Workshop on Geometric Flows and Relativity Punta del Este, March 2024

A Morse-theoretic glance at phase transitions approximations of mean curvature flows

Pedro Gaspar (UC Chile), joint with J. Chen (UPenn) Partially supported by ANID (Chile) - Fondecyt Iniciación

Main theorem of Morse Theory

For a critical level $c \in \mathbb{R}$ of a *Morse* $f: X \to \mathbb{R}$, the flow generated by -Df retracts $\{f < c + \delta\}$ onto:

$$\{f < \mathbf{C} - \delta\} \cup \bigcup_{p \in f^{-1}(c) \cap \operatorname{crit}(f)} \mathbb{D}^{\operatorname{ind} p}$$

Deep link between topology of X and dynamics of gradient flow (equilibrium points and connections between them).

Question

Can we implement these ideas for f = area (= codimension 1 volume)? (Almgren '62, Pitts '81, Marques-Neves ~ '13)

Main theorem of Morse Theory

For a critical level $c \in \mathbb{R}$ of a *Morse* $f: X \to \mathbb{R}$, the flow generated by -Df retracts $\{f < c + \delta\}$ onto:

$$\{f < \mathbf{C} - \delta\} \cup \bigcup_{p \in f^{-1}(\mathbf{C}) \cap \operatorname{crit}(f)} \mathbb{D}^{\operatorname{ind} p}$$

Deep link between topology of X and dynamics of gradient flow (equilibrium points and connections between them).

Question

Can we implement these ideas for f = area (= codimension 1 volume)? (Almgren '62, Pitts '81, Marques-Neves ~ '13)

Main theorem of Morse Theory

For a critical level $c \in \mathbb{R}$ of a *Morse* $f: X \to \mathbb{R}$, the flow generated by -Df retracts $\{f < c + \delta\}$ onto:

$$\{f < \mathbf{C} - \delta\} \cup \bigcup_{p \in f^{-1}(\mathbf{C}) \cap \operatorname{crit}(f)} \mathbb{D}^{\operatorname{ind} p}$$

Deep link between topology of X and dynamics of gradient flow (equilibrium points and connections between them).

Question

Can we implement these ideas for f = area (= codimension 1 volume)? (Almgren '62, Pitts '81, Marques-Neves ~ '13)

1st variation formula: for a hypersurface $\Sigma^{n-1} \subset (M^n, g)$ and a (compactly supported) vector field X along Σ ,

$$D \operatorname{area}[\Sigma](X) = \int_{\Sigma} g(X, -\mathbf{H}_{\Sigma}) \operatorname{dvol}_{\Sigma}$$

Mean curvature flow (MCF): gradient flow of area, for $F: I \times \Sigma \subset \mathbb{R} \times \Sigma \to M$

 $\partial_t F = \mathbf{H}_{\Sigma_t}$

Lichnewsky, Temam (PDEs), **Brakke** (GMT), Ecker, Gerhardt, Huisken, Gage, Grayson...

1st variation formula: for a hypersurface $\Sigma^{n-1} \subset (M^n, g)$ and a (compactly supported) vector field X along Σ ,

$$D \operatorname{area}[\Sigma](X) = \int_{\Sigma} g(X, -\mathbf{H}_{\Sigma}) \operatorname{dvol}_{\Sigma}$$

Mean curvature flow (MCF): gradient flow of area, for $F: I \times \Sigma \subset \mathbb{R} \times \Sigma \to M$

$$\partial_t F = \mathbf{H}_{\Sigma_t}$$

Lichnewsky, Temam (PDEs), **Brakke** (GMT), Ecker, Gerhardt, Huisken, Gage, Grayson...

1st variation formula: for a hypersurface $\Sigma^{n-1} \subset (M^n, g)$ and a (compactly supported) vector field X along Σ ,

$$D \operatorname{area}[\Sigma](X) = \int_{\Sigma} g(X, -\mathbf{H}_{\Sigma}) \operatorname{dvol}_{\Sigma}$$

Mean curvature flow (MCF): gradient flow of area, for $F: I \times \Sigma \subset \mathbb{R} \times \Sigma \to M$

$$\partial_t F = \mathbf{H}_{\Sigma_t}$$

Lichnewsky, Temam (PDEs), Brakke (GMT), Ecker, Gerhardt, Huisken, Gage, Grayson...

MCFs may develop finite-time **singularities** at curvature blow-up points:

MCFs may develop finite-time **singularities** at curvature blow-up points:

MCFs may develop finite-time **singularities** at curvature blow-up points:

L²-gradient flow of the **AC energy**:

Allen-Cahn equation (with $\varepsilon > 0$): $\partial_t u = \Delta_g u - \frac{1}{\varepsilon^2}(u^3 - u)$ (AC) in a compact (M^n, g).

(Phase separation models, S. Allen-J. Cahn, '77)

 $E_{\varepsilon}(u) = \int_{M} \left(\varepsilon \cdot \frac{|\nabla u|^{2}}{2} + \frac{1}{\varepsilon} \cdot W(u) \right)$ for $u \colon M \to \mathbb{R}$, where $W(u) = \frac{(1 - u^{2})^{2}}{4}.$

Global solutions are connected with the geometry of ambient space.

L²-gradient flow of the **AC energy:**

Allen-Cahn equation (with $\varepsilon > 0$): $\partial_t u = \Delta_g u - \frac{1}{\varepsilon^2}(u^3 - u)$ (AC) in a compact (M^n, g). (Phase separation models, S. Allen-J. Cahn, '77) $E_{\varepsilon}(u) = \int_M \left(\varepsilon \cdot \frac{|\nabla u|^2}{2} + \frac{1}{\varepsilon} \cdot W(u)\right)$ for $u : M \to \mathbb{R}$, where $W(u) = \frac{(1 - u^2)^2}{4}$.

Global solutions are connected with the geometry of ambient space.

 ε -regularization of area: If $\{E_{\varepsilon}(u_{\varepsilon})\}_{\varepsilon}$ is bounded, then $u_{\varepsilon} \to \pm 1$ a.e. in *M*, while

ε↓0

diffuse interfaces $\{u_{\varepsilon} \approx 0\}$ for stationary solutions

limit interface Σ : critical point of area ((n - 1)-dimensional)

Similar for gradient flows...

De Giorgi, Modica, Mortola, Gurtin, Kohn, Sternberg, De Mottoni, Schatzman, Bronsard, X. Chen, Soner, Souganidis, Evans...

 ε -regularization of area: If $\{E_{\varepsilon}(u_{\varepsilon})\}_{\varepsilon}$ is bounded, then $u_{\varepsilon} \to \pm 1$ a.e. in *M*, while

ε↓0

diffuse interfaces $\{u_{\varepsilon} \approx 0\}$ for stationary solutions

limit interface Σ : critical point of area ((n - 1)-dimensional)

Similar for gradient flows...

 De Giorgi, Modica, Mortola, Gurtin, Kohn, Sternberg, De Mottoni, Schatzman, Bronsard, X. Chen, Soner, Souganidis, Evans...

Ilmanen '93, Tonegawa '03: Energy densities of solutions u_{ε} converge (in measure) to measure theoretic MCFs (Brakke flows):

$$\begin{aligned} u_{\varepsilon} &\approx +1 \\ V_{\varepsilon, u_{\varepsilon}(\cdot, t)} &= \frac{1}{2\sigma} \left(\frac{\varepsilon |\nabla u_{\varepsilon}(\cdot, t)|^{2}}{2} + \frac{W(u_{\varepsilon}(\cdot, t))}{\varepsilon} \right) d \operatorname{vol}_{g} \\ & \to d \operatorname{vol}_{\Sigma_{t}} \end{aligned}$$

Ilmanen '93, Tonegawa '03: Energy densities of solutions u_{ε} converge (in measure) to measure theoretic MCFs (Brakke flows):

From an unstable stationary solution $u_{\varepsilon}^{-\infty}$,

I. find eternal solutions that converge to $u_{\varepsilon}^{-\infty}$ as $t \to -\infty$, and subconverge to some **nonconstant** $u_{\varepsilon}^{+\infty}$ as $t \to +\infty$.

Edistence of ancient solucions & unstable manifold (e.g. Chol-Mantonlidis 22) - topological (shooting) arguments, maximum principles

- II. Study $u_{\varepsilon}^{+\infty}$ and its limit interface: full convergence in time?
- III. Asymptotics of limit Brakke flow $\{V_t\}$ as $t \to \pm \infty$.

they regularity of unit density flows, then convergence of AC flows.

From an unstable stationary solution $u_{\varepsilon}^{-\infty}$,

I. find eternal solutions that converge to $u_{\varepsilon}^{-\infty}$ as $t \to -\infty$, and subconverge to some **nonconstant** $u_{\varepsilon}^{+\infty}$ as $t \to +\infty$.

Existence of ancient solutions & unstable manifold (e.g. Chol-Mantoulidis '22) topological (sbooting) arguments, maximum principles

II. Study $u_{\varepsilon}^{+\infty}$ and its limit interface: full convergence in time?

III. Asymptotics of limit Brakke flow $\{V_t\}$ as $t \to \pm \infty$.

by regularity of unit density flows, finer convergence of AC flows.

From an unstable stationary solution $u_{\varepsilon}^{-\infty}$,

I. find eternal solutions that converge to $u_{\varepsilon}^{-\infty}$ as $t \to -\infty$, and subconverge to some **nonconstant** $u_{\varepsilon}^{+\infty}$ as $t \to +\infty$.

> Existence of **ancient solutions & unstable manifold** (e.g. Choi-Mantoulidis '22) + topological (shooting) arguments, maximum principles.

II. Study $u_{\varepsilon}^{+\infty}$ and its limit interface: full convergence in time?

Classification/rigidity for stationary solutions (or nondegeneraty), **Classification/rigidity**

III. Asymptotics of limit Brakke flow $\{V_t\}$ as $t \to \pm \infty$.

the regularity of unit density flows, finer convergence of AC flows.

From an unstable stationary solution $u_{\varepsilon}^{-\infty}$,

I. find eternal solutions that converge to $u_{\varepsilon}^{-\infty}$ as $t \to -\infty$, and subconverge to some **nonconstant** $u_{\varepsilon}^{+\infty}$ as $t \to +\infty$.

> Existence of **ancient solutions & unstable manifold** (e.g. Choi-Mantoulidis '22) + topological (shooting) arguments, maximum principles.

II. Study $u_{\varepsilon}^{+\infty}$ and its limit interface: full convergence in time?

III. Asymptotics of limit Brakke flow $\{V_t\}$ as $t \to \pm \infty$.

regularity of unit density flows, finer convergence of AC flows.

From an unstable stationary solution $u_{\varepsilon}^{-\infty}$,

I. find eternal solutions that converge to $u_{\varepsilon}^{-\infty}$ as $t \to -\infty$, and subconverge to some **nonconstant** $u_{\varepsilon}^{+\infty}$ as $t \to +\infty$.

> Existence of **ancient solutions & unstable manifold** (e.g. Choi-Mantoulidis '22) + topological (shooting) arguments, maximum principles.

II. Study $u_{\varepsilon}^{+\infty}$ and its limit interface: full convergence in time?

Classification/rigidity for stationary solutions (or nondegeneracy) + **Łojasiewicz-Simon** inequality

III. Asymptotics of limit Brakke flow $\{V_t\}$ as $t \to \pm \infty$.

by regularity of unit density flows, finer convergence of AC flows.

From an unstable stationary solution $u_{\varepsilon}^{-\infty}$,

I. find eternal solutions that converge to $u_{\varepsilon}^{-\infty}$ as $t \to -\infty$, and subconverge to some **nonconstant** $u_{\varepsilon}^{+\infty}$ as $t \to +\infty$.

> Existence of **ancient solutions & unstable manifold** (e.g. Choi-Mantoulidis '22) + topological (shooting) arguments, maximum principles.

II. Study $u_{\varepsilon}^{+\infty}$ and its limit interface: full convergence in time?

Classification/rigidity for stationary solutions (or nondegeneracy) + **Łojasiewicz-Simon** inequality

III. Asymptotics of limit Brakke flow $\{V_t\}$ as $t \to \pm \infty$.

From an unstable stationary solution $u_{\varepsilon}^{-\infty}$,

I. find eternal solutions that converge to $u_{\varepsilon}^{-\infty}$ as $t \to -\infty$, and subconverge to some **nonconstant** $u_{\varepsilon}^{+\infty}$ as $t \to +\infty$.

Existence of **ancient solutions & unstable manifold** (e.g. Choi-Mantoulidis '22) + topological (shooting) arguments, maximum principles.

II. Study $u_{\varepsilon}^{+\infty}$ and its limit interface: full convergence in time?

Classification/rigidity for stationary solutions (or nondegeneracy) + **Łojasiewicz-Simon** inequality

III. Asymptotics of limit Brakke flow $\{V_t\}$ as $t \to \pm \infty$. Symmetry, regularity of unit density flows, finer convergence of AC flows.

From an unstable stationary solution $u_{\varepsilon}^{-\infty}$,

⇒I. find eternal solutions that converge to $u_{\varepsilon}^{-\infty}$ as $t \to -\infty$, and subconverge to some **nonconstant** $u_{\varepsilon}^{+\infty}$ as $t \to +\infty$.

Existence of **ancient solutions & unstable manifold** (e.g. Choi-Mantoulidis '22) + topological (shooting) arguments, maximum principles.

II. Study $u_{\varepsilon}^{+\infty}$ and its limit interface: full convergence in time?

Classification/rigidity for stationary solutions (or nondegeneracy) + **Łojasiewicz-Simon** inequality

III. Asymptotics of limit Brakke flow $\{V_t\}$ as $t \to \pm \infty$. Symmetry, regularity of unit density flows, finer convergence of AC flows. Theorem (**Pacard-Ritoré** '03; + **Caju-G**. '19; + **Chodosh-Mantoulidis** '20) Σ^{n-1} : nondegenerate, separating, minimal ($H_{\Sigma} \equiv 0$) hypersurface in a compact

 Σ^{n-1} : nondegenerate, separating, minimal ($H_{\Sigma} \equiv 0$) hypersurface in a compact (M^n, g) .

For small $\varepsilon > 0$, there exist *stationary* solutions $u_{\varepsilon} \colon M \to \mathbb{R}$ of (AC) s.t.:

 $V_{\varepsilon,u_{\varepsilon}} \rightharpoonup d \operatorname{vol}_{\Sigma}$ and $\operatorname{ind}(D^2 E_{\varepsilon}[u_{\varepsilon}]) = \operatorname{ind}(\Sigma).$

Here ind(Σ) = ind(D^2 area[Σ]) = ind($-\Delta_{\Sigma} - (|A_{\Sigma}|^2 + \operatorname{Ric}(v_{\Sigma}, v_{\Sigma})))$.

Theorem (**Pacard-Ritoré** '03; + **Caju-G**. '19; + **Chodosh-Mantoulidis** '20) Σ^{n-1} : nondegenerate, separating, minimal ($H_{\Sigma} \equiv 0$) hypersurface in a compact

 Σ^{n-1} : nondegenerate, separating, minimal ($H_{\Sigma} \equiv 0$) hypersurface in a compact (M^n, g) .

For small $\varepsilon > 0$, there exist *stationary* solutions $u_{\varepsilon} \colon M \to \mathbb{R}$ of (AC) s.t.:

 $V_{\varepsilon,u_{\varepsilon}} \rightharpoonup d \operatorname{vol}_{\Sigma}$ and $\operatorname{ind}(D^2 E_{\varepsilon}[u_{\varepsilon}]) = \operatorname{ind}(\Sigma).$

Here ind(Σ) = ind(D^2 area[Σ]) = ind($-\Delta_{\Sigma} - (|A_{\Sigma}|^2 + \operatorname{Ric}(v_{\Sigma}, v_{\Sigma})))$.

Theorem (**Pacard-Ritoré** '03; + **Caju-G.** '19; + **Chodosh-Mantoulidis** '20)

 Σ^{n-1} : nondegenerate, separating, minimal ($\mathbf{H}_{\Sigma} \equiv \mathbf{0}$) hypersurface in a compact (M^n, g) .

For small $\varepsilon > 0$, there exist *stationary* solutions $u_{\varepsilon} \colon M \to \mathbb{R}$ of (AC) s.t.:

$$V_{\varepsilon,u_{\varepsilon}}
ightarrow d \operatorname{vol}_{\Sigma}$$
 and $\operatorname{ind}(D^2 E_{\varepsilon}[u_{\varepsilon}]) = \operatorname{ind}(\Sigma).$

Here $\operatorname{ind}(\Sigma) = \operatorname{ind}(D^2 \operatorname{area}[\Sigma]) = \operatorname{ind}(-\Delta_{\Sigma} - (|A_{\Sigma}|^2 + \operatorname{Ric}(v_{\Sigma}, v_{\Sigma}))).$

Theorem (**Pacard-Ritoré** '03; + **Caju-G.** '19; + **Chodosh-Mantoulidis** '20)

 Σ^{n-1} : nondegenerate, separating, minimal ($\mathbf{H}_{\Sigma} \equiv 0$) hypersurface in a compact (M^n, g) .

For small $\varepsilon > 0$, there exist *stationary* solutions $u_{\varepsilon} \colon M \to \mathbb{R}$ of (AC) s.t.:

$$V_{\varepsilon,u_{\varepsilon}} \rightarrow d \operatorname{vol}_{\Sigma}$$
 and $\operatorname{ind}(D^2 E_{\varepsilon}[u_{\varepsilon}]) = \operatorname{ind}(\Sigma).$

Here $\operatorname{ind}(\Sigma) = \operatorname{ind}(D^2 \operatorname{area}[\Sigma]) = \operatorname{ind}(-\Delta_{\Sigma} - (|A_{\Sigma}|^2 + \operatorname{Ric}(v_{\Sigma}, v_{\Sigma}))).$

If $\{\phi_j\}_{j=1}^k$ are eigenfunctions of $-\Delta_g + \frac{3(u_{\varepsilon}^{-\infty})^2 - 1}{\varepsilon^2}$ with eigenvalues $\lambda_j < 0$, then

$$S(a_1,\ldots,a_k;x,t):=u_{\varepsilon}^{-\infty}(x)+\sum_{j=1}^k a_j e^{-\lambda_j t}\phi_j(x)$$

are approximate solutions near $u_{\varepsilon}^{-\infty}$.

Choi-Mantoulidis '22: ancient solutions of (AC) converging back to $u_{\varepsilon}^{-\infty}$ by fixed point methods on parabolic Hölder spaces.

If $\{\phi_j\}_{j=1}^k$ are eigenfunctions of $-\Delta_g + \frac{3(u_{\varepsilon}^{-\infty})^2 - 1}{\varepsilon^2}$ with eigenvalues $\lambda_j < 0$, then

$$\mathcal{S}(a_1,\ldots,a_k;x,t):=u_{\varepsilon}^{-\infty}(x)+\sum_{j=1}^k a_j e^{-\lambda_j t}\phi_j(x)$$

are approximate solutions near $u_{\varepsilon}^{-\infty}$.

Choi-Mantoulidis '22: ancient solutions of (AC) converging back to $u_{\varepsilon}^{-\infty}$ by fixed point methods on parabolic Hölder spaces.

If $\{\phi_j\}_{j=1}^k$ are eigenfunctions of $-\Delta_g + \frac{3(u_{\varepsilon}^{-\infty})^2 - 1}{\varepsilon^2}$ with eigenvalues $\lambda_j < 0$, then

$$\mathcal{S}(a_1,\ldots,a_k;x,t):=u_{\varepsilon}^{-\infty}(x)+\sum_{j=1}^k a_j e^{-\lambda_j t}\phi_j(x)$$

are approximate solutions near $u_{\varepsilon}^{-\infty}$.

Choi-Mantoulidis '22: ancient solutions of (AC) converging back to $u_{\varepsilon}^{-\infty}$ by fixed point methods on parabolic Hölder spaces.

If $\{\phi_j\}_{j=1}^k$ are eigenfunctions of $-\Delta_g + \frac{3(u_{\varepsilon}^{-\infty})^2 - 1}{\varepsilon^2}$ with eigenvalues $\lambda_j < 0$, then

$$\mathcal{S}(a_1,\ldots,a_k;x,t):=u_{\varepsilon}^{-\infty}(x)+\sum_{j=1}^k a_j e^{-\lambda_j t}\phi_j(x)$$

are approximate solutions near $u_{\varepsilon}^{-\infty}$.

Choi-Mantoulidis '22: ancient solutions of (AC) converging back to $u_{\varepsilon}^{-\infty}$ by fixed point methods on parabolic Hölder spaces.

A model case: solutions in S³

Minimal surfaces of lowest area in the round sphere S³:

Equatorial spheres

- $\{x \in S^3 \mid \langle x, a \rangle = 0\}$ $(a \in S^3)$
- area = 4π ; ind = 1.

Clifford tori

(Urbano '90, Marques-Neves '14)

- $C = \{x \in S^3 \mid x_1^2 + x_2^2 = \frac{1}{2} = x_3^2 + x_4^2\}$ (and its rotations)
- area = $2\pi^2$; ind = 5.

Let $u_{\varepsilon}^{-\infty}$ be an AC approximation of a Clifford torus, for small $\varepsilon > 0$.

Theorem (Chen-G., arXiv '23)

Any ancient solution of (AC) in S^3 that converges back in time to $u_{\varepsilon}^{-\infty}$ is defined for all t > 0, and converges smoothly, as $t \to +\infty$, to either an AC approximation of an equator, or ± 1 .

Moreover, any AC approximation of an equatorial sphere arise as such limit.

Let $u_{\varepsilon}^{-\infty}$ be an AC approximation of a Clifford torus, for small $\varepsilon > 0$.

Theorem (Chen-G., arXiv '23)

Any ancient solution of (AC) in S^3 that converges back in time to $u_{\varepsilon}^{-\infty}$ is defined for all t > 0, and converges smoothly, as $t \to +\infty$, to either an AC approximation of an equator, or ±1.

Moreover, any AC approximation of an equatorial sphere arise as such limit.

Let $u_{\varepsilon}^{-\infty}$ be an AC approximation of a Clifford torus, for small $\varepsilon > 0$.

Theorem (Chen-G., arXiv '23)

Any ancient solution of (AC) in S^3 that converges back in time to $u_{\varepsilon}^{-\infty}$ is defined for all t > 0, and converges smoothly, as $t \to +\infty$, to either an AC approximation of an equator, or ±1.

Moreover, any AC approximation of an equatorial sphere arise as such limit.

Caju-G.-Guaraco-Matthiesen '22, Hiesmayr '20 (arXiv): in S³, the first min-max critical energy levels

 $\omega_1(E_{\varepsilon}) = \omega_2(E_{\varepsilon}) = \omega_3(E_{\varepsilon}) = \omega_4(E_{\varepsilon})$ and $\omega_5(E_{\varepsilon})$

correspond to AC approximations of equators and Clifford tori, respectively. (Allen-Cahn counterpart of classification of low area minimal surfaces)

Here $\omega_p(E_{\varepsilon}) = \inf_{A \in \mathcal{F}_p} \sup_A E_{\varepsilon}$ are the min-max critical levels for E_{ε} (**G.-Guaraco '18**), where

 \mathcal{F}_p is a family of symmetric $A \subset W^{1,2}$ with $H^p(A/(u \sim -u), \mathbb{Z}_2) \neq 0$

Phase transition analgogues of volume spectrum (Gromov, Marques-Neves).

Caju-G.-Guaraco-Matthiesen '22, Hiesmayr '20 (arXiv): in S³, the first min-max critical energy levels

$$\omega_1(E_{\varepsilon}) = \omega_2(E_{\varepsilon}) = \omega_3(E_{\varepsilon}) = \omega_4(E_{\varepsilon})$$
 and $\omega_5(E_{\varepsilon})$

correspond to AC approximations of equators and Clifford tori, respectively. (Allen-Cahn counterpart of classification of low area minimal surfaces)

Here $\omega_p(E_{\varepsilon}) = \inf_{A \in \mathcal{F}_p} \sup_A E_{\varepsilon}$ are the min-max critical levels for E_{ε} (**G.-Guaraco '18**), where

 \mathcal{F}_p is a family of symmetric $A \subset W^{1,2}$ with $H^p(A/(u \sim -u), \mathbb{Z}_2) \neq 0$

Phase transition analgogues of volume spectrum (Gromov, Marques-Neves).

Caju-G.-Guaraco-Matthiesen '22, Hiesmayr '20 (arXiv): in S³, the first min-max critical energy levels

$$\omega_1(E_{\varepsilon}) = \omega_2(E_{\varepsilon}) = \omega_3(E_{\varepsilon}) = \omega_4(E_{\varepsilon})$$
 and $\omega_5(E_{\varepsilon})$

correspond to AC approximations of equators and Clifford tori, respectively. (Allen-Cahn counterpart of classification of low area minimal surfaces)

Here $\omega_p(E_{\varepsilon}) = \inf_{A \in \mathcal{F}_p} \sup_A E_{\varepsilon}$ are the min-max critical levels for E_{ε} (**G.-Guaraco '18**), where

 \mathcal{F}_p is a family of symmetric $A \subset W^{1,2}$ with $H^p(A/(u \sim -u), \mathbb{Z}_2) \neq 0$

Phase transition analgogues of volume spectrum (Gromov, Marques-Neves).

Choose a suitable Morse perturbation $\{E_{\varepsilon,\delta}\}_{\delta \in (0,1)}$ of E_{ε} .

Perturbed Morse-Bott functions: Banyaga-Hurtubise '13 Morse Theory says, for k = 1, 2, 3, 4

$$H^*(\{E_{\varepsilon,\delta} < \omega_k(E_{\varepsilon,\delta}) + (0.001))\}/\sim, \mathbb{Z}_2) \simeq \frac{\mathbb{Z}_2[\lambda]}{\langle \lambda^{k+1} \rangle}$$

$$A \in \mathcal{F}_5$$
 with $\sup_A E_{\varepsilon,\delta} < \omega_5(E_{\varepsilon,\delta})!$

Choose a *suitable* Morse perturbation $\{E_{\varepsilon,\delta}\}_{\delta \in (0,1)}$ of E_{ε} .

Perturbed Morse-Bott functions: Banyaga-Hurtubise '13 Morse Theory says, for k = 1, 2, 3, 4

$$H^*(\{E_{\varepsilon,\delta} < \omega_k(E_{\varepsilon,\delta}) + (0.001))\}/\sim, \mathbb{Z}_2) \simeq \frac{\mathbb{Z}_2[\lambda]}{\langle \lambda^{k+1} \rangle}$$

$$A \in \mathcal{F}_5$$
 with $\sup_A E_{\varepsilon,\delta} < \omega_5(E_{\varepsilon,\delta})!$

Choose a *suitable* Morse perturbation $\{E_{\varepsilon,\delta}\}_{\delta \in (0,1)}$ of E_{ε} .

Perturbed Morse-Bott functions: Banyaga-Hurtubise '13 Morse Theory says, for k = 1, 2, 3, 4

$$\mathsf{H}^{*}(\{\mathsf{E}_{\varepsilon,\delta} < \omega_{k}(\mathsf{E}_{\varepsilon,\delta}) + (0.001))\}/\sim, \mathbb{Z}_{2}) \simeq \frac{\mathbb{Z}_{2}[\lambda]}{\langle \lambda^{k+1} \rangle}$$

$$A \in \mathcal{F}_5$$
 with $\sup_A E_{\varepsilon,\delta} < \omega_5(E_{\varepsilon,\delta})!$

Choose a suitable Morse perturbation $\{E_{\varepsilon,\delta}\}_{\delta \in (0,1)}$ of E_{ε} .

Perturbed Morse-Bott functions: Banyaga-Hurtubise '13 Morse Theory says, for k = 1, 2, 3, 4

$$H^*(\{E_{\varepsilon,\delta} < \omega_k(E_{\varepsilon,\delta}) + (0.001))\}/{\sim}, \mathbb{Z}_2) \simeq \frac{\mathbb{Z}_2[\lambda]}{\langle \lambda^{k+1} \rangle}$$

$$A \in \mathcal{F}_5$$
 with $\sup_A E_{\varepsilon,\delta} < \omega_5(E_{\varepsilon,\delta})!$

Key ideas: analytic technicalities

Quasilinear perturbation: $\partial_t u = -DE_{\varepsilon,\delta}(u) = -(1 + \delta\theta(u))\Delta u + Q_{\delta}(u)$

Existence theory for abstract ODEs in $W^{2\alpha,2}(M)$ (e.g. Amann 88', Lunardi '95)

Dynamics of $(-DE_{\varepsilon,\delta})$ near $u_{\varepsilon}^{+\infty}$:

 $G(u) = E_{\varepsilon,\delta}(u) - E_{\varepsilon}(u)$ controls the dynamics near critical manifolds

 \Rightarrow Orbits don't break!

Question

What kind of MCF (and singularities) can arise from these constructions?

Key ideas: analytic technicalities

Quasilinear perturbation: $\partial_t u = -DE_{\varepsilon,\delta}(u) = -(1 + \delta\theta(u))\Delta u + Q_{\delta}(u)$

Existence theory for abstract ODEs in $W^{2\alpha,2}(M)$ (e.g. **Amann** 88', **Lunardi** '95)

Dynamics of $(-DE_{\varepsilon,\delta})$ near $u_{\varepsilon}^{+\infty}$: $G(u) = E_{\varepsilon,\delta}(u) - E_{\varepsilon}(u)$ controls the dynamics near critical mani

 \Rightarrow Orbits don't break!

Question

What kind of MCF (and singularities) can arise from these constructions?

Quasilinear perturbation: $\partial_t u = -DE_{\varepsilon,\delta}(u) = -(1 + \delta\theta(u))\Delta u + Q_{\delta}(u)$

Existence theory for abstract ODEs in $W^{2\alpha,2}(M)$ (e.g. **Amann** 88', **Lunardi** '95)

Dynamics of $(-DE_{\varepsilon,\delta})$ near $u_{\varepsilon}^{+\infty}$:

 $G(u) = E_{\varepsilon,\delta}(u) - E_{\varepsilon}(u)$ controls the dynamics near critical manifolds

 \Rightarrow Orbits don't break!

Question

What kind of MCF (and singularities) can arise from these constructions?

Quasilinear perturbation: $\partial_t u = -DE_{\varepsilon,\delta}(u) = -(1 + \delta\theta(u))\Delta u + Q_{\delta}(u)$

Existence theory for abstract ODEs in $W^{2\alpha,2}(M)$ (e.g. **Amann** 88', **Lunardi** '95)

Dynamics of $(-DE_{\varepsilon,\delta})$ near $u_{\varepsilon}^{+\infty}$:

 $G(u) = E_{\varepsilon,\delta}(u) - E_{\varepsilon}(u)$ controls the dynamics near critical manifolds

 \Rightarrow Orbits don't break!

Question

What kind of MCF (and singularities) can arise from these constructions?

Quasilinear perturbation: $\partial_t u = -DE_{\varepsilon,\delta}(u) = -(1 + \delta\theta(u))\Delta u + Q_{\delta}(u)$

Existence theory for abstract ODEs in $W^{2\alpha,2}(M)$ (e.g. **Amann** 88', **Lunardi** '95)

Dynamics of $(-DE_{\varepsilon,\delta})$ near $u_{\varepsilon}^{+\infty}$:

 $G(u) = E_{\varepsilon,\delta}(u) - E_{\varepsilon}(u)$ controls the dynamics near critical manifolds

 \Rightarrow Orbits don't break!

Question

What kind of MCF (and singularities) can arise from these constructions?

¡Muchas gracias! Thank you!