\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}),$$

where $V_{fgh} = V_f \otimes V_g \otimes V_h$, such that

$$\exp^*_{\mathrm{BK}}(\mathrm{Loc}_p(\kappa_{\gamma,\delta}(f,g,h))) \doteq L(1,f\otimes g\otimes h).$$

Note: Roughly speaking, $\kappa_{\gamma,\delta}(f,g,h) = \lim_{k\to 1} AJ_p(\Delta^{fg_kh_k}).$

・ロト・白下・山下・山下・山下・山下

Generalised Kato classes are attached to

- a triple of eigenforms $(f, g, h) \in S_2(N_f) \times S_1(N_g, \epsilon) \times S_1(N_h, \overline{\epsilon})$,
- a choice of roots $(\gamma, \delta) \in \{\alpha_g, \beta_g\} \times \{\alpha_h, \beta_h\}.$

Theorem (Darmon-Rotger's ERL)

There is a generalised Kato class

$$\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}),$$

where $V_{fgh} = V_f \otimes V_g \otimes V_h$, such that

$$\exp^*_{\mathrm{BK}}(\mathrm{Loc}_p(\kappa_{\gamma,\delta}(f,g,h))) \doteq L(1,f\otimes g\otimes h).$$

Note: Roughly speaking, $\kappa_{\gamma,\delta}(f,g,h) = \lim_{k\to 1} AJ_p(\Delta^{fg_kh_k}).$

・ロト・西・・川下・ 一川・ うへの

Running hypotheses:

• $\alpha_g \neq \beta_g$ and $\alpha_h \neq \beta_h$, so we have **four** *a priori distinct*

 $\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}).$

• $gcd(N_f, N_g N_h) = 1$, so $\epsilon(f \otimes g \otimes h) = +1$.

Conjecture (Darmon-Rotger)

Suppose that $L(1, f \otimes g \otimes h) = 0$. Then the following are equivalent:

The classes κ_{γ,δ}(f, g, h) span a non-trivial subspace of Sel(Q, V_{fgh}).
 dim_{Q₀}Sel(Q, V_{fgh}) = 2.

- The conjecture does not predict that the classes κ_{γ,δ}(f, g, h) span the entire Sel(Q, V_{fgh}).
- The assumptions imply that $\operatorname{ord}_{s=1} L(s, f \otimes g \otimes h) \ge 2$.

Running hypotheses:

• $\alpha_g \neq \beta_g$ and $\alpha_h \neq \beta_h$, so we have **four** *a* priori distinct

 $\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}).$

• $gcd(N_f, N_g N_h) = 1$, so $\epsilon(f \otimes g \otimes h) = +1$.

Conjecture (Darmon–Rotger)

Suppose that $L(1, f \otimes g \otimes h) = 0$. Then the following are equivalent:

The classes κ_{γ,δ}(f, g, h) span a non-trivial subspace of Sel(Q, V_{fgh}).
 dim_{Q₀}Sel(Q, V_{fgh}) = 2.

- The conjecture does not predict that the classes κ_{γ,δ}(f, g, h) span the entire Sel(Q, V_{fgh}).
- The assumptions imply that $\operatorname{ord}_{s=1}L(s, f \otimes g \otimes h) \ge 2$.

Running hypotheses:

• $\alpha_g \neq \beta_g$ and $\alpha_h \neq \beta_h$, so we have **four** a priori distinct

 $\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}).$

• $gcd(N_f, N_g N_h) = 1$, so $\epsilon(f \otimes g \otimes h) = +1$.

Conjecture (Darmon–Rotger)

Suppose that $L(1, f \otimes g \otimes h) = 0$. Then the following are equivalent:

The classes κ_{γ,δ}(f, g, h) span a non-trivial subspace of Sel(Q, V_{fgh}).
 dim_{Q_a}Sel(Q, V_{fgh}) = 2.

- The conjecture does not predict that the classes κ_{γ,δ}(f, g, h) span the entire Sel(Q, V_{fgh}).
- The assumptions imply that $\operatorname{ord}_{s=1} L(s, f \otimes g \otimes h) \ge 2$.

Running hypotheses:

• $\alpha_g \neq \beta_g$ and $\alpha_h \neq \beta_h$, so we have **four** a priori distinct

 $\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}).$

• $gcd(N_f, N_g N_h) = 1$, so $\epsilon(f \otimes g \otimes h) = +1$.

Conjecture (Darmon-Rotger)

Suppose that $L(1, f \otimes g \otimes h) = 0$. Then the following are equivalent:

The classes κ_{γ,δ}(f, g, h) span a non-trivial subspace of Sel(Q, V_{fgh}).
 dim_{Q_ρ}Sel(Q, V_{fgh}) = 2.

- The conjecture does not predict that the classes $\kappa_{\gamma,\delta}(f,g,h)$ span the entire $Sel(\mathbb{Q}, V_{fgh})$.
- The assumptions imply that $\operatorname{ord}_{s=1}L(s, f \otimes g \otimes h) \ge 2$.

Running hypotheses:

• $\alpha_g \neq \beta_g$ and $\alpha_h \neq \beta_h$, so we have **four** *a* priori distinct

$$\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}).$$

• $gcd(N_f, N_g N_h) = 1$, so $\epsilon(f \otimes g \otimes h) = +1$.

Conjecture (Darmon-Rotger)

Suppose that $L(1, f \otimes g \otimes h) = 0$. Then the following are equivalent:

The classes κ_{γ,δ}(f, g, h) span a non-trivial subspace of Sel(Q, V_{fgh}).
 dim_{Q_p}Sel(Q, V_{fgh}) = 2.

- The conjecture does **not** predict that the classes $\kappa_{\gamma,\delta}(f,g,h)$ span the entire $Sel(\mathbb{Q}, V_{fgh})$.
- The assumptions imply that $\operatorname{ord}_{s=1}L(s, f \otimes g \otimes h) \geq 2$.

Running hypotheses:

• $\alpha_g \neq \beta_g$ and $\alpha_h \neq \beta_h$, so we have **four** *a* priori distinct

$$\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}).$$

• $gcd(N_f, N_g N_h) = 1$, so $\epsilon(f \otimes g \otimes h) = +1$.

Conjecture (Darmon-Rotger)

Suppose that $L(1, f \otimes g \otimes h) = 0$. Then the following are equivalent:

The classes κ_{γ,δ}(f, g, h) span a non-trivial subspace of Sel(Q, V_{fgh}).
 dim_{Q₂}Sel(Q, V_{fgh}) = 2.

- The conjecture does **not** predict that the classes $\kappa_{\gamma,\delta}(f,g,h)$ span the entire $Sel(\mathbb{Q}, V_{fgh})$.
- The assumptions imply that $\operatorname{ord}_{s=1}L(s, f \otimes g \otimes h) \geq 2$.

Running hypotheses:

• $\alpha_g \neq \beta_g$ and $\alpha_h \neq \beta_h$, so we have **four** *a* priori distinct

$$\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}).$$

• $gcd(N_f, N_g N_h) = 1$, so $\epsilon(f \otimes g \otimes h) = +1$.

Conjecture (Darmon-Rotger)

Suppose that $L(1, f \otimes g \otimes h) = 0$. Then the following are equivalent:

(1) The classes $\kappa_{\gamma,\delta}(f,g,h)$ span a non-trivial subspace of $Sel(\mathbb{Q}, V_{fgh})$.

(2)
$$\dim_{\mathbb{Q}_p} \operatorname{Sel}(\mathbb{Q}, V_{fgh}) = 2.$$

- The conjecture does **not** predict that the classes $\kappa_{\gamma,\delta}(f,g,h)$ span the entire $Sel(\mathbb{Q}, V_{fgh})$.
- The assumptions imply that $\operatorname{ord}_{s=1}L(s, f \otimes g \otimes h) \geq 2$.

Running hypotheses:

• $\alpha_g \neq \beta_g$ and $\alpha_h \neq \beta_h$, so we have **four** *a* priori distinct

$$\kappa_{\gamma,\delta}(f,g,h) \in \mathrm{H}^1(\mathbb{Q},V_{\mathrm{fgh}}).$$

• $gcd(N_f, N_g N_h) = 1$, so $\epsilon(f \otimes g \otimes h) = +1$.

Conjecture (Darmon-Rotger)

Suppose that $L(1, f \otimes g \otimes h) = 0$. Then the following are equivalent:

(1) The classes $\kappa_{\gamma,\delta}(f,g,h)$ span a non-trivial subspace of $Sel(\mathbb{Q}, V_{fgh})$.

(2)
$$\dim_{\mathbb{Q}_p} \operatorname{Sel}(\mathbb{Q}, V_{fgh}) = 2.$$

- The conjecture does **not** predict that the classes $\kappa_{\gamma,\delta}(f,g,h)$ span the entire $Sel(\mathbb{Q}, V_{fgh})$.
- The assumptions imply that $\operatorname{ord}_{s=1}L(s, f \otimes g \otimes h) \ge 2$.

• Suppose now that f corresponds to an elliptic curve E/\mathbb{Q} , and $h = g^*$. Then

 $V_{fgg^*} \cong V_p E \oplus (V_p E \otimes \mathrm{ad}^0 V_g)$

and $L(s, f \otimes g \otimes g^*) = L(E, s) \cdot L(E, \operatorname{ad}^0 V_g, s).$

• Let $\kappa_{\gamma,\delta} \in \mathrm{H}^1(\mathbb{Q}, V_p E)$ be the image of $\kappa_{\gamma,\delta}(f, g, g^*)$ under the projection

 $\mathrm{H}^{1}(\mathbb{Q}, V_{fgg^{*}}) \to \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E).$

- Conjecture (Darmon–Rotger, rank (2,0) adjoint case) Suppose that L(E, 1) = 0 and has sign +1, and that $L(E, ad^0V_g, 1) \neq 0$. Then the following are equivalent:
- The classes κ_{γ,δ} span a non-trivial subspace of Sel(Q, V_ρE).
 dim_{Q_ρ}Sel(Q, V_ρE) = 2.

• Suppose now that f corresponds to an elliptic curve $E/\mathbb{Q},$ and $h=g^*.$ Then

 $V_{fgg^*} \cong V_p E \oplus (V_p E \otimes \mathrm{ad}^0 V_g)$

and $L(s, f \otimes g \otimes g^*) = L(E, s) \cdot L(E, \operatorname{ad}^0 V_g, s).$

• Let $\kappa_{\gamma,\delta} \in \mathrm{H}^1(\mathbb{Q}, V_{\rho}E)$ be the image of $\kappa_{\gamma,\delta}(f, g, g^*)$ under the projection

 $\mathrm{H}^{1}(\mathbb{Q}, V_{fgg^{*}}) \to \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E).$

Conjecture (Darmon–Rotger, rank (2,0) adjoint case) Suppose that L(E, 1) = 0 and has sign +1, and that $L(E, ad^0V_g, 1) \neq 0$. Then the following are equivalent:

The classes κ_{γ,δ} span a non-trivial subspace of Sel(Q, V_pE).
 dim_{Q_p}Sel(Q, V_pE) = 2.

• Suppose now that f corresponds to an elliptic curve E/\mathbb{Q} , and $h = g^*$. Then

$$V_{fgg^*} \cong V_{\rho}E \oplus (V_{\rho}E \otimes \mathrm{ad}^0 V_g)$$

and $L(s, f \otimes g \otimes g^*) = L(E, s) \cdot L(E, \operatorname{ad}^0 V_g, s).$

• Let $\kappa_{\gamma,\delta} \in \mathrm{H}^1(\mathbb{Q}, V_{\rho}E)$ be the image of $\kappa_{\gamma,\delta}(f, g, g^*)$ under the projection

 $\mathrm{H}^{1}(\mathbb{Q}, V_{fgg^{*}}) \to \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E).$

Conjecture (Darmon–Rotger, rank (2,0) adjoint case) Suppose that L(E,1) = 0 and has sign +1, and that $L(E, ad^0V_g, 1) \neq 0$. Then the following are equivalent:

The classes κ_{γ,δ} span a non-trivial subspace of Sel(Q, V_pE).
 dim_{Q₀}Sel(Q, V_pE) = 2.

• Suppose now that f corresponds to an elliptic curve E/\mathbb{Q} , and $h = g^*$. Then

$$V_{fgg^*} \cong V_{
ho}E \oplus (V_{
ho}E \otimes \mathrm{ad}^0V_g)$$

and $L(s, f \otimes g \otimes g^*) = L(E, s) \cdot L(E, \mathrm{ad}^0 V_g, s).$

• Let $\kappa_{\gamma,\delta} \in \mathrm{H}^1(\mathbb{Q}, V_{\rho}E)$ be the image of $\kappa_{\gamma,\delta}(f, g, g^*)$ under the projection

$$\mathrm{H}^{1}(\mathbb{Q}, V_{fgg^{*}}) \to \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E).$$

Conjecture (Darmon–Rotger, rank (2,0) adjoint case) Suppose that L(E,1) = 0 and has sign +1, and that $L(E, ad^0V_g, 1) \neq 0$. Then the following are equivalent:

The classes κ_{γ,δ} span a non-trivial subspace of Sel(Q, V_pE).
 dim_{Q_p}Sel(Q, V_pE) = 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

• Suppose now that f corresponds to an elliptic curve E/\mathbb{Q} , and $h = g^*$. Then

$$V_{fgg^*} \cong V_{
ho}E \oplus (V_{
ho}E \otimes \mathrm{ad}^0V_g)$$

and $L(s, f \otimes g \otimes g^*) = L(E, s) \cdot L(E, \mathrm{ad}^0 V_g, s).$

• Let $\kappa_{\gamma,\delta} \in \mathrm{H}^1(\mathbb{Q}, V_{\rho}E)$ be the image of $\kappa_{\gamma,\delta}(f, g, g^*)$ under the projection

$$\mathrm{H}^{1}(\mathbb{Q}, V_{fgg^{*}}) \to \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E).$$

Conjecture (Darmon–Rotger, rank (2,0) adjoint case) Suppose that L(E,1) = 0 and has sign +1, and that $L(E, ad^0V_g, 1) \neq 0$. Then the following are equivalent:

• Suppose now that f corresponds to an elliptic curve E/\mathbb{Q} , and $h = g^*$. Then

$$V_{fgg^*} \cong V_{
ho}E \oplus (V_{
ho}E \otimes \mathrm{ad}^0V_g)$$

and $L(s, f \otimes g \otimes g^*) = L(E, s) \cdot L(E, \mathrm{ad}^0 V_g, s).$

• Let $\kappa_{\gamma,\delta} \in \mathrm{H}^1(\mathbb{Q}, V_{\rho}E)$ be the image of $\kappa_{\gamma,\delta}(f, g, g^*)$ under the projection

$$\mathrm{H}^{1}(\mathbb{Q}, V_{fgg^{*}}) \to \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E).$$

Conjecture (Darmon–Rotger, rank (2,0) adjoint case) Suppose that L(E, 1) = 0 and has sign +1, and that $L(E, ad^0V_g, 1) \neq 0$. Then the following are equivalent:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

• Suppose now that f corresponds to an elliptic curve E/\mathbb{Q} , and $h = g^*$. Then

$$V_{fgg^*} \cong V_{
ho}E \oplus (V_{
ho}E \otimes \mathrm{ad}^0V_g)$$

and $L(s, f \otimes g \otimes g^*) = L(E, s) \cdot L(E, \mathrm{ad}^0 V_g, s).$

• Let $\kappa_{\gamma,\delta} \in \mathrm{H}^1(\mathbb{Q}, V_{\rho}E)$ be the image of $\kappa_{\gamma,\delta}(f, g, g^*)$ under the projection

$$\mathrm{H}^{1}(\mathbb{Q}, V_{fgg^{*}}) \to \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E).$$

Conjecture (Darmon–Rotger, rank (2,0) adjoint case) Suppose that L(E,1) = 0 and has sign +1, and that $L(E, ad^0V_g, 1) \neq 0$. Then the following are equivalent:

The classes κ_{γ,δ} span a non-trivial subspace of Sel(Q, V_pE).
 dim_{Q_p}Sel(Q, V_pE) = 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Outline

Kato classes

Generalised Kato classes

Main result

Ideas from the proof

・ロト・日本・日本・日本・日本・日本

University of California Santa Barbara

We consider the adjoint CM case:

• K imaginary quadratic field of discriminant prime to N in which

 $(p) = p\overline{p}$ splits.

g = θ_ψ = ∑_a ψ(a)q^{Na}, with ψ a ray class character of K of conductor prime of Np.

Then we have the four generalised Kato classes

$$\kappa_{\alpha,\alpha^{-1}}, \ \kappa_{\alpha,\beta^{-1}}, \ \kappa_{\beta,\alpha^{-1}}, \ \kappa_{\beta,\beta^{-1}} \in \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E),$$

where $\alpha = \psi(\overline{\mathfrak{p}})$ and $\beta = \psi(\mathfrak{p})$. **Note:** In this case,

$L(E, \mathrm{ad}^0 V_p(g), s) = L(E^K, s) \cdot L(E/K, \chi, s)$

where χ is the ring class character $\psi/\psi^ au$.

(日)

We consider the adjoint CM case:

• K imaginary quadratic field of discriminant prime to N in which

 $(p) = p\overline{p}$ splits.

g = θ_ψ = ∑_a ψ(a)q^{Na}, with ψ a ray class character of K of conductor prime of Np.

Then we have the four generalised Kato classes

$$\kappa_{\alpha,\alpha^{-1}}, \ \kappa_{\alpha,\beta^{-1}}, \ \kappa_{\beta,\alpha^{-1}}, \ \kappa_{\beta,\beta^{-1}} \in \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E),$$

where $\alpha = \psi(\overline{\mathfrak{p}})$ and $\beta = \psi(\mathfrak{p})$. **Note:** In this case,

$$L(E, \mathrm{ad}^0 V_p(g), s) = L(E^K, s) \cdot L(E/K, \chi, s),$$

where χ is the ring class character ψ/ψ^{τ} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

We consider the adjoint CM case:

• K imaginary quadratic field of discriminant prime to N in which

 $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ splits.

• $g = \theta_{\psi} = \sum_{\mathfrak{a}} \psi(\mathfrak{a}) q^{N\mathfrak{a}}$, with ψ a ray class character of K of conductor prime of Np.

Then we have the four generalised Kato classes

$$\kappa_{\alpha,\alpha^{-1}}, \ \kappa_{\alpha,\beta^{-1}}, \ \kappa_{\beta,\alpha^{-1}}, \ \kappa_{\beta,\beta^{-1}} \in \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E),$$

where $\alpha = \psi(\overline{\mathfrak{p}})$ and $\beta = \psi(\mathfrak{p})$. **Note:** In this case,

$$L(E, \mathrm{ad}^{0}V_{p}(g), s) = L(E^{K}, s) \cdot L(E/K, \chi, s),$$

where χ is the ring class character ψ/ψ^{τ} .

We consider the adjoint CM case:

• K imaginary quadratic field of discriminant prime to N in which

 $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ splits.

• $g = \theta_{\psi} = \sum_{\mathfrak{a}} \psi(\mathfrak{a}) q^{N\mathfrak{a}}$, with ψ a ray class character of K of conductor prime of Np.

Then we have the four generalised Kato classes

$$\kappa_{\alpha,\alpha^{-1}}, \ \kappa_{\alpha,\beta^{-1}}, \ \kappa_{\beta,\alpha^{-1}}, \ \kappa_{\beta,\beta^{-1}} \in \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E),$$

where $\alpha = \psi(\overline{\mathfrak{p}})$ and $\beta = \psi(\mathfrak{p})$. Note: In this case,

$$L(E, \mathrm{ad}^{0}V_{p}(g), s) = L(E^{K}, s) \cdot L(E/K, \chi, s),$$

where χ is the ring class character ψ/ψ^{τ} .

We consider the adjoint CM case:

• K imaginary quadratic field of discriminant prime to N in which

 $(p) = p\overline{p}$ splits.

g = θ_ψ = ∑_a ψ(a)q^{Na}, with ψ a ray class character of K of conductor prime of Np.

Then we have the four generalised Kato classes

$$\kappa_{\alpha,\alpha^{-1}}, \ \kappa_{\alpha,\beta^{-1}}, \ \kappa_{\beta,\alpha^{-1}}, \ \kappa_{\beta,\beta^{-1}} \in \mathrm{H}^{1}(\mathbb{Q}, V_{\rho}E),$$

where $\alpha = \psi(\overline{\mathfrak{p}})$ and $\beta = \psi(\mathfrak{p})$. **Note:** In this case,

$$L(E, \mathrm{ad}^0 V_p(g), s) = L(E^K, s) \cdot L(E/K, \chi, s),$$

where χ is the ring class character ψ/ψ^{τ} .

Let N^- be the largest factor of N divisible only by primes inert in K. Theorem (C.-Hsieh)

Suppose that L(E,1) = 0 and has sign +1, $L(E^{K},1) \cdot L(E/K,\chi,1) \neq 0$, and that:

- *E*[*p*] is absolutely irreducible as *G*_Q-module.
- N⁻ is the squarefree product of an odd number of primes.
- E[p] is ramified at every prime $\ell | N^-$.

Then $\kappa_{\alpha,\beta^{-1}} = \kappa_{\beta,\alpha^{-1}} = 0$ and the following hold:

$$\begin{aligned} \kappa_{\alpha,\alpha^{-1}} \neq 0 &\implies \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \\ \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2 \\ \mathrm{Sel}(\mathbb{Q}, V_p E) \neq \mathrm{ker}(\mathrm{Loc}_p) \end{aligned} \qquad \Longrightarrow \quad \kappa_{\alpha,\alpha^{-1}} \neq 0, \end{aligned}$$

Let N^- be the largest factor of N divisible only by primes inert in K. Theorem (C.-Hsieh)

Suppose that L(E,1) = 0 and has sign +1, $L(E^{K},1) \cdot L(E/K,\chi,1) \neq 0$, and that:

- E[p] is absolutely irreducible as $G_{\mathbb{Q}}$ -module.
- N⁻ is the squarefree product of an odd number of primes.
- E[p] is ramified at every prime $\ell | N^-$.

Then $\kappa_{\alpha,\beta^{-1}} = \kappa_{\beta,\alpha^{-1}} = 0$ and the following hold:

$$\begin{aligned} \kappa_{\alpha,\alpha^{-1}} \neq 0 &\implies \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \\ \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2 \\ \mathrm{Sel}(\mathbb{Q}, V_p E) \neq \mathrm{ker}(\mathrm{Loc}_p) \end{aligned} \qquad \Longrightarrow \quad \kappa_{\alpha,\alpha^{-1}} \neq 0, \end{aligned}$$

Let N^- be the largest factor of N divisible only by primes inert in K. Theorem (C.-Hsieh)

Suppose that L(E,1) = 0 and has sign +1, $L(E^{K},1) \cdot L(E/K,\chi,1) \neq 0$, and that:

- E[p] is absolutely irreducible as $G_{\mathbb{Q}}$ -module.
- N⁻ is the squarefree product of an odd number of primes.
- E[p] is ramified at every prime $\ell | N^-$.

Then $\kappa_{\alpha,\beta^{-1}} = \kappa_{\beta,\alpha^{-1}} = 0$ and the following hold:

$$\begin{aligned} \kappa_{\alpha,\alpha^{-1}} \neq 0 & \Longrightarrow & \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \\ \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2 \\ \mathrm{Sel}(\mathbb{Q}, V_p E) \neq \mathrm{ker}(\mathrm{Loc}_p) \end{aligned} \qquad \Longrightarrow \quad \kappa_{\alpha,\alpha^{-1}} \neq 0, \end{aligned}$$

Let N^- be the largest factor of N divisible only by primes inert in K. Theorem (C.-Hsieh)

Suppose that L(E,1) = 0 and has sign +1, $L(E^{K},1) \cdot L(E/K,\chi,1) \neq 0$, and that:

- *E*[*p*] is absolutely irreducible as *G*_Q-module.
- *N*⁻ is the squarefree product of an odd number of primes.
- E[p] is ramified at every prime $\ell | N^-$.

Then $\kappa_{\alpha,\beta^{-1}} = \kappa_{\beta,\alpha^{-1}} = 0$ and the following hold:

$$\begin{aligned} \kappa_{\alpha,\alpha^{-1}} \neq 0 & \Longrightarrow & \dim_{\mathbb{Q}_{p}} \mathrm{Sel}(\mathbb{Q}, V_{p}E) = 2, \\ \dim_{\mathbb{Q}_{p}} \mathrm{Sel}(\mathbb{Q}, V_{p}E) = 2 \\ \mathrm{Sel}(\mathbb{Q}, V_{p}E) \neq \mathrm{ker}(\mathrm{Loc}_{p}) \end{aligned} \qquad \Longrightarrow \quad \kappa_{\alpha,\alpha^{-1}} \neq 0, \end{aligned}$$

Let N^- be the largest factor of N divisible only by primes inert in K. Theorem (C.-Hsieh)

Suppose that L(E,1) = 0 and has sign +1, $L(E^{K},1) \cdot L(E/K,\chi,1) \neq 0$, and that:

- E[p] is absolutely irreducible as $G_{\mathbb{Q}}$ -module.
- N⁻ is the squarefree product of an odd number of primes.
- E[p] is ramified at every prime $\ell | N^-$.

Then $\kappa_{\alpha,\beta^{-1}} = \kappa_{\beta,\alpha^{-1}} = 0$ and the following hold:

$$\kappa_{\alpha,\alpha^{-1}} \neq 0 \implies \dim_{\mathbb{Q}_p} \operatorname{Sel}(\mathbb{Q}, V_p E) = 2,$$

$$\dim_{\mathbb{Q}_p} \operatorname{Sel}(\mathbb{Q}, V_p E) = 2$$

$$\operatorname{Sel}(\mathbb{Q}, V_p E) \neq \ker(\operatorname{Loc}_p) \qquad \Longrightarrow \qquad \kappa_{\alpha,\alpha^{-1}} \neq 0,$$

Let N^- be the largest factor of N divisible only by primes inert in K. Theorem (C.-Hsieh)

Suppose that L(E,1) = 0 and has sign +1, $L(E^{K},1) \cdot L(E/K,\chi,1) \neq 0$, and that:

- E[p] is absolutely irreducible as $G_{\mathbb{Q}}$ -module.
- N⁻ is the squarefree product of an odd number of primes.
- E[p] is ramified at every prime $\ell | N^-$.

Then $\kappa_{\alpha,\beta^{-1}} = \kappa_{\beta,\alpha^{-1}} = 0$ and the following hold:

$$\begin{split} \kappa_{\alpha,\alpha^{-1}} \neq 0 & \Longrightarrow & \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \\ \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2 \\ \mathrm{Sel}(\mathbb{Q}, V_p E) \neq \mathrm{ker}(\mathrm{Loc}_p) \end{split} \implies & \kappa_{\alpha,\alpha^{-1}} \neq 0, \end{split}$$

Let N^- be the largest factor of N divisible only by primes inert in K. Theorem (C.-Hsieh)

Suppose that L(E,1) = 0 and has sign +1, $L(E^{K},1) \cdot L(E/K,\chi,1) \neq 0$, and that:

- E[p] is absolutely irreducible as $G_{\mathbb{Q}}$ -module.
- N⁻ is the squarefree product of an odd number of primes.
- E[p] is ramified at every prime $\ell | N^-$.

Then $\kappa_{\alpha,\beta^{-1}} = \kappa_{\beta,\alpha^{-1}} = 0$ and the following hold:

$$\begin{split} \kappa_{\alpha,\alpha^{-1}} \neq 0 & \Longrightarrow & \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \\ \lim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2 \\ \mathrm{Sel}(\mathbb{Q}, V_p E) \neq \ker(\mathrm{Loc}_p) \end{split} \implies & \kappa_{\alpha,\alpha^{-1}} \neq 0, \end{split}$$

Let N^- be the largest factor of N divisible only by primes inert in K. Theorem (C.-Hsieh)

Suppose that L(E,1) = 0 and has sign +1, $L(E^{K},1) \cdot L(E/K,\chi,1) \neq 0$, and that:

- E[p] is absolutely irreducible as $G_{\mathbb{Q}}$ -module.
- N⁻ is the squarefree product of an odd number of primes.
- E[p] is ramified at every prime $\ell | N^-$.

Then $\kappa_{\alpha,\beta^{-1}} = \kappa_{\beta,\alpha^{-1}} = 0$ and the following hold:

$$\begin{split} \kappa_{\alpha,\alpha^{-1}} \neq 0 & \Longrightarrow & \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \\ \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2 \\ \mathrm{Sel}(\mathbb{Q}, V_p E) \neq \ker(\mathrm{Loc}_p) \end{split} \implies & \kappa_{\alpha,\alpha^{-1}} \neq 0, \end{split}$$

Let N^- be the largest factor of N divisible only by primes inert in K. Theorem (C.-Hsieh)

Suppose that L(E,1) = 0 and has sign +1, $L(E^{K},1) \cdot L(E/K,\chi,1) \neq 0$, and that:

- E[p] is absolutely irreducible as $G_{\mathbb{Q}}$ -module.
- N⁻ is the squarefree product of an odd number of primes.
- E[p] is ramified at every prime $\ell | N^-$.

Then $\kappa_{\alpha,\beta^{-1}} = \kappa_{\beta,\alpha^{-1}} = 0$ and the following hold:

$$\begin{split} \kappa_{\alpha,\alpha^{-1}} \neq 0 & \Longrightarrow & \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \\ \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2 \\ \mathrm{Sel}(\mathbb{Q}, V_p E) \neq \mathrm{ker}(\mathrm{Loc}_p) \end{split} \implies & \kappa_{\alpha,\alpha^{-1}} \neq 0, \end{split}$$

Remarks

- The condition Sel(Q, V_pE) ≠ ker(Loc_p) is automatic if #E(Q) = ∞ or #III(E/Q)[p[∞]] < ∞.
- Our proof also shows if $\mathrm{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 2$ and $\#\mathrm{III}(E/\mathbb{Q})[p^{\infty}] < \infty$, then

$$\kappa_{\alpha,\alpha^{-1}} = \log_E(Q) \cdot P - \log_E(P) \cdot Q \pmod{\mathbb{Q}_p^{\times}},$$

where (P, Q) is any basis of $E(\mathbb{Q}) \otimes \mathbb{Q}$.

• Thus $\kappa_{\alpha,\alpha^{-1}}$ generates (over \mathbb{Q}_p) the image of the line

$$\langle P \land Q := P \otimes Q - Q \otimes P \rangle$$

under the map $\bigwedge^2 E(\mathbb{Q}) \otimes \mathbb{Q} \to E(\mathbb{Q}) \otimes \mathbb{Q}_p = \operatorname{Sel}(\mathbb{Q}, V_p E)$ induced by \log_{E^*} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Remarks

- The condition $\operatorname{Sel}(\mathbb{Q}, V_p E) \neq \ker(\operatorname{Loc}_p)$ is automatic if $\#E(\mathbb{Q}) = \infty$ or $\#\operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$.
- Our proof also shows if $\mathrm{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 2$ and $\#\mathrm{III}(E/\mathbb{Q})[p^{\infty}] < \infty$, then

$$\kappa_{\alpha,\alpha^{-1}} = \log_E(Q) \cdot P - \log_E(P) \cdot Q \pmod{\mathbb{Q}_p^{\times}},$$

where (P, Q) is any basis of $E(\mathbb{Q}) \otimes \mathbb{Q}$.

• Thus $\kappa_{\alpha,\alpha^{-1}}$ generates (over \mathbb{Q}_p) the image of the line

$$\langle P \land Q := P \otimes Q - Q \otimes P \rangle$$

under the map $\bigwedge^2 E(\mathbb{Q}) \otimes \mathbb{Q} \to E(\mathbb{Q}) \otimes \mathbb{Q}_p = \operatorname{Sel}(\mathbb{Q}, V_p E)$ induced by \log_E .

Remarks

- The condition $\operatorname{Sel}(\mathbb{Q}, V_p E) \neq \ker(\operatorname{Loc}_p)$ is automatic if $\#E(\mathbb{Q}) = \infty$ or $\#\operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$.
- Our proof also shows if $\mathrm{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 2$ and $\#\mathrm{III}(E/\mathbb{Q})[p^{\infty}] < \infty$, then

$$\kappa_{\alpha,\alpha^{-1}} = \log_E(Q) \cdot P - \log_E(P) \cdot Q \pmod{\mathbb{Q}_p^{\times}},$$

where (P, Q) is any basis of $E(\mathbb{Q}) \otimes \mathbb{Q}$.

• Thus $\kappa_{\alpha,\alpha^{-1}}$ generates (over \mathbb{Q}_p) the image of the line

$$\langle P \land Q := P \otimes Q - Q \otimes P \rangle$$

under the map $\bigwedge^2 E(\mathbb{Q}) \otimes \mathbb{Q} \to E(\mathbb{Q}) \otimes \mathbb{Q}_p = \operatorname{Sel}(\mathbb{Q}, V_p E)$ induced by \log_E .

Main result: rank (2,0) adjoint CM case

Remarks

- The condition $\operatorname{Sel}(\mathbb{Q}, V_p E) \neq \ker(\operatorname{Loc}_p)$ is automatic if $\#E(\mathbb{Q}) = \infty$ or $\#\operatorname{III}(E/\mathbb{Q})[p^{\infty}] < \infty$.
- Our proof also shows if $\mathrm{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 2$ and $\#\mathrm{III}(E/\mathbb{Q})[p^{\infty}] < \infty$, then

$$\kappa_{\alpha,\alpha^{-1}} = \log_E(Q) \cdot P - \log_E(P) \cdot Q \pmod{\mathbb{Q}_p^{\times}},$$

where (P, Q) is any basis of $E(\mathbb{Q}) \otimes \mathbb{Q}$.

• Thus $\kappa_{\alpha,\alpha^{-1}}$ generates (over \mathbb{Q}_p) the image of the line

$$\langle P \wedge Q := P \otimes Q - Q \otimes P \rangle$$

under the map $\bigwedge^2 E(\mathbb{Q}) \otimes \mathbb{Q} \to E(\mathbb{Q}) \otimes \mathbb{Q}_p = \operatorname{Sel}(\mathbb{Q}, V_p E)$ induced by \log_E .

Outline

Kato classes

Generalised Kato classes

Main result

Ideas from the proof

University of California Santa Barbara

• Let
$$\Lambda := \mathbb{Z}_p[[T]]$$
, $u := (1+p)$, and

$$T\mapsto u^{k-1}-1,\quad (k\in\mathbb{Z}_{\geqslant 1})$$

the weight k specialization map $\Lambda \to \overline{\mathbb{Q}}_p$.

• $\underline{g}, \underline{g}^* \in \Lambda[[q]]$ Hida families through the *p*-stabilizations $g_{\alpha}, g_{\alpha^{-1}}^*$:

$$\underline{g}|_{\mathcal{T}=0} = g_{\alpha}, \quad \underline{g}^*|_{\mathcal{T}=0} = g^*_{\alpha^{-1}}$$

(i.e., weight 1 specializations).

• By construction,

$$\kappa_{\alpha,\alpha^{-1}} := \kappa_{f\underline{gg}^*}(T)|_{T=0},$$

where $\kappa_{fgg^*}(\mathcal{T})\in\mathrm{H}^1(\mathbb{Q},V_{
ho}E\otimes V_{gg^*})$ is such that

$$\kappa_{fgg^*}(T)|_{T=u^{k-1}-1} \doteq \mathrm{AJ}_p(\Delta^{fg_kg^*_k})$$

for $k \in \mathbb{Z}_{\geq 2}$.

University of California Santa Barbara

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Let
$$\Lambda := \mathbb{Z}_p[[T]]$$
, $u := (1 + p)$, and

$$T\mapsto u^{k-1}-1, \quad (k\in\mathbb{Z}_{\geqslant 1})$$

the weight k specialization map $\Lambda \to \overline{\mathbb{Q}}_p$.

g,g^{*} ∈ Λ[[q]] Hida families through the p-stabilizations g_α, g^{*}_{α⁻¹}:

$$\underline{g}|_{\mathcal{T}=0} = g_{\alpha}, \quad \underline{g}^*|_{\mathcal{T}=0} = g^*_{\alpha^{-1}}$$

(i.e., weight 1 specializations).

• By construction,

$$\kappa_{\alpha,\alpha^{-1}} := \kappa_{f\underline{gg}^*}(T)|_{T=0},$$

where $\kappa_{f\underline{g}\underline{g}^*}(\mathcal{T}) \in \mathrm{H}^1(\mathbb{Q}, V_{\rho}E \otimes V_{\underline{g}\underline{g}^*})$ is such that

$$\kappa_{fgg^*}(\mathcal{T})|_{\mathcal{T}=u^{k-1}-1} \doteq \mathrm{AJ}_p(\Delta^{fg_kg_k^*})$$

for $k \in \mathbb{Z}_{\geq 2}$

University of California Santa Barbara

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

• Let
$$\Lambda := \mathbb{Z}_{p}[[T]]$$
, $u := (1 + p)$, and

$$T\mapsto u^{k-1}-1,\quad (k\in\mathbb{Z}_{\geqslant 1})$$

the weight k specialization map $\Lambda \to \overline{\mathbb{Q}}_p$.

• $\underline{g}, \underline{g}^* \in \Lambda[[q]]$ Hida families through the *p*-stabilizations $g_{\alpha}, g_{\alpha^{-1}}^*$:

$$\underline{g}|_{\mathcal{T}=0} = g_{lpha}, \quad \underline{g}^*|_{\mathcal{T}=0} = g^*_{lpha^{-1}}$$

(i.e., weight 1 specializations).

• By construction,

$$\kappa_{\alpha,\alpha^{-1}} := \kappa_{f\underline{g}\underline{g}^*}(T)|_{T=0},$$

where $\kappa_{f\underline{gg}^*}(T) \in \mathrm{H}^1(\mathbb{Q}, V_{\rho}E \otimes V_{\underline{gg}^*})$ is such that

$$\kappa_{f\underline{g}\underline{g}^*}(\mathcal{T})|_{\mathcal{T}=u^{k-1}-1} \doteq \mathrm{AJ}_p(\Delta^{fg_kg_k^*})$$

for $k \in \mathbb{Z}_{\geq 2}$

• Let
$$\Lambda := \mathbb{Z}_p[[T]]$$
, $u := (1 + p)$, and

$$T\mapsto u^{k-1}-1,\quad (k\in\mathbb{Z}_{\geqslant 1})$$

the weight k specialization map $\Lambda \to \overline{\mathbb{Q}}_p$.

• $\underline{g}, \underline{g}^* \in \Lambda[[q]]$ Hida families through the *p*-stabilizations $g_{\alpha}, g_{\alpha^{-1}}^*$:

$$\underline{g}|_{T=0} = g_{\alpha}, \quad \underline{g}^*|_{T=0} = g_{\alpha^{-1}}^*$$

(i.e., weight 1 specializations).

By construction,

$$\kappa_{\alpha,\alpha^{-1}} := \kappa_{f\underline{g}\underline{g}^*}(T)|_{T=0},$$

where $\kappa_{f\underline{g}\underline{g}^*}(T) \in \mathrm{H}^1(\mathbb{Q}, V_p E \otimes V_{\underline{g}\underline{g}^*})$ is such that

$$\kappa_{f\underline{g}\underline{g}^*}(T)|_{T=u^{k-1}-1} \doteq \mathrm{AJ}_p(\Delta^{fg_kg_k^*})$$

for $k \in \mathbb{Z}_{\geq 2}$

• Let
$$\Lambda := \mathbb{Z}_{p}[[T]]$$
, $u := (1 + p)$, and

$$T\mapsto u^{k-1}-1,\quad (k\in\mathbb{Z}_{\geqslant 1})$$

the weight k specialization map $\Lambda \to \overline{\mathbb{Q}}_p$.

• $\underline{g}, \underline{g}^* \in \Lambda[[q]]$ Hida families through the *p*-stabilizations $g_{\alpha}, g_{\alpha^{-1}}^*$:

$$\underline{g}|_{T=0} = g_{\alpha}, \quad \underline{g}^*|_{T=0} = g_{\alpha^{-1}}^*$$

(i.e., weight 1 specializations).

By construction,

$$\kappa_{\alpha,\alpha^{-1}} := \kappa_{f\underline{gg}^*}(T)|_{T=0},$$

where $\kappa_{f\underline{gg}^*}(T) \in \mathrm{H}^1(\mathbb{Q}, V_p E \otimes V_{\underline{gg}^*})$ is such that

$$\kappa_{f\underline{g}\underline{g}^*}(T)|_{T=u^{k-1}-1} \doteq \mathrm{AJ}_p(\Delta^{fg_kg_k^*})$$

for $k \in \mathbb{Z}_{\geq 2}$.

• Building on Walspurger's work, in 1996 Bertolini–Darmon constructed

interpolating square-roots of twists of L(E/K, 1).

Theorem (C.–Hsieh)

There is a generalised Coleman power series map

 $\mathcal{L}_{p}:\mathrm{H}^{1}(\mathbb{Q},V_{p}E\otimes V_{\underline{g}\underline{g}^{*}})\longrightarrow\Lambda$

such that

$$\mathcal{L}_{\rho}(\kappa_{f\underline{gg}^{*}}(T)) \doteq \theta_{\rho}^{\mathrm{BD}}(T). \tag{(4)}$$

- Here A becomes the anti-cyclotomic variable for K.
- To prove the main result, we compute the *leading term* of (♠) at T = 0

Building on Walspurger's work, in 1996 Bertolini–Darmon constructed
 θ_p^{BD}(T) ∈ Λ

interpolating square-roots of twists of L(E/K, 1).

Theorem (C.–Hsieh)

There is a generalised Coleman power series map

$$\mathcal{L}_{p}:\mathrm{H}^{1}(\mathbb{Q},V_{p}E\otimes V_{\underline{g}\underline{g}^{*}})\longrightarrow\Lambda$$

such that

$$\mathcal{L}_{\rho}(\kappa_{f\underline{gg}^{*}}(T)) \doteq \theta_{\rho}^{\mathrm{BD}}(T). \tag{(4)}$$

- Here Λ becomes the *anti-cyclotomic variable* for *K*.
- To prove the main result, we compute the *leading term* of (♠) at
 T = 0.
 (□) (□) (□) (□) (□) (□)

• Building on Walspurger's work, in 1996 Bertolini–Darmon constructed

 $\theta_p^{\mathrm{BD}}(T) \in \Lambda$

interpolating square-roots of twists of L(E/K, 1).

Theorem (C.–Hsieh)

There is a generalised Coleman power series map

$$\mathcal{L}_{p}: \mathrm{H}^{1}(\mathbb{Q}, V_{p}E \otimes V_{\underline{gg}^{*}}) \longrightarrow \Lambda$$

such that

$$\mathcal{L}_{p}(\kappa_{f\underline{g}\underline{g}^{*}}(T)) \doteq \theta_{p}^{\mathrm{BD}}(T). \tag{(\clubsuit)}$$

- Here Λ becomes the *anti-cyclotomic variable* for K.
- To prove the main result, we compute the *leading term* of (\spadesuit) at T = 0.

• Building on Walspurger's work, in 1996 Bertolini–Darmon constructed

 $heta_p^{\mathrm{BD}}(T) \in \Lambda$

interpolating square-roots of twists of L(E/K, 1).

Theorem (C.–Hsieh)

There is a generalised Coleman power series map

$$\mathcal{L}_{p}: \mathrm{H}^{1}(\mathbb{Q}, V_{p}E \otimes V_{\underline{gg}^{*}}) \longrightarrow \Lambda$$

such that

$$\mathcal{L}_{\rho}(\kappa_{f\underline{gg}^{*}}(T)) \doteq \theta_{\rho}^{\mathrm{BD}}(T). \tag{(\clubsuit)}$$

- Here Λ becomes the *anti-cyclotomic variable* for K.
- To prove the main result, we compute the *leading term* of (♠) at
 T = 0.
 T = 0.

$\kappa_{\alpha,\alpha^{-1}}$ and *p*-adic *L*-functions

• Building on Walspurger's work, in 1996 Bertolini–Darmon constructed

 $\theta_p^{\mathrm{BD}}(T) \in \Lambda$

interpolating square-roots of twists of L(E/K, 1).

Theorem (C.–Hsieh)

There is a generalised Coleman power series map

$$\mathcal{L}_{p}: \mathrm{H}^{1}(\mathbb{Q}, V_{p}E \otimes V_{\underline{gg}^{*}}) \longrightarrow \Lambda$$

such that

$$\mathcal{L}_{\rho}(\kappa_{f\underline{g}\underline{g}^{*}}(T)) \doteq \theta_{\rho}^{\mathrm{BD}}(T). \tag{(\clubsuit)}$$

Note:

- Here Λ becomes the *anti-cyclotomic variable* for *K*.
- To prove the main result, we compute the *leading term* of (\blacklozenge) at T = 0.

• By the theory of anticyclotomic *derived p*-adic heights, there is a filtration

$$\operatorname{Sel}(K, V_{\rho}E) = S_{\rho}^{(1)} \supseteq S_{\rho}^{(2)} \supseteq \cdots \supseteq S_{\rho}^{(r)} \supseteq \cdots \supseteq S_{\rho}^{(\infty)} = 0$$

and a sequence of skew-symmetric (resp. symmetric) pairings for even r (resp. odd r)

$$h_p^{(r)}:S_p^{(r)} imes S_p^{(r)}\longrightarrow \mathbb{Q}_p$$

with $h_p^{(1)} = Mazur-Tate$ pairing, and $ker(h_p^{(r)}) = S_p^{(r+1)}$.

- The τ -eigenspaces of Sel $(K, V_p E)$ are isotropic for $h_p^{(1)}$, since $h_p^{(1)}(x^{\tau}, y^{\tau}) = h_p^{(1)}(x, y)^{\tau} = -h_p^{(1)}(x, y)$.
- This is in sharp contrast with the cyclotomic *p*-adic height pairing, which should be non-degenerate.

• By the theory of anticyclotomic *derived p*-adic heights, there is a filtration

$$\operatorname{Sel}(K, V_p E) = S_p^{(1)} \supseteq S_p^{(2)} \supseteq \cdots \supseteq S_p^{(r)} \supseteq \cdots \supseteq S_p^{(\infty)} = 0$$

and a sequence of skew-symmetric (resp. symmetric) pairings for even r (resp. odd r)

$$h_p^{(r)}: S_p^{(r)} imes S_p^{(r)} \longrightarrow \mathbb{Q}_p$$

with $h_p^{(1)} = Mazur-Tate pairing, and ker<math>(h_p^{(r)}) = S_p^{(r+1)}$.

- The τ -eigenspaces of $\operatorname{Sel}(K, V_{\rho}E)$ are isotropic for $h_{\rho}^{(1)}$, since $h_{\rho}^{(1)}(x^{\tau}, y^{\tau}) = h_{\rho}^{(1)}(x, y)^{\tau} = -h_{\rho}^{(1)}(x, y).$
- This is in sharp contrast with the cyclotomic *p*-adic height pairing, which should be non-degenerate.

• By the theory of anticyclotomic *derived p*-adic heights, there is a filtration

$$\operatorname{Sel}(K, V_p E) = S_p^{(1)} \supseteq S_p^{(2)} \supseteq \cdots \supseteq S_p^{(r)} \supseteq \cdots \supseteq S_p^{(\infty)} = 0$$

and a sequence of skew-symmetric (resp. symmetric) pairings for even r (resp. odd r)

$$h_p^{(r)}: S_p^{(r)} imes S_p^{(r)} \longrightarrow \mathbb{Q}_p$$

with $h_p^{(1)} = Mazur-Tate$ pairing, and $ker(h_p^{(r)}) = S_p^{(r+1)}$.

- The τ -eigenspaces of $\operatorname{Sel}(K, V_p E)$ are isotropic for $h_p^{(1)}$, since $h_p^{(1)}(x^{\tau}, y^{\tau}) = h_p^{(1)}(x, y)^{\tau} = -h_p^{(1)}(x, y)$.
- This is in sharp contrast with the cyclotomic *p*-adic height pairing, which should be non-degenerate.

イロト 不得下 イヨト イヨト 二日

• By the theory of anticyclotomic *derived p*-adic heights, there is a filtration

$$\operatorname{Sel}(K, V_p E) = S_p^{(1)} \supseteq S_p^{(2)} \supseteq \cdots \supseteq S_p^{(r)} \supseteq \cdots \supseteq S_p^{(\infty)} = 0$$

and a sequence of skew-symmetric (resp. symmetric) pairings for even r (resp. odd r)

$$h_p^{(r)}:S_p^{(r)} imes S_p^{(r)}\longrightarrow \mathbb{Q}_p$$

with $h_p^{(1)} = Mazur-Tate$ pairing, and $ker(h_p^{(r)}) = S_p^{(r+1)}$.

- The τ -eigenspaces of $\operatorname{Sel}(K, V_{\rho}E)$ are isotropic for $h_{\rho}^{(1)}$, since $h_{\rho}^{(1)}(x^{\tau}, y^{\tau}) = h_{\rho}^{(1)}(x, y)^{\tau} = -h_{\rho}^{(1)}(x, y)$.
- This is in sharp contrast with the cyclotomic *p*-adic height pairing, which should be non-degenerate.

• By the theory of anticyclotomic *derived p*-adic heights, there is a filtration

$$\operatorname{Sel}(\mathcal{K}, V_{p}E) = S_{p}^{(1)} \supseteq S_{p}^{(2)} \supseteq \cdots \supseteq S_{p}^{(r)} \supseteq \cdots \supseteq S_{p}^{(\infty)} = 0$$

and a sequence of skew-symmetric (resp. symmetric) pairings for even r (resp. odd r)

$$h_p^{(r)}:S_p^{(r)} imes S_p^{(r)}\longrightarrow \mathbb{Q}_p$$

with $h_p^{(1)} = Mazur-Tate$ pairing, and $\ker(h_p^{(r)}) = S_p^{(r+1)}$.

- The τ -eigenspaces of $\operatorname{Sel}(K, V_{\rho}E)$ are isotropic for $h_{\rho}^{(1)}$, since $h_{\rho}^{(1)}(x^{\tau}, y^{\tau}) = h_{\rho}^{(1)}(x, y)^{\tau} = -h_{\rho}^{(1)}(x, y)$.
- This is in sharp contrast with the cyclotomic *p*-adic height pairing, which should be non-degenerate.

• By the theory of anticyclotomic *derived p*-adic heights, there is a filtration

$$\operatorname{Sel}(\mathcal{K}, V_{p}E) = S_{p}^{(1)} \supseteq S_{p}^{(2)} \supseteq \cdots \supseteq S_{p}^{(r)} \supseteq \cdots \supseteq S_{p}^{(\infty)} = 0$$

and a sequence of skew-symmetric (resp. symmetric) pairings for even r (resp. odd r)

$$h_p^{(r)}: S_p^{(r)} imes S_p^{(r)} \longrightarrow \mathbb{Q}_p$$

with $h_p^{(1)} = Mazur-Tate$ pairing, and $\ker(h_p^{(r)}) = S_p^{(r+1)}$.

- The τ -eigenspaces of $\operatorname{Sel}(K, V_{\rho}E)$ are isotropic for $h_{\rho}^{(1)}$, since $h_{\rho}^{(1)}(x^{\tau}, y^{\tau}) = h_{\rho}^{(1)}(x, y)^{\tau} = -h_{\rho}^{(1)}(x, y)$.
- This is in sharp contrast with the cyclotomic *p*-adic height pairing, which should be non-degenerate.

Building on the formula

$$\mathcal{L}_{p}(\kappa_{f\underline{g}\underline{g}^{*}}(T))) = \theta_{p}^{\mathrm{BD}}(T) \qquad (\clubsuit)$$

we show:

Theorem (C.-Hsieh) Let $\mathfrak{r} := \operatorname{ord}_{\mathcal{T}} \theta_{p}^{\operatorname{BD}}(\mathcal{T})$. Then $\kappa_{\alpha,\alpha^{-1}} \in S_{p}^{(\mathfrak{r})}$, and $h_{n}^{(\mathfrak{r})}(\kappa_{\alpha,\alpha^{-1}}, \chi) \doteq \left(\frac{d}{d\tau}\right)^{\mathfrak{r}} \theta_{n}^{\operatorname{BD}}(\mathcal{T}) = -\log_{\mathfrak{r}}$

for all $x \in S_p^{(r)}$.

Note: For the ("underived") cyclotomic *p*-adic height and first derivatives, such formula was proved by Rubin in the mid 1990s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Building on the formula

$$\mathcal{L}_{\rho}(\kappa_{f\underline{gg}^{*}}(T))) = \theta_{\rho}^{\mathrm{BD}}(T) \tag{(\clubsuit)}$$

we show:

Theorem (C.–Hsieh) Let $\mathfrak{r} := \operatorname{ord}_{\mathcal{T}} \theta_{\rho}^{\operatorname{BD}}(\mathcal{T})$. Then $\kappa_{\alpha,\alpha^{-1}} \in S_{\rho}^{(\mathfrak{r})}$, and

$$h_{\rho}^{(\mathfrak{r})}(\kappa_{\alpha,\alpha^{-1}},x) \doteq \left(\frac{d}{dT}\right)^{\mathfrak{r}} \theta_{\rho}^{\mathrm{BD}}(T)\Big|_{T=0} \cdot \log_{E}(x)$$

for all $x \in S_p^{(\mathfrak{r})}$.

Note: For the ("underived") cyclotomic *p*-adic height and first derivatives, such formula was proved by Rubin in the mid 1990s

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Building on the formula

$$\mathcal{L}_{p}(\kappa_{f\underline{g}\underline{g}^{*}}(T))) = \theta_{p}^{\mathrm{BD}}(T) \qquad (\clubsuit)$$

we show:

Theorem (C.-Hsieh) Let $\mathfrak{r} := \operatorname{ord}_{\mathcal{T}} \theta_p^{\mathrm{BD}}(\mathcal{T})$. Then $\kappa_{\alpha,\alpha^{-1}} \in S_p^{(\mathfrak{r})}$, and

$$h_p^{(\mathfrak{r})}(\kappa_{\alpha,\alpha^{-1}},x) \doteq \left(\frac{d}{dT}\right)^{\mathfrak{r}} \theta_p^{\mathrm{BD}}(T) \Big|_{T=0} \cdot \log_E(x)$$

for all $x \in S_p^{(\mathfrak{r})}$.

Note: For the ("underived") cyclotomic *p*-adic height and first derivatives, such formula was proved by Rubin in the mid 1990s

・ロト ・四ト ・ヨト ・ヨー

Building on the formula

$$\mathcal{L}_{\rho}(\kappa_{f\underline{g}\underline{g}^{*}}(T))) = \theta_{\rho}^{\mathrm{BD}}(T) \qquad (\clubsuit)$$

we show:

Theorem (C.-Hsieh)
Let
$$\mathfrak{r} := \operatorname{ord}_{\mathcal{T}} \theta_p^{\mathrm{BD}}(\mathcal{T})$$
. Then $\kappa_{\alpha,\alpha^{-1}} \in S_p^{(\mathfrak{r})}$, and
 $h_p^{(\mathfrak{r})}(\kappa_{\alpha,\alpha^{-1}}, x) \doteq \left(\frac{d}{d\mathcal{T}}\right)^{\mathfrak{r}} \theta_p^{\mathrm{BD}}(\mathcal{T})\Big|_{\mathcal{T}=0} \cdot \log_E(x)$

for all $x \in S_p^{(\mathfrak{r})}$.

Note: For the ("underived") cyclotomic *p*-adic height and first derivatives, such formula was proved by Rubin in the mid 1990s.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへの

Leading term formula

Building on the formula

$$\mathcal{L}_{\rho}(\kappa_{f\underline{g}\underline{g}^{*}}(T))) = \theta_{\rho}^{\mathrm{BD}}(T) \qquad (\clubsuit)$$

we show:

Theorem (C.-Hsieh)
Let
$$\mathfrak{r} := \operatorname{ord}_{\mathcal{T}} \theta_p^{\mathrm{BD}}(\mathcal{T})$$
. Then $\kappa_{\alpha,\alpha^{-1}} \in S_p^{(\mathfrak{r})}$, and
 $h_p^{(\mathfrak{r})}(\kappa_{\alpha,\alpha^{-1}}, x) \doteq \left(\frac{d}{d\mathcal{T}}\right)^{\mathfrak{r}} \theta_p^{\mathrm{BD}}(\mathcal{T})\Big|_{\mathcal{T}=0} \cdot \log_{\mathcal{E}}(x)$

for all $x \in S_p^{(\mathfrak{r})}$.

Note: For the ("underived") cyclotomic *p*-adic height and first derivatives, such formula was proved by Rubin in the mid 1990s.

• For the proof that $\kappa_{\alpha,\alpha^{-1}} \neq 0$, under our hypotheses we have:

 $\dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \quad \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E^K) = 0,$

and the filtration reduces to

$$Sel(\mathbb{Q}, V_{\rho}E) = S_{\rho}^{(1)} = S_{\rho}^{(2)} = \dots = S_{\rho}^{(r)} \supset S_{\rho}^{(r+1)} = \dots = S_{\rho}^{(\infty)} = 0$$

for some $r \ge 2$.

• Skinner–Urban's divisibility in IMC implies $\mathfrak{r} \leq r$, so the above gives

$$S_{\rho}^{(\mathfrak{r})} = \mathrm{Sel}(\mathbb{Q}, V_{\rho}E).$$

- If Sel(Q, V_pE) ≠ ker(Loc_p), the proof that κ_{α,α⁻¹} ≠ 0 then follows from our generalised Rubin formula.
- The proof that $\kappa_{\alpha,\alpha^{-1}} \neq 0 \implies \dim_{\mathbb{Q}_p} \operatorname{Sel}(\mathbb{Q}, V_p E) = 2$ is similar.

• For the proof that $\kappa_{lpha, lpha^{-1}}
eq 0$, under our hypotheses we have:

 $\dim_{\mathbb{Q}_{\rho}}\mathrm{Sel}(\mathbb{Q}, V_{\rho}E) = 2, \quad \dim_{\mathbb{Q}_{\rho}}\mathrm{Sel}(\mathbb{Q}, V_{\rho}E^{\kappa}) = 0,$

and the filtration reduces to

$$Sel(\mathbb{Q}, V_{\rho}E) = S_{\rho}^{(1)} = S_{\rho}^{(2)} = \dots = S_{\rho}^{(r)} \supset S_{\rho}^{(r+1)} = \dots = S_{\rho}^{(\infty)} = 0$$

for some $r \ge 2$.

• Skinner–Urban's divisibility in IMC implies $\mathfrak{r} \leqslant r$, so the above gives

$$S_{\rho}^{(\mathfrak{r})} = \mathrm{Sel}(\mathbb{Q}, V_{\rho}E).$$

- If $\operatorname{Sel}(\mathbb{Q}, V_p E) \neq \ker(\operatorname{Loc}_p)$, the proof that $\kappa_{\alpha,\alpha^{-1}} \neq 0$ then follows from our generalised Rubin formula.
- The proof that $\kappa_{\alpha,\alpha^{-1}} \neq 0 \implies \dim_{\mathbb{Q}_p} \operatorname{Sel}(\mathbb{Q}, V_p E) = 2$ is similar.

• For the proof that $\kappa_{\alpha,\alpha^{-1}} \neq 0$, under our hypotheses we have:

$$\mathrm{dim}_{\mathbb{Q}_p}\mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \quad \mathrm{dim}_{\mathbb{Q}_p}\mathrm{Sel}(\mathbb{Q}, V_p E^K) = 0,$$

and the filtration reduces to

$$Sel(\mathbb{Q}, V_{\rho}E) = S_{\rho}^{(1)} = S_{\rho}^{(2)} = \dots = S_{\rho}^{(r)} \supset S_{\rho}^{(r+1)} = \dots = S_{\rho}^{(\infty)} = 0$$

for some $r \ge 2$.

(

• Skinner–Urban's divisibility in IMC implies $r \leq r$, so the above gives

$$S_{\rho}^{(\mathfrak{r})} = \mathrm{Sel}(\mathbb{Q}, V_{\rho}E).$$

- If Sel(Q, V_pE) ≠ ker(Loc_p), the proof that κ_{α,α⁻¹} ≠ 0 then follows from our generalised Rubin formula.
- The proof that $\kappa_{\alpha,\alpha^{-1}} \neq 0 \implies \dim_{\mathbb{Q}_p} \operatorname{Sel}(\mathbb{Q}, V_p E) = 2$ is similar.

• For the proof that $\kappa_{lpha, lpha^{-1}}
eq 0$, under our hypotheses we have:

$$\mathrm{dim}_{\mathbb{Q}_p}\mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \quad \mathrm{dim}_{\mathbb{Q}_p}\mathrm{Sel}(\mathbb{Q}, V_p E^K) = 0,$$

and the filtration reduces to

$$Sel(\mathbb{Q}, V_{p}E) = S_{p}^{(1)} = S_{p}^{(2)} = \dots = S_{p}^{(r)} \supset S_{p}^{(r+1)} = \dots = S_{p}^{(\infty)} = 0$$

for some $r \ge 2$.

(

• Skinner–Urban's divisibility in IMC implies $r \leq r$, so the above gives

$$S_{\rho}^{(\mathfrak{r})} = \mathrm{Sel}(\mathbb{Q}, V_{\rho}E).$$

- If Sel(Q, V_pE) ≠ ker(Loc_p), the proof that κ_{α,α⁻¹} ≠ 0 then follows from our generalised Rubin formula.
- The proof that $\kappa_{\alpha,\alpha^{-1}} \neq 0 \implies \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2$ is similar.

• For the proof that $\kappa_{\alpha,\alpha^{-1}} \neq 0$, under our hypotheses we have:

$$\mathrm{dim}_{\mathbb{Q}_p}\mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \quad \mathrm{dim}_{\mathbb{Q}_p}\mathrm{Sel}(\mathbb{Q}, V_p E^K) = 0,$$

and the filtration reduces to

$$Sel(\mathbb{Q}, V_{p}E) = S_{p}^{(1)} = S_{p}^{(2)} = \dots = S_{p}^{(r)} \supset S_{p}^{(r+1)} = \dots = S_{p}^{(\infty)} = 0$$

for some $r \ge 2$.

(

• Skinner–Urban's divisibility in IMC implies $r \leq r$, so the above gives

$$S_{\rho}^{(\mathfrak{r})} = \mathrm{Sel}(\mathbb{Q}, V_{\rho}E).$$

- If Sel(Q, V_pE) ≠ ker(Loc_p), the proof that κ_{α,α⁻¹} ≠ 0 then follows from our generalised Rubin formula.
- The proof that $\kappa_{\alpha,\alpha^{-1}} \neq 0 \implies \dim_{\mathbb{Q}_p} \operatorname{Sel}(\mathbb{Q}, V_p E) = 2$ is similar.

• For the proof that $\kappa_{\alpha,\alpha^{-1}} \neq 0$, under our hypotheses we have:

$$\mathrm{dim}_{\mathbb{Q}_p}\mathrm{Sel}(\mathbb{Q}, V_p E) = 2, \quad \mathrm{dim}_{\mathbb{Q}_p}\mathrm{Sel}(\mathbb{Q}, V_p E^K) = 0,$$

and the filtration reduces to

$$Sel(\mathbb{Q}, V_{p}E) = S_{p}^{(1)} = S_{p}^{(2)} = \dots = S_{p}^{(r)} \supset S_{p}^{(r+1)} = \dots = S_{p}^{(\infty)} = 0$$

for some $r \ge 2$.

(

• Skinner–Urban's divisibility in IMC implies $\mathfrak{r} \leqslant r$, so the above gives

$$S_p^{(\mathfrak{r})} = \operatorname{Sel}(\mathbb{Q}, V_p E).$$

- If Sel(Q, V_pE) ≠ ker(Loc_p), the proof that κ_{α,α⁻¹} ≠ 0 then follows from our generalised Rubin formula.
- The proof that $\kappa_{\alpha,\alpha^{-1}} \neq 0 \implies \dim_{\mathbb{Q}_p} \mathrm{Sel}(\mathbb{Q}, V_p E) = 2$ is similar.

First instance of non-vanishing: Gross's example

• The elliptic curve E/\mathbb{Q} with $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q}) = 2$ of smallest conductor:

$$E = 389a1 : y^2 + y = x^3 + x^2 - 2x.$$

- Take $K = \mathbb{Q}(\sqrt{-2})$ and p = 11. Then:
 - p is ordinary for E, and splits in K.
 - E[p] is irreducible, and ramified at $N^- = 389$.
 - $L(E^{K}, 1) \neq 0.$
 - Can find infinitely many χ with $L(E/K, \chi, 1) \neq 0$ by Vatsal.
- We numerically check

$\theta_p^{\mathrm{BD}}(\mathcal{T}) \equiv -\mathcal{T}^2 + 58\mathcal{T}^3 + \cdots \pmod{(p^2, \mathcal{T}^p)}.$

 dim_{Q_p}Sel(Q, V_pE) = 2 by Bertolini–Darmon's divisibility in IMC, and κ_{α,α⁻¹} ≠ 0 by our main result.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

First instance of non-vanishing: Gross's example

• The elliptic curve E/\mathbb{Q} with $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q})=2$ of smallest conductor:

$$E = 389a1: y^2 + y = x^3 + x^2 - 2x.$$

- Take $K = \mathbb{Q}(\sqrt{-2})$ and p = 11. Then:
 - p is ordinary for E, and splits in K.
 - E[p] is irreducible, and ramified at $N^- = 389$.
 - $L(E^{K}, 1) \neq 0.$
 - Can find infinitely many χ with $L(E/K, \chi, 1) \neq 0$ by Vatsal.
- We numerically check

$\theta_p^{\mathrm{BD}}(\mathcal{T}) \equiv -\mathcal{T}^2 + 58\mathcal{T}^3 + \cdots \pmod{(p^2, \mathcal{T}^p)}.$

 dim_{Q_p}Sel(Q, V_pE) = 2 by Bertolini–Darmon's divisibility in IMC, and κ_{α,α⁻¹} ≠ 0 by our main result.

• The elliptic curve E/\mathbb{Q} with $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q})=2$ of smallest conductor:

$$E = 389a1: y^2 + y = x^3 + x^2 - 2x.$$

- Take $K = \mathbb{Q}(\sqrt{-2})$ and p = 11. Then:
 - p is ordinary for E, and splits in K.
 - E[p] is irreducible, and ramified at $N^- = 389$.
 - $L(E^{\kappa},1) \neq 0.$

- Can find infinitely many χ with $L(E/K, \chi, 1) \neq 0$ by Vatsal.

• We numerically check

$$\theta_{\rho}^{\mathrm{BD}}(T) \equiv -T^2 + 58T^3 + \cdots \pmod{(\rho^2, T^{\rho})}.$$

 dim_{Q_p}Sel(Q, V_pE) = 2 by Bertolini–Darmon's divisibility in IMC, and κ_{α,α⁻¹} ≠ 0 by our main result.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

• The elliptic curve E/\mathbb{Q} with $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q})=2$ of smallest conductor:

$$E = 389a1: y^2 + y = x^3 + x^2 - 2x.$$

- Take $K = \mathbb{Q}(\sqrt{-2})$ and p = 11. Then:
 - p is ordinary for E, and splits in K.
 - E[p] is irreducible, and ramified at $N^- = 389$.
 - $L(E^{K}, 1) \neq 0.$
 - Can find infinitely many χ with $L(E/K, \chi, 1) \neq 0$ by Vatsal.
- We numerically check

$$\theta_{\rho}^{\mathrm{BD}}(\mathcal{T}) \equiv -\mathcal{T}^2 + 58\mathcal{T}^3 + \cdots \pmod{(\rho^2, \mathcal{T}^{\rho})}.$$

 dim_{Q_p}Sel(Q, V_pE) = 2 by Bertolini–Darmon's divisibility in IMC, and κ_{α,α⁻¹} ≠ 0 by our main result.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• The elliptic curve E/\mathbb{Q} with $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q})=2$ of smallest conductor:

$$E = 389a1: y^2 + y = x^3 + x^2 - 2x.$$

- Take $K = \mathbb{Q}(\sqrt{-2})$ and p = 11. Then:
 - p is ordinary for E, and splits in K.
 - E[p] is irreducible, and ramified at $N^- = 389$.
 - $L(E^{\kappa}, 1) \neq 0.$
 - Can find infinitely many χ with $L(E/K, \chi, 1) \neq 0$ by Vatsal.
- We numerically check

$$\theta_p^{\mathrm{BD}}(T) \equiv -T^2 + 58T^3 + \cdots \pmod{(p^2, T^p)}.$$

 dim_{Q_p}Sel(Q, V_pE) = 2 by Bertolini–Darmon's divisibility in IMC, and κ_{α,α⁻¹} ≠ 0 by our main result.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• The elliptic curve E/\mathbb{Q} with $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q})=2$ of smallest conductor:

$$E = 389a1: y^2 + y = x^3 + x^2 - 2x.$$

- Take $K = \mathbb{Q}(\sqrt{-2})$ and p = 11. Then:
 - p is ordinary for E, and splits in K.
 - E[p] is irreducible, and ramified at $N^- = 389$.
 - $L(E^{\kappa}, 1) \neq 0.$
 - Can find infinitely many χ with $L(E/K, \chi, 1) \neq 0$ by Vatsal.
- We numerically check

$$\theta_p^{\mathrm{BD}}(T) \equiv -T^2 + 58T^3 + \cdots \pmod{(p^2, T^p)}.$$

• dim_{Q_p}Sel(Q, $V_p E$) = 2 by Bertolini–Darmon's divisibility in IMC, and $\kappa_{\alpha,\alpha^{-1}} \neq 0$ by our main result.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

• The elliptic curve E/\mathbb{Q} with $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q})=2$ of smallest conductor:

$$E = 389a1: y^2 + y = x^3 + x^2 - 2x.$$

- Take $K = \mathbb{Q}(\sqrt{-2})$ and p = 11. Then:
 - p is ordinary for E, and splits in K.
 - E[p] is irreducible, and ramified at $N^- = 389$.
 - $L(E^{\kappa}, 1) \neq 0.$
 - Can find infinitely many χ with $L(E/K, \chi, 1) \neq 0$ by Vatsal.
- We numerically check

$$\theta_p^{\mathrm{BD}}(T) \equiv -T^2 + 58T^3 + \cdots \pmod{(p^2, T^p)}.$$

 dim_{Q_p}Sel(Q, V_pE) = 2 by Bertolini–Darmon's divisibility in IMC, and κ_{α,α⁻¹} ≠ 0 by our main result.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• The elliptic curve E/\mathbb{Q} with $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q})=2$ of smallest conductor:

$$E = 389a1: y^2 + y = x^3 + x^2 - 2x.$$

- Take $K = \mathbb{Q}(\sqrt{-2})$ and p = 11. Then:
 - p is ordinary for E, and splits in K.
 - E[p] is irreducible, and ramified at $N^- = 389$.
 - $L(E^{\kappa}, 1) \neq 0.$
 - Can find infinitely many χ with $L(E/K, \chi, 1) \neq 0$ by Vatsal.
- We numerically check

$$\theta_p^{\mathrm{BD}}(T) \equiv -T^2 + 58T^3 + \cdots \pmod{(p^2, T^p)}.$$

 dim_{Q_p}Sel(Q, V_pE) = 2 by Bertolini–Darmon's divisibility in IMC, and κ_{α,α⁻¹} ≠ 0 by our main result.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

First instance of non-vanishing: Gross's example

• The elliptic curve E/\mathbb{Q} with $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q})=2$ of smallest conductor:

$$E = 389a1: y^2 + y = x^3 + x^2 - 2x.$$

- Take $K = \mathbb{Q}(\sqrt{-2})$ and p = 11. Then:
 - p is ordinary for E, and splits in K.
 - E[p] is irreducible, and ramified at $N^- = 389$.
 - $L(E^{\kappa}, 1) \neq 0.$
 - Can find infinitely many χ with $L(E/K, \chi, 1) \neq 0$ by Vatsal.
- We numerically check

$$\theta_p^{\mathrm{BD}}(T) \equiv -T^2 + 58T^3 + \cdots \pmod{(p^2, T^p)}.$$

 dim_{Q_p}Sel(Q, V_pE) = 2 by Bertolini–Darmon's divisibility in IMC, and κ_{α,α⁻¹} ≠ 0 by our main result.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

First instance of non-vanishing: Gross's example

• The elliptic curve E/\mathbb{Q} with $\operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q})=2$ of smallest conductor:

$$E = 389a1: y^2 + y = x^3 + x^2 - 2x.$$

- Take $K = \mathbb{Q}(\sqrt{-2})$ and p = 11. Then:
 - p is ordinary for E, and splits in K.
 - E[p] is irreducible, and ramified at $N^- = 389$.
 - $L(E^{\kappa}, 1) \neq 0.$
 - Can find infinitely many χ with $L(E/K, \chi, 1) \neq 0$ by Vatsal.
- We numerically check

$$\theta_p^{\mathrm{BD}}(T) \equiv -T^2 + 58T^3 + \cdots \pmod{(p^2, T^p)}.$$

 dim_{Q_p}Sel(Q, V_pE) = 2 by Bertolini–Darmon's divisibility in IMC, and κ_{α,α⁻¹} ≠ 0 by our main result.

Main result

Gracias por vuestra atención!

▲□ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

University of California Santa Barbara