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Purpose: Given a stock price, index or exchange-rate series

S(0), S(1), . . . , S(n),

find an adequate statistical model for the stochastic process of
returns

X(1) = log
S(1)

S(0)
, . . . , X(n) = log

S(n)

S(n− 1)
.

Main interest: predict future values, and estimate the risk involved
in holding the asset.

We assume that our data has no seasonal components, and has no
trend, i.e the usual procedures of data transformation have been
used in case of need. We also assume, in principle, that the data
is stationary.

2



Depending on the time intervals between data, one distinguishes:

• Large time intervals: weekly, monthly, quarterly, or yearly data.
Methods developed in the 1970s and before use linear models
(ARMA, ARIMA).

•Daily financial data: Main methods, developed in the 1980s,
are nonlinear: ARCH, GARCH, etc. models.

• Intraday data, or tick data, beginning in the 1990s, can reach
intevals of seconds. Also named high-frequency data. New sta-
tistical phenomena appears.

We concentrate our analysis on the first two types of data, with
emphasis on the second: daily data.

One must also distinguish between the type of financial data. For
instance: Forex data is continuosly quoted (including week-ends),
while stock prices are available only on trading days and hours.
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6a. Stylized Facts of Financial time series.

Empirical observations on daily returns of financial time series led
to the following 6 stylized facts, widely understood to be empirical
truths, to which theories must fit.

(1) Return series show little serial correlation.

This supports the random walk hypothesis, as increments of a
random walk are independent, but...

(2) Series of absolute or squared returns show profound serial cor-
relation.

This contradicts the random walk hyphotesis, as if X, Y are in-
dependent, then |X|, |Y | are independent, and X2, Y 2 are also
independent, and in consequence they should be non-correlated.
The conclussion is that financial time series are uncorrelated but
not independent.
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(3) Conditional expected returns are close to zero.

More problems: this gives that the daily returns form a mar-
tingale difference, i.e. the accumulated process (sum of daily
returns) is a martingale. This supports the martingale hypoth-
esis, so it is very difficult to predict future values, based on
historical data.

(4) Volatility appears to vary over time.

Defining the volatility as the conditional standard deviation of
the returns given the past information, it is observed that if
recent returns have been large, it is expected to have large re-
turns.
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(5) Return series are leptokurtic or heavy-tailed.

The kurtosis of a random variable X is defined as

κX =
E

(
X − EX

)4

(varX)2
− 3,

and 3 =
E(Z−µ)4

σ4 for a gaussian random variable Z ∼ N(µ, σ2).

A random variable with positive kurtosis is named leptokurtic.

It models a large amount of small movements, plus some rel-
atively large movements, in other terms, its density is more
narrow around its expectation, and has heavier tails than a
gaussian random variable.

This contradicts the gaussian returns hypothesis in the Black-
Scholes model.
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(6) Extreme returns apperar in clusters: volatility clustering phe-
nomena

Is a tendency for large returns to be followed by large returns
(positive or negative, as they are uncorrelated)

Remarks:

• The longer the time intervals considered, the less pronunciated
the reported facts appear.

• For intraday data new statistical phenomena, not discussed
here, appears.
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6b. Notations and definitions for Time Series

• µ(t) = EX(t) is the expectation of the t-th return,

• cov(s, t) = E
(
X(s) − µ(s)

)(
X(t) − µ(t)

)
is the covariance

between the returns at times s and t,

• var(t) = cov(t, t) is the variance of the t-th return.

• ρ(s, t) =
cov(s,t)√

var(s)var(t)
is the correlation between the returns

at times s and t.

Definition A process {X(t)} is weakly stationary when

• µ(t) ≡ µ, for all t,

• cov(s + k, t + k) = cov(s, t) for all s, t, k.
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In this case the autocovariance function cov(s, t) depends only
the difference |s − t| (take k = −t), the variance is constant (as
t − t = 0) and consequently the autocorrelation function ρ(s, t)
also depends on the differnce |s− t|. This is why we write

ρ(h) = ρ(h, 0) =
cov(h, 0)

var(0)
.

The autocorrelation ρ(h) is also termed as serial correlation at lag
h.

Definition We say that {X(t)} is a weak white noise process
if it is weakly stationary with µ = 0, and autocorrelation function

ρ(h) =

{
1, when h = 0

0, when h 6= 0
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Definition A process {X(t)} is strictly stationary when

P
(
X(1) ∈ I1, . . . , X(t) ∈ Ih

)
= P

(
X(1 + h) ∈ I1, . . . , X(t + h) ∈ Ih

)
,

for all t, h. That is, the probability distribution of the vector

(X(1), . . . , X(t))

is invariant under translations of the time.

Some Theoretical Facts:

• It can be proved that a strictly stationary process with finite
variance is weakly stationary.

• There exists then strictly stationary processes that are not weakly
stationary.

• In general, a weakly stationary process is not strictly stationary.
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Definition We say that {X(t)} is a strict white noise process
if the random variables

• are centered, i.e. EX(t) = 0 for all t

• are independent

• are identically distributed

• have finite variance σ2
X = E

(
X(t)2

)
.

Definition We say that {X(t)} is a normal or gaussian white
noise process if the random variables

• form a strict white noise,

• have gaussian distribution with parameters (0, σ2).
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6c. Plotting the Empirical Correlogram

We now assume that {X(t)} is weakly stationary, and compute
the correlogram, from the observed data in order to make inference
about the serial dependence structure of the process, i.e. try to
find an adequate model for the returns.

STEP 1. We compute the sample mean

X̄ =
1

n

n∑
t=1

X(t).

STEP 2. We compute the sample variance

σ̄2 =
1

n

n∑
t=1

(
X(t)− X̄

)2
,
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STEP 3. We compute the sample autocovariances at different
lags h = 1, 2, . . . , n0

cov(h) =
1

n

n−h∑
t=1

(
X(t + h)− X̄

)(
X(t)− X̄

)
,

n0 should be significatively smaller than n, in daily data it is
desirable to have n0 = 30.

STEP 4. We compute the serial correlations at lags h = 1, 2, . . . , n/2

ρ̄(h) =
cov(h)

σ̄2

STEP 5. We plot the map (h, ρ̄(h)), called the correlogram.
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6d. Testing for white noise

Purpose: Given a time series,

ε(0), ε(1), . . . , ε(n).

that is either the result of observations, or was obtained as resid-
uals in a statistical procedure, we study methods to determine
whether the series can be modelled by a white noise.

We use two complementary approachs:

•Visual analysis of the correlograms

•A Statistical test
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Visual Analysis

The visual analysis consist in plotting the correspondent correlo-
gram, and compare it with the white noise correlogram.

Remember that the withe noise correlogram has the values{
ρ(0) = 1

ρ(h) = 0 for all h 6= 0

An important result in order to give statistical sustent to the visual
analysis is the following

Theorem [KEY] Assume that {X(t)} is an ARMA(p,q) cen-
tered time series driven by a strict white noise.

Then, for big values of n and fixed h, the estimated correlation
vector (

ρ̄(1), . . . , ρ̄(h)
)
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is approximately a normal random vector with mean value vector(
ρ(1), . . . , ρ(h)

)
i.e. the true correlations, and variance covariance matrix W/n =
((Wij/n))i,j=1,...,h given by Bartlett’s formula:

Wij =

∞∑
k=1

(
[ρ(k + i) + ρ(k − i)− 2 ρ(i) ρ(j)]

× [ρ(k + j) + ρ(k − j)− 2 ρ(i) ρ(j)]
)

In particular, for the variances, we have:

Wii =

∞∑
k=1

[ρ(k + i) + ρ(k − i)− 2 ρ(i)2]2

In several cases it is simple to compute Wij and we have a way to
construct confidence intervals for our estimated correlations.
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For instance, if we have a white noise, it is direct to see that

Wij = δij =

{
1 when i = j

0 when i 6= j

Then under the null hypothesis of the sequence

ε(0), . . . , ε(n)

being a strict white noise, the estimated correlations are (for big
values of n) approximately normally distributed, centered, and
with variance 1/n.

In other terms, the random vector(
ρ̄(1), . . . , ρ̄(h)

)
∼ N (0, Ih/n),

where the second term is a centered gaussian vector with covari-
ance matrix equal to the h× h identity matrix Ih divided by n.
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This means that the coordinates of the vector
√

nρ̄ are indepen-
dent standard normal random variables.

This implies that 95% of the estimated correlation values should
lie in the interval

(−1.96/
√

n, 1.96/
√

n),

and this is the reason why correlograms shoud indicate these two
levels.

If more that 5% of the estimated correlations lie outside of this
bound, it is an evidence against the null hypothesis that the data
are strict white noise.
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Statistical Test

A popular Pormanteau Test was proposed by Ljung and Box
(1978). It uses the statistic

QLB = n(n + 2)

h∑
j=1

ρ̄(j)

n− j

This statistic has (for large values of n) a

• χ2
h distribution when directly observing the data,

• χ2
h−p−q distribution when the residuals have been obtained af-

ter the estimation of an ARMA(p,q) process.

i.e. a Chi squared distribution with h or h − p − q degrees of
freedom.
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Small values of QLB indicate that there is no statistical evidence
to reject the null hypothesis of {ε(t)} being a strict white noise.
In consequence, the test is preformed constructing a critical region
of the form

QLB > t1−α,h

where t1−α,h satisfies the condition

P
(
J2
h > t1−α,h

)
= 1− α,

where J2
h is a random variable with χ2

h distribution.

For instance, if α = 0.05 and h = 10, we get from the statistical
tables

t0.95,10 = 18.30704

For the same α with h = 30 we have

t0.95,30 = 43.77297
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