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18a. Diffusion models

A useful way to model the random evolution of a financial
instrument in continuous time, for instance a stock, an
index, or a stochastic interest rates, is provided by diffusion
processes.

A diffusion process X = {X(t)}, where 0 ≤ t ≤ T , de-
parts from a fixed value X(0) = x0, and follows a dynamics
of the form

dX(t) = α(t,X(t)) dt + β(t,X(t)) dW (t).

that, can be also (more formally) written as

X(t) = x0 +

∫ t

0
α(s,X(s))ds +

∫ t

0
β(s,X(s)) dW (s).
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Here

• {W (t)} is a Wiener Process (or Brownian motion),

• α(t, x) the drift, and β(t, x), the variance, are regular1

functions of two variables, time and space,

• the last term is a stochastic integral.

Suppose that today is t, and we observe the value X(t) =
x. Compute the numbers α = α(t, x) and β = β(t, x).
A financial instrument can be modeled through a diffusion
if it is reasonable to assume that the future value of X at
time t + ∆ is

X(t + ∆) = α ∆ + β ∆W,

where ∆W ∼ N (0, ∆).

1For details, see A. N. Shiryaev. Essentials of Stochastic Finance, World Scientific (1999)
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In other terms, is is reasonable to model through diffusions
when we expect movements on a short time intervals with
gaussian distribution, and

• expected value α ∆,

• variance β2 ∆.

Example Assume that α and β are constants. The cor-
responding diffusion process is

X(t) = x0 + αt + βW (t)

This is the Bachelier model introduced by L. Bachelier in
19002 to describe the movements in the “Bourse de Paris”.

2L Bachelier (1900), Thorie de la spéculation, Gauthier-Villars, 70 pp
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Example Assume that

α(t, x) = a − bx, β(t, x) = β,

i.e. β is constant. In this way we obtain Vasicek model3

for the instantaneous interest rates:

dX(t) = (a − bX(t)) dt + β dW (t).

It has the property of mean reversion:

• If X(t) < b/a then the drift α is positive, and the proces
tends to go up,

• If X(t) > b/a then the drift is negative, and the process
tends to go down.

It can be seen that for large time values, the process reaches
an equilibrium around the mean b/a.

3Vasicek, O. “An equilibrium characterization of the term structure”, Journal of Financial

Economics, 1977, pp. 177-188.
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Example Assume now that the coefficients do not de-
pend on time, and are linear in space:

α(t, x) = µx, β(t, x) = σx.

We obtain a diffusion with equation

dX(t) = µX(t) dt + σX(t) dW (t)

= X(t)
[

µ dt + σ dW (t)
]

.

This is Black Scholes model (as we can verify with the use
of Ito’s Formula)

Note The reference to BS model is so important, that in
finance is more usual to write the diffusions as

dX(t) = X(t)
[

µ(t,X(t)) dt + σ(t,X(t)) dW (t)
]

i.e. to assume that

α(t, x) = xµ(t, x), β(t, x) = xσ(t, x),
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to obtain the BS model when µ and σ are constant.

Example The Constant Elasticity of Variance Model4,
generalizes BS, trying to capture the smile:

µ(t, x) = µ, σ(t, x) = σx−α,

where 0 ≤ α ≤ 1. For α = 0 we obtain BS.

4J.C. Cox an S.A. Ross “The valuation of Options for Alternative Stochastic Processes”,

Journal of Financial Economics, 3 (1976).
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18b. Diffusions and Time Series

Consider a discrete time scheme with N steps:

t0 = 0, t1 =
T

N
, t2 =

2T

N
, . . . , tN−1 =

(N − 1)T

N
, tN = T.

A good aproximation of the diffusion is obtained through
the time series {Yn}, begining from Y0 = x0, and itera-
tively, for n = 1, . . . , N − 1, computing the values

Yn+1 = Yn + α(tn, Yn) ∆ + β(tn, Yn) ∆Wn,

where

∆ =
T

N
, ∆Wn = W (tn+1) − W (tn) ∼ N (0, ∆)

It can be shown that X(tn) ∼ Yn. This fact can be used
to compute option prices through Monte Carlo simulation
method.
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We call {Yn} the discretized diffusion, or also the Euler
approximation of the diffusion.

Example Let us consider the discretized Vasicek model
of interest rates, with Y0 = x0, and

Yn+1 = Yn + (a − bYn) ∆ + β ∆Wn

= a∆ + (1 − b∆)Yn + β ∆Wn.

If we write

a ∆ = ω, φ = 1 − b ∆, β ∆Wn = εn,

we obtain
Yn+1 = ω + φYn + εn,

where {en} is a gaussian white noise with variance β2 ∆.

We have obtained that the discretized Vasicek model is a
non centered AR(1) time series.
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18c. Two factor models

In order to capture the volatility smile of option prices we
can model the value and the volatility by a two dimensional
diffusion:

dX(t) = X(t)
[

µ(t,X(t)) dt + σ(t) dW1(t)
]

dσ(t)2 = p[t,X(t), σ(t)2] dt + q[t,X(t), σ(t)2] dW2(t),

departing from a value (X(0), σ(0)) = (x0, σ0), where5:

• The functions α(t, x), p(t, x, s) and q(t, x, s) are regular,

• The source of randomness (W1(t),W2(t)) is a two di-
mensional Wiener process with correlation ρ.

5Sometimes σ is modelled instead of σ2.
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• We have a two-factor source of randomness.

Example Hull and White stochastic volatility model as-
sumes6

dσ(t)2 = a(b − σ(t)2)dt + cσ(t)2dW2(t).

Observe that the drift term is mean reverting, as in Vasicek
Model.

The discretized diffusion is a multivariate time series {Yn, sn},
begining at (Y0, s0) = (x0, β0), with:

Yn+1 = Yn + α(tn, Yn) ∆ + Ynsn ∆W1,n

s2
n+1 = s2

n + p(tn, Yn, s2
n) ∆ + q(tn, Yn, s2

n) ∆W2,n

6The pricing of options on assets with stochastic volatility J Hull, A White - Journal of

Finance, 1987

12



where

(∆W1,n, ∆W2,n) ∼ N
(

0, ∆

[

1 ρ
ρ 1

]

)

Example GARCH diffusion. Consider the two factor
model

dX(t) = σ(t)X(t)dW (t)

dσ(t)2 = [a + bσ(t)2]dt.

The discretized time series is:

Yn+1 = Yn + Ynsn ∆Wn

s2
n+1 = s2

n + (a + bs2
n)∆ = a∆ + (1 + b∆)s2

n.
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Write

ω = a∆, β = 1 + b∆, εn = ∆Wn,

and observe that {en} is a gaussian white noise with vari-
ance β2 ∆.

The previous time series, for the returns Rn =
Yn+1
Yn

− 1
are:

Rn = snεn, s2
n = ω + βs2

n−1,

that is a GARCH time series with α = 0.
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18d. Extensions of Black Scholes

We are ready to reveiw the three main approaches to cap-
ture the volatility smile in option pricing:

• One Factor diffusion modelling. It assumes that prices
follow a diffusion

dX(t) = X(t)
[

µ(t,X(t)) dt + σ(t,X(t)) dW (s)
]

.

The proposal is to calibrate the function σ(t, x) in order
to obtain theoretical prices as close as posible as observed
prices.

One posibility is to assume some parametric form, as in
the constant elasticity of variance model, where

σ(t, x) = x−α,

for 0 ≤ α ≤ 1. The calibration in this case consist in
determining σ and α that better fit the smile.
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In general, the idea is to construct the function σ(t, x)
departing from the implied volatility matrix, obtained
from observed prices.

• Stochastic Volatitliy Models. This are two factor mod-
els, as the ones described in the previous sections. The
calibration in general is numerically complex, and it
seems that they have not entered in the practitioners
routines.

Diffussion with jumps. Generates volatility smiles by
adding jumps to the Black Scholes diffusion dynamics.

Introduced by Merton7, it is assumed that intervals be-
tween jumps are random variables with exponential dis-
tribution, independent from the other source of random-

7R.C. Merton, “Option Pricing When Underlying Asset Returns are Discontinuous”, Journal

of Financial Economics (1976)
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ness, and that the magnitudes of the jumps are normally
distributed.

The diffusion with jumps models are a particular class
of the Lévy models.
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18e. Calibration in parametric models

Suppose that we want to fit certain model, depending on
a vectorial parameter θ, consistently with a certain set of
call option prices C(Ti,Kj).

The proposal is to find the value of θ that fits better to the
observed prices, in the following sense:

• Find θ such that
∑

i,j

wij
(

Call(θ, Ti,Kj) − C(Ti,Kj)
)2

is minimum.
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Here

•Call(θ, Ti,Kj) are the option prices produced by the
model we want to calibrate,

• the weights wij are usually selected as

w−1
ij = vega(v) = S(0)

√
Tφ(d1),

where v is the implied volatility (computed through BS)
of the corresponding observed price.

The idea is that large vega’s, indicating large variation of
prices for small variations of volatilities should be less rel-
evant that small vega’s.
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19. Calibrating one factor Diffusion Models
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19a. Risk Neutral density from Option prices

In this lecture we assume that our price process follows a
one factor diffusion model:

dX(t) = X(t)
[

µ(t,X(t)) dt + σ(t,X(t)) dW (s)
]

.

Suppose that, for a given maturity T we have an enough
rich amount of option prices C(K,T ) for different strikes.
Denote by

q(t, s, T, y) = q(t, S(t) = s, T, S(T ) = y)

the risk neutral transition probability density, given that
at time t we are in position S(t) = x.

The price of a call option with strike K and expiry T can
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be computed as

C(T,K) = e−r(T−t) EQ(S(T ) − K)+

= e−r(T−t)
∫ ∞

K
(y − K)+q(t, s, T, y)dy.

If we differentiate with respect to K we obtain

∂

∂K
C(T,K) = −e−r(T−t)

∫ ∞

K
q(t, s, T, y)dy.

A second differentiation gives

∂2

∂K2
C(T,K) = e−r(T−t)q(t, s, T,K)

This means that the second derivative of the price of a call
option with respect to the strike gives (discounted), gives
the risk neutral probability.
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In formulas:

q(t, s, T, y) = er(T−t) ∂2

∂K2
C(T,K)

As we do not have the call prices for all strikes, we approx-
imate:

f ′′(x) ∼ f (x + 2h) + f (x) − 2f (x + h)

h2
.

Example Let us compute the risk neutral approximate
density for the HSI, for June 29, if today is June 15.

We take quoted option call prices from SCMP (see web
page), and, for simplicity, assume r = 0 (this does not
change the shape of the density).

We have h = 200, and 22 values, so the (approximate)
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values of the density are:

q(k) =
c(k + 2) + c(k) − 2c(k + 1)

2002
.

Month Strike k Price q(k) × 2002

June 13000 1 c(1) = 2246 1
June 13200 2 c(2) = 2048 2
June 13400 3 c(3) = 1851 1
June 13600 4 c(4) = 1656 4
June 13800 5 c(5) = 1462 4
June 14000 6 c(6) = 1272 5
June 14200 7 c(7) = 1086 9
June 14400 8 c(8) = 905 10
June 14600 9 c(9) = 733 15
June 14800 10 c(10) = 571 19
June 15000 11 c(11) = 424 31
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Month Strike k Price q(k) × 2002

June 15200 12 c(12) = 296 22
June 15400 13 c(13) = 199 23
June 15600 14 c(14) = 124 18
June 15800 15 c(15) = 72 14
June 16000 16 c(16) = 38 9
June 16200 17 c(17) = 18 7
June 16400 18 c(18) = 7 2
June 16600 19 c(19) = 3 2
June 16800 20 c(20) = 1 0
June 17000 21 c(21) = 1 -
June 17200 22 c(22) = 1 -
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We obtain a risk neutral density of the form

13500 14000 14500 15000 15500 16000 16500

0.0002

0.0004

0.0006

14000 16000 18000 20000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

The second graph is the risk-neutral BS density.

BS assumes that

S(T ) = S(0) exp
[

(r − σ2/2)T + σW (T )
]

We assume that r = 0, and estimate8 σ = 0.20. As we
have 10 trading days, T = 10/247. Then

S(T ) = 15248 exp
[

− 0.0008 + 0.04N
]

8As we know that there is no unique σ we use an intermediate value of implied volatilities
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where N is a standard normal random variable.

Application Let us use the risk neutral density to com-
pute the price of an european call digital option, also called
cash-or-nothing binary option. It pays a fixed amount of
money if it expires in the money and nothing otherwise.

Let us assume that the strike is K = 15000. Then we will
recive 1 if S(T ) ≥ 15000, and nothing otherwise.

The price of such an instrument is the discounted expected
value of the payoff under the risk probability measure. As
we assume that r = 0, the price is

D = EQ 1{S(T )≥15000}

= Q(S(T ) ≥ 15000) =

∫ ∞

15000
q(0, 15816.5, T, y)dy,

i.e the price is the risk-neutral probability of the asset value
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resulting larger that the strike.

As 15000 corresponds to k = 11, We compute this proba-
bility from our estimated q(k):

D =

20
∑

k=11

200 × q(k) = 0.64.

where 200 is the distance between consecutives strikes (in
fact we are computing an area).

The BS price is
DBS = 0.651.

In case we take a strike K = 14700, the results are

D =

20
∑

k=10

200 × q(k) = 0.735, while DBS = 0.813.
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19b. The Local Volatility Surface

Assume that our price process follows a one factor model:

dX(t) = X(t)
[

µ(t,X(t)) dt + σ(t,X(t)) dW (s)
]

.

The function σ = σ(t, x) is called the local volatility sur-
face, and calibrating this models means finding an adecuate
function σ that reproduces correctly the observed option
prices.

In 1994 Dupire9 found that there is a way to compute the
function σ knowing prices C(T,K) for all excercise times
and strikes.

The approach is similar to Derman and Kani proposal
of implied trees, and is based in the analysis of the Kol-
mogorov Backward or Fokker Planck equation.

9B. Dupire. “Pricing with a Smile”, Risk 7, 18-20 (2004)
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The obtained formula is

σ(t, x)2 =
Ct(t, x) + rxCx(t, x)

1
2x

2Cxx(t, x)

where

Ct(t, x) =
∂

∂t
C(t, x)

is the first derivative of the function C(t, x) with respect to
the time variable, and similarly, Cx(t, x) is the first deriv-
ative with respect x (space coordinate), and Cxx(t, x) the
second derivative with respect to space.

In other words, Dupire found that if we know all call option
prices, for all maturities and strikes, we can find a one fac-
tor model that produces the smile corresponding to these
prices.
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In practice, one only has a finite set of prices, so the pro-
posal is to find an approximate local volatility function.

A further developement of this formula gives the function
σ(t, x) in terms of the implied volatility v(t, x) obtained
by appliyng BS formula to the observed prices.

An approximation of this formula, used in practice, is ob-
tained assuming that

v(T,K) = a(T )(K − S(0)) + b(T ),

We are assuming then that the implied volatility, once the
expiry is fixed, is a linear function of the strike.

If we remember the volatility smile of the period June 16
(today) June 29,
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IMPLIED VOLATILITY SMILE

with a spot price of 15248, we see that (in this case) this
is a reasonable assumption in the interval 13000 - 16800.

We need to know the local volatility for all intermediate
time values t ∈ [t∗, T ], and all price values S.
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Today is t∗ and the spot price today is S∗. Denote by
τ = T − t.

The approximated formula obtained, is

σ(t, S)2 =
v2(t, S) + 2τv(t, S)vt(t, S) + 2rSτv(t, S)a(t)

(1 + Sd1
√

τa(t))2 − S2τ3/2v(t, S)d1a(t)2

where

d1 =
log[S∗/S] + (r + v(t, S)2/2)τ

v(t, S)
√

τ

v(t, S) = a(t)(S − S∗) + b(t)

vt(t, S) = a′(t)(S − S∗) + b′(t)

In order to calibrate the model we must determine the
functions a(t) and b(t)
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19c. Calibrating the approximated Volatility

Surface

Calibration of b(t).

We begin by b(t) based on the fact that, if S = S∗ we have

v(t, S∗) = b(t).

This means that we need to know the implied volatility of
options at the money.

Then b(t) is the term forward volatility, that we have seen
how to calibrate with options at the money.

An important difference with our previous calculations, is
that here is that the derivative b′(t) is also necessary to
compute σ(t, x), so we need more frequent traded options,
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in order to obtain a reasonable approximation of the deriv-
ative, as

b′(t) ∼ b(t + h) − b(t)

h
In this context, practitioners calibrate the a(t) with prices
of an at the money straddle.

A straddle is made up of a (long) call and a (long) put, with
the same strike and expires. The value a(t) is the implied
volatility. Based on put-call parity, we can also use prices
of (at the money) call (or put) options.
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Calibration of a(t).

The calibration of a(t) is not so direct. For this we use
prices of a risk-reversal conformed with a long call struck
slightly above the current spot, i.e. K = S∗ + ε; plus a
short put, slightly below the current spot, i.e. with strike
K ′ = S∗ − ε.

Knowing the price VRR of the risk reversal, assuming that
ε is small, after some approximations, one obtains10:

a(T ) =
1

2εS∗√τφ(d1)
[VRR − S∗(1 − erτ )] +

e−rτΦ(d2)

S∗√τφ(d1)

=
1

S∗√τφ(d1)

[VRR − S∗(1 − erτ )

2ε
+ e−rτΦ(d2)

]

.

10The details can be found in page 360 of P. Willmot’s Vol.1
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Here Φ is the standard normal distribution function, φ its
derivative, and

d1 =
[r + b(T )2/2

b(T )

]√
τ , d2 = d1 − b(T )

√
τ
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