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Motivations: Morse theory

Main theorem of Morse Theory
For a critical level c ∈ Ò of aMorse f : X → Ò, the
flow generated by −Df retracts {f < c + δ} onto:

{f < c − δ} ∪
⋃

p∈f −1 (c)∩crit(f )
Äindp

Deep link between topology of X and dynamics of gradient flow (equilibrium
points and connections between them).

Question
Can we implement these ideas for f = area (= codimension 1 volume)?
(Almgren ’62, Pitts ’81, Marques-Neves ∼ ’13)
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Motivation: area and mean curvature flows

1st variation formula: for a hypersurface Σn−1 ⊂ (Mn, g) and a (compactly sup-
ported) vector field X along Σ,

D area[Σ] (X) =
∫
Σ
g(X,−HΣ) dvolΣ

Mean curvature flow (MCF): gradient flow of area, for F : I × Σ ⊂ Ò × Σ → M

∂tF = HΣt

Lichnewsky, Temam (PDEs), Brakke (GMT), Ecker, Gerhardt, Huisken, Gage, Grayson...
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MCF: analytic difficulties

MCFs may develop finite-time singularities at curvature blow-up points:
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Phase transitions

Allen-Cahn equation (with ε > 0):

∂tu = ∆gu − 1
ε2 (u3 − u) (AC)

in a compact (Mn, g).
(Phase separation models, S. Allen-J. Cahn, ’77)

L2-gradient flow of the AC energy:

Eε (u) =
∫
M

(
ε · |+u|

2

2 + 1
ε
·W(u)

)
for u : M→ Ò, where

W(u) = (1 − u2)2

4 .

Global solutions are connected with the geometry of ambient space.
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Phase transitions and geometry

ε-regularization of area: If {Eε (uε)}ε is bounded, then uε → ±1 a.e. in M, while

diffuse interfaces {uε ≈ 0}
for stationary solutions

ε↓0
−−−→

limit interface Σ:
critical point of area

((n − 1)-dimensional)

Similar for gradient flows...
• De Giorgi, Modica, Mortola, Gurtin, Kohn,

Sternberg, De Mottoni, Schatzman, Bronsard,
X. Chen, Soner, Souganidis, Evans...
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Convergence

Ilmanen ’93, Tonegawa ’03: Energy densities of solutions uε converge (in measure)
to measure theoretic MCFs (Brakke flows):

Vε,uε ( ·,t) =
1

2σ

(
ε |+uε (·, t) |2

2 + W(uε (·, t))
ε

)
d volg

⇀ d volΣt
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Constructing heteroclinic solutions and MCFs

From an unstable stationary solution u−∞ε ,

I. find eternal solutions that converge to u−∞ε as t→ −∞,
and subconverge to some nonconstant u+∞ε as t→ +∞.

Existence of ancient solutions & unstable manifold (e.g. Choi-Mantoulidis ’22)
+ topological (shooting) arguments, maximum principles.

II. Study u+∞ε and its limit interface: full convergence in time?

Classification/rigidity for stationary solutions (or nondegeneracy)
+ Łojasiewicz-Simon inequality

III. Asymptotics of limit Brakke flow {Vt} as t→ ±∞.
Symmetry, regularity of unit density flows, finer convergence of AC flows.
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Allen-Cahn (AC) approximations

Theorem (Pacard-Ritoré ’03; + Caju-G. ’19; + Chodosh-Mantoulidis ’20)
Σn−1: nondegenerate, separating, minimal (HΣ ≡ 0) hypersurface in a compact
(Mn, g).

For small ε > 0, there exist stationary solutions uε : M→ Ò of (AC) s.t.:

Vε,uε ⇀ d volΣ and ind(D2Eε [uε]) = ind(Σ).

Here ind(Σ) = ind(D2 area[Σ]) = ind(−∆Σ − (|AΣ |2 + Ric(νΣ, νΣ))).

Remark: For some symmetric Σ, uε can be constructed directly and it inherits the
symmetries of Σ.
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Unstable manifold and heteroclinic solutions of AC

If {φj}kj=1 are eigenfunctions of −∆g + 3(u−∞ε )2−1
ε2 with eigenvalues λj < 0, then

S(a1, . . . , ak; x, t) := u−∞ε (x) +
k∑
j=1
aje−λjtφj(x)

are approximate solutions near u−∞ε .

Choi-Mantoulidis ’22: ancient solutions of (AC) converging back to u−∞ε by fixed
point methods on parabolic Hölder spaces.

Chen-G. ’23 (JGA): existence of heteroclinic solutions of (AC) from u−∞ε in any
compact (Mn, g), for generic g and ind(u−∞ε ) ≥ 2.
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A model case: solutions in S3

Minimal surfaces of lowest area in the round sphere S3:

Equatorial spheres

• {x ∈ S3 | ⟨x, a⟩ = 0} (a ∈ S3)
• area = 4π ; ind = 1.

Clifford tori
(Urbano ’90, Marques-Neves ’14)

• C = {x ∈ S3 | x2
1 + x2

2 = 1
2 = x2

3 + x2
4}

(and its rotations)
• area = 2π2; ind = 5.



Main result

Let u−∞ε be an AC approximation of a Clifford torus, for small ε > 0.

Theorem (Chen-G., arXiv ’23)
Any ancient solution of (AC) in S3 that converges back in time to u−∞ε is defined
for all t > 0, and converges smoothly, as t→ +∞, to either an AC approximation
of an equator, or ±1.

Moreover, any AC approximation of an equatorial sphere arise as such limit.
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Key ideas: min-max for Eε in compact (Mn, g)

Caju-G.-Guaraco-Matthiesen ’22, Hiesmayr ’20 (arXiv): in S3, the first min-max
critical energy levels

ω1(Eε) = ω2(Eε) = ω3(Eε) = ω4(Eε) and ω5(Eε)

correspond to AC approximations of equators and Clifford tori, respectively.
(Allen-Cahn counterpart of classification of low area minimal surfaces)

Here ωp (Eε) = infA∈Fp supA Eε are the min-max critical levels for Eε (G.-Guaraco ’18),
where

Fp is a family of symmetric A ⊂ W1,2 with Hp (A/(u ∼ −u),Ú2) , 0

Phase transition analgogues of volume spectrum (Gromov, Marques-Neves).
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Key ideas: Morse perturbation

Choose a suitable Morse perturbation {Eε,δ }δ∈ (0,1) of Eε .

Perturbed Morse-Bott functions:
Banyaga-Hurtubise ’13

Morse Theory says, for k = 1, 2, 3, 4

H∗({Eε,δ < ωk(Eε,δ )+(0.001))}/∼,Ú2) ≃
Ú2 [λ]〈
λk+1

〉 .
If the unstable manifold of (−DEε,δ ) at (u−∞ε )
misses a u ∈ crit(Eε,δ ) ∩ {Eε,δ = ω4(Eε,δ )},
then we can construct

A ∈ F5 with sup
A
Eε,δ < ω5(Eε,δ )!
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Key ideas: analytic technicalities

Quasilinear perturbation: ∂tu = −DEε,δ (u) = −(1 + δθ (u))∆u + Qδ (u)
Existence theory for abstract ODEs in W2α ,2(M) (e.g. Amann 88’, Lunardi ’95)

Dynamics of (−DEε,δ ) near u+∞ε :
G(u) = Eε,δ (u) − Eε (u) controls the dynamics near critical manifolds

⇒ Orbits don’t break!

Question
What kind of MCF (and singularities) can arise from these constructions?

Chen-G. ’23 (JGA): many eternal, symmetric, nonvanishing Brakke flows in S3;
J. Chen ’24: similar construction in Sn, n ≥ 4.
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¡Muchas gracias!
Thank you!
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