
Adaptive Weak Approximation

of Diffusions with Jumps

Ernesto Mordecki1

Joint work with: A. Szepessy, R. Tempone, G. Zouraris.

1Universidad de la República, Montevideo, Uruguay

FoCM1 , Hong Kong, 2008

1FoCM number: 1

Contents

1. General description: discuss the title of the talk

2. Stochastic differential equations with jumps

3. A posteriori error expansion (in Euler Maruyama algorithm)
in computable form (main result)

4. Our adaptive algorithtm (AA) has two steps: automatic
mesh construction + sampling

5. Example (A): many jumps and time dependence

6. Example (B): d = 2

7. Discussion

1. Adaptive

I Task: Estimate an unknown parameter θ.

I By adaptive we mean an algorithm that

automatically produces an approximation θ̂ such that

|θ − θ̂| ≤ TOL

I TOL is a maximum tolerance given in advance.

Adaptive weak approximation

By weak approximation we mean that

θ = E
[
g
(
X (1)

)]

where

I {X (t) : 0 ≤ t ≤ 1} is a stochastic process in R
d

I g : R
d → R is a regular function

Adaptive weak approximation of diffusion with jumps

{X (t) : 0 ≤ t ≤ 1} is the solution of a stochastic differential
equation with jumps (SDEJ) i.e.

dX (t) = a
(
t , X (t)

)
dt+b

(
t , X (t)

)
dW (t)+

∫

Z
c
(
t , X (t−), z

)
p(dt , dz)

driven by

I {W (t) : 0 ≤ t ≤ 1}: standard brownian motion in R
`0

I p(dt , dz): Poisson random measure on the (auxiliary) mark
space Z

I Initial condition is X (0) = x0 constant (for simplicity)

Sources of randomness: Brownian motion

20 40 60 80 100
-2

2

4

6

8
A trajectory of Brownian Motion

Sources of randomness: Marked Poisson Process

20 40 60 80 100

-0.8
-0.6
-0.4
-0.2

0.2
0.4
0.6

Arrival times and Marks

I Interarrival exponential times, with expectation 10.

I Normal marks: N(−0.1, 0.5)

I Brownian motion and Marked process are independent

2. SDEJ in detail

X (t) = x0 +

∫ t

0
a
(
s, X (s)

)
ds (L)

+

∫ t

0
b
(
s, X (s)

)
dW (s) (I)

+

∫ t

0

∫

Z
c
(
s, X (s−), z

)
p(ds, dz) (RM)

I (L) is an usual Lebesgue integral

I (I) is an Itô integral

I (RM) is an integral against a random measure, the
simplest integral:

∫ t

0

∫

Z
c
(
s, X (s−), z

)
p(ds, dz) =

ν(t)∑

k=1

c
(
τk , X (τ−

k), Zk
)

Here:

I ν(t) is the number of arrivals up to t (Poisson process)

I τk are the arrival times (sums of exponentials)

I X (τ−
k) value of the process just before the k-th jump

I Zk are the marks (normal variables in the picture)

One possible motivation: Finance

Compute the price of a call option written on a basket of d
assets (S1, S2, . . . , Sd)

I Each asset follow a diffusion with jumps (i.e. affine
processes)

I Usually they display correlations (modelled by b(t , x))

I g(x) = (x − K)+

I A prescribed precision is required.

Problem: Compute E
[
g(X (T)

]
where

X (T) = π1S1(T) + · · · + πdSd(T).

Our framework and technical assumptions

I a : [0, 1] × R
d → R

d ,

I b : [0, 1] × R
d → R

d×`0 , and

I c : [0, 1] × R
d × Z → R

d

I All derivatives up to order 8 bounded

I q(dt , dz) = λ(t)µ(t , dz)dt is the compensator (time
dependent)

I g(x) derivatives up to 8 with polynomial growth

I Curse of dimensinality2: Monte Carlo methods are efficient
for high dimensions.

2coined by Richard Bellman

3. Main result. Basic algorithm: Jump-augmented
Euler

I Give a deterministic partition 0 = t̂0 < t̂1 < . . . < t̂N = 1

I Sample ν jumps τk and marks Zk ,

I Construct jump-augmented partition {tk}N+ν
k=0 = {t̂k} ∪ {τk}

I Set X (0) = x0

I For n = 1 to N + ν

X−
n+1 =X n + a(tn, X n)∆tn + b(tn, X n)∆W ,

X n+1 =X−
n+1 + c(tn+1, X−

n+1, Zn+1) 1{tn+1is a jump time}

I In this way we construct our approximation X .

Adaptive algorithm: Error Splitting
Our estimation is

θ̂ =
1
M

M∑

j=1

g(X (T ;ωj))

and we split the error:

E = E [g(X (T))] − 1
M

M∑

j=1

g(X(T ;ωj)) = ET + ES

where

ET = E [g(X (T))] − E [g(X (T))]

ES = E [g(X(T))] − 1
M

M∑

j=1

g(X (T ;ωj))

Main Result
Theorem: Error expansion in computable a posteriori form.

ET = E
[N+ν−1∑

n=0

ρ̃(tn, X)(∆tn)2
]

+ O
((

∆tmax
)2

)

ρ̃(tn, X) ≡ 1
2

((∂

∂t
ak + ∂jakaj + ∂ijakdij

)
ϕk (tn+1−)

+
(∂

∂t
dkm + ∂jdkmaj + ∂ijdkmdij + 2∂jakdjm

)
ϕ′

km(tn+1−)

+
(
2∂jdkmdjr

)
ϕ′′

kmr (tn+1−)
)
,

Here
I We use Einstein conventio for summation
I ∂αa ≡ ∂αa(tn, X (tn)),

I ϕ,ϕ′, ϕ′′ are the duals, constructed in a d + d2 + d3 + d4

dimensional backwards auxiliary algorithm (expensive).

Main References

KP P. E. Kloeden und E. Platen. The Numerical Solution of
Stochastic Differential Equations, Springer (1992)

TT D. Talay and L. Tubaro (Stoc. An. Appl. 1990), provide a
priori error estimate:

E [g(XT) − g(X T)] '
∫ T

0
E [∆t(s)Ψ(X s, s)]ds = O(∆tmax).

LL X. Q. Liu and C. W. Li (SINUM, 2000) analyze the weak
order of several different schemes

STZ A. Szepessy, R. Tempone and G. Zouraris (Comm. Pure
Appl. Math., 2001) provide a posteriori error estimate for
diffusions

MSTZ Adaptive weak approximation of diffusions with jumps
SINUM (2008)

4. Adaptive Algorithm: Tolerance splitting

Our total work is N × M. The precision achieved is

I By the Euler method: ET ∼ 1/N

I By the CLT: ES ∼ 1/
√

M

Then we solve

Minimize: N × M

subject to : 1/N + 1/
√

M = TOL

obtaining

TOLT =
1
3

TOL, TOLS =
2
3

TOL.

Algorithm

Our algorithm has the following structure:

1. First: MT runs to determine the mesh according to TOLT

2. Second: M runs to construct θ̂ according to TOLS

Observe:

I First runs are in dimension d + d2 + d3 + d4, MT “small”

I Second runs is d−dimensional, allows larger M

First step of AA: construct the mesh

1. Input MT (realizations to construct the mesh)

2. Input N (to construct initial uniform mesh)

3. Sample ν jumps and insert them in the deterministic mesh

4. For n = 1 to N + ν estimate the local error

rn =
1

MT

MT∑

j=1

ρ̃(tn, X (ωj))(∆tn)2

I If rn > TOLT/(N + ν) divide ∆t into two equal subintervals
I Else continue ,

5. End For

6. If global statistical error of {rn} is large, enlarge MT and go
to 4, Else End

Second step of AA: Estimation and Statistical error
control

We have the mesh and proceed to estimation. By the CLT:

ES =
1.65σ̄√

M

where σ̄2 is the empirical variance

1. Input M (realizations to estimate θ)

2. Input the deterministic non-uniform mesh and

3. Produce M trajectories with the basic algorithm

4. If the statistical error ES < TOLS, End

5. Else enlarge M and go to 3

Obs: MT << M (as the error estimation is more expensive)

5. Example A: Time variation and many jumps

I Test function: g(x) = x , initial value: x0 = 1.

I Drift: a(t , x) = a(t)x where the time-varying drift is

a(t) =





0, if t < 1/3,

1
2
√

t−1/3+TOL4
, if 1/3 ≤ t ≤ 1.

I Diffusion b(t , x) = x/
√

2

I Jump measure compensator:

q(dt , dz) = λ(t)µ(dz)dt ,

Where:

I µ(dz) is Uniform distribution in [−
√

3,
√

3],

I Jump intensity exhibits two different regimes

λ(t) =

{
0, if 0 ≤ t ≤ 2/3,

3NJ , if 2/3 < t ≤ 1,

with (in the mean) NJ = 1024 jumps per realization.

Simulated trajectories of our example

Mesh construction of our example (jumps not
included)

Numerical results

I We have an exact solution:

E [g(X (1))] = exp
(√

2/3 + TOL4 − TOL2
)

.

step 1 grid step 2 error uniform
TOL MT N M E NU

0.025 1.7×103 220 2.0×105 2.0×10−2 2×104

0.01 1.7×103 450 1.45×106 −1.4×10−2 6×104

Table: Adaptive choice of M and ∆t

6. Example B: Dimension d = 2

Consider X = (X1, X2), `0 = 1 (i.e. W = W1), and coefficients

I a(t , x) =
(
−x2, x1 + 1

2λ(t)x2
)

I b(t , x) =
(√λ(t)

1+t sin x1, 0
)

I c(t , x , z) =
(
0, z cos x1√

1+t
− x2,

)

I λ(t) = (1 + t)−1 is also the jumps intensity.

I Marks are time dependent: Take Uk i.i.d U[−1/2, 1/2] and

Z (τk) = cos(2πτk) + 2
√

3 sin(2πτk)Uk .

I g(x1, x2) = x2
1 + x2

2 = ‖x‖2

I x(0) = 0.

I The example has a closed solution:

E‖X (1)‖2 = ‖X (0)‖2 +

∫ 1

0

λ(t)
1 + t

dt =
1
2

.

This example is adapted from [LL] where the intensity λ is
constant, and the jumps are also constant (i.e. we have a
Poisson process), and originated in [TT], where is presented
without jumps.

Numerical results for Example B

Iter. N M E ES

1 5 100 −2.66×10−2 1.44×10−1

2 10 100 −9.19×10−3 1.35×10−1

3 20 100 9.16×10−2 1.30×10−1

4 20 1000 −1.78×10−2 4.54×10−2

5 20 10000 −1.77×10−2 1.50×10−2

6 20 14088 −1.29×10−2 1.23×10−2

I TOL = 0.02, then TOLS = 1.33×10−2

I Start with N = 5 and M = 100

I Overkilling runs where performed to estimate the accuracy
of ET .

7. Discussion

I Trajectory dependent mesh division (useful for irregularity
in space). Dividing criteria: If

ρ̃(tn, X (ωj))(∆tn)2 > TOLT/N

then divide the interval for this trajectory.

I Use Large deviations theory instead of the Central Limit
Theorem

P(|ES| ≥ c) ≤ 2 exp(−H(c)M).

I Other jump models:

I state dependent intensity λ = λ(t, X) (default risk problems)

I infinite activity models (Lévy processes)

