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Deep link between topology of X and dynamics of gradient flow (equilibrium
points and connections between them).

Question

Can we implement these ideas for f = area (= codimension 1 volume)?
(Almgren '62, Pitts '81, Marques-Neves ~ "13)
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1st variation formula: for a hypersurface "' ¢ (M", g) and a (compactly sup-
ported) vector field X along %,

Darea[Z](X) :/g(X, —Hs) dvols
by

Mean curvature flow (MCF): gradient flow of area, for F: IXZ c Rx X — M

otF = Hs,

Lichnewsky, Temam (PDEs), Brakke (GMT), Ecker, Gerhardt, Huisken, Gage, Grayson...
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Phase transitions

Allen-Cahn equation (with & > 0):
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in a compact (M", g).
(Phase separation models, S. Allen-). Cahn, '77)

Global solutions are connected with the geometry of ambient space.



Phase transitions

L2-gradient flow of the AC energy:

2
Allen-Cahn equation (with £ > 0): E.(u) = / (g. |V;Jl A W(u))
M 154
ol =Agu — S (U3 —u (AC)
gl = 2 ) foru: M — R, where
in a compact (M", g).
(Phase separation models, S. Allen-). Cahn, '77) (1-u?)?

W(u) =

Global solutions are connected with the geometry of ambient space.
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e-regularization of area: If {E.(u,)}. is bounded, then u, — +1a.e. in M, while
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diffuse interfaces {u, ~ 0} S0 critical point of area
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e-regularization of area: If {E.(u,)}. is bounded, then u, — +1a.e. in M, while

limit interface =:

diffuse interfaces {u, ~ 0} S0 critical point of area

for stationary solutions

((n —1)-dimensional)

Similar for gradient flows...

® De Giorgi, Modica, Mortola, Gurtin, Kohn,
Sternberg, De Mottoni, Schatzman, Bronsard,
X. Chen, Soner, Souganidis, Evans...
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Allen-Cahn (AC) approximations

Theorem (Pacard-Ritoré '03; + Caju-G. 19; + Chodosh-Mantoulidis '20)

>1-1: nondegenerate, separating, minimal (H; = o) hypersurface in a compact
(M. g).

For small £ > 0, there exist stationary solutions u,: M — R of (AC) s.t.:

Veu, — dvoly and ind(D?E;[ug]) = ind(X).
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Allen-Cahn (AC) approximations

Theorem (Pacard-Ritoré '03; + Caju-G. 19; + Chodosh-Mantoulidis '20)

>1-1: nondegenerate, separating, minimal (H; = o) hypersurface in a compact
(M. g).

For small £ > 0, there exist stationary solutions u,: M — R of (AC) s.t.:
Veu, — dvoly and ind(D?E;[ug]) = ind(X).
Here ind(Z) = ind(D? area[X]) = ind(~As — (|As|? + Ric(vs, vs))).

Remark: For some symmetric X, u, can be constructed directly and it inherits the
symmetries of X.
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Unstable manifold and heteroclinic solutions of AC

If {¢,}k are eigenfunctions of —Ag + # with eigenvalues /; < 0, then

k
S(@q,...,05;X1) == U7 (X) + Z aje"‘itqu(x)
j=1

are approximate solutions near u;*.

Choi-Mantoulidis '22: ancient solutions of (AC) converging back to u;> by fixed
point methods on parabolic Holder spaces.

Chen-G. '23 (JGA): existence of heteroclinic solutions of (AC) from u;* in any
compact (M", g), for generic g and ind(u;>) > 2.



A model case: solutions in S3

Minimal surfaces of lowest area in the round sphere S3:

Clifford tori

Equatorial spheres
(Urbano '90, Marques-Neves "14)
e (xeS3|(x,a)=0} (aeS3

. e C={xeS | x+x2=1=x2+x}
® area = 4m; ind = 1. T2 R

2
(and its rotations)
e area =2x2; ind = 5.
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Main result

Let u_> be an AC approximation of a Clifford torus, for small & > o.

Theorem (Chen-G., arXiv '23)

Any ancient solution of (AC) in S3 that converges back in time to u_* is defined
for all t > 0, and converges smoothly, as t — +co, to either an AC approximation
of an equator, or +1.

Moreover, any AC approximation of an equatorial sphere arise as such limit.
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Caju-G.-Guaraco-Matthiesen 22, Hiesmayr '20 (arXiv): in S3, the first min-max
critical energy levels

wi(Eg) = wa(E;) = w3(Ee) = wh(Es) and ws(Ee)

correspond to AC approximations of equators and Clifford tori, respectively.
(Allen-Cahn counterpart of classification of low area minimal surfaces)

Here wp(E;) = infacs, supy E. are the min-max critical levels for E. (G.-Guaraco "18),
where

Fp is a family of symmetric A ¢ W"? with HP(A/(u ~ —u), Z,) # O

Phase transition analgogues of volume spectrum (Gromov, Marques-Neves).
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Key ideas: Morse perturbation

Choose a suitable Morse perturbation {E; s}sc (o) Of E.

Morse Theory says, for k =1,2,3,4

" Z5[A
H ({Ees < on(Es (000N}~ Z2) = ;,L;
If the unstable manifold of (-DE, s) at (u;*)
misses a U € crit(Egs) N {Ecs = w,(Ecs)},
then we can construct

AeFy with supE;s < ws(E.s)!
Perturbed Morse-Bott functions: g
Banyaga-Hurtubise '13
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Quasilinear perturbation: ;u = —-DE, s(u) = —(1+86(u))Au + Qs (u)
Existence theory for abstract ODEs in W2*2(M) (e.g. Amann 88’, Lunardi '95)

Dynamics of (-DE. s) near ut>:
G(u) = E.s(u) — E.(u) controls the dynamics near critical manifolds
= Orbits don't break!

What kind of MCF (and singularities) can arise from these constructions?

Chen-G. 23 (JGA): many eternal, symmetric, nonvanishing Brakke flows in S3;
J. Chen "24: similar construction in S", n > 4.




iMuchas gracias!
Thank you!
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