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Main Purposes of Lectures 14 and 15:

• Introduce the notion of Calibration

• Examine how to calibrate the different parameters in BS

• Define and compute implicit volatility

• Term structure and matrices of implied Volatilities

• Reveiw Binomial Trees

• Calibrate them, and compute prices of European and American
Options.
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Plan of Lecture 14

(14a) Calibration

(14b) Black Scholes Formula Revisted

(14c) Implied Volatility

(14d) Time-dependent volatiliy
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14a. Calibration

The calibration of a mathematical model in finance is the deter-
mination of the risk neutral parameters that govern the evolution
of a certain price process {S(t)}.
As we have seen, the martingale hypothesis assumes that there
exists a probability measure Q, equivalent to P, such that our dis-
counted price process {S(t)/B(t)} is a martingale (here {B(t)}
is the evolution of a riskless savings account, usually B(t) =
B(0) exp(rt)).

•P is the historical or physical probability measure. We use
statistical procedures to fit it to the data. It reflects the past
evolution of prices of the underlying.

•Q is the risk neutral probability measure. It is calibrated throgh
prices of derivatives written on the underlying.
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The calibration of a model is performed observing the prices of
certain derivatives written on the underlying {S(t)}, and fitting
the parameters of the model, in such a way that it reproduces the
observed derivative prices.

The purpose of calibration is to compute prices of not so liquid
derivatives instruments, or more complex instruments.

The calibration procedure should be constrasted to the statistical
fitting procedure:

• When statistically fitting a model, we take information from the
quoted prices of the underlying, to determine P.

• When calibrating a model, we need to know prices of derivatives
written on the underlying, to determine Q.
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14b. Black Scholes Formula Revisted

Assume that we have a market model with two assets:

• A savings account {B(t)} evolving deterministically according
to

B(t) = B(0)ert,

where r is the riskless interest rate in the market, and

• A stock {S(t)} with random evoultion of the form

S(t) = S(0) exp
(

(µ − σ2/2)t + W (t)
)

,

where {W (t)} is a Wiener process defined on a probability space
(Ω,F ,P). Here σ is the volatility, and µ the rate of return of
the considered stock.

Black-Scholes1 formula gives the price C of an European Call Op-
1Robert Merton and Myron Scholes recieved the Nobel Prize in Economics in 1997 “for a new method to

determine the value of derivatives”. Fischer Black died in August 1995, the Nobel prize was never given

posthumously.
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tion written on the stock, as

C = C(S(0); K; T ; r; σ) = S(0)Φ(d1) − Ke−rTΦ(d2),

where

• S(0) is the spot price of the stock, measured in local currency.

•K is the strike price of the option, in the same currency.

• T is the excercise date of the option, measured in years,

• r is the annual percent of riskfree interest rate,

• σ is the volatility (also annualized).

• Φ(x) = 1√
2π

∫ x
−∞ e−t2/2dt is the distribution function of a nor-

mal standar random variable,

• d1 =
log[S(0)/K]+[r+σ2/2]T

σ
√

T

• d2 = d1 − σ
√

T .
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The value of a Put Option has a similar formula:

P = Ke−rTΦ(−d1) − S(0)Φ(−d2),

Remark The option price does not depend on µ. This is due
to the fact that the price is computed under the risk neutral prob-
abiliy Q.

More precisely, the evolution of the stock under Q is

S(t) = S(0) exp
(

(r − σ2/2)t + W (t)
)

, (1)

where now {W (t)} is a Wiener process under the risk-neutral
measure Q. The value can be computed as

C(S(0); K; T ; r; σ) = EQ e−rT(

S(T ) − K
)+

where the expectation is taken with respect to Q (i.e. for a stock
modelled by (1))
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Example Let us compute the price of a call option written on
the Hang Seng Index2, with (that day’s) price S(0) = 15247.92,
struck at K = 15000 expirying in July, with a volatility of 22%.

In order to compute the other parameters we take into account:

• the underlying of the option is 50× HSI, but this is not relevant
for the option price (why?)

• The option was written on June 14, and it expires in the bussi-
ness day inmediatly preceeding the last bussiness of the contract
month (July): the expiration date is July 29.

• We then have days = 32 trading days. As the year 2006 has
year = 247 trading days, we obtain T = days/year = 32/247.

We compute the risk-free interest rate from the Futures prices,
written on the same stock over the same period. We get a futures
quotation of F (T ) = 15298 for July 2006. Then, as F (T ) =

2From the “South China Morning Post”, June 15, 2006
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S(0) exp(rT ), we obtain

r =
year

days
log

(F (T )

S(0)

)

=
247

32
log

(15298

15248

)

= 0.025.

With this information, we compute

C(15248; 15000; 32/247; 0.025; 0.22) = 639.72.

(Newspaper quotation is 640.)

Just we are here, we compute by put-call parity the price of the
put pption with the same characteristics. Put-Call partity states
that

C + Ke−rT = P + S(0), ,

that, in numbers, is

P = 640 + 15000e0.025×(32/247) − 15248 = 343.5.

(Quoted price is 342.)
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14c. Implied Volatility

In the previous example, everything is clear with one relevant ex-
ception: Why did we used σ = 0.22?

In fact, the real computation process, in what respects the volatil-
ity is the contrary: we know from the market that the option price
is 640, and from this quotation we compute the volatility. The
number obtained is what is called implied volatility, and should
be distinguished from the volatility in (1).

It must be noticed that there is no direct formula to obtain σ from
the Black Scholes formula, knowing the price C.

In other words, the equation

C(15248; 15000; 32/247; 0.025; σ) = 639.72.

can not be inverted to yield σ. We then use the Newton-Raphson
method to find the root σ.
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Suppose that you want to find the root x of an equation f (x) = y,
where f is an increasing (or decreasing) differentiable function, and
we have an initial guess x0. By Taylor developement

f (x) ∼ f (x0) + f ′(x0)(x − x0).

If we want x to satisfy f (x) = y, then it is natural to assume that

f (x0) + f ′(x0)(x − x0) = y,

and from this we

x = x0 +
y − f (x0)

f ′(x0)
.

The obtained value of x is nearer to the root than x0. The Newton
Raphson method consists in computing a sequence

xk+1 = xk +
y − f (xk)

f ′(xk)

that converges to the root.
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Let us then find the implied volatility of given the quoted option
price QP . The derivative of the function C with respect to σ is
called vega, and is computed as

vega(σ) = S(0)
√

Tφ(d1), with d1 as above.

So, given an initial value for σ0, we compute C(σ0), and obtain
our first approximation:

σ1 = σ0 +
C(σ0) − QP

S(0)
√

Tφ(d1)
.

If this is close to σ0 we stop. Otherwise, we compute σ2 and stop
when the sequence stabilizes.

Example Let us compute the implied volatility in the previous
example. Suppose we take an initial volatility of σ0 = 0.15.
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Step 1. We compute C(0.15) = 495.

Step 2. We compute vega(0.15) = 2029

Step 3. We correct

σ1 = 0.15 +
495 − 460

2029
= 0.2216

Step 4. We compute C(0.2216) = 643.116. We are really near to the
implied volatitliy.

Step 5. We compute again vega(0.2216) = 2101.75,

Step 6. Finally we obtain

σ2 = 0.2216 +
640 − 643.16

2101.75
= 0.220134,

and we are done.

14



14d. Time-dependent volatiliy

Black Scholes theory assumes that volatility is constant over time.
We have seen that, from a statistical point of view, that volatiliy
varies over time.

What happens with respect to the risk-neutral point of view? In
other terms, is implied volatility constant over time?

Month Strike Price Volit % Futures r
June 14400 905 27 15241 −0.010
July 14400 1079 24 15298 0.025

August 14400 1117 23 - -
September - - - 15296 0.010

In this table3 we see that the implied volatiliy (Volit) also varies
over time. This series of implied volatilities for of at-the-money

3Taken from “South China Morning Post”, June 15, 2006. The spot price is S(0) = 15247.92
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options with different maturities is called the term structure of
volatilites. We included the Futures prices and the corresponding
risk free interest rates4 computed from this price, through the
formula F (T ) = S(0) exp(rT )

This has a remedy in the frame-work of BS theory. Assume that

• r = r(t), i.e. the risk-free interest rate is deterministic, but
depends on time

• σ = σ(t), i.e. the same happens with the volatility.

We define the forward interest rate, and the forward volatility, as

r(t, T ) =
1

T − t

∫ T

t
r(s)ds, σ̄(t, T )2 =

1

T − t

∫ T

t
σ(s)ds.

(2)
here t is today, and T is the expiry of the option.

In this model we have a Black-Scholes pricing formula for a Call
4The interest rate is negative due to the fact that futures price is smaller than the spot price
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option:

C(S(t); K; T ; r; σ) = S(t)Φ(d1) − Ke−r̄(t)θtΦ(d2)

where θt = T − t, and

d1 =
log[S(t)/K] + [r̄(t) + σ̄(t)2/2]θt

σ̄(t)
√

θt
, d2 = d1 − σ̄(t)

√

θt.

In practice, we do not know the complete curves r(t, T ) and
σ(t, T ), where T is the parameter. In order to use the time-
dependent BS formula we assume that r(t, T ) are σ(t, T ) are con-
stant between the different expirations.
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Example We want to price a call option, written today, July
14, (time t) nearly at the money (with strike, say 14400), expir-
ing on July, 21 (T ). As we do not know the implied forward
volatiliy σ(t, T ), we interpolate between σ(t, T1) = 27, where T1
corresponds to maturity June, 29, and σ(t, T2) = 24 where T2
corresponds to maturity August, 30. We have

σ(t, T )2 =
(T − T1)σ(t, T1)

2 + (T2 − T )σ(t, T2)

T2 − T1
.

We have T − T1 = 16, and T2 − T = 5, so

σ(t, T )2 =
16 × 272 + 5 × 232

21
= 692.6

and σ(t, T ) = 26.32. We perform the same computation for the
risk-free interest rate:

r(t, T ) =
16 × (−0.01) + 5 × 0.025

21
= −0.0017
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The price of the Call option is

C(15248; 14400;−0.0017; 27/247; 0.2632) = 1043.73.

Observe that the raw linear interpolation of the option prices is

16 × 905 + 5 × 1079

21
= 946.429

This is due to the fact that the option price depends highly non-
linearly on σ
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Plan of Lecture 15

(15a) Volatility Smile

(15b) Volatility Matrices

(15c) Review of Binomial Trees

(15d) Several Steps Binomial Trees

(15e) Pricing Options in the Binomial Model

(15f) Pricing American Options in the Binomial Model
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15a. Volatility Smile

Let us see more in details the quotations of option prices5,
Month Strike Price Volit %
June 13000 2246 35
June 13200 2048 34
June 13400 1851 33
June 13600 1656 32
June 13800 1462 30
June 14000 1272 29
June 14200 1086 28
June 14400 905 27
June 14600 733 26
June 14800 571 24
June 15000 424 23

Month Strike Price Volit %
June 15200 296 22
June 15400 199 21
June 15600 124 21
June 15800 72 20
June 16000 38 20
June 16200 18 19
June 16400 7 19
June 16600 3 19
June 16800 1 18
June 17000 1 20
June 17200 1 22

5“South China Morning Post”, June 15, 2006
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13000 14000 15000 16000 17000

20

22.5

25

27.5

30

32.5

35

STRIKE

IMPLIED VOLATILITY SMILE

We see that the volatility, far from constant, varies on the strike
prices, forming a smile, or, more precisely, a smirk.

This is clear fact showing that real markets do not follow Black-
Scholes theory.
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15b. Volatility Matrices

Volatility matrices combine volatility smiles with volatility term
structures, and are used to compute options prices.

14400 14600 14800 15000 15200 15400 15600
Jun 27 26 24 23 22 21 21
Jul 24 24 23 22 21 21 21
Aug 23 - - - 21 20 20

15800 16000 16200 16400 16600 16800 17000
Jun 20 20 19 19 19 18 20
Jul 21 21 20 20 20 20 19
Aug 20 20 19 19 19 18 18

With this matrix in view, we can compute implied volatilites with
a reported strike and arbitrary expiration, and with a reported
expiration and arbitrary strike.
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In order to compute the implied volatiliy for a non reported expi-
ration and a non reported strike (for instance, expiration on July
21 and strike 16500) we can compute

• First, by linear interpolation in time, obtain both values of im-
plied volatility at strike 16600 and 16400 for the given expiry.

• Second, use this values, interpolating in strike, to obtain the
desired implied volatility.

The problem here is that the process computing first the volatilites
interpolating in strike, and second in time, can produce a different
value.

In fact, more complex models are needed, as the procedure of strike
interpolation has only an empirical basis.
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15c. Review of Binomial Trees

Our interest is then to consider more flexible models, with more
parameters. Let us first consider the one step binomial tree.

Consider then a risky asset with value S(0) at time t = 0, and, at
time t = 1, value

S(1) =

{

S(0)u with probability p

S(0)d with probability 1 − p

Here u and d stand for up and down. We are then assuming that
the returns X defined by

S(1)

S(0)
− 1 = X

satisfy

1 + X =

{

u with probability p

d with probability 1 − p
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Let us calibrate this model, i.e. determine the values of the para-
meters u, d, p under the risk neutral measure.

Denoting by r the continuous risk free interest rate, the first con-
dition is that e−rtS(t) is a martingale.

In this simple case, this amounts to ES(1) = S(0)er, that gives:

up + d(1 − p) = er.

Given a value σ of the implied volatiliy (computed from some
traded derivative), we impose varX = σ2. Let us compute

varX = var(1 + X) = E
[

(1 + X)2
]

−
[

E(1 + X)
]2

.
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We have

E(1 + X) = up + (1 − p)d

E(1 + X) = u2p + (1 − p)d2

giving the condition

varX = u2p+d2(1−p)−(up+d(1−p))2 = (u+d)2p(1−p) = σ2.

We have two equations for three parameters u, d, p. In order to
determine the parameters, it is usual to impose u = 1/d6

These three conditions imply

p =
er − d

u − d
, u = eσ, d = e−σ.

6Cox, J., Ross,S. and Rubinstein, M. Option Pricing: A simplified approach. Journal of Financial Eco-

nomics, 7 (1979).
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Remark In practice we take a time increment ∆ instead of one,
and use annualized values of r and σ. The corresponding formulas
are

p =
er∆ − d

u − d
, u = eσ

√
∆, d = e−σ

√
∆.

Example Let us calibrate the Binomial Tree using the values
of our first example on option pricing. We have ∆ = 32/247,
r = 0.025, σ = 0.22. This gives

u = 1.082, d = 0.924, p = 0.500677.
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15d. Several Steps Binomial Trees

In practice one assumes that t = 0, ∆, 2∆, . . . , T , with T = N∆,
and construct the several step binomial tree under the assumption
of time-space homogeneity.

This assumption is equivalent to the Black-Scholes assumption
that the risk-free rate and the volatiliy are constant over time and
space.

The result of this assumption is that at each of the two nodes,
resulting from the first step, the future evolution of the asset price
reproduces as in the first step.

In order to model the stock prices we label each node by (n, i),
where n is the step, and i the number of upwards movements. At
step n we have i = 0, . . . , n, and we denote by j = n − i the
number of downwards movements. We obtain, given i, that the
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stock price takes the value

S(n) = S(0)uidn−i = sn(i),

where sn(i) is a notation. Let us now compute the probability of
reaching the value sn(i). We neeed exactly i ups (and j = n − i
downs), but they can come in different orders. There are

Cn
i =

n!

i!(n − 1)!
,

different ways of obtaining i ups, each has a probability p, they
are independent, so

P[S(n) = S(0)uidj] = Cn
i pi(1 − p)n−i = Pn(i).

(where Pn(i) is a notation). The conclussion is that the stock price
evolves according to the formula

S(n) = S(0)uidn−i, with probability Pn(i), for i = 0, . . . , n.
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15e. Pricing Options in the Binomial Model

The principle applied to price derivatives is:

In a risk-neutral world individuals are indiferent to risk. In
consequence, the expected return of any derivative is the risk-
free interest rate.

As we have calibrated our probability Q, a put option paying

max(K − S(T ), 0),

has a price
P = e−rT EQ max(K − S(T ), 0).

Wich prices give a positive payoff? Denote by

i0 = max{i : S(0)uidj ≤ K.}
Then all values i ≤ i0 give positive payoff, while the others give
null payoff.
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The formula for the price is

P = e−rT
i0

∑

i=0

(

K − sN (i)
)

PN (i)

= Ke−rT
i0

∑

i=0

PN (i) −
i0

∑

i=0

e−rTsN (i)PN (i)

= Ke−rT P(S(T ) ≤ i0) − S(0)

i0
∑

i=0

CN
i e−rT [up]i[d(1 − p)]N−i
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In can be shown, for big value of N , using the Central Limit
Theorem (that approximates a Binomial random variable by a
normal random variable), that

P(S(T ) ≤ i0) ∼ Φ(−d2),
i0

∑

i=0

CN
i e−rT [up]i[d(1 − p)]N−i ∼ Φ(−d1)

(where d1 and d2 are the values in BS formula) obtaining that, for
N big

P ∼ Ke−rTΦ(−d1) − S(0)Φ(−d2),

the Black-Scholes price of a put option.
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15f. Pricing American Options in the Binomial Model

Binomial trees are popular due to their simplicity, mainy when
implementing numerical schemes.

Example Let us compute the price of an American Put Option
written on the HSI7. with the calibrated Binomial Tree. Assume

S(0) = 15248, K = 14400, T = 32/247, r = 0.025, σ = 0.24.

We first calibrate our Binomial Tree:

u = 1.01539, d = 0.984845, p = 0.499496, q = 0.500504

7If the stocks pays no dividends, as in the HSI, the price of the American Call and European Call options

coincide
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First we compute the Call Option price with the Binomial Tree
formula:

P =

e−0.025(32/247)
32

∑

i=0

[

14400 − 15248uid32−i]C32
i pi(1 − p)32−i

= 181.934

The quoted price is 181, and Black-Scholes price is 182.537.

To compute the price of the American put option we use the
method of backwards induction, as follows.

Step 1. Compute the prices AP (32, i) of the option at node (32, i)
trough the formula

AP (32, i) = max(14400 − s32(i), 0).

Step 2. Time t = 31. Compute at each node the expected payoff corre-
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sponding to holding (not excercising) the option. As from the
node (31, i) we can go to up to the node (31, i + 1), and down
to the node (31, i) this values are

H(31, i) = e−r∆(

p AP (32, i + 1) + (1 − p)AP (32, i)
)

Step 3. Time t = 31. Compute at each node the expected payoff corre-
sponding to excercising the option for each node (31, i) throgh

E(31, i) = max(14400 − s31(i), 0).

Step 4. Compare the results H(31, i) of holding, against the ones of
executing E(31, i), to obtain the price AP of the option at
nodes (31, i):

AP (31, i) = max
(

H(31, i), E(31, i)
)

.

Step 5. With the obtained prices repeat the procedure for time=30,29
and so on, up to time 1.
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Step 6. We finally obtain the price for the American Put

AP = 183.178

Remark The difference AP − P is called the early excercise
premium. The algorithm can also provide the optimal stopping
rule for the American Option.
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