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Kato classes

• E/Q elliptic curve of conductor N.

• p - 2N good ordinary prime for E .

• VpE := (lim←−n
E [pn])⊗ Qp.

Theorem (Kato’s ERL)
There is a class κKato

p ∈ H1(Q,VpE ) such that

exp∗BK(Locp(κKato
p ))

.
=

L(E , 1)

ΩE

where Locp : H1(Q,VpE )→ H1(Qp,VpE ) is the restriction maps at p,
and

exp∗BK : H1(Qp,VpE )→ Qp

is Bloch–Kato’s dual exponential map.
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Perrin-Riou’s conjecture

Let Sel(Q,VpE ) ⊂ H1(Q,VpE ) be the p-adic Selmer group of E :

0→ E (Q)⊗ Qp → Sel(Q,VpE )→ (lim←−Ø(E/Q)[pn])⊗ Qp → 0.

By Kato’s ERL, L(E , 1) = 0⇐⇒ κKato
p ∈ Sel(Q,VpE ).

Conjecture (Perrin-Riou, 1993)
Suppose that L(E , 1) = 0. Then the following are equivalent:

(1) κKato
p 6= 0.

(2) ords=1L(E , s) = 1.

(3) rankZE (Q) = 1 and #Ø(E/Q)[p∞] <∞.

Moreover, in that case logE (κKato
p ) = logE (P)2 (mod Q×), where

P ∈ E (Q)⊗Q is any generator.

University of California Santa Barbara
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Perrin-Riou’s conjecture

Conjecture (Perrin-Riou, 1993)
Assume L(E , 1) = 0. Then TFAE:

(1) κKato
p 6= 0.

(2) ords=1L(E , s) = 1.

(3) rankZE (Q) = 1 and #Ø(E/Q)[p∞] <∞.

Moreover, in that case logE (κKato
p ) = logE (P)2 (mod Q×), where

P ∈ E (Q)⊗Q is a generator.

Remarks
• (2)⇔ (3) : proved by Gross–Zagier, Kolyvagin; Skinner, W. Zhang,

etc..

• (3)⇔ (1) : proved by Bertolini–Darmon–Venerucci, etc..

• As a consequence, if ords=1L(E , s) > 2 then κKato
p = 0!

University of California Santa Barbara
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Darmon–Rotger’s explicit reciprocity law

Generalised Kato classes are attached to

• a triple of eigenforms (f , g , h) ∈ S2(Nf )× S1(Ng , ε)× S1(Nh, ε̄),

• a choice of roots (γ, δ) ∈ {αg , βg} × {αh, βh}.

Theorem (Darmon–Rotger’s ERL)
There is a generalised Kato class

κγ,δ(f , g , h) ∈ H1(Q,Vfgh),

where Vfgh = Vf ⊗ Vg ⊗ Vh, such that

exp∗BK(Locp(κγ,δ(f , g , h)))
.

= L(1, f ⊗ g ⊗ h).

Note: Roughly speaking, κγ,δ(f , g , h) = limk→1 AJp(∆fgkhk ).

University of California Santa Barbara
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Darmon–Rotger’s conjecture

Running hypotheses:

• αg 6= βg and αh 6= βh, so we have four a priori distinct

κγ,δ(f , g , h) ∈ H1(Q,Vfgh).

• gcd(Nf ,NgNh) = 1, so ε(f ⊗ g ⊗ h) = +1.

Conjecture (Darmon–Rotger)
Suppose that L(1, f ⊗ g ⊗ h) = 0. Then the following are equivalent:

(1) The classes κγ,δ(f , g , h) span a non-trivial subspace of Sel(Q,Vfgh).

(2) dimQpSel(Q,Vfgh) = 2.

Note:

• The conjecture does not predict that the classes κγ,δ(f , g , h) span
the entire Sel(Q,Vfgh).

• The assumptions imply that ords=1L(s, f ⊗ g ⊗ h) > 2.

University of California Santa Barbara

On a conjecture of Darmon–Rotger in the adjoint CM case
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Darmon–Rotger’s conjecture: rank (2, 0) adjoint case

• Suppose now that f corresponds to an elliptic curve E/Q, and
h = g∗. Then

Vfgg∗ ∼= VpE ⊕ (VpE ⊗ ad0Vg )

and L(s, f ⊗ g ⊗ g∗) = L(E , s) · L(E , ad0Vg , s).

• Let κγ,δ ∈ H1(Q,VpE ) be the image of κγ,δ(f , g , g∗) under the
projection

H1(Q,Vfgg∗)→ H1(Q,VpE ).

Conjecture (Darmon–Rotger, rank (2,0) adjoint case)
Suppose that L(E , 1) = 0 and has sign +1, and that L(E , ad0Vg , 1) 6= 0.
Then the following are equivalent:

(1) The classes κγ,δ span a non-trivial subspace of Sel(Q,VpE ).

(2) dimQpSel(Q,VpE ) = 2.
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The rank (2, 0) adjoint CM case

We consider the adjoint CM case:

• K imaginary quadratic field of discriminant prime to N in which

(p) = pp splits.

• g = θψ =
∑

a ψ(a)qNa, with ψ a ray class character of K of
conductor prime of Np.

Then we have the four generalised Kato classes

κα,α−1 , κα,β−1 , κβ,α−1 , κβ,β−1 ∈ H1(Q,VpE ),

where α = ψ(p) and β = ψ(p).
Note: In this case,

L(E , ad0Vp(g), s) = L(EK , s) · L(E/K , χ, s),

where χ is the ring class character ψ/ψτ .
University of California Santa Barbara

On a conjecture of Darmon–Rotger in the adjoint CM case



Kato classes Generalised Kato classes Main result Ideas from the proof

The rank (2, 0) adjoint CM case

We consider the adjoint CM case:

• K imaginary quadratic field of discriminant prime to N in which

(p) = pp splits.

• g = θψ =
∑

a ψ(a)qNa, with ψ a ray class character of K of
conductor prime of Np.

Then we have the four generalised Kato classes

κα,α−1 , κα,β−1 , κβ,α−1 , κβ,β−1 ∈ H1(Q,VpE ),

where α = ψ(p) and β = ψ(p).
Note: In this case,

L(E , ad0Vp(g), s) = L(EK , s) · L(E/K , χ, s),

where χ is the ring class character ψ/ψτ .
University of California Santa Barbara

On a conjecture of Darmon–Rotger in the adjoint CM case



Kato classes Generalised Kato classes Main result Ideas from the proof

The rank (2, 0) adjoint CM case

We consider the adjoint CM case:

• K imaginary quadratic field of discriminant prime to N in which

(p) = pp splits.

• g = θψ =
∑

a ψ(a)qNa, with ψ a ray class character of K of
conductor prime of Np.

Then we have the four generalised Kato classes

κα,α−1 , κα,β−1 , κβ,α−1 , κβ,β−1 ∈ H1(Q,VpE ),

where α = ψ(p) and β = ψ(p).
Note: In this case,

L(E , ad0Vp(g), s) = L(EK , s) · L(E/K , χ, s),

where χ is the ring class character ψ/ψτ .
University of California Santa Barbara

On a conjecture of Darmon–Rotger in the adjoint CM case



Kato classes Generalised Kato classes Main result Ideas from the proof

The rank (2, 0) adjoint CM case

We consider the adjoint CM case:

• K imaginary quadratic field of discriminant prime to N in which

(p) = pp splits.

• g = θψ =
∑

a ψ(a)qNa, with ψ a ray class character of K of
conductor prime of Np.

Then we have the four generalised Kato classes

κα,α−1 , κα,β−1 , κβ,α−1 , κβ,β−1 ∈ H1(Q,VpE ),

where α = ψ(p) and β = ψ(p).
Note: In this case,

L(E , ad0Vp(g), s) = L(EK , s) · L(E/K , χ, s),

where χ is the ring class character ψ/ψτ .
University of California Santa Barbara

On a conjecture of Darmon–Rotger in the adjoint CM case



Kato classes Generalised Kato classes Main result Ideas from the proof

The rank (2, 0) adjoint CM case

We consider the adjoint CM case:

• K imaginary quadratic field of discriminant prime to N in which

(p) = pp splits.

• g = θψ =
∑

a ψ(a)qNa, with ψ a ray class character of K of
conductor prime of Np.

Then we have the four generalised Kato classes

κα,α−1 , κα,β−1 , κβ,α−1 , κβ,β−1 ∈ H1(Q,VpE ),

where α = ψ(p) and β = ψ(p).
Note: In this case,

L(E , ad0Vp(g), s) = L(EK , s) · L(E/K , χ, s),

where χ is the ring class character ψ/ψτ .
University of California Santa Barbara

On a conjecture of Darmon–Rotger in the adjoint CM case



Kato classes Generalised Kato classes Main result Ideas from the proof

Main result: rank (2,0) adjoint CM case

Let N− be the largest factor of N divisible only by primes inert in K .

Theorem (C.–Hsieh)
Suppose that L(E , 1) = 0 and has sign +1, L(EK , 1) · L(E/K , χ, 1) 6= 0,
and that:

• E [p] is absolutely irreducible as GQ-module.

• N− is the squarefree product of an odd number of primes.

• E [p] is ramified at every prime `|N−.

Then κα,β−1 = κβ,α−1 = 0 and the following hold:

κα,α−1 6= 0 =⇒ dimQpSel(Q,VpE ) = 2,

dimQpSel(Q,VpE ) = 2

Sel(Q,VpE ) 6= ker(Locp)

}
=⇒ κα,α−1 6= 0,

where Locp : Sel(Q,VpE )→ H1(Qp,VpE ) is the restriction map at p.
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Main result: rank (2,0) adjoint CM case

Remarks
• The condition Sel(Q,VpE ) 6= ker(Locp) is automatic if

#E (Q) =∞ or #Ø(E/Q)[p∞] <∞.

• Our proof also shows if rankZE (Q) = 2 and #Ø(E/Q)[p∞] <∞,
then

κα,α−1 = logE (Q) · P − logE (P) · Q (mod Q×p ),
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Construction of κα,α−1

• Let Λ := Zp[[T ]], u := (1 + p), and

T 7→ uk−1 − 1, (k ∈ Z>1)

the weight k specialization map Λ→ Qp.

• g , g∗ ∈ Λ[[q]] Hida families through the p-stabilizations gα, g
∗
α−1 :

g |T=0 = gα, g∗|T=0 = g∗α−1

(i.e., weight 1 specializations).

• By construction,
κα,α−1 := κf gg∗(T )|T=0,

where κf gg∗(T ) ∈ H1(Q,VpE ⊗ Vgg∗) is such that

κf gg∗(T )|T=uk−1−1
.

= AJp(∆fgkg
∗
k )

for k ∈ Z>2.
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κα,α−1 and p-adic L-functions

• Building on Walspurger’s work, in 1996 Bertolini–Darmon
constructed

θBD
p (T ) ∈ Λ

interpolating square-roots of twists of L(E/K , 1).

Theorem (C.–Hsieh)
There is a generalised Coleman power series map

Lp : H1(Q,VpE ⊗ Vgg∗) −→ Λ

such that
Lp(κf gg∗(T ))

.
= θBD

p (T ). (♠)

Note:
• Here Λ becomes the anti-cyclotomic variable for K .
• To prove the main result, we compute the leading term of (♠) at
T = 0.
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Derived p-adic heights

• By the theory of anticyclotomic derived p-adic heights, there is a
filtration

Sel(K ,VpE ) = S (1)
p ⊇ S (2)

p ⊇ · · · ⊇ S (r)
p ⊇ · · · ⊇ S (∞)

p = 0

and a sequence of skew-symmetric (resp. symmetric) pairings for
even r (resp. odd r)

h(r)p : S (r)
p × S (r)

p −→ Qp

with h
(1)
p = Mazur–Tate pairing, and ker(h

(r)
p ) = S

(r+1)
p .

• The τ -eigenspaces of Sel(K ,VpE ) are isotropic for h
(1)
p , since

h
(1)
p (xτ , yτ ) = h

(1)
p (x , y)τ = −h(1)p (x , y).

• This is in sharp contrast with the cyclotomic p-adic height pairing,
which should be non-degenerate.
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Leading term formula

Building on the formula

Lp(κf gg∗(T ))) = θBD
p (T ) (♠)

we show:

Theorem (C.–Hsieh)
Let r := ordT θ

BD
p (T ). Then κα,α−1 ∈ S

(r)
p , and

h(r)p (κα,α−1 , x)
.

=

(
d

dT

)r

θBD
p (T )

∣∣∣∣
T=0

· logE (x)

for all x ∈ S
(r)
p .

Note: For the (“underived”) cyclotomic p-adic height and first
derivatives, such formula was proved by Rubin in the mid 1990s.
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Sketch of proof of non-vanishing

• For the proof that κα,α−1 6= 0, under our hypotheses we have:

dimQpSel(Q,VpE ) = 2, dimQpSel(Q,VpE
K ) = 0,

and the filtration reduces to

Sel(Q,VpE ) = S (1)
p = S (2)

p = · · · = S (r)
p ⊃ S (r+1)

p = · · · = S (∞)
p = 0

for some r > 2.

• Skinner–Urban’s divisibility in IMC implies r 6 r , so the above gives

S (r)
p = Sel(Q,VpE ).

• If Sel(Q,VpE ) 6= ker(Locp), the proof that κα,α−1 6= 0 then follows
from our generalised Rubin formula.

• The proof that κα,α−1 6= 0 =⇒ dimQpSel(Q,VpE ) = 2 is similar.
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First instance of non-vanishing: Gross’s example

• The elliptic curve E/Q with rankZE (Q) = 2 of smallest conductor:

E = 389a1 : y2 + y = x3 + x2 − 2x .

• Take K = Q(
√
−2) and p = 11. Then:

- p is ordinary for E , and splits in K .
- E [p] is irreducible, and ramified at N− = 389.
- L(EK , 1) 6= 0.
- Can find infinitely many χ with L(E/K , χ, 1) 6= 0 by Vatsal.

• We numerically check

θBD
p (T ) ≡ −T 2 + 58T 3 + · · · (mod (p2,T p)).

• dimQpSel(Q,VpE ) = 2 by Bertolini–Darmon’s divisibility in IMC,
and κα,α−1 6= 0 by our main result.
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Gracias por vuestra atención!
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