Transverse foliations and partially hyperbolic diffeomorphisms

RAFAEL POTRIE

(joint work with Sergio Fenley)

Recently, using properties of foliations and transverse foliations in 3-manifolds, with Sergio Fenley we were able to obtain the following result:

Theorem 0.1. Let $f: M \to M$ be a (chain-)transitive partially hyperbolic diffeomorphism on a closed 3-manifold with fundamental group of exponential growth. Then, f is a collapsed Anosov flow.

In a nutshell this means that M admits an Anosov flow φ_t and up to some continuous surjective map $h:M\to M$ the diffeomorphism f behaves as a self-orbit equivalence β of φ_t . That is, there is a homeomorphism $\beta:M\to M$ mapping oriented orbits of φ_t to oriented orbits of φ_t so that $f\circ h=h\circ \beta$. As a consequences of the techniques used in the proof and our result, we deduce that all definitions given in [BFP] of collapsed Anosov flows coincide and we refer the reader to that paper for more properties of such diffeomorphisms. This notion extends the notion of discretized Anosov flows appearing in the original Pujals' conjecture (see [BW, BFP, Mar]) to account for new examples (see [BGP, BGHP]). The classification is complete, since every possible (at least if orientable) collapsed Anosov flow can be realised as follows from a recent result of Bowden and Massoni. Manifolds with smaller fundamental group had already been dealt with [HP].

It is to be emphasized that a non-trivial consequence of our result is that a 3-manifold supporting a chain-transitive partially hyperbolic diffeomorphism must support a transitive Anosov flow. We refer the reader to [BW, CHHU, HP, BGP, BFP] for more context on this problem. The assumption of chain-transitivity is not crucial, it is used to ensure that leaves of some foliations appearing in the proof are by Gromov hyperbolic leaves, a generic assumption thanks to Candel's uniformization theorem. In many cases, such as when f is absolutely partially hyperbolic, dynamically coherent, homotopic to the identity, it is not hard to see that the assumption is verified. It also holds unconditionally on hyperbolic and Seifert 3-manifolds [HP₂].

As a consequence of the previous result we also prove a conjecture due to Hertz-Hertz-Ures ([CHHU]), see [FP₂]:

Theorem 0.2. Let $f: M \to M$ be a conservative C^{1+} partially hyperbolic diffeomorphism in a closed 3-manifold whose fundamental group is not (virtually) solvable. Then, f is ergodic (and in fact a K-system).

The proof of Theorem 0.1 builds on the existence of branching foliations [BI] and on a strategy first devised in the classification of partially hyperbolic diffeomorphisms of hyperbolic 3-manifolds ([BFFP₁, BFFP₂, FP]) that requires showing that center curves are quasi-geodesics in their corresponding weak-stable and weak-unstable (branching) leaves. While the proof in the hyperbolic manifold case achieves this through a detailed analysis of curves inside the leaves, with a crucial and continued used of the dynamics of f and properties of the strong stable and

strong unstable foliations, the new strategy, which allows for a more general result, relies on a different approach initiated in [FP₃, FP₄, BaFP].

In our work, we try to understand the geometry of the flow defined by two transverse foliations and to obtain, assuming that the flowlines are not quasi-geodesic in their corresponding leaves, that there must be some structure incompatible with partial hyperbolicity. Our main result is then a completely general result about transverse foliations in 3-manifolds (related to some questions in [Th]):

Theorem 0.3. Let $\mathcal{F}_1, \mathcal{F}_2$ be two transverse foliations with Gromov hyperbolic leaves in a closed 3-manifold M. Then, if $\mathcal{G} = \mathcal{F}_1 \cap \mathcal{F}_2$ is the intersected foliation, it follows that either leaves of $\widetilde{\mathcal{G}}$ are quasi-geodesic in their corresponding $\widetilde{\mathcal{F}}_1$ and $\widetilde{\mathcal{F}}_2$ leaves, or, the foliation \mathcal{G} contains a generalized Reeb surface.

A generalized Reeb surface is a geometric object that can appear in a leaf of \mathcal{F}_1 or \mathcal{F}_2 which is foliated by \mathcal{G} and has some particular geometric properties that are incompatible with the foliations coming from a partially hyperbolic diffeomorphism. Instead of defining properly the object, we close the summary with a corollary of the previous result:

Corollary 0.4. Let $\mathcal{F}_1, \mathcal{F}_2$ be two transverse foliations by Gromov hyperbolic leaves and let $\mathcal{G} = \mathcal{F}_1 \cap \mathcal{F}_2$ the intersected foliation. Then, \mathcal{G} contains a closed leaf (a circle).

References

- [BaFP] T. Barbot, S. Fenley, R. Potrie, On transverse R-covered minimal foliations, arXiv:2501.14489
- [BFFP₁] T. Barthelme, S. Fenley, S. Frankel, R. Potrie, Partially hyperbolic diffeomorphisms homotopic to identity in dimension 3, Part I: The dynamically coherent case, Ann. Sci. ENS57 (2024), no.2, 293–349.
- [BFFP₂] T. Barthelme, S. Fenley, S. Frankel, R. Potrie, Partially hyperbolic diffeomorphisms homotopic to identity in dimension 3, Part II: branching foliations, *Geom. Topol.*27 (2023), no. 8, 3095–3181.
- [BFP] T. Barthelme, S. Fenley, R. Potrie, Collapsed Anosov flows and self orbit equivalences, Commentarii Math. Helv. 98 (2023) 771-875.
- [BGP] C. Bonatti, A. Gogolev, R. Potrie, Anomalous partially hyperbolic diffeomorphisms II: stably ergodic examples. *Invent. Math.* 206 (2016), no. 3, 801–836.
- [BGHP] C. Bonatti, A. Gogolev, A. Hammerlindl, R. Potrie, Anomalous partially hyperbolic diffeomorphisms III: abundance and incoherence, Geom. Topol. 24 (2020), no. 4, 1751–1790.
- [BW] C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology 44 (2005) (2005), no. 3, 475–508.
- [BI] D. Burago, S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups. J. Mod. Dyn. 2 (2008), no. 4, 541–580.
- [CHHU] P. Carrasco, F. Rodriguez Hertz, J. Rodriguez Hertz, R. Ures, Partially hyperbolic dynamics in dimension 3, Ergodic Theory Dynam. Systems 38 (2018), no. 8, 2801–2837.
- [FP] S. Fenley, R. Potrie, Partial hyperbolicity and pseudo-Anosov dynamics, Geom. Func. Anal. 34 (2024) 409=485.
- [FP2] S. Fenley, R. Potrie, Accesibility and ergodicity of collapsed Anosov flows, American Journal of Math. 146, No. 5, 1339-1359 (2024).
- [FP₃] S. Fenley, R. Potrie, Transverse minimal foliations in unit tangent bundles and applications, arXiv:2303.14525.

- [FP4] S. Fenley, R. Potrie, Intersection of transverse foliations in 3-manifolds: Hausdorff leaf space implies leafwise quasigeodesic, J. Reine Angew. Math. 822 (2025), 1–48.
- [HP] A. Hammerlindl, R. Potrie, Partial hyperbolicity and classification: a survey, Ergodic Theory Dynam. Systems 38 (2) (2018) 401-443.
- [HP2] A. Hammerlindl, R. Potrie, Horizontality of partially hyperbolic foliations, arXiv:2503.08077
- [Mar] S. Martinchich, Global stability of discretized Anosov flows, J. Mod. Dyn. 19 (2023), 561–623.
- [Th] W. Thurston, Three-manifolds, Foliations and Circles, I, Preprint arXiv:math/9712268