
Adaptive Weak Approximation

of Diffusions with Jumps

Ernesto Mordecki1

Joint work with: A. Szepessy, R. Tempone, G. Zouraris.

1Universidad de la República, Montevideo, Uruguay

FoCM1 , Hong Kong, 2008

1FoCM number: 1



Contents

1. General description: discuss the title of the talk

2. Stochastic differential equations with jumps

3. A posteriori error expansion (in Euler Maruyama algorithm)
in computable form (main result)

4. Our adaptive algorithtm (AA) has two steps: automatic
mesh construction + sampling

5. Example (A): many jumps and time dependence

6. Example (B): d = 2

7. Discussion



1. Adaptive

I Task: Estimate an unknown parameter θ.

I By adaptive we mean an algorithm that

automatically produces an approximation θ̂ such that

|θ − θ̂| ≤ TOL

I TOL is a maximum tolerance given in advance.



Adaptive weak approximation

By weak approximation we mean that

θ = E
[
g
(
X (1)

)]

where

I {X (t) : 0 ≤ t ≤ 1} is a stochastic process in R
d

I g : R
d → R is a regular function



Adaptive weak approximation of diffusion with jumps

{X (t) : 0 ≤ t ≤ 1} is the solution of a stochastic differential
equation with jumps (SDEJ) i.e.

dX (t) = a
(
t , X (t)

)
dt+b

(
t , X (t)

)
dW (t)+

∫

Z
c
(
t , X (t−), z

)
p(dt , dz)

driven by

I {W (t) : 0 ≤ t ≤ 1}: standard brownian motion in R
`0

I p(dt , dz): Poisson random measure on the (auxiliary) mark
space Z

I Initial condition is X (0) = x0 constant (for simplicity)



Sources of randomness: Brownian motion
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A trajectory of Brownian Motion



Sources of randomness: Marked Poisson Process
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Arrival times and Marks

I Interarrival exponential times, with expectation 10.

I Normal marks: N(−0.1, 0.5)

I Brownian motion and Marked process are independent



2. SDEJ in detail

X (t) = x0 +

∫ t

0
a
(
s, X (s)

)
ds (L)

+

∫ t

0
b
(
s, X (s)

)
dW (s) (I)

+

∫ t

0

∫

Z
c
(
s, X (s−), z

)
p(ds, dz) (RM)

I (L) is an usual Lebesgue integral

I (I) is an Itô integral

I (RM) is an integral against a random measure, the
simplest integral:



∫ t

0

∫

Z
c
(
s, X (s−), z

)
p(ds, dz) =

ν(t)∑

k=1

c
(
τk , X (τ−

k ), Zk
)

Here:

I ν(t) is the number of arrivals up to t (Poisson process)

I τk are the arrival times (sums of exponentials)

I X (τ−
k ) value of the process just before the k-th jump

I Zk are the marks (normal variables in the picture)



One possible motivation: Finance

Compute the price of a call option written on a basket of d
assets (S1, S2, . . . , Sd )

I Each asset follow a diffusion with jumps (i.e. affine
processes)

I Usually they display correlations (modelled by b(t , x))

I g(x) = (x − K )+

I A prescribed precision is required.

Problem: Compute E
[
g(X (T )

]
where

X (T ) = π1S1(T ) + · · · + πdSd(T ).



Our framework and technical assumptions

I a : [0, 1] × R
d → R

d ,

I b : [0, 1] × R
d → R

d×`0 , and

I c : [0, 1] × R
d × Z → R

d

I All derivatives up to order 8 bounded

I q(dt , dz) = λ(t)µ(t , dz)dt is the compensator (time
dependent)

I g(x) derivatives up to 8 with polynomial growth

I Curse of dimensinality2: Monte Carlo methods are efficient
for high dimensions.

2coined by Richard Bellman



3. Main result. Basic algorithm: Jump-augmented
Euler

I Give a deterministic partition 0 = t̂0 < t̂1 < . . . < t̂N = 1

I Sample ν jumps τk and marks Zk ,

I Construct jump-augmented partition {tk}N+ν
k=0 = {t̂k} ∪ {τk}

I Set X (0) = x0

I For n = 1 to N + ν

X−
n+1 =X n + a(tn, X n)∆tn + b(tn, X n)∆W ,

X n+1 =X−
n+1 + c(tn+1, X−

n+1, Zn+1) 1{tn+1is a jump time}

I In this way we construct our approximation X .



Adaptive algorithm: Error Splitting
Our estimation is

θ̂ =
1
M

M∑

j=1

g(X (T ;ωj))

and we split the error:

E = E [g(X (T ))] − 1
M

M∑

j=1

g(X(T ;ωj)) = ET + ES

where

ET = E [g(X (T ))] − E [g(X (T ))]

ES = E [g(X(T ))] − 1
M

M∑

j=1

g(X (T ;ωj))



Main Result
Theorem: Error expansion in computable a posteriori form.

ET = E
[N+ν−1∑

n=0

ρ̃(tn, X )(∆tn)2
]

+ O
((

∆tmax
)2

)

ρ̃(tn, X ) ≡ 1
2

(( ∂

∂t
ak + ∂jakaj + ∂ijakdij

)
ϕk (tn+1−)

+
( ∂

∂t
dkm + ∂jdkmaj + ∂ijdkmdij + 2∂jakdjm

)
ϕ′

km(tn+1−)

+
(
2∂jdkmdjr

)
ϕ′′

kmr (tn+1−)
)
,

Here
I We use Einstein conventio for summation
I ∂αa ≡ ∂αa(tn, X (tn)),

I ϕ,ϕ′, ϕ′′ are the duals, constructed in a d + d2 + d3 + d4

dimensional backwards auxiliary algorithm (expensive).
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4. Adaptive Algorithm: Tolerance splitting

Our total work is N × M. The precision achieved is

I By the Euler method: ET ∼ 1/N

I By the CLT: ES ∼ 1/
√

M

Then we solve

Minimize: N × M

subject to : 1/N + 1/
√

M = TOL

obtaining

TOLT =
1
3

TOL, TOLS =
2
3

TOL.



Algorithm

Our algorithm has the following structure:

1. First: MT runs to determine the mesh according to TOLT

2. Second: M runs to construct θ̂ according to TOLS

Observe:

I First runs are in dimension d + d2 + d3 + d4, MT “small”

I Second runs is d−dimensional, allows larger M



First step of AA: construct the mesh

1. Input MT (realizations to construct the mesh)

2. Input N (to construct initial uniform mesh)

3. Sample ν jumps and insert them in the deterministic mesh

4. For n = 1 to N + ν estimate the local error

rn =
1

MT

MT∑

j=1

ρ̃(tn, X (ωj))(∆tn)2

I If rn > TOLT/(N + ν) divide ∆t into two equal subintervals
I Else continue ,

5. End For

6. If global statistical error of {rn} is large, enlarge MT and go
to 4, Else End



Second step of AA: Estimation and Statistical error
control

We have the mesh and proceed to estimation. By the CLT:

ES =
1.65σ̄√

M

where σ̄2 is the empirical variance

1. Input M (realizations to estimate θ)

2. Input the deterministic non-uniform mesh and

3. Produce M trajectories with the basic algorithm

4. If the statistical error ES < TOLS, End

5. Else enlarge M and go to 3

Obs: MT << M (as the error estimation is more expensive)



5. Example A: Time variation and many jumps

I Test function: g(x) = x , initial value: x0 = 1.

I Drift: a(t , x) = a(t)x where the time-varying drift is

a(t) =





0, if t < 1/3,

1
2
√

t−1/3+TOL4
, if 1/3 ≤ t ≤ 1.

I Diffusion b(t , x) = x/
√

2

I Jump measure compensator:

q(dt , dz) = λ(t)µ(dz)dt ,



Where:

I µ(dz) is Uniform distribution in [−
√

3,
√

3],

I Jump intensity exhibits two different regimes

λ(t) =

{
0, if 0 ≤ t ≤ 2/3,

3NJ , if 2/3 < t ≤ 1,

with (in the mean) NJ = 1024 jumps per realization.



Simulated trajectories of our example



Mesh construction of our example (jumps not
included)



Numerical results

I We have an exact solution:

E [g(X (1))] = exp
(√

2/3 + TOL4 − TOL2
)

.

step 1 grid step 2 error uniform
TOL MT N M E NU

0.025 1.7×103 220 2.0×105 2.0×10−2 2×104

0.01 1.7×103 450 1.45×106 −1.4×10−2 6×104

Table: Adaptive choice of M and ∆t



6. Example B: Dimension d = 2

Consider X = (X1, X2), `0 = 1 (i.e. W = W1), and coefficients

I a(t , x) =
(
−x2, x1 + 1

2λ(t)x2
)

I b(t , x) =
(√λ(t)

1+t sin x1, 0
)

I c(t , x , z) =
(
0, z cos x1√

1+t
− x2,

)

I λ(t) = (1 + t)−1 is also the jumps intensity.

I Marks are time dependent: Take Uk i.i.d U[−1/2, 1/2] and

Z (τk ) = cos(2πτk ) + 2
√

3 sin(2πτk )Uk .



I g(x1, x2) = x2
1 + x2

2 = ‖x‖2

I x(0) = 0.

I The example has a closed solution:

E‖X (1)‖2 = ‖X (0)‖2 +

∫ 1

0

λ(t)
1 + t

dt =
1
2

.

This example is adapted from [LL] where the intensity λ is
constant, and the jumps are also constant (i.e. we have a
Poisson process), and originated in [TT], where is presented
without jumps.



Numerical results for Example B

Iter. N M E ES

1 5 100 −2.66×10−2 1.44×10−1

2 10 100 −9.19×10−3 1.35×10−1

3 20 100 9.16×10−2 1.30×10−1

4 20 1000 −1.78×10−2 4.54×10−2

5 20 10000 −1.77×10−2 1.50×10−2

6 20 14088 −1.29×10−2 1.23×10−2

I TOL = 0.02, then TOLS = 1.33×10−2

I Start with N = 5 and M = 100

I Overkilling runs where performed to estimate the accuracy
of ET .



7. Discussion

I Trajectory dependent mesh division (useful for irregularity
in space). Dividing criteria: If

ρ̃(tn, X (ωj))(∆tn)2 > TOLT/N

then divide the interval for this trajectory.

I Use Large deviations theory instead of the Central Limit
Theorem

P(|ES| ≥ c) ≤ 2 exp(−H(c)M).

I Other jump models:

I state dependent intensity λ = λ(t, X) (default risk problems)

I infinite activity models (Lévy processes)


