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Preface

Most of the papers compiled in this volume have been published in Uspekhi
Matematicheskikh Nauk and translated into English in the Russian Mathe-
matical Surveys. The core consists of the series [IV], [VI , [VI], [VII]
presenting a new approach to Markov processes (especially to the Martin
boundary theory and the theory of duality) with the following distinctive
features:

1. The general non-homogeneous theory precedes the homogeneous one.
This is natural because non-homogeneous Markov processes are invariant with
respect to all monotone transformations of time scale - a property which is
destroyed in the homogeneous case by the introduction of an additional
structure: a one-parameter semi-group of shifts. In homogeneous theory, the
probabilistic picture is often obscured by the technique of Laplace transforms.

2. All the theory is invariant with respect to time reversion. We consider
processes with random birth and death times and we use on equal terms the
forward and backward transition probabilities, i.e., the conditional probability
distributions of the future after t and of the past before t given the state at
time t. (This is an alternative to introducing a pair of processes in duality
defined on different sample spaces.)

3. The regularity properties of a process are formulated not in topological
terms but in terms of behaviour of certain real-valued functions along almost
all paths. Specifying a countable family of the base functions, we introduce
a topology in the state space such that almost all paths have certain continuity
properties. However this can be done in many different ways with different
exceptional sets of paths. It is reminiscent of the situation with coordinate
systems: there exist many of them and we have no reason to prefer any special
one.

Two recent papers [VII] and [VIII] are closely related to the main series.
An earlier article [I] (its title is used as the title of the volume) presents the

state of the theory of Markov processes in 1959. At this time the theory was in
the process of extensive development and Markov processes attracted
researchers around the world. The article is a report on the work done by a
group of young mathematicians at Moscow University (almost all of them were
in their twenties). A number of open problems and prospective directions have
been mentioned in the article. Two of them: additive functionals of Markov
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processes and applications of Ito's stochastic differential equations to partial
differential equations - became a major area of research in subsequent years.
Three years later the progress was reported in monograph [ 1 ] .

The boundary theory of Markov processes is one of the principal subjects of
the volume. In [II] a boundary value problem with a directional derivative for
the Laplace equation is studied. At that time the general theory had not been
sufficiently developed and the first sections of [II] are devoted to adjustment
of Martin's method.

A general boundary theory is presented in [IV] and [V]. It is based on a
theorem concerning the decomposition of certain classes of measures into
extreme elements. An improved version of this theorem with applications to a
number of other problems is contained in [VIII]. The key role is played by a
special type of sufficient statistics. Under minimal assumptions on a transition
function, the corresponding entrance and exit spaces are evaluated in [IX]
using a combination of the boundary theory and the ergodic theory.

The relation of the general boundary theory to Hunt's boundary theory for
Markov chains can be easily seen in an earlier paper [III] . The main difference
is in the way a Markov chain (Xt, P) with given transition probabilities is
associated with an excessive measure µ. In Hunt's theory µ(x) is the expected
number of hittings x by Xr during the life interval [a, 0]. In our approach
µ(x) = P { a < t, Xt = x, t < 0 }. This modification makes possible the generali-
zation presented in [IV] and [VI.

Papers [VI] and [VII] are devoted to the problem of constructing Markov
processes whose paths have certain regularity properties. The class of regular
processes investigated in [VI] is close to the class of right processes introduced
by Meyer and studied by Getoor [4]. The theory of Markov representations of
stochastic systems developed in [VII] presents an alternative to the classical
theory of duality due to Hunt, Kunita, Watanabe, Getoor, Sharp and others.
The relation between both theories is discussed in [2]. Additive functionals of
stochastic systems have been studied in [3]. Interesting results in spirit of
[VII] have been obtained by Kuznecov [5], [6], [7], [8], and [9] and Mitro
[101, [111.

For this edition the author has revised the entire text of the English
translations. A few slips in the originals (some of them noticed by Kuznecov)
have also been corrected.
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1. The intimate connection between Markov processes and problems in
analysis has been apparent ever since the theory of the former began to
develop. It is not without reason that A. N. Kolmogorov's paper [39] (Russian
translation [38]) of 1931, which is of fundamental importance in this domain,
was entitled "On analytical methods in probability theory". The investigation
of these connections also forms, to a large extent, the subject matter of
A. Ya. Khinchin's book of 1933 on "Asymptotic laws of the theory of
probability" [52] (Russian translation [51 ] ).

In the fifties, and more particularly during the last five years, the theory of
Markov processes entered a new period of intense growth. If previously the
connections between probability theory and analysis were somewhat one-sided,
probability theory applying results and methods of analysis, now the opposite
tendency increasingly asserts itself, and probabilistic methods are applied to the
solution of problems of analysis. Methods belonging to the theory of
probability not only suggest a heuristic approach, but also, in many cases, yield
rigourous proofs of analytic results. Applications of the methods of the theory

1 This paper is an expanded version of a survey read by the author at a meeting of the Moscow Mathe-
matical Society held on October 20th, 1959, and devoted to the activities of the seminar directed by
E. B. Dynkin at the University of Moscow.

1



2 E. B. Dynkin

of semigroups of linear operators have led to far-reaching advances in the
classification of wide classes of Markov processes. New and deep connections
between the theory of Markov processes and potential theory have been
discovered. The foundations of the theory have been critically re-examined; the
new concept of a strongly Markovian process has acquired a crucial importance
in the whole theory of Markov processes. Intensive research on these lines is
being done in the whole world, attracting many distinguished mathematicians:
Feller, Doob, Hunt, Ray, Chung, Kac, and many others in the U.S.A.; Ito,
Yosida, Maruyama, and their disciples in Japan; Kendall, Reuter, and others in
England; Fortet in France. Soviet mathematicians are also taking an active part
in this creative competition. A group of mathematicians cultivating the new
approach in the theory of Markov processes is gathered in the seminar led by
the present author at the University of Moscow. This survey covers the most
important results obtained by members of the seminar from the academic year
1955-56 onwards, particular attention being paid to the latest results obtained
during the last couple of years. Naturally, the work done by foreign mathe-
maticians on the subjects studied by the seminar will also be discussed;
however, in this respect, the survey cannot claim to be complete.

A short account of the indispensable general concepts of the theory of
Markov processes is given in § 1. A survey of the main lines of investigation
followed by the seminar is given in § 2-7. The concluding §8 contains
information about the membership of the seminar and its history.

§ 1. Introduction

2. What is a Markov process? We shall begin with an important class of
Markov processes, called diffusion processes, which describe a physical
phenomenon known as Brownian motion. It is well known that particles of
dye-stuff immersed in a liquid move chaotically, changing the direction of their
motion all the time. This movement is due to collisions of the particles with
molecules of the liquid. The first mathematical theory of Brownian motion was
created by Einstein and Smoluchowski. In a contemporary form, due to
A. N. Kolmogorov, this theory is shaped as follows: the main mathematical
entity is a function P(t, x, r), which represents the probability of a particle
being in the set I' after a length of time t from a moment when it was at the
point x. Concerning the properties of this function, some assumptions are made
from which it follows that

P (t, .z, p) = p (t. x, y) dy,

where p(t, x, y) is the fundamental solution of the parabolic equation

t
(T) di,r3.r, (1)
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This result makes it possible to apply the theory of differential equations to the
solution of a variety of important problems on Brownian motion. On the other
hand, many other, not less important, questions do not fit into this theory. For
instance, one may want to know how quickly particles of dyestuff will be
deposited on an absorbing screen; but it is impossible to solve this problem by
means of the function P(t, x, r) without making additional assumptions.

3. A more complete mathematical model of Brownian motion should give an
account not only of probabilities involving one moment of time, but also of
those which involve the whole course of the process; the whole trajectory xt
should be the object of the theory. The random character of the motion is
expressed mathematically by the assumption that xt = xt(w), where w is an
element of the set f2, which is "the space of elementary events" on which a
system of probabilistic measures Px is given. The sets A on which Px (A) is
defined are described as events associated with the process, and the value of
Px (A) is interpreted as the probability of the event A under the condition that
the motion began at the point x. In particular, one of the events associated
with the process is { xt E r }. The probability Px { xt E F } = P(t, x, r) is called
the transition function of the process; whereas in the first model it was
regarded as the only mathematical characteristic of the model, it now occupies
a subordinate position.

The mathematical entity we have arrived at is precisely a Markov process in
the modern sense. It is a pair (xt, Px ), where xt = xt(w) is a function of t > 0
and of w E E2, and Px is a system of probability measures in the space 12. The
phase space to which the values of xt belong is, in the case of Brownian
motion, a domain of the three-dimensional space. In general, however, it is an
arbitrary set E for which a system of "measurable subsets" has been defined.
One essential condition has to be satisfied by the function xt and the measure
Px : it is the Markovian principle that the future should be independent of the
past when the present is known. More precisely, given the value of xt, prospects
of the future motion of the particle should not depend on its movement before
the instant t.

4. The general scheme connecting Markov processes with analysis is based on
the concept of a shift of a function defined over the phase space. The value of t
being arbitrarily fixed, let f(x) be a measurable function over the phase space.
Then f(xt) is well defined over 2; the integral of this function with respect to
the measure Px is precisely the value of the shifted function at the point x.
Thus

rd (x) = MXl (x,) _ P (t, x, dy) / (y)

where P(t, x, r) is the transition function. The shift of a function is a linear
operator. The Markovian principle implies T,T, = TS + t(s, t > 0), so that the
operators Tt form a semigroup. Consider now the "operator of an infinitely
small shift".
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AI (x) = lim
Tti (w)- 1(_) (2)

t-.o
This operator is called the infinitesimal operator of the Markov process. If Af
is defined, Ttf is the solution of the equation

it-
Aua

which satisfies the initial condition u(0, x) = f(x).
For the diffusion process (which describes Brownian motion), the

infinitesimal operator is given byt

(x) b=

(3)

4)
t tI i(x)azti az

(for every x, the numbers a,i(x) form a positive semi-definite matrix). In this
case, (3) is essentially equivalent to (1).

In general, the transition function of a process can be regarded as the funda-
mental solution of equation (3). But having at our disposal a system of
measures Px allows us to create, within the framework of our theory, a much
greater variety of constructions and transformations than that which would be
possible within the pure theory of differential equations. For instance, in the
formula defining the shift operator T, one can replace the constant t by a
random time T. The operators T,r can no longer be expressed in terms of the
transition function. Furthermore, by means of such operators, one can express,
for instance, the solution of Dirichlet's problem for an arbitrary elliptic
equation in an arbitrary domain.

§2. General problems in the theory of Markov processes

5. These problems concern the foundations of the theory of Markov
processes and have mostly a set-theoretical character. I shall briefly discuss
three problems of this kind.

The first concerns the nature of the trajectories of the process. Consider, for
instance, a diffusion process whose infinitesimal operator is defined by (4). Are
all the trajectories of the process continuous? This question is of crucial impor-
tance not only in the study of Brownian motion, but also in the qualitative
solution of any analytical problem connected with the differential operator (4).
What is the answer to this question? In the first place, the question is not quite
correctly stated. The point is that the set of trajectories is not uniquely defined
by the infinitesimal operator or by the transition function. Therefore, a more

1 Strictly speaking, the operator A is given by (4) for all functions with continuous partial derivatives up
the second order. However, its domain contains some less regular functions as well. Thus the
infinitesimal operator is an extension of (4).
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correct statement of the question would be this: is there a Markov process
admitting an infinitesimal operator (4), and such that all its trajectories are
continuous? The answer is "Yes". In the theory of Markov processes, a dif-
fusion process is always understood to be one admitting an operator (4), and
having the property that all its trajectories are continuous. Such a process with
continuous trajectories is essentially defined by the operator A.

A general criterion allowing one to decide to which transition functions
there correspond Markov processes with continuous trajectories was given by
E. B. Dynkin in 1952 [35] . A little later it was found independently by Kinney
[821. The condition is very simple; however, it is only sufficient, and not
necessary. In 1957, L. V. Seregin [43] deduced another, slightly more compli-
cated, but stronger, criterion which, in a wide class of cases, is not only
sufficient, but also necessary for the continuity of the trajectories.

On the basis of the Dynkin-Kinney criterion, a simple sufficient condition
for the continuity of the trajectories can be given in terms of the infinitesimal
operator. The essential part of this condition requires that the operator should
have a local character, i.e. that Af(xo) should not vary when the function is
modified outside a neighbourhood of x0. Clearly, this condition is satisfied by
all differential operators. Hence one can obtain the proposition previously
mentioned about the continuity of the trajectories of diffusion processes. In
papers by Dynkin, Kinney, and Seregin, beside conditions for the continuity of
the trajectories of a process, conditions are also deduced for their continuity to
the right, and for their having no discontinuities of the second kind. With res-
pect to the trajectories of a special class of Markov processes, very subtle
conditions for their continuity to the right were found by A. A. Yushkevich
(571, [581.

6. A second problem arising in the theory of Markov processes concerns the
domain of validity of the Markovian principle of the future being independent
of the past when the present is known.

Decompose a trajectory of the process into two parts: up to the time r
when a set r is first reached, and after this time. Assume that xT is known. Is
the knowledge of the trajectory before the time r relevant to the prediction of
the motion after the time r? Physical intuition requires a negative answer. How-
ever, such an answer does not follow from the definition of a Markov process,
since this definition involves a fixed time t, and not a random time T. We des-
cribe as strongly Markovian those Markov processes for which the principle that
the future should be independent of the past when the present is known applies
not only to a fixed time, but also to a well-defined class of random times r.

The first paper in which the strongly Markovian property of some processes
was rigourously stated and proved was written by J. L. Doob [64] ; it contained
a discussion of a special class of Markov processes with denumerable phase
spaces. More general processes with denumerable sets of states were
investigated from this view point by A. A. Yushkevich [56] in 1953.
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The study of strongly Markovian processes as a class in its own right was
initiated in papers by E. B. Dynkin [221, [23], [26] and E. B. Dynkin and
A. A. Yushkevich [36] 1 in 1955-56. Dynkin showed that, starting from the
strongly Markovian property, and imposing definite conditions of continuity
on the trajectories of the processes, one can compute their infinitesimal
operators. In their joint paper, Dynkin and Yushkevich were the first to give a
general definition of a strongly Markovian process; they constructed examples
of Markov processes which are not strongly Markovian, and deduced sufficient
conditions for a Markov process to be strongly Markovian.

These conditions require that, in an appropriate topology, all the trajectories
should be continuous to the right and that shift operators should transform
continuous bounded functions into continuous functions. It is easily seen that
diffusion processes satisfy both these conditions, and, therefore, are strongly
Markovian.

The strongly Markovian property was further analyzed in a succession of
papers (A. A. Yushkevich [57), [59], R. Blumenthal [60], E. B. Dynkin [27],
G. Maruyama [84] , P. Levy [831, D. Ray [87]) which appeared during the last
three years. In his very interesting paper, D. Ray showed that under quite gen-
eral assumptions it is possible to extend the phase space of a Markov process in
such a way as to make the process strongly Markovian.

The basic results concerning strongly Markovian processes, as well as the
essential criteria for the continuity of trajectories, are discussed in E. B.
Dynkin's monograph [33].

7. The third set-theoretical problem which I wish to mention concerns the
introduction of an intrinsic topology in the phase space. Topology plays no
part in the definition of a Markov process. The phase space E is an arbitrary
abstract set in which a system of measurable subsets has been singled out. How-
ever, we have seen that the study of Markov processes requires the introduction
of some kind of topology in the phase space. In 1959, E. B. Dynkin [311 pro-
posed the following definition of an intrinsic topology: The set r is called open
if, for every x E r a trajectory starting from x remains in r for a positive length
of time with probability 1'. Interesting properties of the intrinsic topology have
been proved for standard processes, a wide class of processes which includes all
processes important for applications, in particular, all diffusions. For such pro-
cesses it is shown that a point x belongs to the intrinsic closure of a set r if, and
only if, a particle starting from x visits r with probability 1 during an arbitrarily
short time interval. A function f(x) is continuous in the intrinsic topology if,
and only if, with probability 1, f(xr), regarded as a function of t, is continuous to
the right; the last result is due to I. V. Girsanov [ 15 1.

The year 1956 also brought three American papers (Hunt [78] , Chung [621, Ray [861) investigating
independently of Yushkevich and Dynkin, various forms of the strongly Markovian property for some
special classes of Markov processes.
In the case of Brownian motion, which corresponds to Laplace's operator, this topology coincides with
the topology that was previously investigated by H. Cartan [611 and J. L. Doob [651, [661.
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I. V. Girsanov [15] and M. G. Shur [54] proved that the continuity of a
function f(x) in the intrinsic topology is invariant with respect to shifts. The
condition that shifts should transform every continuous function into a con-
tinuous function plays a very important part in the theory of Markov processes;
we have seen that it is one of a set of two conditions which are sufficient to en-
sure the strongly Markovian character of a Markov process. Roughly speaking,
this condition means that trajectories starting from neighbouring points behave
in a similar way. The part played by this condition was first pointed out by
W. Feller, and this is why processes satisfying it are described as Fellerian. By
proving that, in the intrinsic topology, every standard process is Fellerian, Shur
and Girsanov obtained a result of fundamental interest.

The intrinsic topology is by no means the only interesting topology for the
theory of Markov processes. In particular, I. V. Girsanov [ 15 ] proposed an
interesting definition of a uniform structure connected with a process. For
Brownian motion, this structure is induced by the usual Euclidean metric.

§3. The form of an infinitesimal operator.
Generalized diffusion processes

8. Which operators are infinitesimal operators of Markov processes? This
question is of crucial importance in the theory of Markov processes, because,
under very general assumptions, the transition function can be built up from
the infinitesimal operator in a unique way (see [25] ), and the knowledge of the
transition function allows one to obtain some insight into the whole class of
processes corresponding to this function. On the other hand, the answer to the
same question affects the analyst too, since it tells him which operators are
susceptible of treatment by probabilistic methods.

An important tool for the investigation of the forms of differential operators
is supplied by a general theorem due to E. B. Dynkin [221, [26]. Its statement
is expressed by the formula

TTU1(z)-((_)
Ai(x)= t m MYiu

U is a neighbourhood of x, and TU the time of the first exit from U; the
passage to the limit takes place when U is contracted into x.

One notices the analogy between this formula and formula (2), which
defines the infinitesimal operator. However, despite the outward similarity of
these two formulae, the passage from one of them to the other is far from
trivial. In this passage, essential use is made of the fact that the process in
question is strongly Markovian and continuous to the right. Strictly speaking,
the basic theorem, as stated above, applies only to Fellerian processes, but in a
slightly different form it can be extended to non-Fellerian processes as well.

The main term in the right-hand side of (5) can be expressed as follows:
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T,,,/ (x) = Mxf [x (TU)1= S / (y) IIx (dy),
E

where Iix denotes the probability function of the point reached by the particle
at the time of its exit from U. If the process is continuous, this probability is
concentrated on the boundary of U. In this case, the recipe, given by (5), for
obtaining the infinitesimal operator A is strongly reminiscent of the well-
known recipe for obtaining the Laplace operator from the operator of averag-
ing over a sphere; the only difference lies in the fact that in the general case the
mean is taken with respect to a non-uniform measure, instead of the uniform
measure used for the Laplace operator. It is natural to describe any operator
obtainable by means of such a recipe as a generalized second-order elliptic dif-
feren tial operator. The adoption of this term is further justified by the fact that
such operators have many of the properties of conventional elliptic operators,
and also by the fact that if, in a domain, the limit in the right-hand side of (5)
exists for functions giving coordinates and pairwise products of coordinates,
then, for any twice differentiable function, this limit can be expressed by a
conventional (possibly degenerate) elliptic differential operator.

Thus, if a Fellerian process is continuous, its infinitesimal operator is a gener-
alized second-order elliptic differential operator. In this sense, any continuous
Fellerian process can be regarded as a generalized diffusion process.

9. The contention that any Fellerian process with continuous trajectories is
a generalized diffusion process is further strengthened in the case of processes
on the straight line.

In this case the differential operator is found to be a generalized second
derivative

Af(x)=D,,D, f(x), (6)

where Du f is the derivative with respect to the function u, i.e. the limit of the
ratio of the increment off to that of u. In this formula, u and v are arbitrary
increasing functions; u must be continuous (v can be discontinuous). If u and v
are twice differentiable, the operator (6) can be expressed in the form of

Af(x)a(y)±z +b(_) dzdZ2
(6')

so that we are confronted with an ordinary diffusion process. It can be said
that the general continuous one-dimensional process given by (6) is a dif-
fusion process for which the coefficients a(x) and b(x) are (in a certain sense)
generalized functions.

Formula (6) is an easy consequence of (5), but it was first obtained by
W. Feller ([73] , see also [77]) by an entirely different, purely analytical
method. Feller's remarkable contribution provided one of the main stimuli for
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the development of the theory of Markov processes in the last few years.
10. Recently, a series of results was obtained concerning the properties of

continuous processes corresponding to operators given by (6). In particular,
A. D. Venttsel' [5] proved that the transition function of such a process can be
expressed in the form

P (t, x, r) = S p (t, x, y) dv (y),
r

where p(t, x, y) = p(t, y, x) is the fundamental solution of the equation

ap = D D,.p

An important step forward was also made by A. D. Venttsel' [4] in connect-
ion with another question, which was investigated in an outstanding paper by
I. G. Petrovskii [41 ] as early as the thirties. The probabilistic meaning of the
problem is this: to find the order of magnitude of the greatest deviation, from
the initial position x, of the moving particle during a time t with t - 0. By
means of a suitable transformation of the x axis, the general case can be
reduced to that of u(x) ° x (in which case b(x) = 0). I. G. Petrovskii gave a
complete solution of the problem for the process corresponding to the operator

d2

dx2
It is easy to show that with any coefficient a(x), behaving in a regular

way, the overall picture will remain the same. A. D. Venttsel' investigated the
general case of processes ruled by the operator (6), and showed that, here,
various qualitative departures from Petrovskii's results were possible. Roughly
speaking, in the case treated by Petrovskii, the greatest deviation of the particle
from its initial position during a length of time t is of the order of tl12.

Venttsel' showed that if the coefficient a(x) has a singularity at the initial point
of a motion, this deviation can be of any order t°, where 0 < a < 1. For
points of discontinuity of v(x), this deviation can be of the order of t.

More general differential operators

a (x) s -}- b (x) dl + c (x) f, where c < 0.d, ds

can also be fitted into probabilistic schemes. To such operators there corres-
pond Markov processes terminating at random instants. As recently shown by
E. B. Dynkin [90] , the general form of such terminating continuous processes
on the straight line is obtained by replacing (6) by

Af = (qff), (7)

where q is a function which is convex from above.
11. In the process of deducing (6) from the basic theorem (5), one obtains

simple expressions for the functions u and v in terms of entities characterizing
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the process from a probabilistic view point, and having an intuitive meaning. If
the motion takes place on a segment, these entities are: the probability p(x) of
attaining the right-hand end before the left-hand end when starting from x and
the mean time m(x) elapsing between the start from x and the arrival at the
boundary.

Analogous entities with intuitive meanings can also be introduced for many-
dimensional processes. In a survey read before the III All-Union Congress of
Mathematicians, E. B. Dynkin [291 proposed the following problem: for which
classes of many-dimensional processes do these two entities completely deter-
mine the process? In 1958, I. V. Girsanov [ 14] showed that one of these classes
is formed by multi-dimensional diffusion processes with non-degenerate matrices
a(x).

12. I have dwelt mostly on processes with continuous trajectories. However,
quite a few substantial results have been obtained concerning processes with
discontinuous trajectories. In particular, E.B. Dynkin [28] gave a full classifi-
cation of jump processes. These are processes in which the whole motion
proceeds in jumps, i.e. in which the particle remains in its initial position for
some positive time, then jumps to a new point, then to another point, and so on.
The main difficulty encountered in the study of such processes was due to the
possibility of transfinite sequences of jumps.

§4. Harmonic, subharmonic, and superharmonic functions associated
with a Markov process

13. 1 recall the general definition of a superharmonic function. A function
f(x) is superharmonic if

(a) the mean off over any sphere centred at x is smaller than, or equal to,
f(x);

(b) f(x) is continuous from above.
If the first condition is satisfied when the phase "smaller than, or equal to"

is replaced by "equal to", f is described as harmonic; if it is satisfied when the
same phrase is replaced by "bigger than, or equal to", f is called subharmonic.
To fix ideas I shall confine myself to superharmonic functions.

To every Markov process one can attach a class of functions which are
analogous to ordinary superharmonic functions. Conditions (a) and (b) are
replaced by

(a) Tf(x) <&) (T being the first exit time from an arbitrary open set);
(b')T,nf(x)- f(x)ifPX;Tn-+0}=1.
In the case of a diffusion process, corresponding to the Laplace operator,

conditions (a') and (b') are equivalent to (a) and (b). The proof is far from
simple, but it is easy to explain why (a) implies (a). Let r be the first exit time
from the solid sphere bounded by S. In view of the invariance of the Laplace
operator with respect to all rotations, a particle starting from the centre of the
sphere will have a uniform probability distribution on the sphere S when it
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arrives there. Hence TTf(x) = Mxf(x,) coincides with the mean of S.
The concept of a superharmonic function associated with a Markov process

was introduced in a paper by E. B. Dynkin [31 ] t . In the same paper it was
proved that the class of nonnegative superharmonic functions associated with a
Markov process was identical with that of excessive functions, introduced by
G. A. Hunt [79] in 1957. Hunt defines an excessive function as one which is
nonnegative and is not increased by shifts. More precisely, it should satisfy the
conditions:

(a") Ttf(x) <f(x) for any t;
(b")Ttf(x)-f(x)ast->0.
Hunt proved a series of theorems about excessive functions. Taking into

account the connection between excessive and superharmonic functions, one
can draw the following conclusions from Hunt's results:

1° Call a function f smooth if Af is defined. A smooth function is super-
harmonic if, and only if, of < 0.

2° Any nonnegative superharmonic function is the limit of a non-decreasing
sequence of smooth superharmonic functions.

3° All superharmonic functions are continuous in the intrinsic topology.
14. A concept intimately connected with that of an excessive function is the

concept of an excessive random variable, which emerged quite recently (see
E. B. Dynkin [34], [90] ). Its definition requires a minor digression.

A mapping t -, t + h of the time transforms the random variable xt into xt+h .

This transformation can be naturally extended to all the random variables
associated with a Markov process. The accepted notation for this operator is 6h

A nonnegative random variable i; will be called excessive if:
(a) eh i c t for any h ;
(j3)Bhl;-Lash-+0.
As an example of an excessive random variable, we can take

S / (xt) dt, where f > 0.
0

Indeed,

9,,t 1 (xt+n) dt = \ / (xt) dt,
h

which shows that the conditions (a) and ((3) are satisfied.
It is easy to verify that if i; is an excessive random variable, then

f (z) = M.x (8)

1 Harmonic, subharmonic, and superharmonic functions associated with discrete-time Markov processes
were considered by W. Feller [74] and J. L. Doob [69]. For some special diffusion processes, these
functions were discussed in papers by J. L. Doob [64] -[66] .
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is an excessive function. It follows from a remarkable theorem proved by
V. A. Volkonskii [ 121, [ 13] that any bounded excessive function admits a
representation of the type of (8). L. V. Seregin constructed examples of
unbounded excessive functions which cannot be represented by (8). It would
be very interesting to know how wide a class of unbounded excessive functions
can be represented by this formula.

15. As a special case of (8), superharmonic functions can be represented in
the form of potentials. The Newtonian potential in three dimensions can be
defined by

V(x)_S I(y)dy
J IIx-yll (9)

the integral being taken with respect to the Lebesgue measure, 11 x 1 denoting
the length of the vector x, and f(y) being a nonnegative function which can be
regarded as the density of a distribution.

One finds that (9) can be re-written in the form

V(s)=MxSf(x,)dt, (10)
0

where xt is a diffusion process in three dimensions, which corresponds to the
Laplace operator. Formula (10) is meaningful for any Markov process and
makes it possible to construct potentials for any such process. Note that (10)
is a special case of the representation of a superharmonic function by means of

an excessive random variable, l; being chosen to be f(xt)dt.
0

One more result obtained at our seminar and concerning superharmonic
functions must be mentioned: It is a theorem by M. G. Shur [55] , which shows
that Riesz's classical theorem about the decomposition of any superharmonic
function into a sum of a harmonic function and of a potential can be extended
to the class of superharmonic functions associated with any non-degenerate
diffusion process (i.e. with any elliptic second-order differential operator).

§5. Additive functionals and associated transformations of Markov process

16. A system of random variables apt is called an additive functional of a
Markov process if

(1) Oh Pt -'Pt+h Pr'
(2) apt is defined by the course of the process up to the time t.
As an example of an additive functional of a Markov process, we can take
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1Pr = S / (xt) dt.

For Brownian motion, another important example of an additive functional
is known; it is what we call a stochastic integral,

q,,b(x,)dx,

(on this subject see [911 ).
If apt is an additive functional, the function

at _ewr

is called a multiplicative functional. It still satisfies (2), while the first con-
dition is replaced by a similar one in which subtraction is replaced by division.

171. The importance of multiplicative functionals for the theory of Markov
processes can be seen from what follows: Put

P (1, x, F) = S a, PX (do)).
.r, E r

One finds that if at is a multiplicative functional for which Mx at < 1, there
exists a Markov process with P(t, x, r) as its transition function. In general,
this process may be a terminating one.

The following natural question arises: when can the process corresponding to
the transition function P(t, x, r) be so chosen that it admits the same trajec-
tories as the initial process? One finds that it suffices that there be a random
variable t with the following properties:

(1) atett; < 1; for every t,
(2) Mx t; = 1 for every x,
(3) 0ht-i; ash-0.
If this condition is satisfied, a process admitting P(t, x, r) as a transition

function can be constructed with the same set of trajectories, but, in general,
the trajectories will have to terminate at random.

We shall consider three important classes of such transformations.
18. If, in the condition (1), equality takes place, one will not have to

terminate the trajectories. In this case, the passage to the new process is
reduced to a transformation of the measures according to the formula

P. (A) = S l;P. (d( o). (11)

This case occurs, in particular, if the initial process is a terminating diffusion

1 The results discussed in Nos. 17-20 are contained in the papers [34] and [92] by E. B. Dynkin (see
also [90]).
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process, and the functional at is given by

at= exp [- b(x, )dx - h2(x,,)dx,

can be taken to be lim at, , where is the time of the termination of the
t-. d

process. The transformation (11) leads to the addition of the term b(x) TX

to the infinitesimal operator of the process. In the many-dimensional case, by
means of a similar construction, one can add an arbitrary first-order differential
operator to the infinitesimal operator of any non-degenerate diffusion process
(see [ 16] , and also [42] , where further references can be found).

19. A second important example of a transformation of a process arises if the
functional at satisfies at 6 1 for every t. Then the conditions (1)-(3) are satisfied
with t = 1. This operation on processes was discussed at an earlier stage by
E. B. Dynkin [33] (see also [32] ). Processes thus obtained are described as
sub-processes of the initial process.

To get a sub-process, it suffices to terminate the trajectory of the initial pro-
cess with a certain probability distribution, at being the probability that this
termination will take place after the time t.

20. The third important example of a transformation of a process is connected
with excessive random variables. Let t; be any excessive random variable, and
f(x) = Mx t the corresponding excessive function. Then

TC)at /(
/ (xo)

is a multiplicative functional, and the couple at, f(x ) satisfies the conditions
0

(1)-(3). We obtain an interesting transformation of the process, which trans-
forms the infinitesimal operator according to the formula

Ag = 1 A (1g)

This transformation had not been discussed previously.
21. An important transformation based on additive functionals does not fit

the scheme discussed above. This is the random time change.
Let r(t) be a monotonically increasing random function. We transform the

function xt into yt =XT M I The transformed process is Markovian if r(t) is the
inverse function to an additive functional. (The proof of this result requires some
restrictions on the initial process (xt, Px )).

The random time change in Markov processes was first discussed in a paper
by V. A. Volkonskii [9] , in which it was proved, in particular, that all the one-
dimensional continuous processes can be obtained from the simplest diffusion

2

process associated with the operator d by means of a monotonic
dx2
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transformation of the x axis and of a random time change. It should be noted
that the random time change which corresponds to the additive functional

t

Ot = f(xn )du, leads to the multiplication of the infinitesimal operator of the

0

process by f(x) 1 .

22. It seems to me that what has been said shows clearly the importance of
additive and multiplicative functionals for the theory of Markov processes.
Hence the great interest of the problem of finding all the additive functionals
of any given process. V. A. Volkonskii [ 131 succeeded in finding all the non-
negative additive functionals of Brownian motion in one dimension. However,
if we either do away with the condition that the functional should be non-
negative, or pass to several dimensions, we are confronted with a problem
which is still unsolved. We feel that this is one of the most topical problems in
the theory of Markov processes.

The complex of problems connected with transformations of Markov
processes is of great interest, since, here, we face a new calculus which enriches
our store of analytic tools.

§6. Stochastic integral equations

d x
23. Let xt be a process corresponding to the operator , and xt a process

dx2
corresponding to the operator

L - 2 az (z) 1
d

+ m (x) dx

As shown by K. Ito [801, [811, the processes xt and zt can be so chosen as to
be connected by the relation

xt = xo + m (x1) dt + S a (xe) dst. (13)
0 0

The right-hand side contains a stochastic integral which already appeared in
section 16. Equation (13) admits a simple physical interpretation. When trans-
cribed in the form of

dx. = m(zt) dt + a(zt) dxt, (14)

it means that when the position xt = x of the particle is known, the motion
during a short time interval will be composed essentially of a determinate
motion with velocity m(x), and of a diffusion (corresponding to the operator
d2

dx2) with a coefficient equal to a(x).

Formula (13) can be regarded as an integral equation allowing us to express



16 E. B. Dynkin

zt in terms of xi. This equation can be solved by applying the method of suc-
cessive approximations. There is an analogous integral equation for multi-
dimensional processes. Thus we have a most convenient analytic tool for the
reduction of problems concerning the general elliptic second-order differential
operator to problems on the Laplace operator. Heuristically speaking, one can
say, for instance, that Ito's method allows us to replace the study of the partial
differential equations for the transition probabilities of a process by that of the
ordinary differential equations for its trajectories. It is true that these differ-
ential equations are stochastic, but they can be approached in the same way as
conventional differential equations, viz. by reducing them to integral equations,
which can be solved by successive approximations.

24. The method of Ito's stochastic differential equations has been success-
fully applied to the solution of a number of concrete analytic and probabilistic
problems.

Using this method, I. V. Girsanov [ 181 showed that, under mild assumptions
of non-degeneracy for the operator (4), the corresponding diffusion process has
the property that shifts TT(t > 0) transform all bounded Borel-measurable
functions into continuous functions. This is a strengthening of Feller's con-
dition, discussed at the end of §2, and we describe processes having this pro-
perty as strongly Fellerian. The concept of a strongly Fellerian process was
introduced and discussed by I. V. Girsanov in [ 17 1.

A. V. Skorokhod [88], [89] has studied boundary problems for one-
dimensional diffusion processes by means of the method of stochastic differ-
ential equations.

M. I. Freidlin [44] applied this method to the investigation of boundary
problems for elliptic equations which degenerate in the interior of the domain.
It should be pointed out that, in contrast with the various methods of the pure
theory of differential equations, Ito's method is completely insensitive to the
degeneration of the differential operator. This circumstance allowed M. I.
Freidlin to make substantial progress in a problem which, until then, had been
fairly intensively studied by methods of classical analysis.

Another remarkable advantage of Ito's stochastic equations resides in the
fact that their application is not made appreciably more complicated by an
increase in the number of dimensions. The passage from one to n dimensions is
almost automatic, and K. Dambis [ 191 recently showed that the passage to in-
finitely many dimensions is almost equally simple. The stochastic differential
equations which he constructed for diffusion processes in the Hilbert space
make it possible to study elliptic and parabolic differential equations in
functions of infinitely many arguments. This theory may reveal itself as very
comprehensive, but so far only the first steps have been made.
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§7. Boundary problems in the theory of differential equations and the
asymptotic behaviour of trajectories

25. In general, the specification of an analytic formula of the type of (4)
does not fully define the infinitesimal operator of the process. The domain of
functions for which an infinitesimal operator is defined is an essential part of
the concept of such an operator. Apart from some well-defined requirements of
regularity, the domain in question is determined by boundary conditions. Gen-
erally speaking, boundary conditions can be imposed in various ways, and the
investigation of all the possible types of boundary conditions is an important
problem. One finds that every type of boundary condition is associated with a
well-defined type of asymptotic behaviour of the trajectories of the process as
they approach the boundary.

W. Feller [70], [71 ] , [76] 1 described all the possible types of boundary
conditions for one-dimensional diffusion and generalized diffusion processes,
covering all the cases in which the differential operator degenerates in the
neighbourhood of the boundary. The many-dimensional problem is substan-
tially more difficult. Much work on it had been done by specialists in
differential equations; now substantial progress has been made in this domain
by means of probabilistic methods. A. D. Venttsel' [31, [6] studied the most
general forms of boundary conditions for non-degenerating elliptic equations
when the boundary is regular, and he found new types of such conditions,
which had never been discussed previously in the theory of differential
equations.

Of foreign work done on boundary problems during the last few years, one
must mention a series of papers by J. L. Doob [67] , [68] dealing with the first
boundary problem in its most general setting.

R. Z. Khas'minskii [46] studied the first boundary problem for elliptic
equations degenerating on the boundary of the domain, and was able to obtain
results which were much more general and complete than those previously
published by M. V. Keldysh, M. I. Vishik, and others.

As previously mentioned in § 6, M. I. Freidlin [44] investigated the first
boundary problem for equations which degenerate in the interior of the
domain.

Beside boundary problems, other asymptotic problems are also of interest in
the theory of differential equations; the question how a solution u(t, x) of a
parabolic differential equation behaves when t -* oo is an example of such a
problem. In probability theory, propositions on this kind of behaviour are
called ergodic theorems; they can be studied by investigating the asymptotic
behaviour of the trajectories of the process for t - o. The case of one-
dimensional generalized Brownian motion was investigated by Maruyama and

1 The first of Feller's papers contains a substantial gap, first filled by A. D. Venttsel' in [2).
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Tanaka [ 85 1. For the many-dimensional case, interesting results were obtained
by R. Z. Khas'minskii [491.

§8. Concluding remarks

26. In this brief survey, I have been unable to discuss even briefly quite a
number of papers written by members of the seminar. I shall enumerate some
of these contributions: a paper by F. I. Karpelevich,V. H. Tutubalin, and
M. G. Shur [ 37 ] on the connection between Brownian motion in the
Lobachevskii plane and the physical theory of waveguides; a paper by
M. G. Shur on ergodic properties of Markov chains [ 5 3 ] ; a paper by
R. Z. Khas'minskii on limiting distributions of additive functionals of a Markov
process [50], and another one [47] by him about the positive solutions of the
equation Af(x) + c(x) f(x) = 0 (in this paper it is shown, in particular, that the
smallest eigenvalue of an elliptic operator has properties of stability with res-
pect to some considerable changes in the domain); papers by C. S. Leung [40]
and A. D. Venttsel' [7] on conditional Markov processes; etc.

27. Finally, I should like to say a few words about the history of our seminar
and its composition. During the academic year 1957-58, the seminar on Markov
processes was detached from the general seminar or probability theory which
began its work under the direction of the present speaker at the Moscow State
University during the academic year 1954-55. However, it should be noted that
subjects connected with new parts of the theory of Markov processes deter-
mined the basic tendencies of the general seminar as early as 1955. A. D.
Venttsel', V. A. Volkonskii, I. V. Girsanov, E. B. Dynkin, L. V. Seregin,
V. Tutubalin, M. I. Freidlin, R. Z. Khas'minskii, M. G. Shur, and A. A.
Yushkevich were permanent and active members of the seminar. Some mathe-
maticians, without being permanent members, obtained a series of interesting
results in connection with problems which arose at the seminar, and delivered
there lectures which were followed by lively discussions. These mathematicians
were: A. V. Skorokhod, who completed his graduate study at the University of
Moscow in 1957, and who now works at the University of Kiev; and Yu. V.
Blagoveshchenskii, who works in the United Institute for Nuclear Research in
Dubno. From 1958 onwards, our Chinese colleague C. S. Leung has been taking
an active part in the Seminar.

During the academic year 1958-1959, ten students wrote their dissertations
within the framework of the Seminar. Many of these dissertations contain
independent results which are being prepared for publication.

The following list of references shows all the work done at the Seminar on
Markov processes at the University of Moscow, independently of its being, or
not being, mentioned in the present survey. Other papers are included in the
list only if they are quoted in this article.

Received by the editors on October 29, 1959.
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Introduction

1. In 1941 R. S. Martin in the paper [24] proposed a method of characteriz-
ing all positive harmonic functions defined in an arbitrary region of Euclidean
1-space. The author, a young mathematician at the Illinois University, died
shortly after his paper appeared. The importance of his results was not immed-
iately appreciated. Apparently M. Brelot ([ 161, [171 ) was the first to turn his
attention to Martin's ideas, Martin's results were further elucidated by papers
of Choquet concerning convex cones in linear topological spaces, ([ 191, [20]
see also [211 where there is an extensive bibliography). After the appearance of
Doob's paper [22] , Martin's ideas attracted the attention of specialists in
probability theory. In recent years the number of works dealing with various
aspects and applications of Martin's theory has increased rapidly.

2. With a view to presenting Martin's basic ideas we shall first of all consider
the unit disc D. It is well known that every non-negative harmonic function on
D can be represented in the form

25
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h (z) _ k,,, (z) µ (dw),
JD

where

1=I 2Z 12

3D is the boundary of D, and µ is a finite measure on 3D. The representation
given by (1) holds in a more general case where D is any bounded 1-dimensional
region whose boundary is sufficiently smooth. (In this case, the function kU1(z)
can be obtained by differentiating the Green's function in the direction of the
inward normal to 3D.) Thus, each non-negative harmonic function on D is
expanded in a family of functions, each member of the family being in one-to-
one correspondence with the points of the boundary of D. Martin's main result
consists of the following observation: that a similar expansion is possible for an
arbitrary region D, no matter how unpleasant, provided that one considers in
place of the ordinary boundary aD in Euclidean space a certain "intrinsic"
boundary B (which we henceforth refer to as the Martin Boundary). Roughly
speaking, in order to obtain the Martin boundary from the ordinary boundary
one has to identify certain points and "split up" certain other points, i.e.
replace each of such points by a whole collection of new points. Furthermore,
Martin showed that in the general situation it is necessary to carry the
integration, not over the whole boundary B, but rather over a certain subset Be
of it (the so-called set of minimal points): it is only by means of such a
reduction that the integral representation becomes unique.

Martin's construction was later extended from harmonic functions to
solutions of elliptic differential equations ([ 15 ] ), as well as to certain other
kinds of equation (integral and difference equations among others); such
extensions are connected with Markov chains and Markov processes Q221,
[23], [25]).

In this paper we shall require another extension of Martin's results enabling
one to describe non-negative solutions of boundary value problems. An exact
formulation of the problem and the required extension of Martin's theory will
be given in § 1.1

Questions in the theory of convex cones, which arise naturally at this point,
are considered in § 2.

The rest of this paper is devoted to a study of a special boundary value
problem, the so-called boundary value problem with a directional derivative.

3. The homogeneous boundary value problem with directional derivatives, or
in short "Problem , ", can be formulated as follows. Let D be a region in

However that may be, we do not presuppose any familiarity with other accounts of Martin's theory.
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Euclidean n-space with a sufficiently smooth boundary aD. Let v(z) be a given
vector field defined on aD and varying smoothly over aD. It is required to
study all the harmonic functions h that satisfy the boundary condition

ah jz) = 0 (z E aD),
av

(2)

where au denotes the derivative in the direction of the vector v.

If the field v is nowhere tangent to the boundary, then the only solutions to
Problem * are the constants. But if the field is tangent at certain points, the
problem may admit many non-trivial solutions.

The problem with directional derivatives has been studied by several authors,
starting with Poincare. Almost all these papers deal with the two-dimensional
case.' Lienard has suggested a simple method for characterizing all solutions to
Problem * that are smooth right up to the boundary. The method consists in
reducing the problem to a boundary value problem for analytic functions (see
e.g. V. I. Smimov [ 12], 118).

In the present paper we shall study all non-negative solutions to Problem
where arbitrary singularities are allowed at points of the boundary where the
field is tangent. We shall only consider the two-dimensional case. Nevertheless,
the suggested approach can be useful for the analysis of the multi-dimensional
problem as well. In our formulation the problem becomes essentially a local
one. (The whole thing reduces to a study of the behaviour of the Green's
function near the exceptional points of the boundary.) In the classical
approach on the other hand, the problem is a "global" one, and some non-
trivial topology is involved in its solution. (In the case of a two-dimensional
region bounded by a simple closed contour C, the number of linearly
independent, classical solutions is determined by the index of the vector field
v. In the multi-dimensional case it is necessary, of course, to deal with more
complicated topological invariants.)

4. An exact formulation of the problem for non-negative harmonic
functions which satisfy condition (2) is given in §3. The main results are stated
in §8. We now give a brief description of these results.

Let D be a two-dimensional region2 bounded by a smooth closed contour C.
Since the length of the vector v(z) has no real significance, we may suppose it
to be equal to one. Thus, the vector v(z) is uniquely determined by the angle 0
which it forms with the forward tangent to C. The field is tangent to C at those
points where 0 is 0 or 7r. We assume that there is only a finite number of such

t Certain results for the 3-dimensional case have recently been obtained by A. V. Bitsadze. In the two-
dimensional case, the boundary value problem with directional derivatives has been studied for the more
general elliptic differential equation Au + aux + buy = fin a monograph by I. N. Vekua entitled
"Generalized analytic functions" Moscow, 1959.
2 In view of the local character of our problem, the topology of D has no essential significance, and the
results can be extended to multiply-connected regions.
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points. The points at which 0 or it - 0 changes sign are called exceptional. We
denote the set of these points by F. (If at some point 0 or it - 0 vanishes
without changing sign, then by an arbitrarily small deformation of the field it
is possible to get rid of the tangency in a neighbourhood of this point. There-
fore we shall not regard such points as exceptional and make no special
provision for them in the solutions.)'

Multiplication of the field v(z) by -1 does not change the boundary
condition (2). Hence if we single out an arbitrary exceptional point, we can
suppose that 0 takes the value 0 (and not 7r) at that point. We shall say then
that the point a is positive (resp. negative) if the sign of 0 changes from plus to
minus (resp. from minus to plus) as the point advances in the positive direction.
The set of all positive points is denoted by r+ and the set of negative ones by
F.

We shall show that the Martin boundary B decomposes into connected com-
ponents B., corresponding to the exceptional points ck If a E F_, the compon-
ent B,, consists of a single point; if a E r+, Ba is a closed interval.

To each point w of the Martin boundary there corresponds a non-negative
solution k. (z) to Problem .A, and every non-negative solution of Problem .4
has an expansion by k. (z). However, as we have already mentioned, not all of
the functions k,, (z) are used in the expansion, only some of them (correspond-
ing to the subset Be of B). In our case Be turns out to be finite, and consists
of three kinds of point:

(a) the component Ba, if a E F_;
(b) an end-point of the interval Ba, if a E 17,;
(c) an interior point of the interval B« corresponding to those a E r+ at

which both the function 0 and its derivative with respect to arc length vanish.
(We denote the set of these points a by 170).

We shall denote solutions corresponding to points of type (a) by ua, of type
(b) by p', pa, and of type (c) by u«. Then every non-negative solution to
Problem .A can be written uniquely in the form

h (z) = Ei aaua (z) + E {cap; (z) + cap'. (z)} + Ei aaua, (3)
aEr_ aEr+ aEr+

where aa, c, , ca, as are non-negative numbers.
The function h is bounded if and only if as = a« = 0. (This follows from the

fact that pa and pq are bounded, while ua, u« are unbounded near a but
bounded outside some neighbourhood of a.)

The classical solutions, smooth up to the boundary, have the form:

h (z) _ E ca {P; (z) +Pa (z)).
aEr.

(4)

I It is possible, of course, to regard such points also as exceptional. The corresponding modifications in
the results and proofs do not present any great difficulty.



Martin boundaries and non-negative solutions 29

Furthermore, the constants ca are interrelated - one relationship for each
point of the set r_. These relationships are independent, so that the minimum
number of linearly independent classical solutions is equal to the difference
between the number of positive and the number of negative exceptional points.
(This is the well-known Argument Principle.)

Note that the function 1 (which is a bounded non-negative solution of
Problem ,) can be written in the form (4) as follows:

1= I {Pa (z) +P& (z)}.
aEr,

(5)

M. B. Malyutov [9] was the first to give a description, in general form, of the
bounded solutions of Problem A, and to isolate from among them the
classical solutions. For this purpose he relies substantially on arguments of a
probabilistic character.

In the present paper probabilistic methods are not used; even so, it is worth
giving at least a brief indication of the intuitive probabilistic interpretation of
some of the basic results.

The Laplace operator is an infinitesimal operator of an elementary Markov
stochastic process with continuous trajectories, a so-called Wiener process (see
e.g. [4] ). Condition (2) can be interpreted as the condition that a wandering
particle be reflected from the boundary in the direction of the vector u(z) (or
- u(z) if v(z) is directed outwards of D). Such an interpretation is impossible
for the exceptional points, and we assume that the process terminates as soon
as the particle strikes such a point. It turns out that the motion starting at the
point z terminates at the point a E r with probability pa (z) + pa (z). The
probability of reaching a negative point is zero. The trajectory can only enter
tangentially to the contour Cat a, either from the positive side (with
probability pa (z)) or from the negative side (with probability p« (z)). From this
point of view equation (5) assumes on a natural meaning.

The probabilistic interpretation for unbounded solutions is somewhat more
complicated. In this connection we refer the reader to papers by Doob [22]
and Hunt [23].

§ 1. Boundary value problems for Laplace's equation
and the Martin boundary

1.1. Let D be an arbitrary region in Euclidean I-space. We shall be investigat-
ing the harmonic functions on D that satisfy some boundary condition R.

The notion of a boundary condition is defined as follows. Let us agree to
use the term neighbourhoods of the boundary of D for sets of the form D \ K,
where K is any compact set contained in D. We consider all possible functions
whose domain of definition is a neighbourhood of the boundary of D. We are
given a set 3 of such functions which satisfies the conditions:

1.1.A. If f, and f2 coincide on a neighbourhood of the boundary and fl E 9,
then f2 E R.
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I.l.B.Iff1,f2 GA, then c If, +c2f2E5l for any real c I, c2.
1.1.C. If in some neighbourhood of the boundary a sequence of harmonic

functions fn converges to the function f, and if fn E A (n = 1, 2, ...), then
f E .91.

Thus, .9 determines a boundary condition. In what follows, the statement
"f satisfies the boundary condition y$ " will mean the same thing as the
statement "f E .. ". We shall call harmonic functions that satisfy the boundary
condition 9 solutions of the boundary value problem A.

R. S. Martin in his paper [24] studies harmonic functions defined on a region
D that are free from any boundary conditions whatever. In order to include
Martin's case into our general scheme it suffices to choose for .fit the set of all
functions defined near the boundary of D.

1.2. We shall study a restricted class of boundary value problems by supposing
that it is possible to select from .91 a subset .91+ satisfying the following
requirements:

1.2.A. If f1 and f2 coincide on some neighbourhood of the boundary and
f1 CW+, then f2 E=- R+.

1.2.B. If f1, f2 E. +, then c1f1 +c2f2 E 99+ for any non-negative numbers
Cl, c2.

1.2.C. If fn -f uniformly on some neighbourhood of the boundary and if
fn E .?+ (n = 1, 2, ...), f E 9, then f E :,R+.

1.2.D. If f E yQ and f > 0 on some neighbourhood of the boundary, then
f E .RR+.

1.2.E. (MINIMUM PRINCIPLE).LetKbeacompact setcontained inDand
let Do = D \ K. Let f E .91+ be continuous on' Do U aK and harmonic through-
out Do. Then either f > 0 on the whole of Do, or there exists a point zo E aK
such that f(zo) < f(z) for all z E Do.

It follows from conditions 1.2.D. and 1.2.E. that among the solutions of the
boundary value problem .91, those that belong to W+ are precisely the solutions
which are non-negative throughout D.

For Martin's case R+ may be defined by the condition: f E .9t+ if f is
bounded below and if

lim f(z)>0 (1.1)
z-.zo

for every regular point zo of the boundary of D;2 in the event that the region D
is unbounded and l > 3, there is the additional requirement that

lim f(z)>0. (1.2)
IZj__

The validity of conditions 1.1.A.-1.1.C. and 1.2.A.-1.2.D. for this
situation is obvious. The validity of condition 1.2.E. follows from Evans's well-

1 By 3D we mean the boundary of K.
2 For the definition of regular point, see for instance [10] , § 31 or [5].
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known theorem which states that if a function f is harmonic on a region Do, is
bounded below in Do, satisfies condition (1.1) for any regular point zo in aDo
(and satisfies condition (1.2) in the event that Do is unbounded and I > 3),
then f > 0 throughout Do. A proof of Evans's theorem can be found, for
example, in the article by M. V. Keldysh [ 5 ] . (See Chap. II, in particular Lemma
II; Keldysh's formulation differs slightly from the one we have given, but by
modifying his argument a little it is not difficult to arrive at our required
result.)'

We denote by .9?o the set of all functions f such that fn E .R+ and -f E .y?+.
It is clear that . 9o satisfies conditions 1.1.A. and 1.1.B. We shall show that it
satisfies the following condition:

1.2.C'. If a sequence of harmonic functions fn E ,5?o converges locally
uniformly to fin some neighbourhood of the boundary, then f E.92o.2

For suppose that the sequence fn converges locally uniformly to f in a
neighbourhood V of the boundary aD, and that U is a region subjected to the
following conditions: a) U C D; b) a U C V; c) U U a U is compact. The sequence
fn converges uniformly on compact sets, and from the Minimum Principle
1.2.E. it follows that it converges uniformly on V. According to 1.1.C. the limit
function belongs to 9? ; by virtue of 1.2.C. it belongs to 5?o.

1.3. We wish to construct an integral representation for all non-negative
solutions of the boundary value problem R. As a starting point we make use
of the Green's function, postulating its existence.

Thus, we suppose that the following condition is fulfilled:
1.3.A. For each w E Db there exists a harmonic function hu, (z) on D such

that the function gW (z) = hW (z) + y(w - z) belongs to .Ro. Here DS is a neigh-
bourhood of the boundary of D, and

-Jzi for 1=1,
y (z) In zl for 1= 2,

Iz12-' for 1>2.
It follows from the Minimum Principle 1.2.E. that the function gW (z) is

uniquely defined by condition 1.3.A. We shall call it the Green's function.
We shall suppose, in addition, that the following postulate is fulfilled:
1.3.B. The partial derivatives of g, (z) with respect to the coordinates of the

point w exist and are continuous in w and z for all w, z E D6, such that w * z.

I Evans's Theorem is a sharpening of the well-known minimum principle for harmonic functions: if a
function f is harmonic on the region Do satisfies condition (1.1) for all points zo E aDo (and satisfies
condition (1.2) in the case where D is unbounded and 1 > 3), then f > 0 throughout Do (see, for instance,
I. G. Petrovskii [10], §28).
2 A sequence fn(z) is said to converge to f(z) locally uniformly in the region A if for each zo E A there
is a neighbourhood U of the point z C such that for some N fn(z) is defined throughout U (n > N) and

sup I fn(z) -f(z) I -1 0 as n If a sequence of non-negative harmonic functions converges at each
zEU
point of some region, then the convergence is always locally uniform.
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The partial derivatives of gw (z) with respect to the coordinates of w are
locally uniform limits of harmonic functions belonging toRo. Consequently
(see 1.2.C') they too belong to Ro.

In Martin's case the set 9 o consists of the bounded functions tending to zero
as z approaches a regular point of the boundary (and also as z - 00, if D is un-
bounded and 1 >, 3). In order to construct the Green's function it suffices to
find a harmonic function hW (z) that coincides with - y(w - z) at all regular
points of the boundary, and converges at infinity to zero if D is unbounded.
The existence of such a function is proved, for instance, in [ 10] (§ § 31-32).
It is known (see, for example, Keldysh [ 5 ], Ch. V) that the function hW (z) can
be written in the form

hW (z)= - S h(z, dy)YI w - y
BD

where h(z, A) is a harmonic function with respect to z ED and a finite measure
with respect to A C 8D (the so-called harmonic measure). From this the validity
of condition 1.3.B. follows easily.

1.4. Let U be any region with a smooth boundary 3U such that U U 8U is
compact and is contained in D and that aU C D'. Our immediate object is to
construct a continuous function h on D \ U that is harmonic on
Do =D \ (U U aU), belongs to .410, and coincides on aU with a previously
defined continuous function 1p.

We denote by q,, (z) (w E aU, z ED0) the derivative ofgw (z) with respect to
w taken in the direction of the outward normal to aU. For any w E 8U, q. (z)
is a harmonic function on Do belonging to Ro. By 1.3.B, q,,, (z) is continuous
with respect to w.

We shall look for the function h in the form

h (z) _ qw (z) F (w) dw, (1.3)
au

where dw is an element of volume on the smooth manifold aU, and F a
continuous function. We divide the manifold 3U into a finite number of cells
A ..... Amn with diameter less than 1 In. Choosing arbitrary points wk E Ak
and denoting the volume of Ak by Ck we put

h, (z) _ qw (z) F (wh) Ch
h=1 h

It is obvious that the hn are harmonic functions and that the sequence hn
converges to h locally uniformly on Do. Hence by 1.2.C', h E .410.

If in (1.3) we replace the function qW (z) by the corresponding normal
derivative of the function y(w - z), we obtain the usual formula for the potential
for a double layer. By 1.3.A, h differs from this potential by a function that is
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continuous on U. Hence, by a well-known property of the potential for a
double layer (see, for example, I. G. Petrovskii [10] , §34) it follows that the
limiting value of h(z), when z approaches zo E aU from the outside of U, is
equal to

cF (zo) + qu (z0) F (w) dw,
au

where c is a positive constant depending only on the dimension of the space
(e.g. c = 7r, when 1= 2). In order, therefore, to obtain a function F with the
required properties it is sufficient to solve the integral equation

f (z) = cF (z) + q. (z) F (w) dw
au

(z E aU) (1.4)

and substitute the solution F in (1.3).
The Fredholm Theory (see, for example, E. Goursat [3), 609) is applicable

to the kernel q(z, w) = qw (z) and to prove that (1.4) has continuous solutions we
merely have to satisfy ourselves that for f = 0 the equation has only the zero
solution (the Fredholm Alternative).

Consider the potential for a single layer

Q (z) _ g,,, (z) F (w) dw.
au

It is well known (I. G. Petrovskii [ 10] , §34) that the derivatives Q
(respectively Q -) of this potential along the outward (respectively inward)
normal to aU are given by the formulae

Q+=-h -cF, Q-=-h +cF. (1.5)

The equation (1.4) can be written in the form f = cF + h, so that for f = 0 we
have Q+ = 0.

It is also well known (I. G. Petrovskii [ 10] § 28) that if a harmonic function
Q is continuous on the closed ball S and if the derivative of this function in the
direction of the inward normal to 8S vanishes at some point zo E 3S, then the
function Q cannot satisfy the inequality Q(zo) < Q(z) for all interior points of
S. If the boundary 8U is sufficiently smooth, then for any point zo E 8U we
can construct a ball containing zo such that all of its interior points belong to
Do. Hence it is impossible that Q(zo) <Q(z) for all z E=- Do. But
Q Eo C .+ , and according to the Minimum Principle 1.2.E, Q > 0 through-
out Do. Similarly - Q > 0 throughout Do, and therefore Q = 0 throughout Do.
Now Q is continuous on D. Thus, Q = 0 on 3U, and consequently Q = 0 on U
(see footnote 1, page 31). It follows that Q = 0 on 8 U, and from (1.5) it is clear
that F = 0.

1.5. Let us now consider any non-negative solution f to the boundary value
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problem 5A. Making use of the construction of 1.4. we "touch up" the function
f near the boundary aD and obtain an integral representation of the touched-up
function f. The integral representation off itself will then be obtained by a
passage to the limit.

Thus, let U be a region with a smooth boundary such that U U a U is a com-
pact subset of D and aU C D6 . By 1.4. we can construct a function h E ,f/
that is harmonic on Do = D \ (U U aU), continuous on D \ U and coincides with
fon3U. By 1.2.D,fEJt+and by 1.2.B,f-h E.I .Butf-h=0onaU,and
by the Minimum Principle 1.2.E, f - h > 0 in D \ U. For similar reasons h > 0
in D \ U.

We put

f (z) -
f (z) for z E U,
/a (z) for zED \ U.

On the strength of the inequality f > f > 0 it is not difficult to establish that
f is superharmonic on D (see I. G. Petrovskii [ 10] ,J35, Theorem 5). Consider
any region D for which: a) U U aU C D, b) D U aD is compact and contained
in D. By Riesz' Theorem (see for example I . I . Privalov [ 11 ] (p.159) or
E. B. Dynkin [4] (14.14.A)) a finite measure p on D can be chosen such that
the difference

S (z) = f (z) - ' (z - w) µ (dw)

is a harmonic function on D. Since 7 is harmonic on U and on U n Do, the mea-
sure p is zero on these sets.' Consequently the measure p is concentrated on 3U.

It follows from 1.3.A that the function

H (z) =f (z) - gW (z) [t (dw) = 6 (z) - hw (z) [t (dw)
ou aEr

is also harmonic on D. On the other hand, H is harmonic on Do. Hence H is a
harmonic function throughout D. Since h and g,,, belong to Ro, so does H and
by the Minimum Principle 1.2.E, H = 0. Thus,

T (z) = S g. (z).s (dw) (zED)
au

1.6. We now construct a sequence of regions Un with smooth boundaries so
that a) U U aUn are compact subsets of D, b) aUn C DS , c) Un tD. By 1.5 to
each of these regions there corresponds a superharmonic function fn (z) and a
finite measure p concentrated on aUn , where

1 This follows easily from the fact that the measure µ is uniquely determined by the superharmonic
function f.
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fn (z) = S g,, (z) µn (dw) (z E D). (1.6)
dUn

Clearly fn (z) - f(z), and therefore

f (z) = lim S 9. (z) µn (dw) (z E D). (1.7)
n-+

dun

Proceeding from this formula we shall give an integral representation of the
function f. Here the following result will play an important part.

HELLY'S THEOREM.1 Ifvn is a sequence of measures on a compact space
E such that the values vn (E) are bounded, then it is possible to construct a mea-
sure v on E and to select from vn a subsequence vnk such that for any continuous
function F(w) (w E E),

lim S F (w) vnk (dw) = S F (w) v (dw).
k+w E E

Note that if the measures vn , starting at a certain n, are all concentrated on a
compact set E C E, then the measure v is also concentrated on E. In effect it is
clear from Helly's theorem that in this case

S F (w) v (dw) = 0
E

for every continuous function F that vanishes on E.
In order to apply Helly's Theorem to the measures. µn, one has first of all to

construct a compact set on which all these measures are concentrated. We choose
no so that Un D D \ Ds . (This is possible because the sets Ul C U2 C ... form
a covering of the compact set D \ Ds .) Put Db = D \ U,,. Obviously aUn C Db
for n > no, and hence all the measures pn (n > no) are concentrated on D b.
Since D b C D6 , the functions gw (z) are defined for all w E D b , and we can
write equation (1.7) in the form

f (z) = lim g. (z) µn (dw) (z E D).
n-+m

DD

(1.8)

1 Helly proved this theorem for the case where E is a closed interval. The proof can be found in any
university text-book on probability theory. The more general proof is not difficult to obtain if one
combines the following two facts: 1) On the Banach space C of all continuous functions on the compact
set E, any non-negative linear functional 1 can be expressed as an integral with respect to a finite
measure µ; furthermore II 1 II = µ(E) (see for example P. Halmos [14), §56); 2) from each sequence
of linear functionals whose norms are bounded one can select a weakly convergent subsequence (see for
example L. A. Lyusternik and V. I. Sobolev [8J, Ch. III, §24).
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However, the set Db is not compact. In order to overcome this difficulty we
construct a compact set E that satisfies the following property:

1.6.A. The set Db is homeomorphic to a subset of the compact set E.
We shall identify this subset with D b, still denoting it by D b. It can be

assumed without loss of generality that the following postulate is fulfilled:
1.6.B. The closure of Db in E coincides with E.
Indeed, to satisfy 1.6.B. it suffices to remove from E all points that are not in

the closure of D b .
We extend the measures p onto E by putting µn (E \ D b) = 0. A second

obstacle to the application of Helly's Theorem is the fact that the sequence
Mn (E) = µn (Db) is not necessarily bounded. We can cope with this compli-
cation by introducing the new measures

vn (dw) = Sw (zo) µn (dw),

where zo is a point of U1. It follows from (1.6) that

vn(E) = vn (aUn) =.fn (zo) =f(zo),

and as a result the sequence vn (E) is bounded. We can now write (1.8) in the
form

/ (z) = lim kw (z) vn (dw) (z E D),
n moo E

where

kw(z)= Bu, (z) wEE, zED.
Bw (ZO) ( )

(1.9)

(1.10)

The function F(w) = kw (z) is continuous on Db . We shall suppose that the
compactification E of Db can be chosen so that the following condition holds:

1.6.C. For any z E D, the function F(w) = kw (z) can be continuously
extended onto E.

We shall denote the extended function again by kw (z).
It follows from Helly's Theorem and (1.9) that

(z) _ kw (z) v (dw) (zED),
E

where visa measure on E. We put D,bn = Db n Un (m > no ). Since n > m the
measures vn are concentrated on the compact set E \ Dnb, , the measure v is also
concentrated on E \ D,bn. Consequently it is concentrated on
B = E \ Db = n (E \ Dbn) and we have the required expansion, namely

m>n0

f (z) = S kw (z) v (dw) (z E D). (1.12)
a
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We shall call this the Martin expansion.
1.7. We now have to construct the compact set E satisfying the properties

1.6.A.-1.6.C. Observe that with each point w of this compact set a non-
negative function kw (z) is associated. If w E Db , this function can be expressed
as in (1.10) and we see that it is a harmonic function on the region D.
obtained from D by removing the single point w. Note that if wn - w E D b ,
then kwn (z) converges to kw (z) locally uniformly in D.. On the other hand, if
wn -+ w E B, then kwn (z) converges to kw (z) locally uniformly in D. Hence for

w E B, kw (z) is a harmonic function on D that is equal to 1 when z = z0 .
These arguments lead naturally to the following construction. We denote by

No the set of all functions kw (z) (w E Db) and by X', the set of all non-negative
harmonic functions on D that are equal to 1 when z = zo. We introduce a
topology on the set c1i? = e5'o U e9', by putting fn - f, if fn (z) - f(z) locally
uniformly in D (f E X.1) or in D. (f = kw (z)). It is easy to see that with this
topology the set e78 is compact,' E' 1 is a closed subset, and the mapping
w --> kw is a homeomorphism of Db onto c%10. Denoting by E the closure of
vC uin T we obtain a compact set satisfying all the conditions 1.6.A.-1.6.C.

1.8. It is clear from the reasoning at the beginning of 1.7. that the compact
set E is determined uniquely to within homeomorphism by the conditions
1.6.A.-1.6.C. Moreover, the set B = E \ Db does not depend on the choice of
Db C D. Some of functions kw (z) can be outside R. Put w E B if w E B and
kw E ,99. Under certain conditions formula (1.12) holds with B replaced by
B. Namely, it is sufficient that a set of functions 3w can be associated with
every w such that:

1.8.a. If fn E R. converge to f on D n V where V is a neighbourhood of w
and if fn are harmonic then f E .Aw

1.8.0. n ,%w
wEB

Indeed let wo belong to the support of a measure P. By 1.8.a, kw E .47w° for
allwEB\{wo}.HenceiffE .0 then

fu(z)= f kw(z)v(dw)=f(z)- f kw(z)v(dw)E./Iw
0

U B\U

and by 1.8.ce

kw (z) = lim 1
J

kw (z) v (dw) E ./Iw
° U 1 w° v(U)

U °

1 It follows from Harnack's inequality (see for example M. Brelot 118], p.166-168), that the functions
of 90, are uniformly bounded on any compact subset of D. Hence the compactness ofCV, follows, for
example, from Theorem 7, § 30 of I. G. Petrovskii's book 110]. The compactness of WT is an obvious
consequence of the compactness of dl91.
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We conclude from 1.8.a that kw0 E ./.
We call B the Martin boundary for the problem .0.
The representation (1.12) is not, as a rule, unique. In § §3-7 we shall deal

with the case where one can distinguish in B a subset Be subject to the follow-
ing conditions:

1.8.A. The functions ku (z) (u E B,,) are linearly independent.
1.8.B. Each function kw (z) (w E B) can be represented in the form

k. (z) = Ii a.(w)ku(z) (1.13)
uEBe

It is obvious that the functions au (w) (u E Be) are uniquely determined and
are continuous on B. The expansion (1.12) can be rewritten in the form

where

(Z) _ E v (a) k.. (z), (1.14)
uEBe

v(u) au (w) v (dw). (1.15)

One can interpret the sum on the right hand side of (1.14) as an integral of
k. (z) with respect to a measure v concentrated on Be. Thus, in the Martin
expansion one need only look at those measures that are concentrated on Be .
It is easy to see that in this way the expansion becomes unique.

In the general case the set B in (1.12) can still be reduced to a subset Be (not
in general a finite one). Under certain specific conditions, after this reduction
the expansion becomes unique. This result comes out of the general theory of
cones in linear topological spaces. A brief outline of the theory of cones will be
given in the next section.

§2. Cones in linear topological spaces'

2.1. Let 2 be a linear space over the field of real numbers, together with a
topology in which the function x +y (x, y E.Z) is continuous in x and y com-
bined, and the function cx (x EZ, c a scalar) is continuous in c and x
combined. Then we say that a linear topological space is given. We shall sup-
pose unless it is expressly stated otherwise, that the following two conditions
are fulfilled:

2. l .A. (SEPARATION AXIOM .) For each element x O there is a neigh-
bourhood of zero that does not contain x.

1 The contents of this section are not used in the sequel.
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2.1.B. (LOCAL CONVEXITY.) For each neighbourhood U of 0 there is a
convexI open set V such that 0 E V C U.

A subset chi,' of a linear space X is called a cone if it contains with any two
elements also their sum, and with any element also its product with an
arbitrary positive number. Every cone is a convex set.

We call a base of the cone X the intersection of i with a linear variety
{ x: l(x) = 1 } , where 1 is any linear functional taking positive values on X.2

2.2. The most important problem in the theory of cones is that of expressing
an arbitrary element of the cone in terms of extremal elements.

An element f of the cone a1 is called extremal if the equation
f=f1 +f2 (fl, f2 E W) implies that fl = c1f f2 = c2f (where cI, c2 are
scalars). In 1940 M. G. Krein and D. P. Milman proved that if a cone in a linear
topological space possesses a compact base, then it coincides with the closed
convex hull of its extremal points. An essential further step was taken in 1956
by Choquet who proved the following theorem:

CHOQUET'S THEOREM.3 If the cone X in a linear topological space X
possesses a compact metrizable base R, then every element f of X can be
represented in the form

kµ (dk), (2.1)
d e

where elCe is the set of all extremal elements of lC that belong to R, and .t is a
finite measure 4 on X,..

For the representation (2.1) to be unique it is necessary and sufficient that
the following conditions are satisfied (where f -< g means that g - f E X):

2.2.A. For any fl, f2 E A there exists g E &T such that f1 --I g, f2 g, and if
fl -< h, f2-< h,theneitherg -< h org=h.

2.2.B. For any fl, f2 E l there exists g E il' such that g -< fl, g -< f2 and if
h -< fl, h -< f2, then either h -< g or h = g.

Equation (2.1) implies that for any linear functional 1 on the space X,

l (f) = S l (k) µ (dk). (2.2)

'e

Conditions 2.2.A.-2.2.B. imply that X is a lattice with respect to the partial
ordering f -< g (see for example A. G. Kurosh [ 71 ).

1 A set A is said to be convex if it contains with any two elements x and y also all elements of the form
px+qy (p %O,q %0,p+q= 1).
2 A real-valued continuous function 1(x) (x E ') is called a linear functional on Z if
1(x + y) = I(x) + 1(y) (x, y E 'f) and l(cx) = cl(x) (x e X, c a scalar). Sets of the form (x: 1(x) = cl
(I being a linear functional, c being a fixed scalar) are called linear varieties. Every linear variety that does
not contain the origin can be written uniquely in the form lx: 1(x) = 11.
3 See [19], [20], [21].
4 It can be proved that X. is a Borel set (in fact, a countable intersection of open sets).
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2.3. As an example of a linear topological space (satisfying conditions
2.1.A.-2.1.B.) we can take the class X (D) of all functions on an 1-dimensional
region D that are expressible as the difference of two non-negative harmonic
functions. The topology is given by means of locally uniform convergence. The
set X (D) of all non-negative harmonics on D is a cone in this space. The set

(y$) of all non-negative solutions of the boundary value problem 5$ (which is
clearly the same as c7C (D) rl 9 ) is also a cone.

The functions in d (D) that take the value 1 at a fixed point z0 E D form a
base . '(D) of X (D). This base is compact (see footnote 1 on p.37). In order
to put a metric on . ' (D) it suffices to write

p(f, g) = max I f(z) -g(z) I, (2.3)
ZED0

where Do is any closed ball contained in D. For a harmonic function vanishing
on Do vanishes on the whole region D. Hence (2.3) defines a metric on . ' (D).
Further, it is clear that if fn converges locally uniformly to f, then
p(f, f) - 0. On the other hand, if p(fn, f) - 0 (fn E .9 (D)), then the sequence
fn cannot have a cluster point different from f, and in view of the compactness
of . ' (D), fn converges locally uniformly to f.

The set R (,fir.')=. ' (D)fl is a base of X (9). This set is compact
because of 1.1.C. It is also clear that it is metrizable. By Choquet's Theorem every
element of X (R) admits the representation (2.1). If z E D, then the formula
12 (f) = f(z) defines a linear functional on Z (D). Applying (2.2) to this
functional we arrive at the expression

f (z) _ k (z) µ (dk) (z E D). (2.4)

2.4. We shall show that any extremal element f of l (9) belonging to the
base R (.9) coincides with one of the functions k. (w E ,').

For by 1.6 f can be represented in the form (1.12). Putting z = zo in (1.12)
and taking into account the fact that f(zo) = kW (z0) = 1 we observe that v(B) = 1.
Hence there is a point wo E B any neighbourhood of which has positive mea-
sure v. For each neighbourhood U of the point wo (relative to B) we put

fu (z) = S k (z) v (dw).

Since fu and f - fu belong to i ' (,fit) and f is an extremal element of e (94),
we have fu(z) = cuf(z), where'cu is a constant. Putting z = zo we observe that
cu = y(U) > 0. As a consequence

f (z) = v (U) k. (z) v (dw).
U



Martin boundaries and non-negative solutions 41

If the diameter of the neighbourhood U tends to 0, then the integral on the
right hand side tends to kw0 (z). Hence f = k,,0 .

We shall write w E Be whenever w is an extremal element of o (R).
Formula (2.4) can be rewritten in the form

f(z) _ E kw (z) p (dw) (z E D). (2.5)
Be

(For the cone OL(D), this formula was first obtained by Martin.)
According to Choquet's theorem, in all cases where the set 7t' (9) satisfies

the conditions 2.2.A-2.2.B the representation (2.5) is unique. We shall show
that such is the situation in Martin's case, i.e. when a (.R)= o'YL' (D).

We choose a sequence of regions Du with smooth boundaries aDn so that the
sets Dn = Du U aDn are compact and satisfy the conditions Dn C Dn+1 ,
U Dn = D. Let fl, f2 E &l (D). Then the function m = min(fl, f2) is superhar-
monic, while the function M = max (fl, f2) is subharmonic. Denote by hn
(respectively Hn) the harmonic functions on Dn continuous on Dn and
coinciding with m (respectively M) on aDn . It is easy to see that

m>It l >h2 >...>hn >...>0,
M <H1 <H2 <... <1 Hn <... I<.fl +f2,

and that the functions

g(z) = lim hn (z), G(z) = lim Hn (z)

are, respectively, the greatest non-negative harmonic function not exceeding fl
and f2, and the smallest harmonic function less than or equal to f1 and f2.

For the cone X (R) it is generally more difficult to verify conditions
2.2.A-2.2.B than to prove directly the uniqueness of the expansion (2.5). We
do not know of any examples of boundary value problems for which the
expansion (2.5) is non-unique.

§3. The boundary value problem with a directional
derivative (Problem .4)

3.1. Let D be a plane region bounded by a smooth closed contour C, and
v(z) a continuous vector field on C. Our aim is to study the harmonic functions
on D that are bounded below and whose directional derivatives along v vanish
on C.

We now give a more precise statement of the problem. A closed contour C in
the plane R2 is given by a function c(t) (- 00 < t <+ oo) taking values in R2 and
subject to the condition that for some d > 0, c(t + d) = c(t) for all t, and
c(t1) * c(t2) for I t1 - t2 I < d. The contour C is called smooth if c(t) is dif-
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ferentiable and if its derivative c'(t) is nowhere zero and is Holder continuous.'
A continuous vector field on C we mean a function v(z) (z E C) taking values

in R2, Holder continuous, non-vanishing, and satisfying the following
condition: the vector v(z) is tangent to Cat only a finite number of points z.

If C is smooth and if in some neighbourhood of the point to the function
v[c(t)J has a Holder continuous derivative with respect to t, then we shall say
that the field v is smooth in a neighbourhood of c(to ).

We shall call the point zo E C exceptional if the projection of v(z) along the
outward normal to C changes sign2 at zo. We denote by I' the set of all
exceptional points and we write C* = C \ F.

A harmonic function h(z) in D will be called a solution of Problem .A for
the contour Cand the field v if it satisfies the following boundary condition:
at every non-exceptional point of C the directional derivative of h along v
vanishes.

More precisely this means the following:
3.1.A. The partial derivatives of h can be continuously extended to the set

D*=DUC*.
3.1.B. If zo E C* and the vector v(zo) has coordinates v, and v2, then 3

v,hX (z0) + v2hx=(z0)= 0.

3.2. Problem may be considered as a special case of the boundary value
problems described in § 1. For let .` denote the class of all functions h defined
in a neighbourhood of the boundary of D and satisfying the conditions:

3.2.A. h is continuously differentiable on a set U = D \ K (where K is a com-
pact subset of D) and its partial derivatives can be continuously extended to
U U C*.

3.2.B. The postulate 3.1.B is satisfied.
It is clear that the set of solutions of Problem . can be characterized as the

set of all functions that are harmonic on D and belong to A.
The set . evidently satisfies conditions 1.1.A-1.1.B. In §4 it will be shown

that it also satisfies condition 1.1.C. Later on we shall define a set .+ satisfy-
ing the conditions 1.2.A-1.2.E, we shall compute the Green's function for
Problem A, and using the results of § 1 we shall describe all the non-negative
solutions to this problem.

3.3. Let al and a2 be two points on the closed contour C. we can choose in
a unique way numbers t, and t2 such that c(t1) = a,, c(t2) = a2 and

1 That is to say, there exist positive constants k and X such that for all t is , I c'(t,) - c'(t2) 16 k
It, - t2 I N. (The elements of R2 can be interpreted as vectors with I z I denoting the length of z.)
2 If this projection vanishes without change of sign, then by an arbitrary small deformation of v we can
arrange matters so that the deformed field is not tangent to C near za . For this reason such points will not
be considered exceptional.
3 It follows from condition 3.1.A that the function h itself can be continuously extended to D*. We
shall talk about the values of the function h and its partial derivatives at the point zp E C*; these will be
the appropriate limits of the values at z e D as z - zU .
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0 < t1 < °°, t1 < t2 < tl + d. We denote the set of all points c(t), where
t1 < t < t2, by [al , a2 ] and we call it the closed arc with al as the initial
point and a2 as the terminal point. The open arc (al, a2) and the semi-open
arcs [a1, a2) and (a1, a2 ] are defined similarly.

The arc [a1, a2 ] is said to be smooth if c'(t) does not vanish and is Holder
continuous for t 1 < t < t2 .

Let C be a smooth closed contour or a smooth arc and let v(z) be a (Holder)
continuous vector field on C. We denote by 4r(z) the tangent of the angle
between the vectorsl c'(t) and v(z) (z = c(t)). The set IF of exceptional points
as defined in 3.1 coincides with the set of points at which T(z) changes sign as
it passes through zero. We call an exceptional point positive (respectively,
negative) if T(z) > 0 (respectively, 'I'(z) < 0) in front of it. The set of all
positive exceptional points will be denoted by r+ and the set of all negative
exceptional points by r_.

3.4. We shall interpret 2-dimensional vectors as complex numbers. Let
v(z) be a vector field on a smooth closed contour C. We write

v[c(t)] =p(t)e1e(t),c'(t)
(3.1)

assuming p(t) > 0 and the function B(t) to be continuous. Under these
conditions p(t) is uniquely determined, and 0(t) is uniquely determined to

within a constant 2kir (where k is an integer). Clearly n =
Za

[0(t + d) - 0(t)]

is an integer, which is independent of t. The number 1 = - n - 1 (equal to the
number of turns completed by the vector v[c(t)] as t goes from 0 to -d) is
called the index of the field v.

Note that 'I'[c(t)] = tan 0(t). Making use of this it is not difficult to evaluate
I in terms of the number l+ of elements of r+ and the number l_ of elements
of r'-. The formula is

1 + 1 = 2 (l+ - U.

§4. Reduction of Problem ,# - some particular solutions

(3.2)

4.1. Let C and C be two smooth closed contours and let D and D be the
regions enclosed by them. It is well known that:

4.1.A. For any zo E D, F o E D and for any a E [0, 21r] there exists a unique
conformal mapping F from D onto a such that F(zo) = ao arg F'(zo) = a.

4.1.B. The mapping F can be extended to a one-to-one continuous mapping
from the closed region D U Con to a closed region ,& U C.

1 The direction of the vector c'(t) will be called the positive direction of the tangent to Cat the point
z = c(t).
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4.l.C. The derivative F'(z) is Holder continuous on D U C (i.e.
F'(z1)-F'(z2) I <k I z1 -z21' for some positive constants k, Xfor all

z1, z2 ED U C).
Assertions 4.1.A-4.1.C follow from the well-known theorems of Riemann,

Caratheodory and Kellog (see e.g. G. M. Goluzin [21, pp. 30, 50, and 468).
Let a continuous vector field v(z) be given on the contour C. Then the

formula

u [F(z)l = F'(z) v(z)

defines a continuous vector field v on the contour C. It is easy to see that the
function h(z) is a solution of Problem . for the contour C and the vector field
u if and only if the function h(z) = h [F(z)] is a solution of Problem - for the
contour C and the field v. Thus, it is sufficient to investigate Problem . for any
single smooth closed contour. It is most convenient to take the unit circle for
this contour.'

4.2. Let h be a harmonic function on the domain D, and let us write

CSh=az-ay

We consider the harmonic function h conjugate to h. The function
H = h + ih is an analytic function on D and

(4.1)

Ch (z) = H' (z).

It follows from this that CS h is an analytic function on D and, if 9h = f,
then

Z

h (z) = Re f (z) dz + const (4.2)
zo

(where ze is any point in D).
We shall denote by 9if the right hand side of (4.2). It is not difficult to see

that if h = 9i f, then CS h = f.
Thus, the operators CS and 9? are mutually inverse and establish a one-to-one

correspondence2 between the harmonic functions on D considered to within a
constant term and the analytic functions on D.
1 Let c(t) be an admissible parameterization 01(t)of the contour C. Then = F[c t()] is an admissible para-
meterization of C. It is easy to see that

, [c(t)1 _ u c(t)]
C"(t) C'(t)

In particular, the angle B(t) for the contour C and the field u is the same as that for the contour C and the
field v.
2 This correspondence holds good even for a multiply connected region D. In this case, however, we have
to consider not all the analytic functions on D, but only those for which (4.2) determines a single-valued
function on D.
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Note that the analytic function CSh is continuous in a neighbourhood of
z E C if and only if the function h is continuously differentiable in a neighbour-
hood of this point. Furthermore, if v(z) is a vector field on C and f = (B h, then

ah = Re vf.
TV

(4.3)

Hence the function h is a solution of Problem . for the contour C and the
vector field v if and only if the function f = G h satisfies the following
conditions:

4.2.A. f is an analytic function on D which is continuous on D*.
4.2.B. Re v(z) f(z) = 0 for z E C \ F.
We shall call a function f satisfying conditions 4.2.A-4.2.B a solution of

Problem .f . Thus, the operators S and R set up a one-to-one correspondence
between the solutions of Problem . (considered to within a constant term) and
the solution of Problem .W.

4.3. We fix an arbitrary point zo of D and denote by Do the region obtained
from D by removing zo. We call a complex function S(z) (z E D U C) a
characteristic function of the vector field v if it satisfies the following conditions:

4.3.A. The functions S(z) and T(z) = S(z)-1 are analytic on Do with possibly
a pole at zo.

4.3.B. S(z) and T(z) are Holder continuous on the closed region obtained
from D U C by deleting a neighbourhood of zo.

4.3.C. S[c(t)] differs from eie(t) by a positive factor (where 0(t) is the angle
between the vector v[c(t)] and the forward-pointing tangent to Cat c(t)).

By virtue of 4.3.C, arg S[c(t)] = 0(t) + 2irk, and hence the increase in this
argument on going once around the contour C in the positive sense is equal to
-2ir(I + 1) (see 3.4). Consequently (see, for example, V. I. Smirnov [ 121, 94)
the function S(z) has a pole of order 1 + 1 at zo (if 1 + 1 > 0), or a zero of order
- I - 1 (if l + 1 < 0). (If I + 1 = 0, then S(z) is regular and non-zero at zo ). If two
functions satisfy conditions 4.3.A-4.3.C, then their ratio is an analytic function
on D continuous on D U C and positive on C. Such a function is necessarily a
constant. Consequently the characteristic function S(z) is determined uniquely
to within a positive constant multiplier. The construction of S(z) will be
carried out in 4.4.

We put

r
iij

, v(z)=Im Sr Zr(z)S(z) 'T (z)=Be
S

It follows from condition 4.3.C that

r[c(t)] = cos 0(t), v[c(t)] = sin 0(t).

Note that

S(z)=r(z) [r(z) + iv (z)] , r(z)>0 (z E Do UC). (4.4)
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In particular, when z = c(t),

S(z) = r(z) eier

Next we observe that for y E F

S(7) = 7-(7) r (7), v(7) = 0, r(y) 1.

(4.5)

(4.6)

Without altering the solutions to problems . and _W we can replace the field v
by -v. Moreover, S(z) is only defined to within a positive constant factor.
Therefore, if we are only interested in a single point y E F, we may assume
without loss of generality that

S(7)=T(7)=r(7)= 1. (4.7)

It is clear from (4.4)-(4.5) that the function 4,(z) introduced in 3.3 admits the
following representation:

T (z) = v (z)

T (z)

Hence, if z moves around the contour C in a positive direction, then v(z) changes
sign at each point y E F. Here, if y E F+, then the sign changes from plus to
minus, while if y E F_, then the sign changes from minus to plus (on the
assumption that r(y) = 1).

From this point on we shall assume that I v(z) I = 1, that C is the unit circle
(c(t) = e`r) and zo = 0. Because of (3. 1), when z = eir,

v(z) =
izei0t. (4.8)

From (4.5) and (4.8) we have

izS(z) = r(z) v (z). (4.9)

4.4. We shall now carry out the construction of the function S(z).
Let 1 be the index of the vector field v. Then the function X(t) = 0(t) + (1 + 1) t

has period 21r and can be regarded as a continuous function on C. This function
is obviously Holder continuous. Hence (see, for example, V. I. Smirnov [ 12 ] ,
117) Schwarz's formula

Q(Z)= 2n x(t) eit±i dt
-n

defines on C U D a Holder continuous complex function u(z) which is regular
on D and satisfies the condition Re o(e`t) = X(t). Note that the function
a(z) + i(I + 1) in z has real part 0(t) for z = e`r. Hence for z = e`r the function

S(z) = e t[a(z) + i(1 + 1) In z] = z- 1-1 et a(z)

differs from eie(r) by a positive factor. Consequently this function satisfies con-
dition 4.3.C. It is easy to see that conditions 4.3.A-4.3.B are also satisfied.
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If the vector field u(z) is smooth in some neighbourhood of the point
a = e`to , then the function 0(t) possesses a Holder continuous derivative 0'(t)
in a neighbourhood of to. In this case, the sufficiently small e > 0 the function
a'(t) is also Holder continuous' on the set AE = 1z: I z I < 1, I z -e `t° I < e ; J.

Obviously, the functions S'(z) and T'(z) are also Holder continuous as AE.
4.5. By using the characteristic function S(z) we can reduce Problem -W to a

simpler Problem V, which depends only on the set F and the index C, and on
no other detail of construction of the vector field v.

We call a complex function F(z) (z E D*) a solution of Problem e if:
4.5.A. z1F(z) is regular on D and continuous on D*,
4.5.B. ReF(z)=0forzEC\F.
Suppose that the functions f and F are connected by the relation

f(z) = T(z) F(z) (z ED*). (4.10)
iz

Then

z'F(z) = izl+' S(z) f (z).

According to 4.3 the function zl+' S(z) is regular, non-vanishing on D, and
continuous on D*. Hence the function F satisfies condition 4.5.A if and only
if f satisfies condition 4.2.A. Moreover, it is clear from (4.9) that F satisfies
condition 4.5.B if and only if f satisfies condition 4.2.B.

Thus, as F ranges through all the solutions of Problem tf , (4.10) gives all
the solutions of Problem 9. Consequently (see 4.2), the formula

z

h (z) _ 91/ (z) = Re TT1zz) F (z) dz (4.11)
0

gives all the solutions of Problem . to within an additive constant.
4.6. We put z* = i-1. (The points z, z* are obtained from each other by

taking inverses with respect to the unit circle.) We shall write

F*(z) = F(z*).

Consider the regions

Do=(z:0<IzI<1), D,=(z: 1 <IzI<oo), D=DoUC* UDj.

' To prove this assertion it is sufficient to express a(z) in the form

z ) (in w) dwa (z)=a } ni S w w-z
C

(where a is a constant), and to make use of the well-known properties of Cauchy-type integrals (see, e.g.
F. D. Gakhov [ 1 ] , 4.4).
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We shall call a complex function F(z) (z E D) a solution to Problem t if:
4.6.A. F(z) is an analytic function on D.
4.6.B. F(z*) = - F(z) (z ED).
4.6.C. z'F(z) converges to a finite limit as z - 0.
It is clear that if the function F is a solution to Problem , then its restriction

to the set D* is a solution to Problem V. We shall prove that the converse state-
ment is also true. For let F(z) (z E D*) be a solution of Problem V. We extend
this function onto D by putting

F(z)=-F(z*) for zED1. (4.12)

It is easy to see that the extended function is analytic on D1 and continuous on
D. By the well-known principle of continuity (see, for example, R. Courant [6] ,
Chap. 5, §2) the extended function is analytic on D. It is clearly a solution of
Problem fP.

We observe that if F(z) is an analytic function in D for which the following
finite limits exist

lim z 'F(z), lim z-'F(z), (4.13)
z-+O

then the formula

Z__

defines a solution to Problem
problem are obtained.

F(z) = F*(z) - F(z)

i, and in this way all the solutions of this

(4.14)

4.7. We now show that the set A satisfies condition 1.1.C. Let hn be a
sequence of harmonic functions that are defined on a neighbourhood of the
boundary of the disc D and satisfy conditions 3.2.A.-3.2.B. We suppose that
hn - h on U. Beginning with the functions hn and h we define by (4.1) analytic
functions fn and f on U, and we then define, using (4.10), analytic functions
F,, and F. Let U1 be the region obtained from U by taking inverses with respect
to the circle C. Using (4.12) we extend the functions Fn onto the region
U = U U C* U U1. Clearly the functions fn satisfy conditions 4.2.A-4.2.B, the
functions F,, satisfy conditions 4.5.A-4.5.B, while the extended functions Fn
satisfy the postulates 4.6.A-4.6.B (replacing D by U, D* by U*, D1 by U1,
and D by U). It follows from the convergence of hn to h in U that fn - f and
F,, - F in U. The analytic functions F,, converge, therefore, in U to some
function coinciding with F on U. It is clear that this limit function satisfies
conditions 4.6.A-4.6.B. Thus, the function F satisfies conditions 4.5.A-4.5.B,
while the function h satisfies conditions 3.2.A-3.2.B.

4.8. We shall now consider some particular solutions of the problems
described above. To begin with, let l > 0.

It is easy to see that the functions



Martin boundaries and non-negative solutions

(Dk(z) = i(z_k+ zk) (k = 0, 1, 2, . . ., 1), l

(D-A,
(z)=Z-k-zk (k=1, 2, ..., 1), I

Ov (z) = 2 z-Y (Y E r) J

are solutions of Problem re.
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(4.15)

Using formula (4.11) we find the corresponding solutions to Problem A

hk (z) = Re T y Z) (Z-k + Zk) dZ (k = 0, 1, 2, ... , 1),
0

Z

h-k (z) = Re TTi(z) (z-,<-zk) dz (k = 1, 2, ... , l),

Z

h y (z) = Re T (Z) Z±Y dz2iz z-y
0

(ti E r)

(4.16)

The functions hk and h_k are continuous on the closed disc D U C; the function
h7 is also continuous on D U C, except at the point y where it has a singularity.
We shall now investigate the nature of this singularity.

We note that

h', (z) = p7,(z) +A,(z),

where

ppv(z)=Re[iT(Y) S__J,
0

ZZ

Av (z) = R0 [ 1 \ z-1T (z)-2T (Y) d2,
2i J z-V

0

According to 4.3, the function T(z) has a zero at the point 0 of order 1 + 1 > 1,
and it follows from 4.3.B that the function (z + y) z -1 T(z) is Holder con-
tinuous on D U C. Consequently, the absolute value of the integrand in the
expression for A , (z) is majorized by the function k I z - y 17 -I , where A and k
are positive constants. Therefore the integral converges absolutely and uniformly
in the closed disc D U C, and A', is a continuous harmonic function on this disc.
Furthermore, taking (4.6) into account we have
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z

v (z) = r (Y) 1 r (Y) 1 Re
S z

dzy = ti (Y)-1 r (Y)-1 arg
y

Y zZ

, (4.17)
0

where the quantity arg (L) above takes values in the interval (_ 2 ,
2

I

The function p,y (z) is continuous everywhere on D U C except at the point y.
Its limit on approaching y along the contour C and in the direction of the vector

v(y) is equal to - 2 r (y); from the opposite direction the limit is IT r (y) (we

recall that r(y) _ ±1). If we are only interested in the one point y E F, then
according to 4.3 we can assume without loss of generality that
r(y)=r(y)= 1, and

ppry (z) = arg y . z . (4.17')

We shall now look at the case 1 = -m < 0. This time the functions 4)y (z) no
longer satisfy condition 4.5.A and are therefore not solutions of Problem V
(although they satisfy condition 4.5.B). On the other hand, the functions

2zZ y1-m = i-1-Y + 1 + 2z'y-1 -+ ... + 2z'n-11,1-m

satisfy condition 4.5.A, but not condition 4.5.B.
Let a(y) be a real-valued function on the set r such that

(4.18)

I ayy-k = 0 (k= 0, 1, 2, ..., m - 1). (4.19)
yer

Then the function
zinylm

F (z) _ j (z) _ ay z-y
vEr v E r

(4.20)

satisfies conditions 4.5.A-4.5.B and so is a solution to Problem V. The corres-
ponding solution of Problem A is given by the formula

h(z)=91 z F)=ReS (7ZZ) ' za-(Z)`+i]dz.
0 v E r

We observe that

(4.21)

h (z) = Li avgv (z) + B (z), (4.22)
vEr

where spy is given by (4.17), and
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Z t+t

B (z) =Re i (zy Y)
[T (z)

z_t-' -T (y) Y t-t) dz
over

is a continuous harmonic function on the closed disc D U C.
4.9. We now consider the case l = -m < 0 more closely.
In § 5 it will be proved that if the set F+ is empty, then the only solutions to

Problem A that are bounded below are the constants. We can therefore pre-
suppose that l+ > and consequently (see 3.2)) l_ = 2m - 2 + l+ > 2m - 1. Select
any subset I'1 of r_ consisting of 2m - 1 points, and put

Pv (w) = Y,n 1wl-m TT _P
11 Y ,

96 F

-
in-1

A (w, z) = z Pv (w) Z±Y _ w-"An (z).
Y E rr n=-m+1

(4.23)

(4.24)

THEOREM 4.1. Suppose that the function F is regular in a neighbourhood of
the origin and that

Cn = 11 F(n)(0).

Put

mC-1 _

9F=F-[- Li (c,A,+cnA-n), (4.25)
n=0

where the functions An (z) are defined by (4.24). Then either the functions F
and (S F both satisfy or fail to satisfy condition 4.5.B. The function zl L F is
regular in a neighbourhood of the origin. If F is regular on D and continuous
on D*, then the function Cs Fsatisfiesl condition 4.5.A.

PROOF 1 °. Note that Pti = Py. It follows from this that

A (w*, z) _ - A (w, z*), A_n = -An. (4.26)

Therefore the function g = F - F satisfies the relation g* = -g. This means
that Re g = 0 on C, and that the functions F and (Y F = F + g either both
satisfy or both fail to satisfy condition 4.5.B.

2°. We shall write f =g if the function (f -g) z1 is regular on a neighbourhood
of the origin. We shall show that

1 If l 0 then it is natural to assume that the set r, is empty, A(w, z) = 0 and ll F = F. Theorem 4.1 is
trivial under these circumstances.
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AO (z) = - ,

An (z) z', A_, (z) = 0 (n = 1, 2, ... , m - 1).
According to (4.18)

M- t
Z+?+1+2 ZnY-n-0.Z-Y

=t
Hence

where

m- 1

A (w, z) _ - Ao (w) - Y, An (w) Zn,
n=1

(4.27)

(4.28)

An (w) _ Pv (w) Y-n.

Note that the function P7(w) = wm-1Pp(w) is a polynomial of degree not
greater than 2m - 2, and P,v (y) = 1, P (0) = 0 when R y ((3 E 171 ). It follows
that the function wm-lA,, (w) - wm-I n is a polynomial of degree not greater
than 2m - 2 vanishing at all 2m - 1 points of the set I'1. Such a polynomial is
identically zero. Hence An (w) = w -" . Substituting these values in (4.28) we
obtain

m-t
A (w, Z) _ - 2 - I w-nzn.

n=1

A comparison of (4.24) with (4.29) now gives (4.27).
It is clear from (4.27) that

(4.29)

m-1
%F - F-

7,
cnzn-0.

n=0

Consequently the function z1 (Y F is regular on a neighbourhood of the origin.
3°. The functions A (z) can be expressed as linear combinations of the

functions z + y (y E I`1). Hence they are regular on D and continuous on D*z - y
Clearly the function (F - F also has these properties. Hence if F is regular on
D and continuous on D*, then these same properties will hold for the function

(E and by 2° also for the function zl 9 F.
R E M A R K 1. It follows from Theorem 4.1 and from 4.5 that if F is regular

on D, continuous on D*, and satisfies condition 4.5.B, then the function

Z

h (z) = Re Ti-Z) qF (z) dz (4.30)
0

is a solution of Problem *. A particularly important role is played by the
solutions hR that are obtained by means of this formula from the functions
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<R(z) = 2 Z +

Q

. (For I > 0 formula (4.30) agrees with (4.16).)

REMARK 2. Note that for the function

(Z) = 1 z-i-w
2z-tv

the following equation holds:

(5D. (z) _ (Dw (z) - A (w, z) + . (wn - w'n) A_n (z)
n=l

In particular, when a E C,
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(4.31)

(4.32)

%(D. (z) = cba (z) - A (a, z) (4.33)

and O (Da (z) = 0 when a E F1 (and consequently h« = 0).
It is evident from (4.32) that the function [(Pw (z) - A(w, z)] zl is regular in

a neighbourhood of the origin. A closer analysis shows that

zt ('I (z)-A(w, z)1 =
w1-,n
z-w

V1-' P,(w)
`-y

vFr,
(4.34)

§5. The Minimum Principle and its consequences

5.1. Let h E A. (We recall that this means that h is subject to conditions
3.2.A-3.2.B.) We write h E A+ if the function h is bounded below near C and

limh(z)>0 for all VEl'±. (5.1)
z'v

It is clear that the set A+ fulfills conditions 1.2.A-1.2.D. The basic problem of
this section is to show that the Minimum Principle 1.2.E is also satisfied. More
precisely we shall prove the following:

THEOREM 5.1. Let D be a region bounded by a smooth contour C, K a com-
pact subset of D, and Do = D \ K. It will be assumed that the function h E -+

is continuous on Do U aK and is harmonic on Do. If the set f'+ is non-empty,
then at least one of the following two statements is true:

a) there is a point zo E aK such that h(zo) < h(z) for all z E DO;
b) h (z) > 0 for all z E Do.
If the set r+ is empty, then either statement a) is true or h is constant

throughout Do.
By applying this theorem to the case where U is empty we obtain:
COROLLARY. If the set r+ is non-empty, then each solution to Problem .v -

that is bounded below and belongs to A, is non-negative, and each bounded
solution to Problem . - that belongs to "o vanishes. If the set r, is empty,
then every solution of Problem . - that is bounded below is a constant.

The proof of Theorem 5.1 will be given in 5.5 after we have proved a number
of lemmas. In order to explain the role of these lemmas, let h E A+ be non-
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constant and continuous on the compact set C U Do U M. Then the minimum
of It on C U Do U aK is attained at some point zo. Lemma 5.1 shows that zo
cannot belong to Do, and if zo E C, then the vector v(zo) is tangent to C, or in
other words, 41(zo) = 0. If zo E aK, then condition a) is valid. If zo E C, then
by Lemma 5.4 the function 'Y(z) must change sign at zo, and hence zo E r. It
then follows from Lemma 5.2 that zo r-. This means that zo E F. By virtue
of (5.1) h(zo) > 0, and consequently condition b) holds.

Lemma 5.3 is a subsidiary result, which is needed for the proof of Lemma 5.4.
Further consequences of Theorem 5.1 will be deduced in 5.6.
5.2. LEMMA 5.1. Let D, C, K, Do have the same meanings as in Theorem 5.1.

Let Do C Q C C U Do U M. Suppose that the function h(z) (z E Q) is non-
constant, continuous on Q, harmonic on Do, and attains its minimum on Q at
some point zo E Q. Then zo E C U M.

If zo belongs to a smooth arc (a, /3) of the contour C, and if h at zo has a
directional derivative along a vector v and v makes an acute angle with the
inward normal, then

du (zo) > 0. (5.2)

P R 0 0 F. The first assertion is well-known (see. for example, I. G. Petrovskii
[ 101 , § 28). Let us prove the second assertion. By a conformal transformation
the general case can be reduced to the case where C is a circle. We construct a
closed disc contained in C + Do and having a single point zo in common with
C. Clearly a strict minimum of h on this disc is attained at zo. According to a
well-known lemma (see I . G. Petrovskii [ 10 ] , § 28, Lemma 1) the derivative of
h along any direction that makes an acute angle with the inward normal to C is
positive.

5.3. LEMMA 5.2. Let [a, (3] be a smooth arc of the closed contour C, and let
y E (a, (3). Let a vector field u be given on (a, 0) so that

'V(z)<0 for zE(a,y);
T(z)>0 for zE(Y,3)

(5.3)

We denote by D the region bounded by C, and by Q the set obtained from
D U C by removing the point y.

Suppose that the function h(z) (z E Q) is continuous and bounded below on
Q, harmonic on D, and that it satisfies the condition

(5.4)

at all points of (a, /3) (except y).
Then
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inf h = inf h.
Q c\(a 5)
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(5.5)

PROOF. Let (33] be a smooth arc of the contour Cj, where CC bounds the
region Dj, and let y, E (a7, j3j) (j = 1, 2). Consider a conformal mapping F) of Dj
onto the unit disc and construct a bilinear transformation G taking F2 (a2 ),
F2 (72), F2 (R2 ), respectively, into F1 (al ), Fl (yl ), Fl ((31). The mapping
F = F11 GF2 takes C2, D2, [a2 , (32 1, y2, respectively, into C1, D 1, [at , a1 ] , -Y1.
It is conformal on D2, continuous on D2 U C2, and has a non-zero continuous
derivative F'(z) at all points of the arc ((X2 , 92)- Using this mapping we can see
without too much difficulty that Lemma 2 is valid for any contour C, smooth
arc [a, 01, and point y, provided that it is valid for some special choice of
contour, arc [a, 91, and point y.

Let us choose for C the contour that forms the boundary of the semi-disc

D={z=x+iy: y> 0, x2-+2 < 1),

for the arc [a, (3] its diameter [-1, 1 ] , and for y the point 0. Consider the
function

and put

K,=(z:
Qe = (z:

b(z)=lnI zI-1

0, b (z) = b (e)},y ,
y,0, h(1)cb(z)b(e)}.

The boundary of QE consists of the two semicircles K1 and K2 and the portion
LE of the diameter determined by the condition b(l) < b(x) < b(e). Note that
on LE

ab -1 r1bvxx , a=0.
(5.6)

Let VI (z), v2 (z) be the coordinates of v(z). We write

v (z) = v (z) sign v2 (z).

For each z E L6, u(z) forms an acute angle with the inward normal and, because
of (5.6) and (5.3),

ab
aU<0.

Denote the greatest lower bounds of the function h over the sets Q and
K1 = C \ (a, (3) by q and k, respectively. The function

(5.7)

'F(z)=h(z)-k+(k-q) b(z)-b(1)
b (s)-b(1)
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is continuous on QE and, by virtue of (5.4) and (5.7)

ae`7e, ah h-q ab k-q ab

au ao
i- b(e)-b(1) T,^

_
b(E)-b(1) ao

<0

for any z E LE . By Lemma 5.1, the minimum of M,, over the set QE is attained
on K1 U KE . Since &E is non-negative on K1 U KE , it is non-negative on QE .
Making e .[ 0 we arrive at the inequality h(z) > k throughout Q. Consequently
(5.5) holds.

L E M M A 5.3. Let [a, 13] be a smooth arc of the closed contour C, and let a
vector field v be given on (a, 0) such that 4((z) > 0. Denote by D the region
bounded by the contour C and by Q the set obtained from D U C by removing
the point a Suppose that the function h(z) (z E Q) is continuous and bounded
below on Q, harmonic on D, and that it satisfies the condition

at all points of the are (a, (3). Then

infh= inf h.
Q C \[a,p)

PROOF F. Just as in Lemma 5.2 it suffices to prove our lemma for some
particular contour C and particular arc [a, 01.

In order to carry out the proof, it suffices to repeat the arguments used in
the proof of Lemma 5.2, putting

D= {z. y>0, < ;}, a=0,=1, b(z)-.2jzj s

The only difference is that the function HE is not defined at the point 0
belonging to QE . Hence the fact that HE is non-negative does not follow directly
from Lemma 5.1 and requires a separate proof.

Let 6 > 0, and put

H6E =HE+6InI z1-1

Note that aHE /au < 0 for all z 0 0 in LE . For any 0 < r < 1 the function HE
is continuous on the set

QE=QEf (z: lzI>r).

By Lemma 5.1 the minimum of this function over Qr is attained at some point
of the boundary that does not belong to LE. If r is sufficiently small, then at all
such points the function HE is non-negative. This means that it is non-negative
throughout Q. Hence we can conclude that HE (z) > 0 for all z = 0 in QE.
Letting 8 10 we arrive at the conclusion that HE > 0 for all z * 0 in QE.
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5.4. LEMMA 5.4. Let [a, (3] be a smooth arc of the closed contour C and
y E (a, (3). Let v be a given Holder continuous vector field on the arc [y, (3) such
that

T(y)=0, T(z)>0 for zE(y, t)

Let D be the region bounded by C. Suppose that h(z) (z (E D U C)
is continuous on a neighbourhood of y, harmonic on D, and continuously
differentiable at all points of (y, (3), with

ab
av

= 0.

(5.8)

Then for sufficiently small e > 0 the greatest lower bounds of h over the sets
UU(DUC)tl (z: Iz-y1<E) andKe= {DUC}(1{z: z-y1=e} areequal.

REMARK. It is clear that Lemma 5.4 remains valid if the arc [,y, 0) is
replaced by (a, y], and (5.8) by the condition

T(y)=O, T (z) <0 for z E (a, 'f).

To verify this we need only use the transformation F(z) = F.
P R O O F O F LEMMA 5.4. Without loss of generality D can be considered to

be the unit disc. We extend the field v onto the whole circle C in such a way that
it is Holder continuous, so that '(z) is non-negative on some arc [a', y) and that
the index 1 is zero. In relation to this field the point y belongs to F_, and by
(4.16) to this point there corresponds a function by continuous throughout
D U C except at y; the restriction of this function to C has a discontinuity of
the first kind at -y. Choose constants a and b so that the function g = ahy + b
has the limits -2 and +2 as the point z approaches y along the arcs (a, y) and
(y, (3), respectively.

The boundary of UE consists of the arc Ke and an arc (al , (31) of the unit
circle C. Choose e > 0 so small that h is continuous on U and that

E

g (z) < - 1 for z E (a,, y),

g (z) > 1 for z E (y, P,)

Denote by.u and k the greatest lower bounds of h over the sets U6, KE,
respectively, and let q = sup I g 1. The function

OF

H(z)=h(z)-u-ggZ+11 (k-u)

(5.9)

satisfies the conditions of Lemma 5.3 with respect to the region UE and the arc
(y, (31). Since H(z) is non-negative on KE U (a1, -y), it is non-negative through-
out UE , and we have

h(z)> u } g9 Z+ 1(k-u) (zEU6).

By (5.9), h(z) > u + q +1 (k - u) for z E (y (31), and hence
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u > h (v) > u - (k - u) (z E (Y, 0))++
Hence k = u, and the lemma is proved.

5.5. P R 0 O F 0 F THEOREM 5.1. The theorem is obvious if the function h is
constant; suppose then that it is not constant. Put z E ro if z r and the
vector v(z) is tangent to C. Denote by DE the set of all points z E Do* = D* \ K
that are at a distance not less than e from all points of r U ro. Let
c=infh(z)for zEDo.

We suppose at first that r, is non-empty. Consider the set Ae consisting of
all points z E D** that are at a distance not less than e from F. If c < 0, then
because of (5.1) inf h(z) = c for sufficiently small e > 0. It follows from

zEAE

Lemmas 5.2, 5.4 that if e > 0 is sufficiently small, then inf h = c. But the
De

function h is continuous on the set DE, and therefore there exists zo E DE such
that h (zo) = c. However, by Lemma 5.1 the point zo can belong neither to Do
nor to C fl D. Consequently zo (E 8K, and assertion a) is true.

If the set I'.. is empty, then the same argument leads to the desired conclusion
if AE is replaced by D.

5.6. Using Theorem 5.1 we shall now give a description of all the bounded
solutions h of Problem . for which the limit

lim h (z) = ba
x-a

exists for any a E I'+.We put h(a) = ba , so that the function h becomes defined
and continuous on the set D* U r+.

THE 0 R E M 5.2. For any function b(a) (a E r'+) there exists a unique bounded
solution h to Problem .4r satisfying the conditions

h (a) = b (a). (5.10)

If the index l > 0, then each bounded solution that is continuous on D*U P+
is uniquely expressible in the form

i

h (z) = a + I akhk (z) + E avhy (z),
k=-t vEr_

(5.11)

where hk and by are the functions defined by (4.16) and a, ak, a'Y are constants.
If 1 < 0 and l+ > 0, then every bounded solution continuous on D* U I'+ can

be uniquely written in the form
h (z) = a + Y,

a7 are constants connected by the relations

(5.12)

E av ih = O
ver-

(i k I < 11 I ) (5.13)
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PROOF. 1°. Let 1 > 0. To begin with we show that the functions 1, hk. by
are linearly independent and consequently the representation (5.11) is unique.
For let

h =a akhA 'aylly, F = Z ak(Dk+ E aycb .

It is evident that h = 31 C F T) . Hence if h = 0, then by 4.2, F = Sh = 0

and consequently Zak Ik + E ay Dy = 0. It is easy to deduce from this that all
the coefficients ak, ay are zero. This implies that a is also zero.

2°. We now show that the coefficients in (5.11) can be selected so as to
satisfy (5.10).

For the conditions (5.10) give rise to a system of l+ linear equations in
21 + 2 + 1-unknowns. Now according to (3.2) 21 + 2 + 1_ =1+, so that the number
of equations is the same as the number of unknowns. By the corollary to Theorem
5.1 and 1° the corresponding homogeneous system only has the zero solution.
Consequently the determinant of the system is non-zero and the system 5.10
has a solution.

3°. Now let l < 0, 1+ > 0. We suppose that the function h is defined by (5.12)

and that the coefficients satisfy (5.13). Observe that h = T C T U)

where F = E ay1y . By 4.9 it follows from (5.13) that (3F _ F. Hence
yEr_

h = 551(T F) . Repeating the arguments of 1 ° we conclude that if h = 0, then

ay = 0 for all y E P_, and that a = 0.
Next we show that the coefficients in (5.12) can be chosen so that the

function h satisfies (5.10). For the conditions (5.10) together with the equations
(5.13) lead to a system of - 21- 1 + 1+ linear equations in 1 + 1 unknowns.
Again the number of equations is the same as the number of unknowns, and
the corresponding homogeneous system has only the zero solution. This implies
that the system (5.10), (5.12) has a solution. Since this system has along with
each complex solution also the complex conjugate solution, it has a real solution.

4°. It remains to note that by the corollary to Theorem 5.1, conditions
(5.10) uniquely determine the solution to Problem A .

5.7. By Theorem 5.2 there exists for each point a E I'+ a unique solution to
Problem A that is equal to one at a and to zero at the remaining points of r+.
Let us denote this solution by pa(z). By Theorem 5.1, all its values lie between
zero and one.

Clearly a solution h that satisfies conditions (5.10) is given by the formula

h (z) _ I b (a) pa (z). (5.14)
aEr,

For b(a) = 1 condition (5.10) is satisfied by the function h(z) = 1. Hence
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1 = Li P. (z)
aEr,

§6. The Green's Function

(5.15)

6.1. If the set F., is empty, then the set of all non-negative solutions of the
boundary value Problem . consists of the non-negative constants (see Corollary
1 to Theorem 5.1). The only case that has to be further studied is when the set
r+ is non-empty. In this section the Green's function for Problem . (see 1.3)
will be constructed. That is, for each w E DO =D \ {0 } a function gu, (z) (z D)
will be constructed satisfying the conditions:

6.1.A. gW (z) = hw (z) - In I z - w j, where hw (z) is a harmonic function on
the region D.

6.1.B. The partial derivatives of gw (z) can be continuously extended to D*,
and at each point z E C* the directional derivative along v(z) is zero.

6.1.C.lim gw(z)=0forallaE1+.
z-+a

6.1.D. The function gw (z) is bounded in a neighbourhood of any point
0Er_.

From Theorem 5.1 it follows easily that the Green's function is non-negative.'
6.2. In 4.2 the operators Z and Ji were described; they establish a corres-

pondence between the harmonic and the analytic functions on D. We now
extend these operators to a somewhat wider class of functions, Namely if

li(z)=Ii(z)+aInI z-w 1,

where h is a harmonic function on D, w E D, and a is a real constant, then we
put

C21 (z)=Sh(z)+ a wi
and if

f (z) = f (z) + z ,, ,

where f is regular analytic function on D, w E D, and a is a real constant, then
we put

Rtf (z)+aInIz-w

I If the set r+ is empty, then the Green's function does not exist. For in this case the function f-c
belongs to the set,#0 if f does, where c is any constant. Consequently the inequality gw(z) - c > 0 must
hold for any c, which is clearly impossible.



Martin boundaries and non-negative solutions 61

It is easy to see that for z w formula (4.1) holds, as before. Formula (4.2)
also remains valid, provided one integrates along any curve joining zo to z and
not passing through w. If the path of integration is smooth, then it can pass
through w; however, in this case the integral has to be understood to be in the
sense of the Cauchy principal value.

It is easy to see (see 4.2) that the function g. satisfies conditions 6.1.A-
6.1.B if and only if the function G. = tgu, satisfies the conditions:

6.2.A. G. (z) + 1 is analytic on D and continuous on D*.
z - w

6.2.B. Rev(z)G.(z)=0forzEC\I'.
Let G., (z) satisfy conditions 6.2.A-6.2.B. Consider the function

qu, (z) _ MG. (z) = Re Gu, (z) dz
0

and put

(6.1)

gw (z) = gw (Z) - Fi gu, (a) P. (z),
sEr. (6.2)

where the Pa (z) are defined in 5.7. Clearly gw satisfies not only conditions
6.1.A-6.1.B but also conditions 6.1.C-6.1.D. Consequently it is the Green's
function.

6.3. THEOREM 6.1. Let v be a Holder continuous vector field on the unit
circle C with index I and characteristic function T(z). Suppose that the set ris

non-empty. Put

Lu, (z) _ 'Du, (z) - A (w, z), (6.3)

where A(w, z) is defined by (4.24) when l < 0 and is zero when 1 > 0, and where

1D. (z)
Z+W

2 z-W
Furthermore let

G. (z) =
T iz)

IS (w) L. (z) - S (w) L. (z)]

(6.4)

(6.5)

Then the function gw (z) (w E D, w * 0; z E D*) defined by (6.1)-(6.2) is the
Green's function for Problem A.

PROOF F. We shall prove that the function

F,, (z) = iS (w) L.. (z) - iS (w) L. (z) (6.6)

satisfies the conditions:

a) the function A (z) = zL1 r F. iS(z)z 1(z) + is regular on D and continuous
z - w

on D*;
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b) ReF.(z)=0forzEC*.
Clearly the functions F. and G. are related by equation (4.10). By 4.5,

6.2.A follows from a) and 6.2.B from b). Hence (see 6.2) the function
gw (z) given by (6.1)-(6.2) is the Green's function.

The function A(z) is clearly regular on D and continuous throughout D*,
except possibly at the points 0 and w. Its regularity at the point 0 follows
from remark 2 in 4.9. If w ED, then w* w and

lim A (z) = { iS (w) Lw. (w) + iS (w) A (w, w) -[- iS' (w) w -]- 2 S (w) } w'.
z-w

It follows that for w * 0 the function A(z) is regular at w. Thus, condition a)
is proved.

Furthermore, it is easy to see that 4 (1)w. By 1 ° in the proof of

Theorem 4.1, A(w*, z) A(w, z*). Hence Lw* =-L*,,, and

F. (z) = [iS (w) L' (z)]' - IS (w) L. (z). (6.7)

The validity of b) follows immediately from this.
R E M A R K. It follows easily from Theorem 6.1 that the Green's function

gw (z) satisfies condition 1.3.B on the region Ds obtained from D by removing
the point 0.

P. Asymptotic behaviour of the Green's function

7.1. By (4.4)
S(w)=r(w)(i(w)+iv(w)]

for all w E D U C except w = 0. If we write for short

T (z) = Ti!I , L° (w, z) = Lw. (z) -1- Lw (z), LT (w, z) = Lw. (z) - Lw (z), (7.1)

we can write (6.5) in the form

G. (z) = T (z) r (w) {r (w) LT (w, z) - iv (w) L° (w, z)}. (7.2)

We shall study the behaviour of this function as w'-* a E r. By (4.6), y(a) = 0.
According to (4.7) we can suppose without loss of generality that
S(a) = r(a) = r(a) = I. It follows from (7.1), therefore, that

G.(z)=T (z) (LT-ivL°)+o(LT)+o(vL°), (7.2')

where the asymptotic estimate is uniform for all z in D*.
7.2. Denote by DE the set obtained from D* by deleting an e-neighbourhood

of the point a. We shall derive further estimates for G. (z) and gw (z) acting
uniformly on each region DE (e > 0).

Let us write B = o(A) whenever the ratio

A

tends to zero uniformly in each
region DE (e > 0) as w -* a.
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We put'

U. (z) = a a I _Q = (ZZa)s - I I'v (a) a)v (z)(7.3)
yEr,

Note that

L' _ (w*-w) - E (pv (z)
Py (w**-Pv

(w){(z-w*) (z-w) W *-WZ
} =

vErl

= U. (z) (w* - w) + o (w* - w), (7.4)

(7.5)

L"=2La(z)+U. (z) (w + w* - 2a) + o (w - a) d- o (w* - a). (7.6)

Every point w sufficiently near to a can be written uniquely in the form

w = ae's (1-t) 0 s I < n). (7.7)

Hence the scalars (s, t) can be considered as local coordinates in a neighbour-
hood of the point a. Clearly t = 0 when w E C, and t > 0 when w E D. The
point a has the coordinates (0, 0). As w - a we have

w*-w=ae's (1 1 t-1+t) =2ta±o(t),
w-a=a((1-t)ets-1)=a(is-t)+o(s)+o(t), (7.8)

w*-a= a (11 tei*s-1)=a(is+t)+0(s)+0(t).

From (7.4), (7.6), (7.8) we obtain

LT = 2taUa (z) + o (t),

L' = 2La (z) + 2isaUa (z) + o (s) + o (t).
(7.9)

Combining (7.2') and (7.9) we arrive at the formula

G(z)=2T (z){-iLa(z)v +a(sv+t)Ua(z))+0(vs)+0(t). (7.10)

Put

z

ua (z) = 2 Re S T (z) a [ (Z
za)2 - ' (1'v (z) Py (a) ] dz. (7.11)

0 vErl

By (4.33), La (z) = Cs(pa (z). From (6.1), (7.10), (7.11) and Remark 1 in 4.9 it
follows that

t If I > 0, then r, is empty and the second term vanishes.
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qw(z)=2ha(z)v+(sv+t)u(z)+0(vs)+0(t). (7.12)

7.3. Now let a E F. Then we can choose the set F1 so that a E F1 I. Accord-
ing to Remark 2 in 4.9, ha(z) = 0, and formula (7.12) takes on the form

qw (z) = (sv + t) u« (z) + 0 (sv) + 0 M. (7.12')

We shall suppose that in a neighbourhood of the point a the function S(w)
satisfies a Lipschitz condition : I S(w2) - S(w 1) j < k I w2 - w 11. (By 4.4 a
sufficient condition for this to hold is, for instance, that the vector field v(z) is
smooth in a neighbourhood of a.)

We denote by B(s) the angle between the vector field at the point aeis and
the positively directed tangent to Cat this point; and we put 0(s, t) = B(s). By
4.3

sin 0 (s) = v (ae1e) = v (s, 0).

The function v(w) as well as S(w) satisfies the Lipschitz condition near a and
consequently

v (s, t)=v (s, 0)+0(t)=0+0(0)+0(t),

where 0 = 0(s, t). It follows that (7.12') can be rewritten in the form

qw (z) = (s0 + t) u« (z) + 0 (s0) + 0 (t).

Put p = sO + t. According to 3.3, sO > 0 in a neighbourhood of a. Therefore the
numbers sO p -1 and tp -1 lie between zero and one, and

qw (z) = eua (z) + o (e)

By (6.2) this implies

where
Iim a-1gw (z) = ua (z),

(7.13)
w-+a

ua (Z) = U. (Z) - LJ U. M pv (Z)'
vEr, (7.14)

7.4. We can even avoid the additional assumption made at the beginning of
7.3. For if we can show that

lim is > 0, (7.15)
w-+a

then from (7.12') we can derive the formula

lim (vs+t)-1gw (z) = ua (z), (7.13')w-.a

which is completely analogous to (7.13).
We now prove the inequality (7.15). Since v - 0 as w -> a, (7.15) holds with

equality, provided s remains bounded. Hence we may suppose that s 0. Let
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((3, y) be any arc containing a, and put

B1 (w) = n arg i-_- a-y ,
B(w)= arg

n

B2 (w)= arg a-w y-P ,
a-w y-a
y-w P-a

where the values of the arguments are taken in the interval (-it, 1r]. The functions
B1, B2 and B3 are harmonic on D and coincide on the contour C with the
functions determining the arcs ((3, a), (a, y) and (y,13), respectively. A simple

computation shows that, as w - a and t -+ 0,
s

Bj (w)=61 s +o f s l if s> 0,

B2(w)=b2 S+a(sl if s<0
B (w)=bt+o (t)

(7.16)

(where b1, b2 and b are constants). Let e > 0. Choose the arc ((3, y) so that the
function

f (w) = Im S M=r (w) v (w)

satisfies the inequalities 0 <f(w) < e on (a, -y) and -e <f(w) < 0 on ((3, a). (We
recall that by 4.3, r(w) > 0 and the function v(w) `changes sign from - to + at a.)

The function f(w) is harmonic in the annulus Q = { w: 2 <1W 1<1 ) . Hence

for any constants a and c the functions

H1 (w)=f (w)+EB1 (w)+aB (w)+c In I w-1,
H2 M= -f (w)+eB2 (w)+aB (w)+c In I w

are harmonic in Q. If a and c are sufficiently large, then the functions H1 and
H2 are non-negative on the boundary of Q, and this implies that they are non-
negative on Q. Hence in some neighbourhood of a,

-eB1 (w) -aB (w) t +c t In I w I for s>0.
r (w) v (w)

s

cB2 (w) t +aB (w)-c t In w for s < 0.

But r(w) - 1 and t-1 In I w I - 1 as w -* a, and by (7.16) we have

limy (i) s > -e min (bl, -b2).
w+a

Hence (7.15) follows, because e > 0 was chosen arbitrarily.
7.5.Now let aE['+. By (7.12)

9w(z)=2ha(z)v+ua(z)t+o(v)+o(t). (7.17)
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Substituting this expression in (6.2) we arrive at the formula

gw(z)=2ha(z)v+aa(z)t-gw(a)p (z)+o(v)+0(t),

where

ha (z) = ha (z) - I ha (Y) Pv (z),
YET+, Y#a

2ta (Z) = U. (Z) - I U. (Y) pY (Z)
vEr+, v#a

(7.18)

(7.19)

For z = a (7.17) is inapplicable, and the behaviour of qu, (a) as w -+ a must be
investigated separately. This will be carried out in 7.6-7.8.

In the course of our calculations we shall come across a number of constants
the exact values of which are unimportant for our purposes. We shall denote
these constants by a1, a2, . . . if they are real, and by A1, A2, ... if they are
complex.

We shall suppose that w does not lie on the radius [0, a]. With this
assumption all integrals that occur converge absolutely.

Denote by II the interval [ao , a] , where ao is any fixed internal point of the
radius [0, a] . By (6.1) and (7.2),

qw (a) = q (ao) + r (w) ,r (w) Re
J

T (z) L` (w, z) dz -
n

- r (w) v (w) Re S T (z)i L" (w, z) dz. (7.20)

It follows from (6.3), (6.4) and (7.1) that

L"(w, --z' -2A (a, z)+o(1),

LT (w, z) =Z w* -z- -[Aw(a, z)+o(1))(w+-w),

where A. = aA and the estimate o(1) is uniform for z E fl.

Put

9(w)=S
U

The equation wT(z) = T(z) - T(z) (z - w) yields

S

zmWT(z)dz=_73(w)+At,

n

(7.21)

(7.22)

and by (7.21)
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S T (z) Lv (w, z) dz = a.13 (w*) +.T (w)+Az+o (1),
n
S T (z) L` (w, z) dz = . (w*) -.f (w) + A3 (W* - w) + o (w' -w).
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n
Substituting these values in (7.20) and using (7.17) and (7.8) we obtain

9w (a) = - r (w) v (w) I (w) + r (w) T (w) J (w) + a1 v (w) + a2t + o (v) + 0 (t), (7.23)

where

I (w) = Re i [. (w') + _T (w)1, J (w) = Re [.T (w') -.T (w)). (7.24)

7.6. We shall have to deal with many-valued functions. Let us agree on each
occasion to choose branches of such functions that are regular on the region E
obtained by removing from the complex plane the ray emanating from the
point a in the direction of ao. In particular, we shall write

lnfDa =InIwanI+Iargwaa (wEE), (7.25)

where the value of the argument is taken in the interval (- 7r, 7r).
Let

a + in w
M w) =1

asw*
n+ ( ,aa (7.26)

w*

al a-lnwM
a

.a_(w)= n

It is not difficult to see from the relations

w*-a w-a I w-a 2 w*-a 'w-a
a a aw w-a w-a a w

that when I w 15 1, s * 0.
M+ (w)=2 InIw -aI -}- in sign s+o(1),

*_Q+o(t).M_(w)=t + iarg iv- -
(7.27)

In order to study the behaviour of the functions . (w),I(w), J(w) as w -> a
we shall make use of the following well-known proposition in the theory of
functions of a complex variable (see, e.g., [ 11, 8.1):

7.6.A. Let n be a smooth arc beginning at ao and ending at a. Let F(z) be a
Holder continuous complex function on II. Then the formula

f (w) = S
Z

(W dz

defines outside II a regular analytic function f As w -+ a,
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f (w)=F(a) InwQ a+A+0(1),

where by In -T- a we mean a branch that is regular outside H, and where A is
a

a complex constant.
From this proposition it follows, in particular, that

2(w)=lnTQa+A,+o(1)

(because T(a) = 1). Hence from (7.24)-(7.27) we have

I(w)=Re[iM+(w)+2A4i]+o(1)= -n sign s+a3+o(1). (7.28)

7.7. In order to give an estimate of J it is necessary to add the supplementary
hypothesis that the vector field v is smooth in a neighbourhood of the point a
(see 3.1). According to 4.4 and by virtue of this assumption, the derivative of
the function T(z) is Holder continuous in a neighbourhood of a; therefore
Proposition 7.6.A is applicable to the integral

(w)=
J Z' (m dz
n

Integrating by parts we easily derive the formula

elf' (w) (w) + T (aa -
T (a0)
w-a0 (7.29)

Clearly

5 (w*) -:D (w) = T' (x) dx (w E F,), (7.30)
Xw

where K. is the line segment joining w and w*. According to 7.6.A the
function (x) is regular outside H, and as x - a

(x)=T'(a)In xaa { As { 0(1). (7.31)

Combining (7.29), (7.30) and (7.31) we have

D(w*)-D(w)=T'(a)(w*-a)in ya a-T'(a)(w-a)in +a
+ In :-OL- In

w,-a+
A6 (u'*-w)+o(w*-w),a a

and by virtue of (7.26), (7.27) and (7.8),



Martin boundaries and non-negative solutions 69

D (w*) - D (w) _ T' (a) M+ (w) (w* - w) +

+ 2 T , (a) A1- (w) (w* + w - 2a) +M_ (w) + As (w* - w) + o (w* - w)

= 2tT' (a) a In I w - a I + itaT' (a) a signs +

} i{T'(a)a(e''-1) +-1}argww*--ua{ tA77 o(t). (7.32)

Taking the real part we arrive at the expression

J(w)_ -2x,tIn Iw-al-x2ttsign s+j(w)-}-a4t+o(t), (7.33)

where

x, = - Be aT' (u), x2 = ILn aT' (a), (7.34)

j (w) = {x, sin s +x2 (1 - cos s)) arg W-CL . (7.35)

Let w - a. We shall say that w tends to a tangentially to C ifs -+ oo, and we
t

shall say that a strictly non-tangential approach takes place if the ratio 1

remains bounded.
Note that if w tends to a tangentially to C, then by (7.8)

Itw*-a = 1-2i-{ ow-u s sC
and consequently

j (w) = - 2x,t-x2 st+ o (st). (7.36)

We shall now show that

x, = Vs (a), x2 = Vt (CO (7.37)

(where vs and Pt denote the partial derivatives of the function with respect to s
and t). It follows from (4.4) and the relation v2 + T2 = 1 that
T(z) = R(z) [T(z) - iv(z)] (R(z) = r(z)-t > 0). Differentiating this equation with
respect to s and t, and using the relations v2 (w) + T2 (w) = 1, v(a) = 0,
T(a) = R(a) = 1, we arrive at the formulae

T. (a) = RS (a) - iv8 (a), Tt (a) = R, (a) - ivt (a).

But Ts(a) = T'(a) ia, Tt(a) _ -T'(a)a. Hence

- aT' (a) = iR8 (a) + vs (a) = Rt (a) - iv j (a),

and (7.37) follows from (7.34). _
By the Mean Value Theorem v(s, t) - v(s, 0) = vt(s, t) t, where 0 < t < t.

Since vt(s, t) - ,c2 as w --> a, we have

v(s, t)=v (s, O)+x2t+o(t)=sinO+x2t+o(t)=O+x.t+o(e)4-o(t), (7.38)
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where 0 = 0(s) = 0(s, t). Hence, in particular, it is clear that K1 = vs(0, 0) = 0'(0),
and by 4.3, K 1 < 0.

7.8. Combining formulae (7.23), (7.28), (7.33) and (7.38) we haves

qw(a)= -Tl+Onsign s+a50+a6t+o(0)+o(t)1), (7.39)

where

T1=2x1t lnIw-aI-j(w). (7.40)

Hence by (7.18)

gw (z) = TIP. (z) + 2r<0 2 sign spa (z) ] + IL,,, (z) + o (0) + o (t), (7.41)

where

ii (z) = n-'h4 (z) -a7Pu. (z), u (z) = ua (z) + 2x2h (z) - a6P« (z) (7.42)

Consequently

gw(z)=T1Pa(z)-2nOpa(z)(z)+o(0)+0(1) for s> 0,
o"w(z)=Tipa.(z)+2nop«(z)+tua(z)+o(0)+o(1) for s < 0, 1

(7.43)

where

Pa (Z) = 2 P. (Z) - ha (Z),

p. (Z) = 2 Pa (z) + ha (z)

To begin with, let K 1 0, and put

t=tln 1w
al

(7.44)

We shall prove that j(w) = o(t) and consequently T7 = - 2K1I -j(w) - 2K1 t.
Suppose that this is not so. Then there exists a sequence wn - a and a number

e > 0 for which I j(wn) I > e I to I (n = 1, 2, ...). By virtue of (7.35) I
sn

is bounded. Thus, the sequence e r I is also bounded, the sequence 1"
T, s"

tends to zero, and because of (7.36) t ' - I ----> 0. The contradiction so
In

obtained proves our assertion.

Suppose that w - a so that n 9 -+ X. It is clear from (7.43) that
K1 t

f Since the function r(w) r(w) is Holder continuous in a neighbourhood of a,
[r(w)r(w)-1lln1w-a1-Oasw-.a.
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lim gw (z) = p« (z) for X= + oc,
12nOI { pa-(z) for X= - co

and

lim g. (z) - J p,. (z) + Xp« (z) for O? , < + co,
2xt t I l P. (z) - Xpa (z) for - oz <X<0.

(7.45)

(7.46)

Taking into account the fact that p« = p+ + pa , and putting
A' = max(X, 0), ?- = max(-X, 0) we can rewrite this last formula in the form

lim 12x111-' g,,, (z) _ (1 + X) pa (z) + (1 + ;v-) p« (z). (7.47)

When the approach of w to a is strictly non-tangential, X = 0 and

lim 12x1 ;-' ga, (z) = p,z, (z). (7.48)

Note that 0 KIs, so that

7L=lim n0
tt

We have assumed so far that w does not lie on the radius [0, a] and hence
s 0. We shall now free ourselves from this restriction. Let wn - a; wn E [0, a] .
In view of the continuity (with respect to w) and the positiveness of the
functions gw (z) and t(w) we can construct a sequence Wn such that

n

gu,n (Z)
-* 1.

gwn (z)

The validity of (7.48) has been proved for the sequence wn . Hence this formula
is clearly valid for the sequence w, as well.

7.9. We suppose now that KI = 0 and we shall prove that

j (w) = o (t). (7.49)

If this were not so, then there would exist an e > 0 and a sequence wn - a
such that I j(wn) I > e to . By (7.35)

e lim s2 G (S n) c 2 nxz.
n n

Consequently to = o(sn ), and according to (7.36) j(wn) _ -K2sn tn + o(sn to ).
The contradiction so obtained proves (7.46).

It follows from (7.40), (7.43) and (7.49) that

g. (z) = - 2n0pa (z) + tu«.(z) + o (0) + o (t) for s > 0, (7.50)
gw (z) = 2nOp« (z) + tu« (z) + o (0) + o (t) for s < 0.

Let w - a so that - 27rOt-1 - X. Then
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lim 9- (Z) = ( pa (z) for X_ +oo,
12191 1 p« (z) for ), = - oo

and

lim Bwt(z) _ ua(z)+kp«(z) for 0<? <+00,- ua(z)-X.pa(z) for - co<X < 0.

(7.51)

(7.52)

In particular, in the case of a strict non-tangential approach by w to a, X = 0 and

lim t-1g. (z) = ua (z). (7.53)

The restriction that w E [0, a] can be removed exactly as in 7.8.

§8. The Martin boundary for the boundary value problem .4
A description of the non-negative solutions and the solutions

bounded below

8.1. We shall now give a solution to the problems formulated in § 3.
A description of the Martin boundary will be given in Theorems 8.1 and 8.2.

In the case where the contour C is the unit circle, the statements of these
theorems follow immediately from formulae (7.13), (7.45)-(7.46), (7.5 1)-
(7.52). The general case reduces to the case of the unit circle by using a
conformal mapping (see 4.1).

THEOREM 8.1. Let D be a region bounded by a smooth closed contour C,
let v(z) be a Holder continuous vector field on C with r as its set of exceptional
points. The Martin boundary B for the boundary value problem , ' decomposes
into connected components Ba (a E r) that are in one-to-one correspondence
with the points of I. For a E P_, the component Ba consists of one point P.
If a c F. and the field v is smooth in a neighbourhood of a, then the component
Ba is a closed interval.'

The points of this interval will be denoted by b (- oo < X < 00).
Let s be the canonical parameter (arc length) for the contour C, starting from

the point a E r in the direction of the vector v(a). The point of the contour C
corresponding to the value of the parameters will be denoted by c(s). Let n(s)
be the unit vector directed along the inward normal to C at c(s), and let
w(s, t) = c(s) + to (s). If we restrict the values of s and t to a sufficiently small
interval (- e, + e), we obtain a local system of coordinates in a neighbourhood
of the point a.

We denote by 9(s) the angle between the vector field and the positive tangent
to C at the point c(s) and write

In our case B = C \ I' + E Ba. If w e C \ r, then / is defined as the set of all functions which are
aEr

continuously differentiable near w and satisfy the condition aflav = 0 in a neighbourhood of w. For
w e Ba, a c- r, we denote by 1w the set of all functions. Arguments of 4.7 imply that the sets /,,, satisfy
1.8.a. Obviously they satisfy also 1.8.0.
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0(s, t)=0(s),
x = 9' (0),

2ns when x 0,
t I In (s2-f-t2)

-2n9 (s, t) when x=0.
t

(8.1)

(8.2)

Observe that 0(0) = 0, and that 0(s) changes sign from plus to minus if a E r+,
and from minus to plus if a E r_.

THEOREM 8.2. If a E r_, then for w to converge to b" (in the Martin
topology) it is necessary and sufficient that w - a in the ordinary topology of
the plane. Hence the point b" can be identified with a

If a E r+ and the vector field is smooth in a neighbourhood of a, then for w
to converge to b' (in the Martin topology) it is necessary and sufficient that
w - aandA.

8.2. We shall now study the harmonic functions corresponding to each point
of the Martin boundary. Denote them by k,, (z) (a E r_) and
(a E r+ - - < A S + o). It will be assumed that the region D is represented by
the unit disc. Consider on this disc the harmonic functions

(Pq(z)=lm In CI-a)=arg(1-aarctg 1-x
,

(z)=Re In C1-a)=1n 1-a =2In[(I-x)2+y21, (8.3)

tua(z)=Re C1-a) _(l 1x)2+v2

(x+ iy = a) . These functions are positive on D and continuous at all points of

D U C, except at the point a where they have a singularity.
We denote by the set of all functions of the form

E aroq)v (z) + h (z),
VEr_

where a, are real constants and h(z) is a harmonic function continuous on
D U C. (By 4.8 and Theorem 5.2 all bounded solutions to Problem . that are
continuous on D* U r+ can be represented in the above form.) Let us write
f=gwhenever f-gE .

THEOREM 8.3. Let the vector field v(z) be smooth in a neighbourhood of
the point a E F. Then

a) if aEr_

k. (z) = c' [ i (z) - xV., (z)1, (8.4)
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b)if aEI+,K* 0

k« (z) ° - spa (z),
kaoo

(z) = cpa (z); (8.5)

%

ka (z) 2+1),1 ka + 2+1 X k'; (8.6)

c) if a E I'+, K = 0, (8.5) holds for k« (z) and k--(z), while for finite values
of X the following formulae hold:

ka (z) = (z),

+ ka (z)l +- +k k« (z) for 0< < + ,
k« (z) =

1-T-IJ' 1
1+1A'1

ka°°(z) for -oo<l <0.

(8.7)

(8.8)

Here c, c', c" are positive constants (dependent of course on the field v(z)
and the point a).

PROOF. For each a E P+, pa = 0 (see 5.7) and ha = spa (4.8). From (7.19),
(7.42) and (7.44) we have

ha = ha = Ta, Pa ha -=n Ta, Pa=ha=- n pa,

and (8.5) follows from (7.45) for the case K q- 0. The validity of the same
formula for K = 0 follows from (7.51).

Furthermore, according to (7.14), (7.19) and (7.42),

ua = ua (a E r-),

ua E ua+2xzha= ua+2xzha° ua-I-2x2pa (aEr+). (8.9)

Let us now investigate the function ua(z). From (4.23) it is not difficult to
conclude that the numbers rati = (a) (a, y E 171 ) are real. Hence (7.11) can
be put in the form

ua = 2ua (z) -2 Z ravuv (z) +c,, (8.10)
,we r,

where
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z z

ua (z) = Re S (aT a(z) dz, u,' (z) = Re S T: -(z) (D, (z) dz
zo zo

(z0 is any point of the disc D other than the centre; c1 is a constant).
Let us denote by H1, H2, H3, . . . functions that are harmonic on the unit

disc punctured at the centre, and continuous on the circle C enclosing the disc.
It is not difficult to deduce that

u'v = cv+ Hi (8.11)

(see 4.8). Furthermore, if we put A(z) = T(z) - T(a) - T'(a) (z - a), we obtain

u'a = U11 + U19 , (8.12)

where
2

r
z

(a) a
ua (z) = Re S I (aTa)2 +

aT
' (a

) ] dz, u'2 (z) = Re S (aA ( CLz) dz.
20 20

Bearing in mind that T(a) = 1 and aT'(a) K i + K2 i (see (7.34)), we have

ua'(z)=w«(z)-x2(P«(z)+c2, where (8.13)

and c2 is a constant. On the other hand, by the Mean Value Theorem
A(z) = [T'(z) - T'(a)] (z - a), where 2 is a point of the interval [z, a]. Hence

IA(t)I<c3li-aIE IZ - aI<Iz - all+E (c3>O,e>0),and

u12 (z) = H2, (8.14)

Combining (8.10)-(8.14) we have u« = 2coa - 2K2 p« - 2 E +H3.
7 E r_

Clearly H3 E , and therefore

u« = 2w« for

u« = 2w«-2x2(p« for
a E r-,
a E r+. I.

(8.15)

It follows from (8.9) and (8.15) that u« = 2w« (a E ['_) and
u"« = 2w« (a E ['+). Taking into account (7.13) and (7.52) we arrive at (8.4)
and (8.7).

We now recall that by definition (see 1.7) the functions k«, ka all take the
value 1 at some point zo. Therefore (8.6) and (8.8) follow from (7.46) and
(7.52).

8.3. We can now give a description of the class of all non-negative solutions
to Problem -.

THEOREM 8.4. Suppose that the vector field v(z) is smooth in a neighbour-
hood of each point a E F and that the set IF, is non-empty. Put a E I'0 if
a E [+ and K = 6'(0) = 0. Then every non-negative solution It of Problem
. can be uniquely written in the form



76 E. B. Dynkin

h (z) I aaka (z) + I (caka-°° (z) + aaka'° (z)} + 2 aaka (z), (8.16)
aEr- aEr+ aEr+

where an, c., c«, as are non-negative constants.
PROOF. Denote by Be the subset of the Martin boundary B consisting of the

points ba (a E I'_), b- °°, ba°° (a E P+) and bq (a E I'0 ). It follows easily from
(8.4), (8.5) and (8.7) that Be fulfills condition 1.8.A. Also, by (8.6) and (8.8)
Be also satisfies condition 1.8.B. According to 1.8 every solution of Problem A
is uniquely representable in the form (1.14). But equation (1.14) is equivalent
to (8.16).

Received by the editors 28th February 1964.
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BOUNDARY THEORY OF MARKOV
PROCESSES

(THE DISCRETE CASE)

The paper contains a detailed account of the theory of Martin boundaries for
Markov processes with a countable number of states and discrete time. The pro-
babilistic method of Hunt is used as a basis. This method is modified so as not
to go outside the limits of the usual notion of a Markov process. The generali-
zation of this notion due to Hunt is discussed in the concluding section.
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Introduction

The boundary theory of Markov processes permits the investigation of the
"final" behaviour of the paths of such processes, that is, the behaviour as the

79
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time t tends to infinity (or to the death time). Knowledge of the final
behaviour is in its turn a prerequisite for the investigation of general boundary
conditions (from the probabilistic point of view this is reduced to the study of
possible continuations of the process after the death time). Another important
application of boundary theory is the description of all positive harmonic and
superharmonic (excessive) functions connected with the process. This problem
motivated the creation of the theory of the Martin boundary in 1941 [4].
Martin investigated the set of positive solutions of Laplace's equation in an
arbitrary domain of Euclidean space.

The probability interpretation of Martin's results was proposed by Doob
[ 11 : these results are directly related to the Wiener process, but Doob proved
that they can also be extended to discrete Markov chains.

A new approach to the theory of the Martin boundary was proposed by
Hunt [6]. In the Martin-Doob theory first an integral representation of exces-
sive functions is deduced by probability methods, and then from it a theorem
on the final behaviour of the paths is obtained. Hunt proved a theorem on the
final behaviour directly by means of probability arguments, and then, applying
this theorem to h-processes, he obtained a simple derivation of the integral
representation of excessive functions.

The reading of Hunt's important paper is made more difficult because it is
written in terms of a generalization, due to the author, of the idea of a Markov
process (approximate Markov chains).' This may give the impression that the
success of the methods applied depends significantly on this generalization.
Actually this is not so, and in this paper Hunt's method is modified so that we
need not go outside the classes of usual Markov chains.

Problems of boundary theory admit a natural dual formulation.
Instead of harmonic (excessive) functions we can investigate harmonic

(excessive) measures. In view of the self-adjointness of Laplace's operator in the
case considered by Martin, this dual problem does not contain in itself anything
really new. The situation changes in the general case, and now, instead of one
Martin boundary, two are constructed in Doob's theory: the exit boundary and
the entrance boundary. The role played by the exit boundary in the study of
the final behaviour of the paths must now be played by its dual, the entrance
boundary, in investigating the "initial" behaviour. However, to give this latter
term a meaning, we have to widen the usual interpretation of a Markov chain.
One of the possible extensions consists in considering stationary processes
defined for values of the time from - oo to + o. For such processes the "initial"
behaviour means the behaviour as t - - o. Another possibility is to consider
the generalization of Markov processes proposed by Hunt: Hunt processes
begin at a random instant t > - -, and the "initial" behaviour for these is the
behaviour as t - . It is not necessary to construct the dual boundary again,

' Chapter 10 of the recent book of Kemeny, Snell and Knapp [3] is written in these terms. This chapter
contains a well-considered and polished account of Hunt's paper.
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since it can be obtained from the previously constructed one by time reversal.
These questions are dealt with in the concluding sections of this paper.
Thus, the reader can gain a first acquaintance with the idea of time reversal

and its application to boundary theory from the simpler and more usual
material of stationary processes. At the same time it must be emphasized that
stationary processes are not exhausted by Hunt's theory, since they do not
satisfy the Hunt requirement of finiteness of the mean number of hits on each
state. The construction of a theory including both stationary processes and
Hunt processes remains an open problem.

The present paper treats (as also the paper of Doob and Hunt) only discrete
Markov chains. It can serve as an introduction to boundary theory for general
Markov processes, to which the author intends to devote a subsequent paper.

For an understanding of this paper only a knowledge of elementary
probability and measure theory is needed.

§ 1. Harmonic and excessive functions and measures

We take as starting point a transition function in a countable space E. This is
a non-negative function p(x, y), (x, y E E), satisfying the condition

P (x, y) < 1 (x E E). (1)

Let f and p be any functions on E. We denote by Pf and pP functions given by
the formulae'

Pf (x) = J' P (x, y) f (y) (x E E),

(µP) (g) = Z s (x) P (x, y) (Y E E)
X

(2)

Since the right-hand sides contain infinite series, these formulae do not have a
meaning for all f and p. However, they have a meaning if f and p are non-
negative. (By a non-negative function we always mean one with values in the
extended number half-line [0, + -J .)

The transition function p(x, y) can be interpreted as a matrix of countable
order. Here Pf is the product of this matrix by a countable vector column f,
and pP is the product of a vector row by P. From another point of view, the
first formula in (2) describes the effect of the kernel p(x, y) on functions, and
the second describes its effect on measures in E.2 The integral off with respect
to the measure p is denoted by the inner product

1 If the domain of summation is not indicated, this means that it is E.
2 We have to deal almost exclusively with non-negative f and µ. Note that in the general case the first
formula in (2) has a meaning if f is bounded, and the second if E I u(x) I < C', that is, if the signed measure

x
has bounded variation.
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(f, t) = E f M IL (y)

If (f, µ) < oo, then we say that f is p-integrable, and also that p is f-finite.
A non-negative function f is called excessive if Pf < f,' and harmonic if

f(x) < °° for all x and Pf = f. Similarly, a measure is called excessive if
pP < p, and harmonic if µ(x) < oo for all x and µP = M.

One of the central problems before us is the description of all harmonic and
excessive functions and measures connected with the transition function
p(x, y). It is expedient here to consider only y-integrable functions It and
1-finite measures v, where y and 1 are, respectively, a previously selected
reference measure and function on E. Of fundamental interest is the case when
p(x, y) is transient (see the definition in §3). In this case we are able to attach
to each pointy E E a y-integrable excessive function ky and a 1-finite excessive
measure icy . By means of the kernels ky (x) and Ky (x) we construct two com-
pactifications E* and E of E, such that ky (x) is extended for each x E E con-
tinuously to E*, and Ky (x) is extended continuously to E. From the sets
E* \ E and E \ E we single out Borel sets B and B, where ky is a harmonic
function and (ky, y) = 1, for y E B, and Ky is a harmonic measure and
(1, Ky) = 1 for y E B.

It can be proved that every y-integrable excessive function h is representable
uniquely in the form

h (z) = k W µh (dy),
E,)B

and any 1-finite excessive measure v is expressible uniquely in the form

v (s) _ J xy (x) µ° (dy)-
BUb

Here ph and p' are finite measures which are determined uniquely by h and v,
respectively. We call them spectral measures.

The set B is called the exit space, and the set h the entrance space. The
origin of these terms becomes clear in the following section.

§2. Markov processes

Suppose that a particle moves in a space E, going through a sequence of
states a0, a,, a2, ... The path a0aIa2 ... may be terminate or may continue
unboundedly. The set of all (terminating or non-terminating) paths is denoted
by 92. The set of all non-terminating paths is denoted by n_.

1 By f<gwe mean that f(x)<g(x)for all xEE.
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Among the subsets of 92 the so-called simple sets play a special role. A simple
set [a0a1a2 ... an I is composed of all paths beginning with the states
ao, a 1, ..., an and continuing in any manner after the moment n. We denote by
,F the a-algebra in 92 generated by all simple sets.

We depend on the following theorem on measures in 92.
THEOREM A. Suppose that for any n and any ao, a 1, ..., an E E a non-

negative number p(ao, a,, . . ., an) is given, where

p (ao, at, , G p (ao, at, ... , a,+-t) (3)n
Then there exists a measure P, which is moreover unique, on the a-algebra .!
such that

P (anal ... ant = p (ao, at, , an)-

This theorem will be proved in the Appendix.'
From Theorem A it follows that for any measure v on E with u(x) < 00 for

all x, there exists a measure P on 92, such that

P (aoat ... an[ = v (ao) p (ao,at) ... p (an-t, an)- (4)

An important role is played by the particular case when v is the unit measure
concentrated at the point x (when v(y) = S(x, y), where S(x, y) = 1 if
x = y, S(x, y) = 0 if x *y). The corresponding measure in 92 is denoted by Px ,
so that

P. (aoat ... and = 6 (.c, ao) p (ao, at) ... p (a,,-t, an), (4)

Px is the probability measure concentrated on the paths starting from x. We note
that for any v.

Pv= V(x)Px

and that v(E).
Each measure in the space of paths E2 determines a random process.2 The

process determined by the measure P is called the Markov process with initial
distribution v and transition function p(x, y). The process corresponding to
the measure Px is called the Markov process with initial state x and transition
function p(x, y).

One of the basic results of boundary theory states that almost every non-

1 The necessity of the condition (3) is obvious, since a a a J c [a , a an-1 I for any a
and since distinct [ao, al , ..., an [ do not intersect.
2 If p(t2) = 1, then P(A) can be interpreted as the probability that the trajectories of motion belong to
A. In the general case P(A) may prove to be greater than 1 and even equal to -.
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terminating path tends to some point of the exit space B. The measure of the
set of paths for which this limit belongs to the Borel set r C B is

S (ks, v) µ, (dy),
r

where ky is the harmonic function corresponding to the pointy E B, and µl is
the spectral measure of the excessive function 1.

To explain the role of the exit space, we have to introduce into the discussion
paths without beginning or end. These are functions at with range in E defined
for all integers t from - - to + -. The set of such paths is denoted by f2. We
use the term simple sets in E2 for the sets [am, am + 1, .. , an I m consisting of
all paths passing at the moments m, m + 1, ..., n through the points
am, am + 1, ..., an . (Before the moment m and after the moment n they can
behave arbitrarily.) We denote by J the a-algebra in f2 generated by all simple
sets.

For the construction of measures in the space 92 we can use the following
modification of Theorem A.

THEOREM B. Suppose that for any integers m G n and any
am, am + 1, ..., an E E, non negative numbers ptnn (am, am + 1 , , an) are given,
where

E P (am, am+1, ... , an) = P (am, am+,, ... , a, _1), (3')
an

J p (am, am+,, , an) = p (am+,, ... , an).
(3")

am

Then there exists a unique measure P on the a-algebra .lf such that

1n
P

[ti
amam+1 ... a. In - pm (am, am+j, ... , a,).

The necessity of the conditions (3'), (3") is evident. For the proof of Theorem
B see the Appendix.

We suppose that the transition function p(x, y) satisfies (1) with the equality
sign and that v is a harmonic measure. Then the function

Pmn (am, am+,, ... , an) = V (am) p (am, am+j) ... p (an-1, an)

satisfies the conditions (3')-(3"), and by Theorem B there exists a measure P
on .y such that

Pn
v [amam+, . . . anlm = v (am) p (am, am+,) p (an-,, an)- (4")

A random process determined by P in 92 is called a stationary Markov process
with stationary distribution v and transition function p(x, y).
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In boundary theory it is proved that for such a process almost all paths
converge as t -+ - oo to some point of the entrance space B. The measure of the
set of paths for which this limit belongs to a Borel set r Ch is

(1, x.) p° (dy),

where Ky is the harmonic measure corresponding to the pointy E B and µ° is
the spectral measure for v.

This result can be further generalized in several directions.
Random variables connected with Markov processes are.F -measurable

functions defined on SE or on a subset of this space (or ,f -measurable functions
on f2 or a subset of ft). The integral of such a function over its domain
with respect to the measure P is denoted by and with respect
to Px by Mx t.

Here are some examples.
is the terminal moment of a path: if the last moment at which the path CO

is defined is n, then (w) = n; if the path does not terminate, then (w) = + -.
Xn is the position of a particle at the moment n. This function is defined on

the set I w: g(w) > n L. In the case of a stationary process

P.Ixn=yl=v(y)

for any n. For a process with the initial distribution v

PV Ixn = y) 21 PV Ixn-t -- ZIP (Z, y) (5)
Z

To prove this equation it suffices to note that
(w: Xn = y } = U (CO: xn _ 1 = z, xn = y }, to decompose the sets occurring here

z

into simple sets, and to use (4).
We put

p (n, x, y) = P. {x, = y}.
From (5) it follows that

p (n, x, y) = S P (n - 1, x, z) P (Z, y),

and in view of the obvious relation

E6(x, y)=1
we have

M"f (X.) = M"

)/

xn, y) f (xn) = T' tl-Ix6 (xn, y) f (y) -
n

= S' p (n. x, y) f (y) = Pnf (x),

(6)
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where P is an operator given by the first formula in (2). (6) is valid also for
n = 0, if P° is taken as the unit operator.

§3. The Green's function

We return to the problem raised in § 1 of describing all excessive functions
corresponding to a transition function p(x, y). From (1) it follows that the
non-negative constants always belong to the set of excessive functions. It may
happen that no other excessive functions exist.

For example, let E be the set of all integers and p(x, y) = 2 if I x - y I = 1,

and p(x, y) = 0 for remaining pairs x, y. (The corresponding Markov processes
are called simple random walks.) It is evident that

Pf(x)=if(z+1)+2f(x -t),

and the condition that f is an excessive function can be written

p (x + 1) < q (x),
where p(x) = f(x + 1) - f(x). For any natural number k

f(z+k)f(x)+9) (x)+4p (z+1)+...+(p(x+k-1)
< f (x) + k4p (z),

f(x) =f(x-k)+c(x-k)+...+c(x-1)> f(x-k)+kq (z).
Since f is non-negative, it follows from the first inequality that f(x) >
and from the second that f(x) > k is arbitrary, it follows that
p(x) = 0, and therefore f is a constant.

Replying on the notion of a Green's function we derive a class of processes
for which sufficiently many excessive functions exist. The Green's function is
defined by the series

g (x, y) _ E P (n, x, y). (7)n=°

The process is called transient if g(x, y) < 0 for arbitrary x and y.
We note that by (5) p(n, x, y) = PX ; xn = y } = MX S(xn, y). Hence

L

g (x, y) = M. 216 (xn, y)
M=0

(8)

Under the sign of mathematical expectation there stands the number of times
the path hits the pointy. The condition of being transient implies that this
number is almost certainly finite. Thus, for a transient process almost all paths
go only a finite number of times through one and the same state. Hence, if the
states are enumerated in any order, for almost all non-terminating paths the
number of the state tends to infinity.
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The simple random walk considered above has the property: almost all paths
go infinitely often through any point.' Processes with this property are called
recurrent. It can be proved that every connected Markov process is either
transient or recurrent. (We say that a Markov process is connected if for any two
states x and y there exists n such that p(n, x, y) > 0; in other words, if
g(x, y) > 0 for any x and y.) For any recurrent process, as for the simple random
walk, there do not exist non-constant excessive functions. Henceforth, without
saying so each time, we only discuss transient processes.

The Green's function corresponds to the operators

Gf (x) g (x, y) f (y),

tG (y) s (x) g (x, y).

From (6) and (7) it is clear that

G = >i P.
R= O

Hence, for non-negative f and y

f+PGf=Gf, µ+µGP=µG.
Therefore it is evident that Gf is an excessive function and MG an excessive
measure.

We put Sy (x) = S(x, y). It is obvious that

g (x, y) = (G6,,) (x) = (6.G) (y).

(9)

(10)

Hence g(x, y) is an excessive function of x for fixed y and an excessive measure
with respect toy for fixed x. Thus, the Green's function permits us to connect
an excessive measure and an excessive function with each point of E. It is this
initial store of excessive functions and measures from which subsequently all
excessive functions and measures are obtained.

We derive one important property of the Green's function.
LEMMA 1. For any states x and y

g(x, y)=n(x, y)g(y, 1'), (11)

where 7r(x, y) = PX 1 xn = y for some n } is the probability of hitting y starting
from x.

PROOF. We put

Am = (xo y, xt * y, ., xm-1 y, Xm = Y)-

I See, for example, [5J. Ch. XIII, §3.



88 E. B. Dynkin

We note that

P. (Am, zm+k = y) = P. (A m) p (k, y, y) - (12)

To see this we have to decompose the set { Am, Xm +k = y I into simple sets and
use (4).

The sum on the right in (8) is evidently equal tol

X.a,,, y)
m=0 n=m

Hence

g (x y) n7xXams (x y) Px xn+k = y}.
M=0 n=m v, -0 k=U

Bearing (12) and (7) in mind we obtain (11).
REMARK. We put Bk = i xn = z for some n E [m, m + k] I. Decomposing

the set Am f1 Bk into simple sets, we can prove that

P. {An B',n} = Px (An,) P (BR). Letting k - w, we obtain PT (An,.

= P. (A,,,) P, (B-,). Hence

n (x, z) > Px { U [Am fl B;;]} (AP,, (BO-) = n (x, y) n (y, z). (13)
m=0 m=0

This remark will be used in § 9.

§4. Supermartingales

The investigation of excessive functions and paths of Markov processes is
conducted most conveniently by means of the apparatus of supermartingales. In
this section we introduce the notion and present some properties of supermartin-
gales. The presentation will be in a most elementary form, fully sufficient,
however, for our purpose.

D E F I N IT I O N. Let P be a measure on the a-algebra Fin the space Z. Suppose
that in 92 there are given F-measurable functions y o, y, . Y,v with values
belonging to a countable set E and real-valued functions zo, zl , ..., ZN. We say
that z0, z 1, ..., ZN is a supermartingale with respect to yo, y l, Y,v if for
anyn=0, 1,...,N,

1 ) zn is a function of yo, y . . . . . y : Zn = fn (Vo, Y 1, Y");
2)1 for any ao, al , ..., an._ 1 of E

1 XA denotes the indicator of A, that is, the function equal to 1 on A and to 0 outside A.
2 In terms of conditional expectation condition 2) can be restated in the form

M(zn I Yo, Yi, ,Yn-,) 5 zn-i almost surely (a.s.).
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E P {yo = ao, . , yn-t = an-1, yn = fn (ao, a,, ... , an) <
an (14)

G P {Yo == ao, .. , yn-, = fn-, (ao, at, ... , a,L-i).
From this definition the following two properties follow at once:

4.A. If d is a constant, then, together with { zn) the sequence' {zn A d}
is also a supermartingale with respect to { yn }

-

4.B. For any non-negative function p

117q) (go, ..., yn-,) Z, < /11y (go, -, yn-t) Zn-t.

To deduce 4.B from 2) it is sufficient to note that

p (yo, , yn-t) = tp (ao, , an-,) 8 (ao, go) ... 6 (an-,, yn-,)ao. .... an-i

The most important property of supermartingales is stated in terms of
Markov moments. A random variable2 r, taking the values 0, 1, 2, ..., is called
a Markov moment (with respect to the sequence yo, Y1, Y2, ...) if for any n

6 (T n) = 4`n (yo, ..., Yn) (15)

(,pn is some function). Intuitively this definition means that observing the
values Yo, Y 1, , Yn, .., we can answer until the moment n the question
whether the equation T = n is true. It is easy to verify that along with T the
function T V m is also a Markov moment, where m is a non-negative integer.

LEMMA 2. Let zo, z 1, ..., ZN be a supermartingale with respect to
Yo, Y 1, YN and let two Markov moments a <T <N be given. Then

Mza < Mz,. (16)

PROOF. First we prove that if the Markov moment satisfies n <T <N, then
for any non-negative function tp

MT (Yo, ..., Yn) Zt < MT (Yo, ..., yn) Zn. (17)

This is obvious for n = N. Hence it is sufficient to verify that if it holds for
n=m, then it holdsforn=m - l. Thus, letm-1 <r<N. We have

SMtp (go, ..., Ym-i) Z,, = Mp (Yo, ..., Y.-t) 6 (T, m - 1) Zm-t + (18)
+ Mtp (yo, ..., YM-i) 11 - 6 (T, m - 1)1 ztvm.

By (15) we have 6(T, m - 1 ) _ ,p(yo, .,Y..1), ), and applying the inductive
hypothesis to the Markov moment T `l m > m, we find that the second term
in (18) does not exceed

' We denote by a A b the smaller of the two numbers a and b, and by a V b the larger.
2 In certain cases it is useful also to allow the value + - for r. Here, as before, it is required that (15) be
satisfied for all finite n.
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Mp (Yo, ..., Ym-t) 11 - 6 (T, m - 1)] Zm.

By 4.B the last expression is not diminished if zm is replaced by z,n_ 1 . Making
this change and substituting the estimate so obtained in (18) we see that (17)
holds for n = m - 1.

To complete the proof of the lemma we note that by (17) and (18)

M6 (a, n) zT = M6 (a, n) ZTVn < M6 (a, n) z = M6 (a, n) z6.

Summing this inequality for n = 0, 1, . . ., N, we obtain (16).
Relying on Lemma 2 we now prove a fundamental lemma about the number

of crossings of a fixed interval [c, d] for a positive supermartingale.
The number of down-crossings of [c, d] by the sequence zo, z,,. .., zN is the

largest number k for which numbers 0 < t1 < t2 < ... < tzk_
1

< t2k <N can
be chosen so that z, > d,

zt2
< c, zt3 > d, zta < c, ..., Zt2 k-, > d, zt2k < c.

LEMMA 3. Suppose that the non-negative random variables zo, z 1, ..., ZN
form a supermartingale with respect to yo, y 1, - YN. Then the number of
down-crossings of [c, d] by the sequence zo, z 1i ..., ZN satisfies the inequality

My < d t c 111zo. (19)

P R 00 F . We put To = 0 and define T n (n = 1, 2, ...) inductively as follows:
T, for odd n is the smallest value k > T _

1
for which zk > d, or, if there are no

such values of k, then Tn = N; Tn for even n is the smallest value k > Tn - 1 for
which Zk < c, or, if there are no such values of k, then Tn = N. It is easily verified
that To, T1, ..., Tn .... are Markov moments and Tn = N for n > 2v + 2.

According to 4.A. in = zn i1 d is a supermartingale. We choose m so that
2m > N, and put

L
+S= (ZTl- ZT2) y (ZTl_ ZTa) + ... +(ZT2v-1- ZT2v) +

-' + ('T2-1+1 - ZT2v+2) -1- ... + (ZT2m-1 - ZT2,n)

We note that

ZTl = d, ZT2 < c, ZTg = d, ZTa \ C, .. ,ZT2v-1 d' ZT2v C'

ZT2v+1>1 ZT2v+2 = ZT2v+3 ZT2m

Therefore

Sav(d -c).

On the other hand,

(20)

S = ZTl + (ZT2- ZT2) 1 ... + (ZT2m-1 - ZT2m-2) - ZT2m.
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By Lemma 2,

91

3Izo = MZT, > MZ,s> ... > MZ:2m_j.

Noting that i12m > 0, we find

MS < MzT, < Mao < Mzo. (21)

Now (19) follows from (20) and (21).

§5. Excessive functions and supermartingales

Let f be a non-negative function in the space E and let xo, x 1 , x2 , ... be a
path of a Markov process with initial state x and transition function p(x, y). We
add to E one further point, which we denote by *, and we take xn = * if n > .
We put f(*) = 0. With these conventions, the functions xn (w) and f(xn (w)) are
defined for all n and w. We show that if f is excessive, then the sequence
f(xo ), f(x 1), ..., f(xv) is a supermartingale with respect to x o, x 1, ..., xN .
For if at least one of the points ao, a1, . . ., an is *, then all subsequent ones
also are *. In this case f(an) = 0. Hence the left-hand side of (14) is zero, while
the right is non-negative. If all the points a0, a1, . . ., an E E, then by (4) we can
write (14) in the form

b (x, ao) p (ao, at) ... p (an-t, an) f (a,!)

an

G 6 (x, ao) p (ao, at) ... p (an-z, an-t) f (an-t)-

For n = 1 these inequalities coincide with the condition that f is excessive, and
from their validity for n = 1 the validity for all n follows.

Let vN be the number of down-crossings of [c, d] by the sequence
f(xo ), f ( x 1 ) , ..., f(xN ). By Lemma 3 of §4

Mxvv<d -M=f(")= a( x- (22)

Now let v be the number of down-crossings of [c, d] by the infinite sequence
f(xo), f(x1), ... Evidently, vN f v, and hence it follows from (22) that

M=v< d(=c

We assume that f(x) < o. Then Mx v < o and consequently v < o (Px .a.e.).
However, it is easy to see that the following elementary proposition is true.
If a numerical sequence makes only a finite number of down-crossings of

any interval [c, d] with rational ends, then this sequence tends to a finite or
infinite limit.

By what has been proved this theorem is applicable to f(xo ), f(x 1), ..., along
almost all paths x 0, x 1, . . . Thus, almost surely there exists the limit
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By Fatou's lemma, from the inequality

Mzf (xn) = Pnf (x) < f (x)
it follows that

M:E G I W.

Hence t is almost surely finite.
Evidently i; = 0 if < -. Hence there is interest only in the value oft on the

set 92 of all non-terminating paths.
So we have proved the following theorem.
THEOREM 1. If f is an excessive function and if f(x) < oc then the finite

limit
lim f (xn)
n--

exists PX-a. e. on 92-.
We leave it to the reader to show that if f(x) then PX-a.e. on 92 one of

two possibilities holds: either f(xn) _ +oo for all n, or f(xn) tends to a finite
limit.

In the following sections analogous properties will be established for the
densities of excessive measures.

§6. Position of a particle at the last exit time from a set D

Let D C E. We define the last exit time from the set D as

T = sup it : xt E D).

The random variable T takes the values 0, 1, 2.... and the value +-. It is taken
to be undefined if xt D for all t.

We put

LD (x) = P,,{t = 0} = PS (x0 E D, xj E D for t> 0)

We note that

M

I Px(t=m, xm=Y)
M=O

I p (m, x, y) LD (y) = 8 (x, y) LD (y) (23)
M=0

It is clear that
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B(x, y)LD(y)- P. Y) <1.
U U

(24)

Let n be a non-negative integer. We investigate the distribution of the point
x,-,. This point is not defined if r < n or r = + o0 or if r is not defined. In all
three cases we put x = *. Let ao, a 1, ..., an EE. We have

P= {x1 = a0, xT-1 - - at, . , xT-n an}

= Px{T=-m, xm=a0, xm-1=a1, .x,n-n=an}m=n

P (m - n, x. a,.) P (an, an-1) ... p (al. ao) L,,(ao) =
m=n

=g(x, an)P(a,., an-1) ... p(a1, a0)Ln(oo)

Multiplying this equation by y(x) and summing over x we obtain

P. {x,, = a0, xT-1 = at, . . ., xT-n = an}
= rl (an) P (an, an-,) . . . p (a1, ao) LD (a0), (25)

where
11 = yG.

(26)

In particular,

P. {xi, = y} = r) (y) LD (y) (27)

§7. Densities of excessive measures and supermartingales

Let r be the last exit time from D and let f be a non-negative function in E.
We put f(*) = 0. We ask the question: when is f(x,), f(x,_1), ..., f(x,_N) a
supermartingale with respect to x,, x,_1, ..., xr..N (for measure Py)?

By (25) we can write (14) as follows:

E TI (an) P (an, an-1) ... P (a1, ao) L (ao) f (an) <
on

Obviously it is sufficient that

< lI (an-1) P (an-1. a.--) ... p (al, a0) L (a0) f (an-.1).

LJ i (an) f (an) p (an, an_1) < 71 (an_1) f (an_1),
an

that is, that the measure f'7 is excessive.
Let PN be the number of down-crossings of [c, d] by the sequence

f(x, ), f(x,_ 1), ..., f(x,__N) or, what is equivalent, the number of up-crossings
of [c, d] by the sequence f(x,_N ), ..., f(x,). By Lemma 3 of §4
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.Ylyv.v .. dc Myf (xi)

We denote by vD the number of up-crossings by the sequence
f(xo), f(xl ), ..., f(x,r). If D is finite, then almost certainly r <o and

vN f vD as N Hence M,, PD d1
C

My f(xTD ). Now we consider an

expanding sequence of finite sets Dn whose sum is the whole of E. Then

vDn
f v, where v is the number of up-crossings of [c, d] by the infinite

sequence f(x0), f(xi ), ... It is evident that

Mvv < a1 D
sup Mvf (xtD) (28)

We say that f belongs to the class Ky if

Q = sup Myf (xtD) < oo. (29)
D

From (28) it is clear that if f E K,,, then v < oo (Py-a.e.). Hence, as in § 5, there
follows the existence Py-a.e. of the finite or infinite limit

t=limf(zn)

Let v(c) be the number of up-crossings of [c, 2c] by the infinite sequence
f(xo ), f ( x i ), ... and let lim v(c) = F. Evidently It C { v > 1 ; . Hence

Py{=oo}<Py{vim <M;v.

By Fatou's lemma and (28)

Pv{E=oo}<limMyv(c)<<lim Q =0.
c-.m c-m

So we have proved the following theorem:
THE O R E M 2. If the density f of the excessive measure y with respect to the

measure 17 = yG belongs to the class Ky, then Py-a.e. on 92 there exists the
finite limit

lim f (2n).

§8. Excessive measures with densities of class Ky.
The Martin kernel

Let y be a finite measure, that is, (1, y) < -. Then, by Lemma 1, for any
yEE

rl(y)=17(x)g(x, y)=(1, Y)g(y, y)<oo.
X x
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We put E,, = { y: i7(y) > 0 }. It is easily seen that E contains the set
y : y(y) > 0 } and consists of all points that a particle starting from a point of

this set hits with positive probability. The probability of going out of EY is zero.
Hence the Markov process may be considered only on the set EY. The most
interesting case is when EY = E. In this case we say that y is a reference
measure.

Henceforth we assume that y is a reference measure.
According to § 3 the measure pG is excessive if p > 0. The density of this

measure with respect to t7 = yG is given by'

f (y) ky (x) _ (ky, ii),

where
l y (z.) = 8 (z, Y)

in (Y)

The kernel k(x, y) = ky (x) is called the Martin kernel.
When does the density (30) belong to By (27)

(30)

(31)

,11,f (x.) f (y) Pv {xt = y} _ f (y) Tl (y) L (y) _ (µG, L) _ p (x) g (x, y) L (y),
v v X. y

and by (24)

Vvf (XT) < Ii (x)

Thus, if p is a finite measure, then the measure pG has with respect to TJ a
density of class KY. The following proposition follows from Theorem 3.

THEOREM 3. For any finite measure p there exists P7-a. e. on S2 the finite
limit

lim (kxn, µ).
n-w

In particular, for any y there exists PY-a.e. on S2 the finite limit

lim kxn (y).
n- W

1 If y is not a reference measure, then pG has a density with respect to YG if and only if E c Eµ- Y'
Formula (30) remains valid if ky(x) is defined by (31) for y E EY and ky(x) is given arbitrarily for
y 4E7.
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§9. Martin compactification

As already stated in §3, the Green's function g(x, y) determines for each
point y E E an excessive function g(x, y). The function ky (x) differs from it
only by a factor not depending on x and satisfies the normalizing relation

By Lemma 1
(ks,Y)=1. (32)

Y) g (Y, Y)
ky (x)

Y (Z) (Z, it) g (Y, y) V (Z) n (z, Y)
z c

(because g(y, y) > p(0, y, y) = 1). According to (13) ir(z, y) > ir(z, x) ir(x, y).
Hence for ally

ky
(x) < a (z)

where
a(x)=Ey(z)n(z,x)

(33)

(since y is a reference measure, a(x) > 0 for all x).
We enumerate the points of E in arbitrary order by the integers and let N(x)

be the number of the point x. We put

p (y, z) = 12-N(u) _ 2-N(=) + LJ I ky (x) - k. (x) I q (x) 2-N(=)
X

This defines a metric in E, and the distance between any two points does not
exceed 3. Forming the completion of E with respect to this metric we obtain
the compactum E *. The set E is open in E *, so that the boundary aE of E in
E * is E * \ E. The compactification so constructed is called the Martin
compactification and the boundary aE the Martin boundary.

It should be noted that the metric p(y, z) can be chosen with a certain degree
of arbitrariness. It is essential only that yn is a Cauchy sequence if and only if:

a) the functions kyn (x) converge at any point x and
b) N(yn) -> - or yn remains constant from some number n 0 on.
For each x E E, ky (x) as a function of y can be extended continuously to E *.

Suppose that the sequence yn E E converges toy E aE. Then kyn (x) - ky (x)
for any x. Hence it follows that for y E aE, ky is excessive and satisfies the
condition

(ku, Y) < 1 (34)

(equality in (32) need not hold).
The topology in E* induced by the metric p(x, y) is called the M+-topology.
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The fundamental role of Martin boundaries in the theory of Markov pro-
cesses is determined by the following theorem.

T H E O R E M 4. With any initial state x, for almost all non-terminating paths
there exists in the topology Al, the limit

lim x = x- E 8E.

97

P R 00 F. For a process with initial distribution y this statement follows at
once from Theorem 3 and the Remark in § 3, according to which for a transient
chain N(xn) - o almost surely.

We denote by A the set of all non-terminating paths for which the theorem
does not hold and put h(x) = Px (A). It will be proved later (see Corollary to
Theorem 8), that h is harmonic. By what has been proved, (h, y) = P,y (A) = 0.
Hence Theorem 4 follows from the following lemma.

L E M M A 4. If y is a reference measure and It an excessive function, then from
(h, y) = 0 if follows that h = 0 everywhere.

PROOF O F LEMMA 4. For any n we have P" h <h and therefore

0 < (V Pn, h) = (y, P"h) < (Y, h) = 0.

Thus, (ypn, h) = 0. Summing over n we have (rl, h) = 0, where i = yC. By
definition of a reference measure 77 is everywhere positive, hence h is zero
everywhere.

§ 10. Distribution of x,

If < o, then xt. is a point of E at which a path terminates. If then
x, = x is defined in Theorem 4 and belongs to 3E.

Let r be the last exit time from D. Comparing (23), (27) and (31) we have

Px{x-, =y}=kY(x)Pv{xt=y}.

Hence for any function

Mxf(x0 =M.js(xs, y)f(y)f(y)Px{x,, =y}=Eif(y)kY (x) P.(x5= y) -
Y Y Y

=My Ei f(y)kY(x)6(xt, y)=Mvf(x,)k(x, x5) (35)
Y

(we recall that k(x, y) = ky (x)). We consider now a sequence of finite sets
Dn f E and denote by Tn the last exit time from Dn . On the set E2- we have
rn - o, and hence x'rn -> x and k(x, xrn) -> k(x, k(x, xt.) almost
surely. On the set i <o }, we have rn = beginning with some no (W);
hence k(x, xTn) --> k(x, xv.). Suppose that' f E C(E*). Then f(x,n) - f(xt).

I C(E*) is the space of all continuous functions on the compactum E*.
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Bearing (33) in mind, we can take the limit in (35). Thus,

Mxf (xt}=Mvf (xt) k (x, xt) (36)

On the Borel sets of the compactum E * we consider the measure µ1 defined
by

µt(r)=Pv{xtEr} (37)

By (36)

M-f (xt) = ) ky (x) f (y) lit (dy). (38)
E+

The formula (38), which has been proved for continuous functions f, extends
in an obvious way to all Borel non-negative functions. Putting f = Xr, we get

P={xtEr}= S kv(x).t (dy) (39)
r

Thus, ky (x) (x E E, y E E *) can be interpreted as the density of the distribution
for the point x3. (with respect to µ1) for the initial state x.

We note that by (4)

Hence
P. {r = y, = n} = p(n, x, y) [1 - PI I (y).

Px{xt=y}= S p(n, x, y)(1-P1)(y)=g(x, y)[1-P11(y). (40)
n=0

From (37) and (40)

µ1(y) = 71 (Y) [1 .- P11(y) (y E E)

Next, if f E C(E*), then

and by (37) and (41)

Mz f lim Msf (xn) = lim P' l (x)
n-.m nreo

(41)

s f (y) It, (dy) = Mvf (xt) _ (1-P1, fr1) + lim V (x) P (n, x, y) f (y) (42)
E X.

We note that by (38) and (41)

= kv (x) f (y)µ1(dy) = G [f (1- P1)J (x) (43)M=f (X0 Xt<- = Mxf (X0 yE (X0
E

and by (38)
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Mxf M=f (x:) XbE (xt) =Sky (x) f (y) µi (dy).
8E

(44)

§ 11. h-processes. Martin representation of excessive functions

Let y be a reference measure and h a y-integrable excessive function. We
prove that h is everywhere finite. For each y E E we can find n and x such that
y(x) p(n, x, y) > 0. Since PI h < h, we have

y (x) p (n, x, y) h (y) < (Pnh, V) < (h, y) < --

Hence h(y) <-. We put Eh =(x: 0 <h(x)} and define on Eh the transition
function

ph (x, y) = It 1
p (x, y) h (y) (45)

A Markov process corresponding to the transition function ph (x, y) is called an
h-process. All characteristics of this process are denoted by the same letters as
for the initial process but with the upper suffix h : Px , gh (x, y), etc. For the
Green's function the following relation holds:

g" (x, y) = h ('x) g (x, y) h (y)

yh is a reference measure for the h-process. We have (yh)Gh = rih and the
Martin kernel corresponding to yh is given by

hkv (x) (Tlh) (y) hy )(x)
(46)

From this it is evident that the Martin topology for an h-process coincides with
the Martin topology of the initial process, and the Martin compactification Eh*
for the h-process leads to the closure of Eh in the space E *. The Martin
boundary aEh is simply the boundary of Eh in E*.

We put

Ith (I') = Pvh (x: E r).

Evidently for any Borel function f > 0

s f (y) Fth (dy) = Mvnf (xc).
E

Hence

= E f (y) µh (dy).Mvnf (xW) = Mvh (fxaE) (XC)
8E

(47)

(48)

(49)
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Applying to the h-process the formulae (38), (44), (43), (41) and (42) we
have

M. (dy)= (x) f ( )s k 50,Phyy(xt) h fix)
( )

$i

( kMxf (x (x) f ( ) )(d) = 51y µh ,y y. h (_) ? )(
OR

Mhf (x =)
1

Ph fG h: Xt<-; h - ) ),[( (52)

Ph (y) _ +1(y) [h (y) - Ph (y)), (53)

ss f (9) Ph (dy) _

_ (h - Ph, frl) + lim Y. y (x) p (n, x, y) h (y) f (y) (fEC(E*)) (54)
s, 9

(In (50)-(51) we enlarge the domain of integration by taking µh (E * \ Eh) = 0).
Putting f = 1 in (50) and noting (46), we observe that for any x E Eh

h (x) = sky (x) Ph (dy) (55)
Ei

Outside the set Eh both sides of this equation are zero. (If x 0 Eh, y E Eh , then
p(n, x, y) = 0 for all n ; hence, g(x, y) = 0 and ky (x) = 0. Thus, ky (x) = 0 also
for y in the set Eh* on which the measure µh is concentrated). Thus, the
representation (55) holds for all x E E. It is called the Martin representation of
the excessive function h. The measure µh is called the spectral measure of the
function h.

By (53)

ky (x) Ph (dy) = G (h - Ph).
E

Hence the Martin decomposition can be put in the form

h (x) = G (h - Ph) (x) -}- S ky (x) Ph (dy)
OE

§ 12. The spectral measure of kZ . The exit space

First let z E E. Then

(56)

Pk=(y)p(y,u)g(u,z)=g(Y,z)-a(Y,Z)=k:(y)-6(y,z), (57)
110) q (z) q (z)

u

and according to (54)

Phz (y) = q (y) 1k. (y) - Pkz (y)) = d: (y), (58)
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where ll (y) = S(y, z) is the unit measure concentrated at z. Thus,
uk = SZ for all z E E.

ZThe set of all z E aE for which µkz = SZ is called the exit space and is
denoted by B.

THEOREM 5. The space of exits B is a Borel subset of aE. For any
y-integrable excessive function h we have ph (aE \ B) = 0. If z E B, then kZ is a
harmonic function and (k5 , y) = 1.

PROOF F. If z E B, then evidently

µ'-s (z) = 1. (59)

On the other hand, for any z E aE by (47) and (34)

µh. (E') _ (k5, y) c 1. (60)

Hence, if (59) is satisfied, then µkZ = SZ and z E B. Thus, B is given by (59). By

(54), for z E aE,

µh. {z} = lim S e-nm(x, Z)µh_ (dx) = lim lim j y (x) p (n, x, y) kZ (y) a-mplx, V)

in- E *
M__ n__ x.V

which implies that B is a Borel set.
We write k = kZ, omitting the subscript z when no confusion can arise.
Let z (E aE and gyp, 0 E C(E *). For any n > 0, m > 0

:11h..¢ (xn) j (xn=m) = _ V (x) h (x) p" (n, x, y) P (y) ph (m, y, z) i' (z) _x,!/.=

_ V (x) p (n, x, y) h (y) p (y) Mh (7m).
x, V

Taking the limit as m -* oo and using (51) we have

mhv(P (xn) V X-) = Yj 1, (x) p (n, x, y) h (y) c (y) S kh. (y) * (z) µh (dz) _
x,V BE

= S Y (x) h (x) pk (n, x, y) k (y) q (y) ,p (z) µh (d--) = S Mkv4F (xn) IP (z) µh (dz).
8E x, y 8E

Now letting n - oo and noting (48) we rhave

c (z) V (z) µh (dz) = s L J q (u) wk (du)} * (z) µh (dz).
OE 8E 8E

Since >fi is an arbitrary continuous function, it follows that µh - a.e.

(z) = S p (u) µkZ (du).
OE

It is clear that for ph -almost all z this equation holds simultaneously for the
sequence of functions
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cm (y) = emPW,z) (m = 1, 2, ...)

and hence in the limit as n - oo the resulting equation (59) is satisfied. Hence

1 h (8E \ B) = 0.

For z E B it follows from (58) that kZ is harmonic, and from (60) that
(kz , 7) = 1.

REMARK. From (50) it is clear that if z E E U B, then PXZ ; x1 = z so
that for any initial state x almost all paths of a kz-process terminate at z.

§ 13. The Uniqueness Theorem

THEOREM 6. Every y-integrable excessive function h has a unique
representation of the form

h (x) = s k z (x) w (dz), (61)
EUB

where p is a measure on the Borel subsets of E U B. The measure p is finite.
For any finite measure p (61) defines a y-integrable excessive function. This

function is harmonic if and only if p(E) = 0.
From Theorem 6 it follows, in particular, that if h has a representation of the

form (61), then p coincides with the spectral measure ph , and (61) coincides
with the Martin representation.

PROOF. From Theorem 5, the Martin representation (55) of the y-integrable
excessive function h can be rewritten in the form (61), where p = ph. Since
Pk, < kZ for z E E and Pkz = kz for z E B, every function h obtained by (61) is
excessive, and if p(E) = 0, it is harmonic. Since (k2 , y) = 1 for all z E E U B, we
see that (h, y) = p(E U B) < oo.

We show now that if h is given by (61), then p coincides with the spectral
measure ph. Let f E C(E). Applying (54) to h and to kZ we note that

S f (y) µh (dy) = s [ s f (y) µk. (dy)] L (dz).
ES EUB E

But pkz = SZ for z E E U B. Therefore

s f (y) µh (dy) = s f (z) p (dz).
E* E(J'B

Since ph is concentrated on E U B, it follows that Ph = p.
We observe finally that if Ph = h, then by (53) ph (y) = 0 for ally E E.
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§ 14. Minimal excessive functions

A non-zero excessive function h is called minimal if from h = h 1 + h 2, where
h 1 and h2 are excessive functions, it follows that h 1 =c 1 h, h2 = c2 h (c 1 and c2
are constants). It is easily proved that a harmonic function h is minimal if and
only if every harmonic function h 1 satisfying 0 5 h 1 c h, is proportional to h.

T H E O R E M 7. The general form of y-integrable minimal excessive functions
is ck5, where z E E U B and c is a positive constant.

PROOF F. From (54) it is clear that µh1 + h, = µh, + ph, . Let z E E U B and

kZ = h 1 + h 2, where h 1 and h 2 are excessive. Then
µh1

+ µh, = ykZ = kZ . Hence

0=6(E*\z)=ph,(E*\z)+ph2(E*\z) and phi (E*\z)=O. From (55)

hi (z) = kyph (dy) = kZµhi (z).
Es

Thus, kZ is minimal.
Next, let h be any y-integrable minimal excessive function and µh its spectral

measure. Then ph (E U B) = (h, y). By Lemma 5 this quantity is positive if h * 0.
Hence there exists a point z E E U B, any neighbourhood of which has positive
measure µh . We put Un = i y : p(y, z) < 1 In 1,

hn = J kyllh (dy).
Un

It is obvious that hn and h - hn are excessive. Since hn is minimal, we have
hn = cnh. Since (h n , y) = ph (Un) and (h, y) =.uh (E U B) _ (h, y), we have
Ch = uh (Un) / ph (E U B) and consequently

h =
(h,

V) kbµh (dy)-Ph (Un) S
Un

Taking the limit as n - o we have h = (h, y) kZ.

§15. The operator 0. Final random variables

We consider in the space of paths 92 the mapping 0 that is defined on the set
E21 = ( w: (w) > 1 } and carries the path a0ala2 ... into a1a2a3 ... For any
function i;(w) we put

8
E (Ow) if w E c,;

(62)l 0 if (001.
The random variable t is called final if 0i = t. We note that final random

variables are different from zero only on 92- and do not change their value if
an arbitrary initial interval of the path is changed.

We denote by A the set of non-terminating paths for which the limit
x- = lim xn does not exist or does not belong to 3E. An example of a final

n->=
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random variable is the function that is equal to some constant b on A, to
f(x,,) on 92 \A (f is an arbitrary Borel function on aE), and to 0 outside E2_.
In particular, the random variable XA is final.

LEMMA 5. For any non-negative random variable t

Ms (6 (x0, a0) 6 (x1, at) . . . 6 (--n, an) gn F,} =
= 6 (x, ao) p (ao, at) ... p (an-t, an) Man (63)

PROOF. We denote by µ1(A) and p2(A) the values of the right- and left-hand
sides of (63) for t = XA . Obviously it is sufficient to prove that µ1(A) = p2 (A)
for any A C.F. The functions pt and P2 are measures. By (63) for the simple
set A = [anal ... an ]

µt (A) = µ2 (A) = 6 (x, ao) p (ao, at) ...
p (an-1, an) 6 (an, bo) p (bo, b1) - p (bm-t, bm)

In accordance with Theorem A, from the fact that two measures coincide on
simple sets it follows that they coincide on the a-algebra F.

THEOREM 8. If t > 0 is a final random variable and h (x) = Mx t is finite for
each x, then h(x) is a harmonic function, and measures corresponding to an
h-process are given by the formula

S t dP,
PS (A) = Ah (z) (x E E"). (64)

PROOF. By (62) and (63)

p(x,y)h(y)
y y V

Hence h is harmonic.
To prove the second statement it is sufficient to note that (64) defines a

measure on the a-algebra .F, such that the measure of a simple set
[aoala2 is

h( Z) Mb (xo, a) ... 6 (xn, an) t = h (t) A1.6 (xo, a) ... 6 (xn, a) ent

= hmss) 8 (x, ao) p (ao, at) ... p (an-t, an) h (an),

that is, coincides with PX .
COROLLARY Y. If MX t = MX ri for any two final random variables t and ri,

then t = tl (P, -a. e.).
PROOF. From (64), for any A E F

stdP,= sh1dP,.
A A

THEOREM 9. Let h be a bounded harmonic function. Then
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h (x) = kb (x) (p (y) µt (dy),
B
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(65)

where p is a bounded Borel function. Also P,, -a. e. on 92-,

and
lim h (xn) = p (x-)n--

(66)

Mxcp (x-) = h (x). (67)

PROOF F. Let 0 5 h < a, where a is a constant. The functions h and f = a - h
are excessive. By Lemma 4 and Theorem 7

a = s k, (x) Pa (dy) = J ku (x) (µh+µj) (dy).
B

We assume that a > 0. Dividing the equation by a we find by Theorem 7 that
pl = (1 /a) (ph + pf). Hence ph has a bounded density with respect to
pi : ph (dy) = sp(y) pl (dy). Therefore (61) can be written in the form (65). By
(44) and (65) Mx h(x). On the other hand, by Theorem 1 there exists
Px-a. e. the limit

n-.-

By (6)

M.t = 1im M,h (xn) _ Iim Pnh (x) = h (x).
n-+ao

Thus, Mx Mx i . But and t are final random variables, and by the
Corollary to Theorem 8 Px-a.e. (we must take p(x,) = 0 outside 92_).

COROLLARY. Every final random variable % coincides almost surely with
pp(x_ ), where p is some Borel function on B.

PROOF. Let t be bounded. Then h(x) = Mx i is a bounded harmonic function,
and by Theorem 9 Px -a.e. on 92 we have lim h(xn) = p(x-) and
Mx h (x) = Mx t. By the Corollary to Theorem 8, Px -a.e. i; = p(x ). If t
is arbitrary, then A a is bounded, a being a constant. By what has been
proved, t A a = pa(x_) Px-a.e. Obviously it follows from this that
t =,p(x-) Px -a. e. , where p(x) = lim spa (x ).

a -
THEOREM 10. Let p be a non-negative Borel pl-integrable function on lE.

Then

h (x) = kv (x) q (y) µi (dy) (68)
B

defines a harmonic function h such that Px -a.e. on 52,,,
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lira h (xn) = p (xm).n--
PROOF. The function h(x) is finite everywhere by (33). We select a positive

constant c and put

(P1 (x) _ p (x) if p (x) G C,
(P2 (x) _

0 if 4F (x) < c,

{ 0 if 4F (x) > c, { (F (x) if (F (x) % c,

hi (x) =- J k (x, y) pi (y)111(dy)
B

From (44)

M.T (x0) = h (x), Mxp, (x-) = hi (x), (69)

and by Theorem 8 h 1, h 2, h are harmonic functions. h 1 is bounded, and by
Theorem 9 Px-a.e.

lim h1(xn) -_ pt (x-).n--
By Theorem I PP-a.e. there exist also the limits

=lim h1 (xn), t2=1imh2(x).
n +w n+oo

By Fatou's lemma

Iim Mxh2 (xn) = lira Pnh2 (x) = h2 (x).

Hence by (69) and (70) we find

(70)

.llx
I - T (xm) I =M.1 2-P2(xm) I

The left-hand side does not depend on c and the right-hand side tends to zero
as c - oo. Hence t = p(x ), P.-a. e.

R E M A R K 1. According to Theorem 10, (68) gives a generalized solution of
Dirichlet's problem with boundary function p(x); the boundary values are taken
along almost all non-terminating paths.

REMARK 2. Theorems 9 and 10 can be "relativized" in an obvious way;
selecting any harmonic function H we can replace the measure µ1 by µH, the
condition of boundedness of h by h c H and the measure Px by pH.
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§ 16. The entrance space. Decomposition of excessive measures

We say that 1(x) > 0 is a reference function 1(x) ifs = GI is everywhere
positive and finite. We put
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JSY (x) = g (y, _) (71)
S (Y)

We note that KY is an excessive measure and (1, Ky) = 1. According to Lemma 1
g(y, x) = ir(y, x) g(x, x). By (13) we have g(y, z) = 7r(y, z) g(z, z)

7r(y, x) ir(x, z) g(z, z) = ir(y, x) g(x, z). Hence s(y) > ir(y, x) s(x) and
Ky (x) < ) /c(x), where c(x) = s(x)/g(x, x) > 0.

We consider in E the metric

P (y, z) 2-N(z)
I + I xY (x) - x= (x) I (_) 2- N( ),

x

where N(x) has the same meaning as in §9. Forming the completion of E with
respect to this metric we obtain a compactum E. The topology of E determined
by the metric p is called M_. The boundary of E in the topology M_ is E \ E.
Repeating the arguments of § 9 we extend Ky (x) continuously toy E E \ E.

We now prove the following theorem.
T H E O R E M 11. With each 1 -finite excessive measure a we can associate a

finite measure g' on the Borel subsets of E such that for f E C*(E)

s f (y) µ" (dy) = (f., a - aP) + I im f (y) a (y) p (n, x, y) I (x)
E x. Y

(72)

The entrance space B is the set of all z E E \ E for which the spectral measure of
the excessive measure Kz is 8z. For z E B the measure Kz is harmonic and
(1, Kz) = 1.

Every 1 -finite excessive measure a has a unique representation in the form

a (z) = S xY (x) p (dy) (73)
Enii

Here µ coincides with the spectral measure s°. For a to be harmonic it is
necessary and sufficient that s°(E) = 0.

Let v be an 1 -finite excessive measurer and 0 < v(x) < -for all x. The formula

r If the reference measure y and the reference function 1 are chosen so that

Y, g(x,Y)y(x)I(y)<cc,
X. 11

then the measure v = yG satisfies the required conditions.
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v (y) P (y, x)
Pv (X, 1I) = v (x) (74)

defines in E a transition function. The measure y = lv is a reference measure,
and the corresponding Martin kernel is 15, (x)lv(x). The Martin compactification
corresponding to this kernel coincides with E, and the exit space coincides with
B. h is excessive (harmonic) with respect to p, (x, y) if and only if the measure
a = by is excessive (harmonic) with respect to p(x, y). Here (1, a) = (h, -^Y), so
that a is 1 -finite if and only if h is y-integrable. The spectral measure of the
excessive function h = a/v with respect to y) coincides with A'.

P R 00 F. The statements about the Martin kernel for the transition function
y) and the corresponding compactification are verified directly. It is also

evident that if a = hv, then (1, a) = (h, y) and Ph < h(Ph = h) if and only if
aPv < a (aP = a). We define the spectral measure of the excessive measure a as
that of the excessive function h = a / v (with respect to the transition function

y)). (72) follows from (42). From the definition of B it is clear that h is
the exit space for pv(x, y), and from (72) that µ' and B do not depend on the
choice of v. The representation (73) follows from the Martin representation for
the function h = a / P. The remaining parts of the theorem are
verified with difficulty.

R E M A R K. If v(x) becomes zero or infinite at some points, then (74) defines
a transition function on E° = ; x: 0 < v(x) <+ - In this case the Martin
compactification for y) coincides with the closure of E° in E.

§ 17. The behaviour of a stationary process as t - - -

We consider a stationary Markov process with transition function p(x, y) and
stationary distribution v. The formula at = a__t(t = 0, 1, ...) defines a mapping r
of S2 into 92_. The inverse image of A under r is denoted by Ar. We define in
12 the measure

P (A) = P (Ar) (A E F).

If A = [aoa 1 ... an ] , then Ar = [a7z a _ 1 ... ao ]°n and by (4")

P (A) = P (A r) = v (an) P (an, an-1) ... p (ai, ao).

On the other hand, let p, (x, y) be a transition function defined by (74). We
denote by °Pa the measure in 12 corresponding to the Markov process with
transition function p,, (x, y) and initial distribution a. (Since E p,, (x, y) = 1, the

Y

measure 'P« is concentrated on SZ .) We note that

Vv [apai ... and = v (an) p (an, an-i) ... p (ai, ao).
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Therefore P(A) = 'P, (A) for all simple sets A. By Theorem A this equation is
satisfied on all A E -F. Thus,

P, (Ar) = VPv (A) (A E.f). (75)

We denote by A the set of all paths ; an } in 12 for which lim an does not
n--

exist, or exists but is not in B, and by A the set of all paths at in 92 for which
lim at does not exist, or exists but is not in B. It is easy to see that A' = A,t---
and by (75)

P, (A) ='PV (A).

By Theorems 4 and 5 and (39) we have'Px (A) = 0 for any x E E. Hence
0.

Next, from (44) and Theorem 5

"Mxf (x-) v((x)1(y) µ (dy), (76)

where p is the spectral measure of the function I with respect to y). By
Theorem 11 it coincides with the measure µ°. From (75) and (76)

Mvf (x-m) = VMvf (x0) (1, xv) f (y) pv (dy).

Putting f = Xr , where r C B, we have

Pv {x_ E r} = S (1, xv) µv (dy).
r

(77)

(78)

So we have proved the following theorem.
THE 0 R E M 12. For a stationary process with 1 -finite stationary measure v the

limit

t-.
(79)

in the topology M_ exists almost surely and belongs to the entrance space B.
The distribution x_ is given by (78). In particular, if v = Ky, where y E B, then
almost surely x_ = y.

Applying Theorem 12 to an h-process we can obtain a more general state-
ment in which the function 1 ceases to play an exceptional role.

T H E ORE M 13. Let v be an 1 -finite harmonic measure, h a y-integrable har-
monic function. Then for the stationary process with transition function
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ph (x, y) = (h(x))-' p(x, y) h(y) and stationary measure hi', the limit (79) in the
topology M_ exists almost surely and belongs to the entrance space B. The
measure of the set of paths for which x_ E F c B is

S (h, x,,)p°(dy)
r

(80)

R E M A R K. From Theorems 4 and 5 and (51) it follows that almost all paths
of the process considered in Theorem 13 have in the topology M+ the limit

lim xt = x+m E B,t-+-
and the measure of the set of paths for which x+ E F C B has the value

S (ks y) t1h (dy) (81)
r

(ph is the spectral measure of the excessive function h).

§ 18. Stationary processes with random birth and death times

We attempt to extend the results of the previous section to the case where
the measure v and the function h are excessive, but not necessarily harmonic.
The transition from h = 1 to an arbitrary excessive function h does not cause
serious difficulties. Therefore we first take h = 1.

We construct in some countable space f D E a transition function and har-
monic measure coinciding on E with p(x, y) and v and defining in E a stationary
process. Almost all paths of this process remain in E from the moment of
first hitting E to the moment of the last exit from E. In E there arises a
random process with random birth and death times. We call this a
stationary process with transition function p(x, y) and stationary measure v.

Let Z be the set of all integers. We define in the space E = Z x E the
transition function p for which

p (O X x, O X y) = p (x, y),

p (O X x, 1 X x) =-1- S' p (x, y),
u

p(mXx,(mT1)Xx)=1 if m=0,

and the remaining values are zero. It is clear that (1) is satisfied for p with
equality. Next, let v be an excessive measure for p(x, y). The formulae
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v(0 X x) = v(x), v(m X x) = v(x) - E v(y) p(y, x) form < 0,
y

v(m X x) = v(x) - v(x) E p(x, y) form > 0,
y

111

define in E a harmonic measure with respect top. Identifying 0 x x with x we
may assume that E C E. Note that p coincides with p and v with v on E. We can
imagine that the points m x x lie above x if m > 0 and below if m < 0. We con-
sider in f the process xt with transition function p and stationary measure v.
Subtracting from SZ a set of measure zero we may assume that the paths behave
as follows. After unit time a particle not lying in E moves one unit upwards; a
particle lying in E moves in E in correspodnence with the transition probability
p(x, y); if the process in E guided by this law must terminate, then instead of
this there is a move in E of one unit upwards. Let be the first hitting time of
E and the last exit time from E. Removing from each path the part
not belonging to E we obtain in E a random process xt with birth time t and
death time . For this process the measure of the set t x,,, = an, ..., Xn = an }

is

v (am) P (am, am+1) . . . P (an-f, an)- (82)

We have the same expression as in (4"). It is natural therefore to call the process
so constructed stationary with transition function p(x, y) and stationary
measure P.

The paths of this process are functions with values in E defined on all
possible intervals of the form [m, n ] , (- 00, n I, [m, + 00) and (- -, + 00). The
set of all paths is denoted by 92', and the a-algebra generated by all simple sets
[am ... an ] m by 97'. We have constructed on F' a measure P that is equal to
(82) on the simple set [ant ... an ] , . The measure P is defined uniquely by
this condition, as follows from the following lemma, which we prove in the
Appendix.

LEMMA A. If two measures on the a-algebra S' in S2' coincide and are
finite on all simple sets, then they coincide everywhere.

From

v (am) h (am) Ph (am, am+f) pA (an-i, an)
= v (am) p (am, am+,) .... P (an-1, an) h (an) _

= h (an) v (an) Pv (an, an-,) . . . p (am+,, am)

it follows that if xt is a stationary process with transition function ph and
stationary measure hp, then xt = x_.t is a stationary process with transition
function p and stationary measure hp. Using these remarks it is easy to prove
the following theorem, a generalization of Theorem 13.

THEOREM 14. Let v be an 1 -finite excessive function, and h a y-integrable
excessive function. Then for the stationary process with transition function
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ph (x, y) and stationary measure by almost all non-terminating paths have in the
topology Al, a limit x+ E B. The measure of the set of paths for which
x3.EFcEUBis

S (kv, v) ph (dy)
r

(83)

Almost all paths without a beginning have in M_ a limit x_ E B. The measure
of the set { xt E r:, where r C E U B, is

(h, xy) liv (dy)
r

(84)

PRO 0 F. We consider only the case h = 1. (The passage to the general case is
effected just as in the derivation of Theorem 13 from Theorem 12.) Apart from
the transition function p in E we consider the transition function p in E, all entries
related to p are distinguished by a bar on top. We introduce in f a reference
measure 7, putting y(m x x) = 0 for m > 0 and selecting the value of y(m, x)
for m < 0 so that

5' y (m x x) = y (x).
M

It is easy to calculate that

knxv (m x x) = k, (x) for n > 0. (85)

We denote by E+ the set of all points n x y, where n > 0. By (85) the
"divergent to infinity" sequence n, x y, E E+ converges in the M+-topology
corresponding to p(x, y) if and only if y, converges in the M+-topology con-
nected with p(x, y), or n, -4 oo and y, = y beginning with some r. Hence the
Martin boundary aE+ is contained in aE and 8E+ = aE U E', where E' is in
natural correspondence with E.

Let h be a p-harmonic function and µh its spectral measure. By (54)

J f (y) µh (dy) ==1im Mil (xn) h (xn) (f E C (E'''))
E

We put f(y) = p(y, E+). Then the right-hand side is evidently zero. Hence µh is
concentrated on E+ U aE+. On the other hand, µh is concentrated on E.
This means that it is concentrated on aE+. Hence it is easy to deduce that the
exit space ,§ is B U E' and may be naturally identified with B U E. We apply to
the process x, the remark at the end of § 17. It is obvious that
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{ x- = y } = { x = y } . Hence the first part of Theorem 13 follows.
To prove the second part it is sufficient to apply the part just proved to the

reversed process zt = x_t.

§19. Hunt processes

Hunt noticed that boundary theory is applicable to a class of processes wider
than Markov processes. Roughly speaking, these are processes which behave
like Markov processes with transition function p(x, y) after the moment of
first reaching any finite set D.

We denote (as in § 18) by 62' the set of all functions at with values in E,
defined on all intervals (- o c, n ] , [m, n 1, [m, + o) and (- -, + 00). The left end
of an interval is called the birth time and the right the death time. In the space
12' we consider the S-algebra F' generated by all simple sets. Important
examples of F'-measurable functions are: a) the birth time t; b) the death time

c) the position xt of the path at the moment t (xt is defined on the set
{ < t < 71 } ; d) the moment aD of first hitting D and the moment TD of the
last exit from D (defined on the set 92D of paths hitting D); e) N(x), the number
of hits in the point x (the domain is 92').

Let P be a measure on the a-algebra F'. The process determined by P is called
a Hunt process with transition function p(x, y) and characteristic measure a if:

19.A. For any finite D, any n = 0, 1, ..., and any ao, al , ..., an E E

P (xaD = ac, XaD+t = al, xaD+n = an) =
= vD (ao) p (a0, at) ... p (an_t. an).

19.B. MN(x) = (3(x) < - for any x E E.
For n = 0 from 19.A we have vD (ao) = P { xaD = ao 1. Condition 19.A means

that yt = xaD+t is a Markov process with transition function p(x, y) and initial
distribution PD.

We note that by 19.B for almost all paths N(x) is finite, hence xaD and xTD

are defined' on 92D . We denote by ND (x) the number of hits of the state x,
starting with the moment aD. By 19.A, MND (x) is the mean number of hits
of the point x for the Markov process with transition function p(x, y) and
initial distribution PD. Hence from (3) it follows that

MND (x) = (vDG) (x) (86)

Evidently ND (x) f N(x) for D t E. Hence

(vDG) (x) R I (x) (87)

1 Here, as in the whole of § 19, D is taken as a finite set.
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as D t E. From (87) it is clear that 0 is an excessive measure (with respect to
p(x, y)). We note that

(3 (x)P{xi-x}.
Since g(x, x) > 1,

V D (x) < (vDG) (x) < N (x) < 00.

If a state is attained only by a set of paths of measure zero, such a state may
be removed from E. Hence, without restricting significantly the generality, it
may be assumed that the following additional condition is satisfied:

19.C. (3(x) > 0 for any x E E.
EXAMPLE 1. The Markov process with transition function p(x, y) and

initial distribution v can be regarded as a process with birth time t = 0 and
death time . Condition 19.A is always satisfied.' Condition 19.B is satisfied
if the process is transient.

EXAMPLE 2. The stationary process with transition function p(x, y) and
stationary distribution v satisfies condition 19.A, but not 19.B (if v * 0).

EXAMPLE 3. Let xt be a Hunt process and v(w) any integer-valued random
variable. Then zt = is a Hunt process with the same transition function
and characteristic measure. We call this transformation a random translation in
time.

For the process xt the reversed process is defined by the formula xt =X_t .

Its birth time is - , and death time - i;.
THEOREM 15. By reversing a Hunt process with transition function p(x, y)

and characteristic measure R a Hunt process is obtained with the same
characteristic measure and the transition function

(.y) P (y, x)pa (x, y) _ -P
(_)

PROOF. Let a' be the moment of first hitting the finite set D' for the
process .zt. Then z = - a' is the last exit time from D' for the process xt. We
have

P (.r., = ao, x(,.- t - at, .. , xO'- an} = P {xr = ao, xt- t = at, , xn = an}.

(88)

Let aD be the moment of first hitting D for the process xt. By 19.A
yt =X oD

+ t
is a Markov process with transition function p(x, y) and initial

distribution PD. Let i be the last exit time from D' for the process yt. Accord-
ing to (25)

1 It is left to the reader to verify this.
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P{yt_ao, yi_1=a1. , yt_n=an)

_ (vDG) p (an, an-1) ... p (at, ao) LD (ao) (89)

Obviously outside the set AD = { OD > r } we have y,r = xT, ..., yT_n = x,r..n
Hence the left-hand side of (89) differs by not more than P(AD) from the
probability (88). But as D T E, P(AD) 10 and PD G T 0 by (87). Hence, taking
the limit in (89), we have

P (zr = ao, xr-1 = at, , zr-n = an)
_ (a.) p (an, an-i) . . . p (a1, ao) LD (ao). (90)

The right-hand side is equal to LD (ao) R (a0) pp (a0, a, ) ... pp (an, an -1) and
by (88) the process zt satisfies 19.A. That 19.B is satisfied for this process is
obvious.

COROLLARY. Let OP., be the measure corresponding to the Markov process
with transition function pp (x, y) and initial state x. Let

LD (x) = APx (xo = x, xt E D for t> 0).

Then for the Hunt process with transition function p(x, y) and characteristic
function /3

vD (x) = A (x) Lo (x). (91)

P R 0O F. Putting n = 0 in (91), (88) and (90), we have

P (ia = ao) = P (xT = ao) _ (ao) LD (ao). (92)

Considering now zt as an initial process and xt as a reversed one, on applying
(92) we get (91).

(91) shows that the distribution vD can be uniquely reconstructed from the
transition function p(x, y) and the characteristic measure 0.

LEMMA 6. For D T E there exist the limits

(kY, VD) t 'WO (y), (y E E'),
(LD, x") t S (y), (y E E)-

Here for yEE

sea (y) _ 0 (y)
'I W

S(Y)= s(d)

(Outside E to and S may equal to + o. S depends only on the transition
function p(x, y), and oz's depends only on p(x, y) and (3.)
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PROOF. By (31) and (71) fory EE

(kg, vD) _ (VDG) y) (LD, xU) =
Ga

(y)y)

By (87) it follows from this that

(ky, VD)
(y) for y E E.

TI (y)

By (24), GLD (y) is the probability that the path of the Markov process with
initial state y and transition function p(x, y) hits' D. Hence it is clear that
GLD (y) t 1 and (LD , Ky) f 1 /s(y). It remains to note that

(ku, VD) = L vD ('x) ky (Z)
a,D

is a continuous function of y on E * and hence, for ally E E *, this function
increases as D f E. Similar arguments are applicable to (LD, ')

THEOREM 16. For the Hunt process with transition function p(x, y) and
characteristic measure 0 almost all non-terminating paths have in the topology
M+ a limit x_ E B. Almost all paths not having a beginning have in the
topology M_ a limit x_ E B. Here

P (x; E r) S Ms (y) fit (dy),
r

(F E U B), (93)

P {.cc E I'} = s S (y) frA (d1'),
r

(I' c E U B) (94)

(µl is the spectral measure of the excessive function 1, and µa is the spectral
measure of the excessive measure (3).

PROOF. By 19.A yt =xUD +t is a Markov process with transition function

p(x, y) and initial distribution PD. By Theorems 4 and 5 for almost all non-
terminating paths of this process the limit y+_ exists and is in B. By (83) the
probability that y- E IF is

(kv, VD) Ith (dy) (95)
r

is the death time for yt). We denote by CD the set of paths of the process xt
not meeting D. Evidently outside D y = xt.. Hence (95) differs from
P { xt. E I') by not more than P(CD ). But for D t Ewe have P(CD) 10, and
hence the limit (95) is equal to P ; xt. E IM. This proves (93).

The remaining statements of the theorem are obtained by applying the part
already proved to the reversed process. Here we have to use Theorem 11 and the
Corollary to Theorem 15.
I We recall that being transient almost all paths hitting D leave D.
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So far the question of the existence and uniqueness of a Hunt process with
given transition function p(x, y) and characteristic measure 0 has remained
open. First we prove the uniqueness theorem.

THE 0 R E M 17. The transition function and characteristic measure determine
a Hunt process uniquely to within a random translation of time.

PROOF F. As in § 9, let N(x) denote the number of the state x. For each path
at ; we consider the smallest of the numbers N(at) and call the first moment

for which this smallest number is attained canonical. The canonical moment
v is a function of the path that can be defined by the conditions

N (xt) >- N for all t,

for t<u.
By means of a random translation of time we can make sure that v = 0. We
assume that this condition is satisfied and put
Dk =} x:N(x)<k},ak =°Dk,vk

= Dk
We note that 0k <v=0foranyk.

Next, N(xt) > N(xak) for t < ak. Hence

{(Yk = -m.) _ (ak + m = 0) _ {N (xak+t) > N (xak+m) for t = 0, 1, ...,

, in - 1, N (xak+t) > N (xak+m) for t > m) _ {v' =m; ,

where v' is the canonical moment for the process yt = xak+t (t > 0). By 19.A

P Oh = - m, xak = x, x = an, xn+1 = an+1, . , xr = ar)

= P (Yo = X, Yn+n, an. . . , ar, v' = m). (96)
Let an E Dk. Then the left-hand side of (96) is zero for n < - m. Hence, sum-
ming over all x E Dk and over all m > 0 \/ (-n), we get

P (xn = an, xn+1 = an+t, , xr = ar) =
= P'k (Vi -t- rt >,- 0, an, 1Jr+v' = ar (97)

Thus, the measures of simple sets in n' can be reconstructed from the transition
function p(x, y) and the measures vk. By the Corollary to Theorem 15 the latter
is defined uniquely by p(x, y) and the measure i3. It remains to use Lemma A of
§ 18.

The following existence theorem holds.
THEOREM 18. Let 0 be an excessive measure for the transition function

p(x, y), where 13(x) < -for all x E E. Then there exists a Hunt process corres-
ponding to p(x, y) and 13.

To prove this theorem measures PD can be defined by (92) and then the
measures of simple sets can be given by (97). The detailed execution of this
plan is somewhat unwieldy (it is carried through in [3], Chapter 10, § 12).

If 0 = aG, the required Hunt process is obtained by considering a Markov
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process with initial distribution a.
The general case can be treated as follows: It is easy to verify that if Dk T E

and vk = vDk are defined by (92), then vkG t 0. We construct the Hunt process
with characteristic measures Rk = vkG, produce in each of them a random
translation of time, making the canonical moment zero, and then take the
limit as k - -.

Appendix
Measures in spaces of paths

We prove Theorems A and B stated in §2 and Lemma A of § 18. First we
prove the propositions on the uniqueness of a measure. Here we depend on a
simple lemma from set theory.

A system SP of subsets of a set 92 is called a ir-system if the intersection of
two sets of ' also belongs to h. The system .H is called a A-system if: A1) the
sum of two disjoint sets of PC also belongs to 6t'; A2) if A, B E c7f and
A D B, then A \ B E + ( . ; A3) if A 1 i ..., An , ... E .// and An T A, then
A Eit';A4)92E 1/ .

L E M M A B. If the A-system & contains the 7r-system 'e, then Sri contains the
a-algebra a('E),generated by f.

This lemma is proved in the first few pages of [2] (see Lemma 1.1).
COROLLARY Y. Suppose that two measures given on a a-algebra F in a

space E2 coincide and are finite on a 1r-system 'f generatingF. If 92 can be
partitioned into the sum of a countable number of pairwise disjoint sets Stn E16,
then the two measures coincide everywhere on .

PROOF F. We denote by &l' the family of all sets A E , ' on which the
measures coincide and are finite. We put A E R. if A E e ' and A C Qn
A E `fin if A E V and A C Stn . Let J. be the a-algebra in the space S2n
generated by V, Evidently `en is a 7r-system, d*n is a A-system in Stn and
`P C &,,. By Lemma B Yn c a%E .

We put A E , - if An r) 92n E 5° for all n. Evidently ..* contains `P and
is a a-algebra. Hence , - = F. Thus, if A E F, then for all n, A rl Stn (-=

E dn C n C aV. But if two measures coincide on A r) Stn for all n, they
coincide on A.

It is now quite simple to prove the uniqueness of the measure in Theorems A
and B. It is sufficient to apply the Corollary just proved to the 7r-system of all
simple sets and to note that the simple sets [a0 ] (a0 E E) are pairwise disjoint
and that their sum is the entire space of paths.

To prove Lemma A of § 18 we denote by r6 the family of sets of the form

(t = S, xm, = am, Xm2 = amt' .
+ X,, - a.,, t = t), (0.1)
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where --<s<m1 <m2 <...<mn <t,<+-;k= 1,2.... We note that
the sets

{t =s, x3=x,=t} (-oo<s<t<+oo, xEE),
{t, = - oo, xt = x, = t} (-oo < t < + oo, x E E),
4 _ -oo, xo = x, _ +oo } (z E E)

belong to `P, are pairwise disjoint, and that their sum is the whole space of
paths. It remains to verify that the given measures are finite and coincide on V.
For the sets

[am . . . anlm = (S < m, xm = am, . . ., zn = an, S > n) (0.2)

this is true by the conditions of the Lemma. Hence this is true also for the sets

{S < s, xm1 = amt, xm2 = am=, , Xmh = amk, S > t) (0.3)
(-oo <s<m1 <my< . . . <mk<t<+

which can be expressed as a countable sum of pairwise disjoint sets (0.2). Letting
s . - o or t f + o we conclude that the measures coincide on the sets (0.3)
also for s = - o and for t = + -. Hence it is clear that the measures coincide
on all sets (0.1).

The proof of the existence of the measures described in Theorems A and B
is based on the following general theorem from measure theory.

THEOREM B. Let .4 be an algebra of sets in the space 92 (that is, a family
of sets containing together with any two sets their sum and together with any
set its complement). Let P(A) be a non-negative function on -4, satisfying the
conditions:

a. If A1, A2 belong to ., and are disjoint, then

P (A I U A 2) = P (A 1) -F P (A 2)-

0. The space 92 can be partitioned into a countable union of disjoint subsets
Stn E A such that P(92n) < oo.

y. If A 1 D A2 :... D An D ... are sets in .r/ and lim P(An) > 0, then n An
n

is non-void.
Then, on the a-algebra t generated by -4 there exists a measure coinciding

with P on a.
The sequence of sets An E 4 is called a nest, if

Ao D A 1 D ... D An D ..., lim P(An) > 0 and P(A 1) < -. By virtue of 0 it is
easy to prove that the condition y is equivalent to the following:

y'. Every nest has a non-void intersection.
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Theorem A will be deduced from the following theorem:
THEOREM D. Let be a a-algebra in the space SZ of non-terminating

paths generated by the simple sets [ao ... a, ]. For any n and any ao ... an E E
suppose that a non-negative number p(ao, a1, . . ., an is given, where

P(ao, a1, ..., a,)= P(ao, a1, ..., an- 1). (0.4)
an

Then there exists a measure P on the a-algebra F for which

P (ao, a1 ... ant = P (ao, a1, ..., an). (0.5)

PROOF. We call a simple set in 92 of the form [ao, a 1, ..., an ] a simple
n-set. A set that can be represented as the sum of simple n-sets is called a
cylinder n-set.1

We note that for m > n:
a) If a simple m-set A intersects a simple n-set B, then A C B. (Hence it

follows that for m = n A = B.)
b) If a simple m-set intersects a cylindrical n-set, then it is contained in it.
c) A simple n-set is a cylindrical m-set.
d) A cylindrical n-set is a cylindrical m-set.
e) The sum and the complement of a cylindrical n-set is also d cylindrical

n-set.
Properties a), c), e), are evident, b) follows from a), and d) from c). By d)

and e) the family A of all cylindrical sets is an algebra. We define on this algebra
a measure, relating to each cylindrical n-set A the sum of the values
p(ao, . . ., an) over all simple sets [ao, . . ., an ] contained in A. Although every
cylindrical n-set A is at the same time an (n + 1)-set, by (0.4) the number
associated with A does not depend on whether it is regarded as an n-set or as an
(n + 1)-set. It is easily seen that the function on A introduced in this way
satisfies ot and P. If we prove that it satisfies also condition y', then Theorem D
follows from Theorem C.

We require the following:
L E M M A C. If the sets Cn form a nest, then for each m there exists a simple

m-set B such that B n Cn also forms a nest.
We note that

0 < lim P (C,,) = lim P(B f C,)= IimP(B(1C,,) (0.6)

(the sum is taken over all simple m-sets B; the signs of summation and limit can
be interchanged, since P(B n Cn) ' P(B n CO) for all n and EP(B n Co) =
= P(C0) < on). From (0.6) it follows that for some B Jim P(B n Cn) > 0 and
hence B n Cn is a nest.

1 Theorem D, as the Theorem E deduced below, is a particular case of a well known theorem of
Kolmogorov on measures in products. In this particular case the general proof is simplified significantly.
In our presentation we follow the book of Kemeny, Snell and Knapp [ 3 1.
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We come to the proof of y'. Let An be a nest. By d) we may regard An as a
cylindrical n-set. By Lemma C a simple 0-set Bo can be chosen so that
A,', = An n Bo form a nest. Next, a simple 1-set B1 can be chosen so that
An = A,', Cl B 1 = An n Bo Cl B 1 form a nest. Continuing this construction, for
each m we construct the nest Am = An -' n Bm = An n Bo n B1 n ... n Bm.
Obviously P(An Cl Bo n B 1 n . . . Cl Bn) 0. Hence
An n Bo r )BI n ... n Bn is non-void. In view of a) Bo D B1 D ... D Bn, and
in view of b) Bn C An. Obviously there exists a path w = bob 1 ... bn ... such
that Bn = [bob 1 ... bn ] . It is clear that w E Bn C An, and hence the
intersection of An is non-void.

PROOF OF THEOREM A. We extend the space E to E adding WE one more
point *. We put

P (ao, at, ... , an)

P (ao, at, .. , an), when ao, at, . , an E E,
P (ao, a1..... am), when ao, a1..... a,n E E, am-1 = ... = an

0 , otherwise.

It is easily seen that p satisfies (0.4). Let f2 be a space of non-terminating paths
and . a a-algebra in this space generated by cylindrical sets. We remove from
each path in f2_ containing the element * the part of it beginning with the first
asterisk (paths not containing * are left unchanged). So we obtain a mapping a
of f2 into a.

By Theorem D there exists a measure P on the a-algebra F such that
P[aoal ... an ] = p(ao, al , . . .,an ). The formula

P(A)= P[a-'(A)], (AEF)
defines a measure such that P[ao ... an ] = p(ao, al , ..., an) _
= p(ao, al , ..., an) for ao, al , ..., an E E.

PROOF OF THEOREM B. The formula

an

an = a2n-i

a-2n

if n = 0,
if n>0,
if n<0

defines a mapping of S2 into 2. (Under this mapping the path aoala2a3a4
goes into ... a4a2aoala3 ... ). We put

P' (ao, at, az, ..., a2k) = Pkk 1a2k, a2k-2, . . ., a2, ao, at,

p' (a0, at, a2, . . ., a2k-0 Pkktt [a2k-2, . . ., a2, a0, at, , a2k-tl.

By (3')-(3") the function p' satisfies (0.4). By Theorem D a measure P' can be
constructed in 12 such that P'[aoa1 ... an ] = p'[a0, al , ..., an ). We define
in 2 the measure
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P (A) = P' [a-r (A)].

It is easy to see that for it

P [a-h, .. , ap, . . + akLk_k =
pkk

(a-k+ . . , a0, . . ., ak).

Using the additivity of p and the properties (3')-(3") of pm , it is easy to prove
that for any m S n

P [am .. anJnm = Pnm

(am+ . +
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THE INITIAL AND FINAL BEHAVIOUR
OF TRAJECTORIES OF MARKOV

PROCESSES

The initial and final behaviour of the trajectories of Markov processes is studied within the
theory of Martin boundaries. We propose a simpler approach, based on a direct investigation
of the class l' of Markov processes with a given transition function and the class W* of
Markov processes with a given cotransition function. In the class .t('*) processes with the
following property are distinguished: the probability of any event, determined by an
arbitrarily small initial (final) section of a trajectory, is equal to 0 or 1. Every process of
X (,W*) decomposes uniquely into such "ergodic" processes, and the corresponding
measure completely describes the initial (final) behaviour of trajectories. The theory is
invariant with respect to reversal of time.

Based on the results of the present paper we shall study in a subsequent publication the
excessive measures and excessive functions associated with a Markov process.

A brief account of the main ideas of this work (for processes with non-random births and
deaths) was given in the author's invited address at the International Congress of Mathe-
maticians in Nice (1970).
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§ 1. Introduction

I.I. A Markov process is a random process satisfying the Markov con-
dition of independence of the past and future, given the present.

We consider processes with a fixed state space(E, .)and time set T.
Here (E, R) is an arbitrary measurable space, and T is any subset of the
real line. E may be interpreted as a space in which motion is taking place,
and T as the set of times when the motion is observed. The times
a = inf T and li = sup T are called the initial and final times, respectively
(or the birth and death times).

123
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By attaching to each time t the position w(t) of a moving particle we
define the trajectory w. Instead of w(t) we often write xt(w). We denote
by fl the set of all trajectories (that is, all maps of T to E). A random
process is a probability measure P on St given on the Kolmogorov a-algebra
X. The latter is defined as the minimal a-algebra containing all the sets
{i) :xt(W)Er) (tET, FE. ).

We denote by "A the minimal a-algebra in St containing all the sets
(w: xt(w) E r } (t E T n A, I' E .') and put J't = "'(--, Qxt = J'It, +.). Then .4t can be interpreted as the collection of events
that are defined "by the past" and " as the collection of events that are
defined "by the future". A random process P is called Markov' if for any
t E T and any A E Y't, B E J't

(1.1) P(AB I xi) = P(A I xi)P(B I xt) (a.s. P)

1.2. An important feature of the definition of a Markov process is its
invariance relative to reversal of time. This invariance, however, is lost with
the introduction of the notion of a transition function, without which the
advanced theory of Markov processes is impossible.

A transition function is a family of stochastic kernels p,(s < t E 7) in
the space E, connected by the relation pt*p; = p;, for all s < t < u E T
(the Kolmogorov - Chapman equations).' We will frequently write
p(s, x; t, I') instead of pr(x, r').

A Markov process P has the transition function p(s, x; t, r) if for any
s < t E T, r Eff

(1.2) P{xt E r 1 x3} = p(s, xs; t, r) (a.s. P)

To restore the symmetry of past and future we consider in parallel with
transition functions (which we could perhaps call "forward transitions") the
dual notion of cotransition functions (or "backward transition" functions).
A cotransition function is a family of stochastic kernels p't(s > t (=- T) in E
connected by the relation pi*put = pu for any s > t > u E T. We usually
denote a cotransition function by p*(s, x; t, r). A Markov process P has
the cotransition function p*(s, x; t, I') if for any s > t, t E T, r E B

(1.2*) P{xt E r I x3) = p*(s, x3; t, r).
1.3. The notion of a measurable space is too broad, and from now on

we assume that the state space (E, .') is standard. This means that (E, R)
is isomorphic3 to a space (El, R, ) where El is a Borel subset in some

The abbreviations (a.s. P), (a.s. P, A), (a.s . mean, respectively, "almost surely with respect to P",
"almost surely on the set A with respect to P", "almost surely with respect to all measures P of the
class dY".

2 A stochastic kernel in E is a function p(x, r) (x E E, r E B) which is measurable in x and a
probability measure with respect to r. Writing p = p'*p" means that p is the product of the kernels p"
and p" that is

P (x, r) =
J

p' (x, dy) p' (y, 17).

E.

3 A one-to-one mapping of E onto E, is called an isomorphism of (E, Q) and (E,, A1), if it and its
inverse are measurable.
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complete separable metric space X and .%, is the collection of all Borel
sets of X contained in E,.

We fix any transition function p(s, x; t, r) and put'

(1.3) P (S, x; t,, 1't, , tn, rn) =

= f I ... f p (s, x; t,, dy,) p (ti, yt; t2, dye) ... P (tn-t, Y--t; tn, dyn)
r, rs rn

(s<t, < ... <t,, ET, r,, ..., I'nE.43').

These functions are consistent in the following sense: if we set I', = E or
if we cross out the pair of arguments ti, ri, then we obtain the same
value. By a wellknown theorem of Kolmogorov (see, for example, [41
Chapter III, 3) it then follows that there is a measure P8,, on the a-algebra
J'8 for which

(1.4) Ps, x (xi, E rt, ... , xtn C rn) = P (s, x; tt, F,,

We denote by &l the class of all Markov processes having the transition
function p(s, x; t, r). It is not difficult to show that for processes of this
class and for A E X'

(1.5) P (A I .iY's) = Pe, xs (A) (a.s. P).

(1.5) is equivalent to the system of conditions (1.1) and (1.2), so thatX
may be written as the collection of probability measures P on the a-algebra
,I' for which (1.5) is satisfied.

From an intuitive point of view (1.5) means that the probability of
predicting the future for a fixed past depends only on the present and is
identical for all processes of X. It is natural to take these processes as
differing only in the initial behaviour of trajectories.

A system of measures (s c T, x E E) on the a-algebra ' for the
cotransition function p*(s, x; t, r) is constructed in an analogous way. The
class i* of all Markov processes corresponding to p* may also be written
as the collection of probability measures P onj' such that for any s E T
and A E Y"

(1.6) (a.s. P).

It is natural to regard the processes of X* as differing only in the final
behaviour of their trajectories.

1.4. It is our aim to introduce convenient characteristics of the initial
(final) behaviour of trajectories, in other words, characteristics which
together with a transition (cotransition) function uniquely define a Markov
process.

If the birth time a is contained in T, then the problem of initial
behaviour is solved trivially: the required characteristic is the probability

r We assume that p(s, x; s, r) = 1 for x E r and 0 for x 0 r.
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distribution of the points x, (the initial distribution); there exists a one-to-
one correspondence between processes of X and probability measures on
E (initial distributions). We shall see that the answer is analogous even
when a ff T, except that the initial distribution must be given not in E
but in some new space r, the space of entries.

More precisely, we construct a measurable map p of the space (il, h-')

onto some standard space (71, RgID) so that the formula

IA(r) = P(w : P(w) E r) (r E . ate)

defines a one-to-one correspondence between fiJf and the class a of all
probability measures on (7', 97/,). Here ,p(w) (denoted by X,,(w )) is inter-
preted as the beginning of the trajectory w, or the entrance through which
w gets into E, and p is interpreted as the initial distribution of the process
P.

The role of the entrance space with respect to iC is played by the exit
spacer'*, .W v*)with respect to &i'*. Under time reversal these spaces are
transformed into each other.

1.5. We call the intersection of the a-algebras J't for all t E T the
initial a-algebra and denote it by .,l 'a +. If a E T, then this a-algebra is the
same as -If', . We interpret (,, + as the system of events that are
determined by the initial behaviour of a trajectory. The dual formation is
the final a-algebra Y"s , which is the intersection of the X1 for all t E T.

We call P , J/'a+ergodic if P(A) is equal to 0 or 1 for all A E X,c,+
It is natural to assume that the initial behaviour of such a process is non-
random and that almost all its trajectories "get into the state space E
through the same entrance". This leads to the idea of identifying
entrances with .,tea+-ergodic processes of X.

The programme outlined will be implemented in § 2-4. We study in §2
the general problem of decomposition into ergodic measures. The
applicability of the results of § 2 to X and '* is proved in § 3, the entry
space and the exit space are constructed in §4.

1.6. Let us agree on brief notations. Let 97 be any a-algebra. For a
function f the symbol f E F means that f is non-negative and ,f--measurable.
Thus, A E.fif and only if XA E.T(where XA is the indicatrix of A, that
is, the function with the value 1 on A and 0 outside A). If f E 9f and
p is a measure on F, then by µ(f) (or µf) we mean the integral of f with
respect to p. In particular, if t E X and P is a probability measure on J',
then P t denotes the mathematical expectation of t. (Usually the letter E
or M is used for mathematical expectation, but this is inconvenient when
we have to deal simultaneously with several measures.)

It is easy to see that condition (1.5), which defines ' , is equivalent
to either of the conditions:
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1.6.A. For any s E T and all functions (; E Y"

P( I V s) = Ps, xsb (a.s. P)

1.6.A'. For any s E T and all functions, E ', 11 E l''s

Pq = P(T1Ps, xst)

§ 2. Decomposition into ergodic measures

2.1. Let (Q, ,) be any measurable space. We consider various classes
of probability measures in this space. We treat each such class as a
measurable space (4, '6,#) : 'bat is defined as the minimal a-algebra with
respect to which all the functions PZ(i; E F) are measurable. (This is the
a-algebra generated by the system of functions P(A) (A e ,F)-)

We call the class alt separable if there exists a countable family W of
functions f E S-, separating the measures of 91 (this means that for any
111 * 112 of e/fl there is an f E W such that p 1 (f) * µ2 (f)).

Let .4 be a a-algebra contained in F. A measure P is called
,4-ergodic if P(A) is equal to 0 or 1 for all A E .4. We are interested
in conditions under which all measures from a uniquely decompose into
d4-ergodic measures from afl.

A function P'(A) (w E SZ, A E .f) is called an (ell, .,l)-kernel if:
2.1.A. P' E 4 for each w E 2; P'' (A) is ? -measurable for any A E 97.
2.1.B. For any PESt, AE. "

P(A .4)=P`°(A) (a.s. P)

(An (SI, .4)-kernel gives a general conditional probability distribution
relative to .4 for all measures P (=- A).

Condition 2.1.A. can also be written in the form:
2.1.A'. w -> P' is a measurable map of (S2, df) to (S)Y, V M).
The aim of this section is to prove the following theorem.
T H E 0 R E M 2.1. Let ufle be the collection of all si-ergodic

measures of the separable class 4. If there exists an (all, .{l)-kernel P',
then efle E Seal and each measure P from e/l1 can be uniquely represented
in the form

(2.1) P(A)= P(A)R(dP) (AE,F),
041,

where µ is a probability measure on (Pile, Vg,). The measure µ is
expressed in terms of P by the formula

(2.2) t(r)=P{w: PwEr}.

2.2. The proof of theorem 2.1 is based on two lemmas.
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L E M M A 2.1. Let W be a countable family of functions separating the
measures in At. A measure P from c4 is .11-ergodic if and only if it
satisfies any of the following equivalent conditions:

2.2.A. PW () = P(s) for all z; E W (a.s. P).
2.2.B. (N (P) = 0 for all z; E W, where

D1 (P)
J )2= J

1p°(
st a

2.2.C. P {w: PW = P) = 1.
P R 0 0 F. The equivalence of 2.2.A. and 2.2.B. is obvious. The

equivalence of 2.2.A. and 2.2.C. follows from the equality

{(o: P°=P}={w:

P E tee, then zt = P(n) (a.s. P) for all i E 4. Putting
17 = PW O ( E f) and considering 2.1.B., we have

P°(g) (a.s. P)

Hence 2.2.A. follows.
On the other hand, if 2.2.C. is satisfied, then for A E .

P(A)=P°(A)=P(AI.,)==xA (a.s. P).
This means P(A) is equal to 0 or 1.

C 0 R 0 L L A R Y. idle is contained in the set of measures PW (w E 92).
(This follows from 2.2.C.)
LEMMA 2.2. L11e E `6Nr and P {w: P° E &fle} =1 for all P E I11.
P R 0 0 F. The first assertion follows from 2.2.B. and the `Po,,#- measur-

ability of the function fit.
Setting for brevity 77(w) = P11()' we have

(Dg(P°)=P°(r1)--q=P(,llA)-rl (a.s. P).

Therefore the integral of 4t (PW) with respect to P is 0 and since t is
non-negative I (P') = 0 for P-almost all w. Using 2.1.C. we conclude that
P{w: P°E&fte}=1.

2.3. P R O O F O F THEOREM 2.1. Let P .E &11. By 2A .B.

P(A)=PIP(AI.)1=
J P°(A)P(d(o) (AE f).
a

If we replace the integration variable by P' = P, we have

(2.3) P (A) = c P (A) R (dP),
41

where p is defined by (2.2). By Lemma 2.2 p(e/fle) = 1. Therefore (2.1)
follows from (2.3).

To prove the uniqueness of (2.1) we note that by 2.2.C
P{w : PW E r } = Xr, (P) for P E 4e Therefore it follows from (2.1) that for
any r E w,te
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(2.4) P{w: PuCl}= .f P(co: Pe'EF)p(dP)=
I

Xr(P)µ(dP)=µ(P).
&tl e ell e

2.4. Any two (Al, 4)-kernels P`'' and P;' are equivalent in the following
sense: a set S2' E A can be constructed so that P(S2') = 1 for all P (-= s and
P' = P;' for all co E f". (S2' is defined by the condition: P' (g) = P; (g)
for all of any countable set of functions which separate measures of 4.)

On the other hand, if a function PI satisfies 2.1.A', and is equivalent to
the (l/, 4)-kernel P;' , then it is also an (4, 4)-kernel.

An (e/il, 4)-kernel P' is called normal if P' E dle for all w E E2.
Starting with any (aft, 4)-kernel P; we can construct a normal (4, .)-
kernel PI by putting

pW _ J p° for P° E &fle,
po for P° 0 cot e,

where P0 is any element of n/fle.
From the corollary to Lemma 2.1 it follows that if the (a#, 4)-kernel

is normal then /fle coincides with the set of measures P' (w E 92).

§ 3. Construction of a (lx', X.+)-kernel43.1.
If T contains a, then a(l ', ./1/'a+)-kernel can be obtained by the

formula PI = Pa, xa(W . Therefore we will assume, without saying so each
time, that a T.

The construction of a (mil', J',,+)-kernel is based on the formula

(3.1) P ( [ V'a+) = tjaim AP (`5 i V't) (as. P).
which holds for all z E /V' and P, if A is a countable subset of T having
a as a limit point (see [ 1 ] , Chapter 7, Theorem 4.3).

We say that t is independent of the beginning of a trajectory if E V'3
for some s > a. For such functions it follows from 1.6.A. and (3.1) that
for P E mil'

tea
i EA

(a.s. P).

The right-hand side does not depend on P. To construct a(e, J'a+)-kernel
it is sufficient to find a measure P' E X, satisfying the condition

(3.3) P" l = lim Pt, x S (a.s. I)
tja,tEA

for some countable family W of functions i; independent of the beginning
of a trajectory and separating measures in X.

The required family W is given by the formula

(3.4) = f (xs) (SEA, 1 E ws),
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where Wq is a special family of functions on the state space (E, &). The
family W. is introduced and studied in 3.2. In 3.3 the relation between the
measures P EX and the systems of measures Pt (t E A) in (E, 9) is settled.
After these preparations the theorem on the existence of a (lw, ,,,)-kernel
is proved in 3.4. At the end of the section it will be proved that the
spaces (X, V(X) and (We, VC) are standard.

3.2. It is well known (see, for example, [3], Chapter 3, §37, II) that
each standard measurable space is isomorphic to one of the spaces (J, 5',)
or (I, R I), where J is a finite or countable set, R, is the system of all
its subsets; 1=(x: 0 <x <1), R, is the collection of all Borel sets of I.

We realize J as a closed subset of the interval I and call a real function
q on E a coordinate on (E, R) if it gives an isomorphic map of (E, ..)
onto (I, 9I) or (J, R,). (It is not difficult to show that if q is any
coordinate, then the general coordinate is p(q), where p is any automorphism
of (I, .,).)

We write x q x if q(x) p if µ (q') -+ p(qk) for
k = 0, 1, 2, ... Relative to the q-topology the space E and the set 2ft(E)
of all probability measures on (E, R) are compact. For if x is identified
with q(x), then E goes over in to J or I with their usual topology and
St(E) into the space of all probability measures on J or I with the weak
topology.'

We denote by Wq, the family of functions 1, q, q2, . . We need the
following properties of this family.

3.2.A. Suppose that a system ' of functions contains Wq and satisfies
the conditions:

3.2.A, . If f, , f2 E cam', c, , c2 real, then c, f, + c2 f2 E .

3.2.A2. If the sequence f E ' is uniformly bounded and converges to
f at each point, then f E X.

Then N contains all bounded -measurable functions.
3.2.B. Wq separates probability measures.
3.2.C. If for the probability measures µ the sequence µ (f) converges for

any f E Wq, then there is a probability measure .s such that µ(f)
for f E W,.

Let us prove 3.2.A. Let (E, 9) = (I, MI) and q(x) = x. If M = W,,
then M contains all polynomials, consequently all continuous functions.
Hence dI' contains all bounded . '1-measurable functions (see, for example,
[21, Lemma 1.8). The case (E,R) = (J, .',) is treated similarly.

If µ, , µ2 E K (E), then the set n l' of bounded -W-measurable functions
f for which µ, (f) = 112 (l) satisfies conditions 3.2.A, -3.2.A2. Therefore
3.2.B follows from 3.2.A.

' If µ,, It, then µa [I (q)] -; t If (q)) for all polynomials and hence all continuous functions f
(since by Weierstrass' theorem every continuous function is uniformly approximable by polynomials
on I).
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To prove 3.2.C we note that any measure µ which is a limit point for
the sequence µn in the q-topology satisfies the condition µ(f) = lim
for all f E WQ. By 3.2.B it follows that the sequence µn has a unique
limit point and hence converges.

3.3 Put

P7f (x) =
J

P (s, x; t, dy) f (y) = Ps, xf (xt),
E

vP7 (r) _ v (dx) p (s, x; t, r)

(p(s, x; t, r) is the transition function that defines it).
L E M M A 3.1. Let A c T be a countable set and a a limit point of it.

Denote by Y. the collection of functions vt(t E A) with values in AI(E)
satisfying the condition

(3.6) vsPft = Vt (s < t E A).
The formula

(3.7) vt(r)=P{xtET} (rE.%, tEA)
defines a one-to-one map of & onto Y.

P R 0 0 F. It is clear that for any f E R
(3.8) P f (xt) = vt (f)

By 1.6.A' and (3.8) for P E X and any t E I'
(3.9) P = P (Pe, xs ) _ vs (dx) Ps,

E
Putting = xr, (xt,) ... x1,n (xtn) (s < t, < ... < to E T; r 1 .... Fn E

and bearing (1.4) in mind we have

(3.10) P {xti E rt, ... , xtn E rn} v s (dx) p (s, x; t1, r,, .. , tn, r,).
E

For n = 1 and to = t E A this formula is equivalent to (3.6). Consequently,
the set v = {vs}, corresponding to P E X, belongs to L. From (3.10) it is
obvious that the measure P is uniquely recoverable from {vs}.

On the other hand, if {vs} E 2', then by (3.6) the right-hand side of
(3.10) does not depend on the choice of s from A n (a, t1 ). We denote
it by Pt., , .. , to (r, , ... , rn ). The functions pt,, ... , to are obviously
consistent, and by Kolmogorov's theorem there exists a measure P on the
a-algebra V', satisfying (3.10). Using (1.3), (1.4), and (3.10) it is easy to
verify that P satisfies 1.6.A' and consequently belongs to X.

3.4. THEOREM 3.1. There exists a (X, .#'a-F)-kernel P'
P R 0 0 F. The system of functions W defined by (3.4) separates

measures from l F. For let P, P E ,X, , and let {vs}, (vs) be the elements of
2', corresponding to them by (3.7). If Pt = Ft for all t E W, then
vs(f) = Vs(f) for all f E WQ , s E A. By 3.2.B {vs} _ {vs} and by Lemma 3.1 P =k



132 E. B. Dynkin

We put w E f20 if for all t E W the limit on the right-hand side of
(3.2) exists. It is clear that flq EJ'a+.and P(ft(, ) = 1 for all P EX. Let

(3.11) vs't(I')=Pt,xt(w) {x,, EF} (I'ER)

If w E flo then for any s E A, f E Wq the limit
(3.12) Jim v8 , t (f)

Lla, tEA

exists. By 3.2.B there is a probability measure v$ such that for any f E Wq
the limit (3.12) is equal to v8 (f). By (3.11)

(3.13) v8 (f) = lim Pt, xtf (x,)
tla, LEA

From (3.13) and (3.2) we conclude that for any f E W,, s E A, the
function P,1(f) is X,,+-measurable and

(3.14) vs'(f)=P(f(xs)I "a+) (a.s.X)

By 3.2.A, the validity of this assertion for all bounded W-measurable
functions f follows from its validity for f E Wq .

Since d''a+ Y's, for g E,,y'3

(3.15) P { ( 1/'(.+} = P {P (g I N,) I X.+) = P {P3, x$S ,y a+} (a.s. P).

In particular, for a < s < t and f E . '

(3.16) P (f (xt) I Y a+) =P {Pif (xs) I )i'a+} (a.s. P).

From (3.14) and (3.16) it follows for f e 9 that i -almost surely

(3.17) vw (f) = v8 (PV),

where both sides are Y'a+-measurable functions. We put w E f2, if (3.17)
is satisfied for all f E Wq, s < t E A. It is clear that 92, E y'a+ and
P(&2 , ) = 1 for all P E X. If w E fl 1, then (v.) satisfies (3.6) and con-
sequently belongs to X. We denote by P" the corresponding element of
X. Outside ft, we put P" = P11, where w, is any fixed element of f21.
By (3.8) and (3.10) P" satisfies condition 2.1.A. From (3.15), (3.14),
(3.8), and 1.6.A' we have for P E %, i E '

P( Y'a+)=P(Ps.x$() )=P"(g) (a.s. P)
Thus, P" also satisfies 2.1. B.

3.5. T H E 0 R E M 3.2. The spaces (X, VX) and (Z,, VX,,) are
standard.

P R 0 0 F. By Theorem 2.1 X, E `fix. Therefore it is sufficient to prove
that (lC, V, ) is standard. We construct a a-algebra f in the space Z
of Lemma 3.1 such that (Z, F) is standard, and we show that the map
(3.7) is an isomorphism of (&T, 16N) onto (Z, ,F).
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The set X is embedded in the space Y of all functions vt(t E A) with
values in At (E). Choose in (E, .W) any coordinate q and assume that the

sequence v" E X converges to v E Z if vt 2 vt for all t E A. It is clear
that X is compact. Denote by F the family of its Borel sets. If f is a
bounded .s-measurable function, then for each t E A the function
F(v) = vt(f) is ,F-measurable: for f E W. this follows from the continuity
of F(v), and the extension from W. to . ' is achieved using 3.2.A.

Condition (3.6) is equivalent to the countable system of equalities

v5(Pif)=vt(f) (fEWq,
Since both sides of each equality are .F-measurable, we have YES.

Let F be the collection of sets of ,F, that are contained in Y. The
sets

C=={v: ct<vt(f)<c2} (tEA, fEWq, 0<c1<c2<1)

form a base of the topology in Y.The inverse image of C in X is the
set

{P: ct <Pj (xt) <c2} E

Consequently, the map (3.7) of (er, V.V) to (X, -) is measurable. To
prove that the inverse map is measurable it is sufficient to verify that the
function defined by (3.10) is ,F-measurable. But this function can be
written in the form vs(}), where f(x) = p(s, x; t,, r'1, . . . , t", r,,).
Therefore' .F-measurability follows from the R-measurability of f

§4. The entrance space and the exit space

4.1. Let (Jr, £ v) be any measurable space and let

(4.1) 1 +) (Y'> .7m) (e7C, `tf.),

be given measurable maps where:
4.1.A. The map >V cp defines a normal (Jt', /Y',,+)-kernel.
4.1.B.cp(Q)=I/'.
4.1.C. `Y (vi) $ `Y (v2) for V1 T V2; Z _ _1 2)
Then we say that (T', -W,7/z) is an entrance space. We call the point

the beginning of the trajectory and denote it by xa+(w ); the measure
we denote by P0,,, and call it the process starting at v at time a.

If A consists of one point, then :C coincides with the space c.dt = e4t (E) of all probability
measures on (E, ,O), and the arguments in the proof of Theorem 3.2. prove that (St, gvyt)
is standard.
Without violating 4.1.A it is always possible to satisfy 4.1.B-4.1.C. For this it is sufficient to remove
from `V points not belonging to ,(cl), then identify points v with the same image ,p (v) and contract
Jfl v, to 747-1 (t x)
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In the new notation Pa,xa+. This map automatically satisfies
2.1.A. Therefore 4.1.A can be replaced by the requirement:

4.1.A'. For any PEA',

P( IXa+)=Pa,xa+ (a.s. P).

Recalling the definition of the a-algebra r6,x (see 2.1) we can write 4.1.C
in the form.

4.1.C'. The system of functions Pa,,,(A) (A E,A") separates points of r
and generates the a-algebra 2gr,.

When T contains a, then xt(w) E E and Pt, (x E E) is defined for
t = a. If we put (T, 9') = (E, R), then the validity of 4.1.A' follows
from 1.6.A and that of 4.1.B and 4.1.C' from the formula

P3,x{xsEF}=Xr(x) (SET, 1'E. ),

which follows from (1.4). Consequently the state space (E, R) is an entry
space.

4.2. In the general case an entrance space can be constructed in the
following way. By Theorem 3.1 there exists a (a?, X,,+)-kernel.
Consequently (see 2.4) there exists a normal (X, ,, +)-kernel P' .
Consider the diagram

(4.2) (Q, Xa+) (xe, V'Xe) (W, Vs.),

where p(w) = PI and >i is the embedding of l in X. The measurability
of ,p follows from 2.1.A', and that of from the definitions of 16,X and
`Pe. The validity of 4.1.A and 4.1.B is obvious, that of 4.1.C follows
from 2.4.

If another normal (X, X,,,+)-kernel is chosen, then in (4.2) the map i
does not change, but ,p is replaced by a p , which is equivalent to p in
the following sense: there exists a set St' E 1'a+, such that P(2') = I for

all P E Wand _(w) = "P(w) for all co E 92' (see 2.4).
Now we prove that for a fixed kernel Pw the entrance space (7', Rya)

is uniquely determined to within isomorphism. More precisely, if
,lip = , then we have a commutative diagram

(7/', .W ) '
(4.3) .A +) ro i (X + `g0-

_.,` (xe, / ,pe

(The vertical arrow represents an isomorphism of (f, .% - ) and
(ee,

For by 4.1.A and 2.4 , p(R) _ tee. Taking account of 4.1.B we have
AV) _ Xe The map

(4.4) Q/" ) (tee, e)>
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is obviously measurable. By 4.1.C it is one-to-one. Since Xe E WX
(Theorem 2.1), it follows from 4.1.C that the inverse map is also measurable.
Consequently (4.4) is an isomorphism. It is easily seen that it satisfies (4.3).

By Theorem 3.2 the space (T, .% 9) is standard.
The results obtained can be summarized as follows:
T H E 0 R E M 4.1. For every transition function with standard space

(E, 9 ) it is possible to construct an entrance space. In the diagram (4.1) the
space (E, .%) and the map >V (u) = Pa,,, are uniquely determined to within
isomorphism. The map p(w) = xa.(w) is uniquely determined to within
equivalence. The space (Y', 97/z,) is standard. It may be identified with
(6Xe, (and when a E T also with (E, 9)).

4.3. We now prove that the entrance space has the property announced in
1.4.

T H E 0 R E M 4.2. The formulae

(4.5) [t(I')=P{xa+EF} (I'Em,),

(4.6) P (A) _ Pa, v (A) N (dv) (A E /f ')

establish a one-to-one correspondence between the measures P from X and
all probability measures p on (7/', R7r) (the initial distributions).

P R 0 0 F. We consider the (6T, X,,,+)-kernel PW = Pa, xa+- By Theorem
2.1 every P E X can be uniquely represented in the form

(4.7) P (A) =
J

P (A) [t (dP),
Ke

where
(4.8) µ(I')=P{w: Pa,xa+El'}.

The formulae (4.7)-(4.8) go over into (4.5)-(4.6) if (J r, .Wgl,) is
identified with ('e, Vice) On the other hand, the validity of 1.6.A' for the
measures Pa,,,(v E Y) implies its validity for any measure P defined by
(4.6). Thus, to an arbitrary probability measure p there corresponds a P E X.

4.4. Using 4.1.A' we can rewrite (3.2) in the form

t(4.9) Pa. a+ = Jim P"s (a.s. x)h a,lE1

(A is a countable subset of T, does not depend on the initial behaviour
of the trajectory). Let W be any countable system of functions independent
of the beginning of a trajectory and separating measures of X. We
introduce in the space of all probability measures on the a-algebra .N' the
W-topology, by taking P. as converging to P if P, ,Q) -* P(%) for all E W.
It is clear that in this topology'

I We assume that the measures Pt, are extended in some way from the a-algebra b"t to ".
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(4.10) Pa, xa+ = lim Pt, xt
I ja, tEA

Identifying (t, x) with Ptix and (a, v) with Pa,,, we transfer the W-topology
to the space (T x E) U i . Then (4.10) can be rewritten in the form

(a, xa+) = lim (t, xt) (a.s. X).
tea
tEA

The exceptional set of trajectories for which convergence does not hold
depends on the choice of the system W.

4.5. We note some properties of the initial point xa+:
4.5.A. Pa, U {xa+ = v} = 1 for all v E Y.
4.5.B. If r E then (xa+ E F) E J°a+. Any set A from Y'a+

differs from some set (xa + E I') (r E R by a set of measure zero
relative to the class c%/L'.

Since xa+ is defined to within equivalence (see 4.2), it is sufficient to
verify 4.5.A in the case described by diagram (4.2). But then 4.5.A reduces
to 2.2.C.

Of the two assertions contained in 4.5.B the first is obvious. To prove
the second we observe that by 4.1.C' for A E J'a+

XA == P (A J I a+) = Pa, xa+ (A) (a.s. i),

so that it is sufficient to put I' = {v : Pa +,,(A) = 0.
4.6. Let 4 be any set of measures. An element P of ill is called

extremal if from the relation P = ?,P, + X2 P2 (P, , P2 X, , X 2 > 0;
X, + X2 = 1) it follows that P, = P2 = P.

T H E 0 R E M 4.3. The set of extremal elements of X coincides with
°Xe (or, what is the same thing, with the set of measures Pa,,,(v E

P R 0 0 F We denote by S the set of all probability measures on
(7P, By Theorem 4.2 the proposition stated is equivalent to the
following: the collection of all extremal elements of Si coincides with the
set of all measures concentrated on one point. It is clear that a measure
concentrated on a point is extremal. Let p be any extremal element of Al.
Assume that 0 < µ(B) < 1 for some B ER 7- and put B = 7" \B.

Obviously p = µ(B)µ, + µ(B)µ2, where µ,(A) = µ(AB), µ2(A) = µ(AB)
µ(B)' µ(B)

Hence µ, = µ2 = p. But p, (B) = 1, µ2 (B) = 0. This contradiction shows
that µ(B) is equal to 0 or I for all B E,,d'7 Let r(v) be a coordinate in
the standard space (7 R,7,,) and let co be the least upper bound of all
c for which p{v:r(v) < c }= 1. It is clear that the measure p is concentrated
on the one point set { v : f (V) = Col.

4.7. If in the constructions of 4.1.-4.6 we replace each notion by its
dual (X by X*, Y"a by P,, by Pt," etc.), then we obtain the
definition and properties of the exit space. Diagram (4.1) is replaced by
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(j/*, `l *) y (' *+ ',c*),

the initial point xa+ by the final point x_, the measures P5 by PQ,x. To
each proposition on the entrance space there corresponds to a dual proposition on
the exit space. (We use the same numbers but with asterisks). For example,
4.1.A' corresponds to the property:

4.1.A'*. For any P E X*, E P
P ( I

Xs-) ps, xft (a.s. P).

To (4.6) corresponds the formula
(4.6*) P (A) _ v (A) N (dv) (A E J").

4.8. Up to now we have assumed that the space of trajectories is the same
as the space f2 of all maps from T to E. However, in the theory of
Markov processes the set of trajectories is usually some subset n' of S2. The
most important cases are when E is a metric space and St' is the class 2'
of all continuous maps from T to E or with the class SZd of all maps that
are right-continuous and do not have discontinuities of the second kind.

The Kolmogorov a-algebra .;Y' in 52' coincides with the system of sets
of the form A n S2', where A E X. We denote by .fit the collection of all
probability measures P on (a', .its') with respect to which the outer
measure of S2' is equal to 1. It is not difficult to verify that the formula

(4.11) P'(A (1 u') = P(A)

establishes a one-to-one correspondence between P E A and all probability
measures P' on Here to the set l n 32 there corresponds the
class '' of processes P' with trajectories SZ' and transition function
p(s, x; t, I'). If X J!, then (4.11) gives a one-to-one correspondence
between X and '', moreover P(g) = P'('), where ' is the restriction
of s E /t/' to 92'. It is clear that all the results of 4.1-4.6 are preserved
under restriction of n to 2'. When can it be asserted that jl' = R?

For each A c T we put w E S2'(A), if there exists a trajectory w' E 92'
that coincides with w on A. It is clear that &2'(A) 2'(A) for A -2 A.
In particular, S2'(A) 2'(T) = 92'.

We assume that the following conditions are satisfied.
4.8.A. For any countable A c T the set Sl'(A) belongs to the a-algebra

X A, generated by the sets {(o : xt E F) (t E A, I' E 9).
4.8.B. 2'(An) 1 &1'(A) if A = A n [sn, 00) and s 1 a.
4.8.C. For any s E T, x E E and any countable A T n [s, 00)

Ps, x (Q'(A)) = 1.

Let us prove that J' ci R. We note that for each A E . r there is a
countable set A(A) T such that A Edf'A(A) (because the events A with
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the indicated property form a a-algebra containing all the sets
{w : xt E r} (t E T, IF E 9)). We have to prove that if P E X and A E2',

then P(A) = 1. Let A = A(A). Then, as is easily seen, A E2'(A). Therefore
it is sufficient to verify that P[EZ'(A)] = 1. By 4.8.A we have
S2'(An) E J' A,, =- If gnand from 1.6.A'

P (Q' (An)) = PPsn, xsn (Q' (An))
According to 4.8.C the right-hand side is equal to 1 and by 4.8.B

P(S2'(A)) = lim P(2'(A, )) = 1.
Conditions 4.8.A-4.8.C are satisfied if E2' = E2, because then EZ'(A) = E2

for all A. If E2' is equal to E2` or E2d, then the requirements 4.8.A-4.8.B
are satisfied and there are fairly broad conditions on a transition function
under which 4.8.C is valid (see [21, Chapter 6, §3).

One more example. Let T = (r, o) and let E2' be the set of trajectories
that are absorbed at a fixed point b (this means that for some to E (r, -1,
depending on w, w(t) = b for t > to and w (t) * b for t < to ). For any
countable everywhere dense set A c T we then have
Q'(A) = S2, A S22 n 52;, where

Qi = U (w (s) b},
sEA

S22 -= (1 [co (s) = b or w (t) b for some t c- _A ,fl (s, oo)],
sEA

Q'= (l [w(s) b or w(t)=b for all tEAn(s, (x)].
sEA

It is clear that 4.8.A and 4.8.B are satisfied. Condition 4.8.C is also
satisfied if p(s, b; t, b) = 1 (s < t E T), lim p(s, x; t, E) = 1 for x * b.

tls

§ 5. Markov processes with random birth and death times

5.1. To avoid a cumbersome exposition we assume that T coincides with
the real line (-o, +o). (The necessary changes for an arbitrary T will be
mentioned at the end of the section.) We denote by (Eb, .fib) the
measurable space obtained by adjoining' a pair of points a and b to the
state space (E, 2). Let E2 be some set of maps from T to Ea, P a Markov
process on (En, with E2 as trajectories, a < [3 functions in E2 with
values in We say that P is a process with birth time a and
death time 0 if for all co E E2

( w(t)= a for ta(co),
(5.1)

l
w (t) E E

w (t) = b
for
for

a (w) < t <3 (to),
t,> P (w).

A" is the minimal a-algebra on EQ containing yQ and the sets (a), {b }. Obviously (Eb, Mb) is,
together with (E, _V) a standard space.
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We assume that St contains all maps w for which (5.1) is satisfied.
5.2. Apart from (Ea, RQ) we also need the measurable spaces (Ea,

and (Eb, .fib), which are obtained from (E, .W) by adjoining a and b,
respectively. Transition functions are considered in (Eb, R°), and cotransition
functions in (En, Ra). In accordance with (5.1) we assume that a
transition function satisfies the conditions

p (s, b; t, b) = l (s < t),
(5.2) { limp (s, x; t, E) =1 for x E E,

and a cotransition function the conditions
p* (s, a; t, a) =1 (s> t),

(5.3) I l imp* (s, x; t, E) =1 for x E E.

Under these conditions transition and cotransition functions' are uniquely
recoverable from their values in (E, R)

A Markov process P corresponds2 to a transition function p(s, x; t, r) if
for alls<t,rER°

(5.4) P{xt E r I xs} = As, as; i, r) (a.s. P, a < s).

Our task is to describe the class X76' of all Markov processes corresponding to
the transition function p(s, x; t, I'). Here randomness of the birth time brings in
an essentially new element. On the other hand, the randomness of the death
time has no significance: nothing changes if b is included in the state space and
the time of death is assumed to be oo. (Of course, the roles of births and deaths
are interchanged in the study of the class X* of Markov processes with
cotransition function p*(s, x; t, r).)

A process P belongs to X if and only if it satisfies any one of the two
equivalent conditions:

5.2.A. For any s and for all l; E ,K'

P ( I XI) = Ps.asrl (a.s. P, a < s).

5.2.A'. For any s and for all E ,f'3, rl E

P (t1Xa<s) = P0qXa<SPs, as )

(The measures Ps,,t (s E T, x E E6) on the a-algebra dl"' are constructed
starting from the transition function p(s, x; t, r).)

5.3. One of the possible approaches to the investigation of ey is to
begin with processes whose birth times are not random.

We consider the class Z(r, oo) of all Markov processes with transition

Transition and cotransition functions, if considered only on (E, A), possess all the properties listed
in 1.2 except one: instead of p(s, x; t, E) = 1 we have p(s, x; t, E) t 1 for tls.

2 By (5.2) we know that (5.4) is automatically satisfied (a.s. P, xs = b). Therefore it is sufficient to
demand that it is satisfied (a.s. P, xs E E).
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function p(s, x; t, r), defined on the time interval (r, oo) and in the state
space (E6, 9'). Since p satisfies (5.2), by 4.8 X (r , oo) does not change
if we contract the space of trajectories to the set of trajectories that are
absorbed at b. If each of these trajectories is continued by the formula
w(t) = a for t < r we obtain a process of eT. We put P E cF', if P E X
and P{a = r }= 1. It is easy to see that the construction described defines a
one to-one correspondence between '(r, oo) and r.

It is natural to assume that any process of & is representable in the
form

(5.5) P=
J

P'dF(r),

where F(r) = P (a < r) and P' E '. This formula could have been proved
directly, and then we could make use of the results of the preceding
sections concerning the construction of X (r, oo). However, we prefer to
construct the entrance space for e directly by the same scheme as for
processes with non-random birth times.

5.4. The first step is the introduction of the initial a-algebra ,,, +, which
is now defined by the condition: A E ,j + if {A, a < t} E fr't for all t.
(We note that (a < t} _ {xt E E6} E Y't.)

The second step is the derivation of a formula replacing (3.2).
L E M M A 5.1 Let A be a countable everywhere dense subset of T and

let A. = {ti < t2 < ... < tn} T A. We put

t1 for a<t1,
(5.6) an = ti for tls'-1 <a < tn,

+00 for to Ga.

If P E i%F, then for any u, f E.1°

(5.7) P (f (xa,) I l 'a+} = lim Pan, xanf (xa) (a.s. P, a < u).
n--

PROOF. Put A E J'an if (A, an <t) E J't for all t. It is easy to see
that 1/'an . b"'a+ Therefore

(5.8) P (f (.xa) I y'a+} = lim P { f (xa) I J'-n) (a. s. P).

If l then by 5.2.A' for any t < u
P (SXan=tf (xu)) = P ( xan=tPt, xtf (xa)) = P ( xo n=tPan, a(,nf (xu))

Consequently, P (xan<uf (xa)) = P (h.wZ-upan, ,,,f (x.)) and

(5.9) P (f (xa) I J an) = Pan,'anf (xa) (a.s. P, an < U)-

(5.7) follows from (5.8) and (5.9).
5.5. T H E 0 R E M 5.1. There exists a (SF, J',,+)-kernel P1.
P R 0 0 F. Let q be any, coordinate in the standard space (Eb, .fin), and

A the set of Lemma 5.1. We denote by W the system of functions
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f(xa) (u E A, f E Wq) [see (3.4)] . Put

vt(r)=P{xtEr} (rE. b, tEA).

By 5.2.A', for any t, <... < t" E A, r,, .. , r" E9b

(5.10) P {xt, E r,, ... , xtn E r"} = lim P {a < s, xti E ri, ... , xt" r"}stli, SEA

= lim 1 vs(dx)p(s, x; ti, ri, ..., t", rn).
sit, sEA ddb

E

Therefore the measure P E e is uniquely recoverable from Pg( E W). In
other words, W separates measures in X.

According to (5.7), for any f and u the set {w: a(w) < u and
lim does not exist) has measure zero. Form the sum of such
sets and denote its complement by 520. It is clear that
Oo E Pa+, P (Q0) =1 (P E W) and for co E f10 the limit on the right-hand
side of (5.7) exists for all u > a(w ). Let vu (r) = Pa",xa" { x E r } . If
w E fl0 and u > a(w ), then for any f E W9 the limit of vu ," (f) exists
for n - co By 3.I.B there is a probability measure vu on (Eh, .fib), such
that vu °" (f) -+ vu (f) (f E We ). As in the proof of Theorem 3.1 we note
that for any u E A and any bounded -eb-measurable function f the function
vu (f) is Y'a+-measurable and

(5.11) vu(f)=P{f(xu)I,4 a+} (a.s. P, a < u)
If i t E J'a, E J's, then 9Xa<s E ,,Ps and by 5.2.A' P (1 P (T1Xa<sPs, xst )
Hence

(5.12) P ( I Xa+) = P (Ps, xsb I f"a+) (a.s. P, a < s)
In particular, for = f(xt) (t > s)

(5.13) P {f (xi) I y"'a+} = P (Pi f (xs) I y'a+} (a.s. P, a < s)
From (5.11) and (5.13) it follows that for f E WQ , s < t E A X -almost
surely on the set {a < s}

;5.14) vi' (f) = vs (Pif)
Put w E 12, if (5.14) is satisfied for all t > s > a(w) (t, s E A) and all
f E W9. It is clear that 52, E /V",+ and P(E2, ) = 1 for all P E X. Fix
w E f2, and assume that a(w) = r, Ar = A n (r, -). The set of measures
vt (t E Ar) in (E'', 2 b) satisfies (3.6), and by Lemma 3.1 there is a
process P of the class &f (r, -) for which

(5.15) P {xi E r} -= yr (r) (F E R t E Ar).

Denote by Pw the corresponding process of W'. For co E 521 we put
PW = P'", where w, is any element of E2. By (5.15) and (5.11)

(5.16) P"{xtEr}--v?(r)=P{xtErI xa+} (a.s. P, a < t)
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From (5.12), (5.16) and (3.10) we have for any t, < ... < to ET, r,, ... , r E .yf"

P {xi, E r,..... xtn E rn 1 '«+} lime {a < s, x,1 E rr, ... , xtn E rn l mot'«+}
Btt,

==1im P (P (s, x.; t,, ri, ... , t,,, r,,) .4' a+) _
Bttl

=limp, (P (s, x8; ti, rt, ... , tn, rn)) = P° (x,, E rt, , xtn E r.).
8th

Hence it follows that PI has the properties 2.1.A-2.1.B.
5.6. The entrance space W, Ry-) is defined as in §4. We also preserve our

notation xa+(w) for the beginning of w. The space (r, Rzz) is isomorphic
to the space (ewe, ` P e) of lna+-ergodic measures of A. Put &e = e'7l'E () .r

(it is easy to see that Xe coincides with the set of all lfr+-ergodic
measures of X'). Since a E .41., we see that a = const (a.s. P) for each
P E fiif'e Consequently, Xe = U e'71' e. We consider the corresponding

r

decomposition / _ U 7'r of Y. To a point v E Tr there corresponds a measure
r

concentrated on the trajectories with birth time r. We denote it by Pr,,,.
(Thus, the measures Pr,,, are defined for r E [ --, +oo), v E Y" ). Put a (v) = r
for v E 'r, so that a [xa+(w )] = a(w ). To each v E 7' there corresponds a
measure Patv,, v or, briefly, Pa0 ,, . In this notation all the formulae of § 4
are valid for random a. It only remains to prove that ('l'', Rwv) is
standard. We shall prove this elsewhere.

We note that a(v) is 9P7r -measurable. In fact, for any r
{v: a (v) < r} = {v: Pa(,), v (a < r) =1) E R7 ,.

Since a(v) is measurable and 5$z^) is standard, for each probability measure i on
(7/V, jgV) there is a conditional distribution µ.(r) relative to a(v) (see, for example, [ 1 ] ,
Chapter 1, §9). This is a Borel function of r and is a measure, concentrated on '7 r,
relative to r; moreover, for any r E Mw,

-i-
tt (r) = ltr (r) dF (r),

where F(r) = µ {v: a(v) <r). Putting Pr=
J

Pr, vppr (dv), we arrive at (5.5).
TZ,

5.7. We turn now to the case when T is arbitrary. Changes are required
if some points of T are isolated to the left or to the 'right (for example,
when T is the set of integers).

We denote by T+(T_) the set of t in T that are isolated on the right
(left). These sets are at most countable. We keep the conditions (5. 1) for
t other than a and p, and for a and R we replace them by the following:

w(a) E E for a E T+, w(a) = a for a E T \ 2'+;
w(P) E E for P E T_, w(p) = b for P E T \ T_.
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Note that always a = inf {t : w(t) E E}, P = sup {t : w(t) E E).
In (5.4), 5.2.A and 5.2.A' we have to replace the set { a < s } by

(xs E Eb }; in (5.7) to replace { a < u } by {a < u, a E T - T+ } . Formula
(5.7) is supplemented by

P {f (xu) I f a+} = Pa, xaf (xu) (a. s. P, (a < it, a E T+)).

We assume that the set A of Lemma 5.1 contains T_ . Formula (5.10)
holds for s q T_ ; if s rE T_ , then its right-hand side is replaced by

vtr (dx) p (t?, x; t, r2, . , tn, rn)
r1

For the proof of Theorem 5.1 we have to replace in the definition of Sto
the set (a < u} by the set (a < u, a E T-T+} and to put
vu (r) = Pa, xa (xu E P) for a E T+. Slight changes that must be made in the
subsequent part of the proof are obvious.

To what we have said in 5.6 we only have to add that for a E T. the
initial point xa+ coincides with xa.
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INTEGRAL REPRESENTATION OF EXCESSIVE
MEASURES AND EXCESSIVE FUNCTIONS

One of the central results of classical potential theory is the theorem on the representation
of an arbitrary non-negative superharmonic function in the form of a sum of a Green's
potential and a Poisson integral. We obtain similar integral representations for the excessive
measures and functions connected with an arbitrary Markov transition function. Many authors
have studied the homogeneous excessive measures connected with a homogeneous transition
function. We begin with the inhomogeneous case and then reduce the homogeneous case to
it. The method proposed gives a considerable gain in generality.

The investigation is carried out in the language of convex measurable spaces and in con-
trast to previous papers no topological arguments are used. Our basis are the results obtained
in [3] (also without topology) on the integral representation of Markov processes with a
given transition function. For the reduction of the homogeneous case to the inhomogeneous
we use a theorem from the theory of dynamical systems due to Yu. I. Kifer and S. A. Pirogov
(see the Appendix at the end of this paper).
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§ 1. Plan of the paper. Discussion of results

1.1. We start from the idea of a transition function. From an intuitive point
of view p(s, x; t, r) gives the probability of being at a time t in a set I' if
you are at the time s at the point x. Here x is an element of some set E,
r belongs to a fixed a-algebra .% of subsets of E, and s and t are chosen
from some set of numbers T. The value of p(s, x; t, F) is not defined for
all pairs s, t. We usually consider "forward" transition functions defined
for pairs s < t. We shall also consider "backward" transition functions de-
fined for s > t. Side by side with these rather clumsy expressions we use
the names "direct and reverse transition functions".' The meaning of ex-
pressions such as "the direction of a transition function", "similarly (or
oppositely) directed transition functions" needs no explanation. The state-
ments of any proposition about transition functions of the opposite direc-
tion are obtained from each other by replacing all inequalities between
elements of T by the opposite inequalities. There is no point in duplicating
these statements, and we shall only speak of direct transition functions
provided that the discussion does not simultaneously contain transition
functions in both directions.

1.2. A set E is said to have a measurable structure if there is given some
a-algebra of subsets in E. The elements of this a-algebra are called measur-
able and E with a fixed measurable structure is called a measurable space.
Each system of sets (or functions) in E generates a measurable structure:
it is characterized as the minimal a-algebra containing all the given sets
(or with respect to which all the given functions are measurable). Two
measurable spaces are called isomorphic if there is a one-to-one mapping
between them that preserves measurability of sets. A measurable space is
called standard if it is isomorphic to a Borel subset X of a complete separ-
able metric space. (Measurability in X is relative to the Borel subsets).

We only consider transition functions on a standard space E. Furthermore,
to avoid a cumbersome exposition we shall assume that T coincides with
the real line.

A formal definition of a (direct) transition function consists of the
following two conditions:

1.2.A. p(s, x; t, r) is measurable in x and a measure with respect to r,
and p(s, x; t, E) < 1.

1.2.B. For any x E E, r E R, s< t< u E T

p (s, x; t, dy) p (t, y; u, r) = p (s, x; Zh r).
E

In [31 the term "transition function" refers only to forward transition functions, and backward
transition functions were called cotransition functions.
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We complete the definition of p(s, x; t, r) by taking it to be zero for
s > t.

Connected with each transition function p there are families of operators
Pt acting according to the formulae

(1.1) vPt (r) =
J

v (dx) p (s, x; t, r),
E

(1.2) Pr f (x) =
J

p (s, x; t, dy) f (y).
E

The first family maps the class of all finite measures on E to itself (and
also the class of measures that are representable as a sum of countably
many finite measures); the second acts on the set of all non-negative
measurable functions on E. Condition 1.2.B. is equivalent to: PtP,t, = P"'
for s < t < u (for s > t, P't = 0).

A transition function is called homogeneous if for any S p(s, x; t, r) _
p(s + 6, x; t + 5, r). For a homogeneous transition function put p(t, x, r)
= p(0, x; t, r), Pt = Pt. Clearly p(s, x; t, r) = p(t - s, x, r), Pr = pt_,,.
The operators Pt form a one-parameter semigroup.

1.3. A non-negative function ht(x) (t E T, x E E) that is R -measurable
with respect to x for each t E T is called p-excessive if:

1.3.A. P'ih`(x) <, hs(x) (x E E),
1.3.B. Ptht(x) -- hs(x) for t ys (x E E).
A a-finite measure Pt on E, depending on a parameter t E T, is called

p-excessive if:
1.3.A' v3P(r) vt(r) (r E 2)
1.3.B' vsPt(r) - vt(r) for stt (F E .99).
p-excessive functions and measures are called invariant if we have equality

in condition 1.3.A. (or 1.3.A') (condition 1.3.B. (or 1.3.B') is then auto-
matically satisfied). We call p-null-execessive those p-exessive functions
(measures) for which lim Ptht(x) = 0 for h$(x) < oo (respectively, lim

t-.=

v8 Pt(r)= 0 for vt(r) < oo).
p-excessive function and measures that do not depend on t are called

homogeneous. These are interesting only when the transition function p is
homogeneous. In this case 1.3.A. - 1.3.B. and 1.3.A' - 1.3.B' take the
following form:

1.3.a. Pth(x) < h(x) (x E E).
1.3.13. Pth(x) - h(x) for t ,4. 0 (x E E).
1.3.a'. vPt(r) , v (F) (r E 9).
1.3.13'. vPt(r) -o- v(r) for t y o (r E . ).

Fix a transition function p. Let v be a p-excessive measure, h a
p-excessive function, and let ht be summable with respect to Pt for
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any t. For any finite set A = { to < t1 < ... < t } put,

n

(v, h)A__-vt,,hto+ [vlkhtk-vtk_SPtp_1htk]-=
A=1

= kI [vtk_thtk-t-vtk-tPtk lhtk] -;-vtnht^.

We denote the least upper bound of this expression over all A by {v, h }.
If v or h is invariant, then

(1.3') {v, h} = sup vtht
t E T

A wide class of p-null-excessive measures and functions can be construct-
ed by the formulae

(1.4) vt (r) y (ds, dx) p (s, x; t, r),
t)xE

(1.5) h9 (x) _ p (s, x; t, dy) It (y) d? (t) _ Pill (x) d; (t).
(s, oo)XE (s, oo)

Here y is a measure on .4fT X . [ RT denotes the a -algebra of Borel sets
of T], X(t) is a non-decreasing function on T, It (x) is a non-negative
measurable function on T X E. (1.4) makes sense under the assumption
that for any t E T, r E .4.' p(-, -; t, r) is measurable relative to the
completion of .% T X .%' with respect to y. (1.5) makes sense if for all
s E T, X E E, r E R the function p(s, x; -, r) is measurable relative to
the completion of T with respect to dX(t). By 1.2.B, for all s < t

(1.6) vt (r) = v3Pi (r) -?- 1 y (du, dx) p (u, x; t, r),
[$, t)XE

hs (x):-= Ptht (x) r Pule (x) A (u).
(s, t]

If the integrals on the right-hand sides of these equalities converge for any
finite s < t, then v is a p-null-excessive measure and h is a p-null-excessive
function.

It is not difficult to show that if v is given by (1.4), then

(1.8) {v, h} = S Y (ds, dx) he (x.),
TXE

1 If h is a non-negative function and Pa measure, then vh (or v(h)) denotes the integral of h over P.
The expression vsPlt may be understood as the integral ofF ht over v$ or the integral of ht over
vet (the two integrals are clearly equal).
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and if h is given by (1.5), then

(1.9) {v, h} =
1

vul" d7 (u).

Indeed, comparing (1.3) and (1.6) we observe that

(1.10) {v, h}A= ' (ds, dx) (.2),

(-w, tn)XE

where cp(s) = to for s < to, ,p(s) = tk for tk _ 1 < s < tk (k = 1, 2, ..., n).
By 1.3.A. the right-hand side of (1.10) does not exceed the right-hand side
of (1.8), and by 1.3.B. it converges to the right-hand side of (1.8) when
A ranges over an expanding sequence of finite sets whose union is dense in
T. Hence (1.8) is proved. (In passing we have also proved the
measurability of h5(x) in s, x). (1.9) is proved similarly.

If the transition function p is homogeneous, then (1.4) and (1.5) for
y(ds, dx) = dsy(dx), 1' = 1, X(t) = t define homogeneous p-excessive measures
and functions

(1.11) v (I') _ du) Y (dx) p (u, x, r) -
J V (dx) g (x, r) I,U (1')

0 E E

(1.12) It (x) __ du
J p (u, x, dy) l (y) _ g (x, dy) l (y) = 61 (x).

0 E E

where

(1.13) g (x, 1') _ j p (u, x, 1,) du.
0

1.4. One of the central results of this paper is a theorem that associates
a Markov process with a transition function p and each pair: a p-excessive
measure v and a p-excessive function h connected by the relation { v, h} = 1.

The Markov processes in question are those with random birth and death
times. We recall the corresponding definitions (see [3], 5.1. - 5.2.). Con-
sider the measure space (Ea, . a) obtained from (E, .&) by adding two
points a and b. A mapping w of T to Ea is called a trajectory if for some
- - < a < p < + 0 (depending on w) w(t) = a for t < a, w (t) E E for
a < t < p, w(t) = b for t > p. Here a is called the birth time and p the
death time. The set of all trajectories is denoted by S2. The image w(t) of
t under the mapping w is also denoted by xt(w).

We introduce in 12 the measurable structure generated by the sets
At,r={w:xt(w) E r } (t E T, r (=- .99). The o-algebras ii"t generated by
the sets As, r (s < t, I' E .A) and J/ * t generated by the sets A,,, r
(u > t, r E . ) also play an important role. A Markov process is a prob-
ability measure P satisfying the condition: for any t E T, A E ,l"t, B E 'Y
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(1.14) P (AB I xt) = P (A 1--t) P (B I xt) (a.s. P{ xr E E } ).
In § 2 it will be proved that if h is a p-excessive function, v a p-

excessive measure, and {v, h } < -, then there exists a unique measure
Pv on 92 such that for any tx < t2 < ... < t

(1.15) P;' {xt1 E dyt, ..., xtn E dy7z} _

= vtt (dyt) p(ts, yi; t2, dye) . . . p(t,,-i; yn-i; tit, hta (y,).

The measure Pv satisfies condition (1.14). Also Pv (f2) = (p, h }. In par-
ticular, for {v, h } = 1 Pv is a probability and defines a Markov process.

1.5. With the help of the theorem stated in 1.4. the study of p-excessive
functions and p-excessive measures can be reduced to the study of Markov
processes. Furthermore, we make use of the results of [3] concerning the
construction of the class of Markov processes corresponding to a given
transition function.

We say that a Markov process P corresponds to a transition function p
and write P E r ' if for any s < t E T, r E R

(1.16) P {xt E IF I x3} = p(s, x5; t, r) (a.s. P, x,, E E)

The conditions (1.14), (1.16) are equivalent to the condition: for all
s<tE T, r E.99

(1.17) P {xt E F I aJ 3 } = p(s, x3; t, r) (a.s. P, x8 E E).

(If p is a backward transition function, then ,A is replaced by 4 " in (1.17)).
To state the results of [3] and the conclusions we shall draw from them,

it is convenient first to introduce some general ideas.
1.6. We say that there is a convex structure on the measurable space Z

if with each probability measure µ on Z there is associated a point z the
centre of gravity of the distribution p". A space Z together with such a
structure is called a convex measurable space.

If zu * z for any measure p not concentrated on z, then we say that
z is an extreme point and write z E Ze. A convex measurable space Z is
called a simplex if ZQ is measurable and any element z from Z is the centre
of gravity of one and only one distribution p concentrated on Z..

Let Z and Z' be convex measurable spaces. A one-to-one mapping tp of
Z to Z'is called an isomorphism if p and gyp-' are measurable and if
,p(Z,) = zn where µ'(r) = p[1(F)J. It is clear that under an isomorph-
ism extreme points go to extreme points and a space isomorphic to a
simplex is itself a simplex.

Our aim is not the development of an axiomatic theory, but the analysis
of a number of concrete convex measurable spaces. Each of these is repre-
sentable as a family of non-negative functions z(w) defined on some set
W. A measurable structure on Z is subject to the requirement: for any
w E W the function F(z) = z(w) is measurable. We assume that the
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following condition is satisfied:
1.6.A. For any probability measure p on Z the function

(1.18)
z

belongs to Z.
The convex structure on Z defined by (1.18) will be called natural.
Frequently we consider the measurable structure on Z generated by

the system of functions F(z) = z(w) (w E W). We call this structure natural.
If Z is a simplex, then each function z E Z is representable, uniquely,

in the form

z (w) z (w) Fi (dz) («' E [l').

where .s is a distribution concentrated on Z. Therefore the formula

(1.19) z (w) = S z (w) [t (dz) (w E W)
Ze

establishes a one-to-one correspondence between Z and the set ft (Ze) of all
probability measures on Ze (the measurable structure in Z. is induced from
the measurable structure in Z).

We now return to the class XP, defined in 1.5. Its elements are non-
negative functions on the a-algebra X. We put the natural measurable and
convex structures on XP (1.6.A. is verified using (1.17)). It was established
in [3] that XP is a simplex.

Strictly speaking, in [3] a certain measurable set WP,' in XP was constructed, and it was
shown that any element P in ej7l'P is the centre of gravity of one and only one distribution concen-

trated on X.P. To prove that XP is a simplex it is also necessary to show that Xe is the set of
extreme points of NP. From 2.2.C. of [3] and Lemma 2.1. it follows at once that all points of
X. are extremes On the other hand, if P E Xe, then the distribution on Xe, corresponding
to P cannot be concentrated on P. Therefore P is not an extreme point.

One more remark is necessary, since it was assumed in [3] that the limit

4t (x) = t m p(s, x; t, E)

is equal to 1 for all s, x. The fact is that on points where this is violated it is impossible to define a

probability measure P$ x in the space of trajectories for which

P.,x (xt. E dyi, .. , xt E dvn) = p(s, x; ti, dyi) . . . P(tn-i, yn-i; tn, dyn)

I For let P E <i1 be the centre of gravity of the distribution p and let a' ={W: PW = P}(we use
the notation of § 2 of [31). By 2.2.C. of [3] P(l2) = 1 and hence P(cl) = 0 for p-almost all
P E XP . It remains to note that if F (12) = 1, then by 2.1.B. of [3] for any measurable set C,
P (C) = F (PW (C)] = F [P (C)] = P (C). Consequently p is concentrated on P.
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However, these situations can be ignored because for any P E :XP, s E T

(1.20) gs(xs) = 1 (a.s. P, xs E E).

For by (1.16) when s < t p(s, x8; t, E) = P{xt E E I x8} = P{it > t I x$ } (a.s. P, x8 E E) and the right-

hand side converges, as t 1 s, to P{R > s I x8} = 1 on {x& E E}. By (1.20) the propositions 5.2.A'and

(5.7) of [3] remain true even if we leave P8 x undefined outside the set {(s, x): q8 (x) = 1} (here
Pan, xan is, P-almost surely, defined from some n onwards). The remaining arguments of § 5 of [3] are

based on (5.7) and are unchanged.

We shall construct convex measurable spaces whose elements are exces-
sive functions and measures and show that these spaces are simplexes. An
application of (1.19) to these spaces gives integral representations of ex-
cessive functions and measures.

1.7. Fix any positive function h and denote by .%1p," the set of all p-
excessive measures v for which {v, h) = 1. Considering the elements of

as non-negative functions on T X M, we introduce the natural measur-
able and convex structures in (1.6.A. will be established in § 3).

We associate with the measure v E g PJh the process Pv described in
1.4. It is not difficult to verify (see 2.8) that the corresponding transition
function is

1 (
h h8 (x) J

p (s, x; t, dy) ht (y) for 0 <h8 (x) < oo

0 for the other s, x,

so that we have a mapping y$p,h to XP". It will be proved in § 3 that this
mapping is one-to-one and preserves the measurable and convex structures.
Consequently Rp,h is a simplex isomorphic to i pt`. In the same § 3 it is
proved that the measurable spaces . 2P,h and XP are standard.

We now assume that the transition function p is homogeneous and satis-
fies the condition:

1.7.A. For any r, p(t, x, r) is measurable with respect to t, x (the
measurable structure on T is the Borel structure).

Then Pt(f) (t E T, P E ' p,h) is measurable with respect to t, v for any
non-negative measurable f (see 3.2.).

Let l be any positive measurable function on E. Denote by Rip the
collection of all homogeneous p-excessive measures v for which v(l) = 1
and introduce the natural measurable and convex structures in .T p. Let us
show that .% is a simplex.

The proof goes as follows. Let v be a p-excessive measure, h a p-excessive
function, and let s be any real number. In view of the homogeneity of p
the formulae vt = vt+8, h7 = ht+8 define a new p-excessive measure v and
a new p-excessive function It. We denote these by B8v and 88h. It is easy
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to see that {08v, 08h} ={v, h}. Consider the p-excessive function

(1.21) h' (x) = 2 e-1 a+u IPuI (x) du
0

(it can be obtained by putting It = 1, dX(t) = 2 e-I t I dt)
in (1.5)). By (1.9) for any p-excessive measure v

{v, h} = 2 e-I"Iv,4 (l) du.

In particular, if v is homogeneous, then {v, h} = v(1), so that Nip gv, h.
Put

(1.22) p8 (v) = {08v, h} = 2 e-I u Iva (l) du.

Clearly 0 < p8 (v) < - for all v E p' hand by the measurability of vu (1)
with respect to u and v, p8 (v) is measurable with respect to s, v. The
operators

Tsv = A'v
V. (v)

map Mp' h into itself, leaving the set r of extreme points invariant. It is
easily seen that (s, v) - T8v is a measurable map of T X 2'' h into M p, h
and TBTt = Ts+t' ps+t (v) = p8 (v) pt (rtv) for any s, t. Let p be a probability
measure on 7,- and v its centre of gravity, that is, Pt (r) _ vt (r) µ (dv)

for all t E T, r E Y. Replacing t by t + s we see that

08v = S 08vµ (dv) = S i'VP8 (v) µ (dv) = S vPe (T -'v) µj (dv),

where p8 (r) = µ{i 8 r}. Clearly v belongs to _Vt if and only if 08v = v
for all s, which is equivalent to the condition

(1.23) it {i'r} = f µ (dv) P. (v) for all SET, r E .% .
r

Denote by a# the set of all probability measures on r satisfying (1.23)
with the natural measurable and convex structures. Associating with each
measure its centre of gravity we have an isomorphic mapping of AIL onto
gyp. In the Appendix it is proved that A is a simplex. Consequently R11
is also a simplex.

1.8. Now fix a p-excessive measure v and denote by fn, v the set of all
p-excessive functions h for which {v, h) = 1. We study the structure of
yv. v under the following assumptions:

1.8.A. There is a backward transition function p" such that
(1.24) v8(dx)p(s, x; t, dy) = vt(dy) p (t, y; s, dx).
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1.8.B. The measure p(s, x; t, -) is absolutely continuous with respect to

1.8.C. The measure p(t, y; s, -) is absolutely continuous with respect to
Vt

v8

In eTv. " we introduce the measurable structure generated by the functions
F(h) = Pt (Xrht) (t E T, I' E 9).1 Using 1.8.B. we shall prove the measur-
ability of the function '(h) = ht(x) (t E T, x (-= E) and the validity of
1.6.A. Consequently we can introduce a convex structure into Y P' v. In
§ 4 it will be proved that ffP, v is a simplex. We associate with each
measurable non-negative function h the measure

(1.25) vi(dx) = h`(x)vt(dx).

It follows from (1.24) that for any two functions h, r
(1.26) vsP hl = v= pare

For re (x) = Xr (x) we have hence

(1.26') Svs (dx) P' h' (x) _ vt (dy) P (t, y; s, r).
r E

If h is a p-excessive function, then the left-hand side does not exceed
v8(r) and converges to v8 (r) for t 1 s. Hence vh is a p-excessive measure.
It can be proved similarly that if r is p-excessive function, then v' is a
p-excessive measure. Comparing (1.26) and (1.3) we observe that for any
p-excessive function h and p-excessive function' r

(1.27) {vr, h)1, _ (v", r) ; .

Consider the function rt (x) = p(t, x; t - 0, E) (the limit on the right
exists since, by 1.2.B., p(t, x; s, E) is monotonic in s). The equality
Pgre (x) = p(t, x; s - 0, E) for t > s implies that r is p--excessive. Putting
h = XA, r = E, s t tin (1.26') we have v t (A) = v t (A) and by (1.27)
{v, h}P = {vr) Consequently, if h E fin. v, then v" E ,"" r. Thus, (1.25)
defines a mapping from VIP, v to .ygv, r.

To prove that the mapping is onto .gyp, r, we prove the following general
lemma: if a transition function p is absolutely continuous with respect to
v, then all p- excessive measures are absolutely continuous with respect to
v. Applying this lemma to p and using 1.8.C. we conclude that for any
measure v' E ,p. r there exists a density ht (x) relative to the measure vt.
From (1.26') it follows that h has the properties:

' The expression v(h, r) or v(hxr) denotes the integral ofh over r with respect to v (xr is the indicator
of r, that is, the function equal to 1 on r and zero outside r).
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a) Ptht <h8 (a.s. v8) for s < t;

b) (a.s. v8) if t .l S.
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From these properties and 1.8.B. we deduce the existence of the limit

PIP (x) f h8 (x) for t 1 s.

This limit (it is called the regularizer of the function h) is a p-excessive function,
and ht = ht (a.s. Pt) for any t E T, so that vt(dx) = ht(x)vt(dx), or, equiva-
lently, v' = vi' .

It is easily verified that under the mapping h -> v" distinct elements of
,Yp, v go over to distinct points of A r and that this mapping preserves
the measurable and convex structures. Consequently YP- v is isomorphic to
A p, r and is a simplex.

1.9. Now let p be a homogeneous transition function and y a measure on
E. Denote by 9y the set of all homogeneous p-excessive functions for
which y(h) = 1. We assume that 1.7.A. holds and that for some measure v
the following conditions are satisfied:

1.9.A. There exists a homogeneous transition function p such that for
any A > 0

v(dx) g?,(x, dy) = v(dy)gx(y, dx),

where

ga (x, r) = J
e-ztp (t, x, r) dt, gj (y, r) =

J
e-;"tM (t, y, r) dt.

0 0

1.9.B. For any A > 0, x, y E E the measures g,(x, -), gT(y, -) are
absolutely continuous with respect to v.

1.9.C. y(dx) = 1(x) v(dx), where 1 > 0.
Take in 9' the measurable structure generated by the functions

F(h) = v(h, r) (r E 9), and the natural convex structure on the measur-
able space so constructed. In § 5 it will be proved that the formula
vh(dx) = h(x)v(dx) defines an isomorphic mapping of d'v to R '.The
necessary arguments are very similar to those used in the inhomogeneous
case. In addition we use the fact that conditions 1.3.a - 1.3.0 are equiva-
lent to the requirements'

1.9.a. AG,,h(x) < h(x) (x E E),
1.9.0. AG,,h(x) - h(x) for A -- - (P E E),

and conditions 1.3.a'- 1.3.0' are equivalent to
1.9.a'. AvG.(r) < v(F) (I' (=- 2),
1.9.A'. %vG2(r) --- v(r) for A - 00 (r E R).

1 G X are the operators corresponding to the kernels g?,(x, r).
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The equality (1.26') is replaced by

(x),(1.28) v^ (dy) g,, (y, r) = S v (dx) G,h
E r

and instead of (1.27) we use the obvious equality

(1.29) '(h) = v"(l).

1.10. The construction of the spaces of invariant and null-excessive
measures is studied in § 6. The connection between excessive functions and
supermartingales is established in § 7. Finally, in the concluding § 8 we
study the question for what functions p it is possible to construct v and p
to satisfy 1.8.A. - 1.8.C. It is proved that it is sufficient for p to have the
following property:

1.10.A. There exist a finite measure mt, depending measurably on t, and
a non-negative function 7r(s, x; t, y) measurable with respect to s, x, y
such that

(1.30) p(s, x; t, dy) = n(s, x; t, y)mt(dy)

and for anys<t<u,x,zEE

(1.31)
J

p (s, x; t, dy) n (t, y; u, z) = n (s, x; u, z)
E

(ii is called a transition density).'
Choose an arbitrary strictly increasing function X(s) for which

(1.32) ms (E) d7` (s) <oo,
T

and put

(1.33) at (y) = S da, (s) `m$ (dx) n (s, x; t, y),
-w E

J as (x) n (s, x; t, y)'dr
(y)

for 0 <at (y) < oo,
(1.34) n' (s, x; t, y) _

0 otherwise.'

If 1.10.A. is satisfied for a measure mt and ifct(x) is an arbitrary positive measurable function, then
1.10.A. is also satisfied for mt(dx) = ct(x)mt(dx), with 7r(s, x; t, y) replaced by st(s, x; t, y)

n (s, x; t, y) Therefore, instead of finiteness of nit it is sufficient to require a-finiteness.
ct (y)

2 The product o c is taken to be equal to - for c > 0 and to zero for c = 0.
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A p-excessive measure v and a backward transition function p satisfying
1.8.A. - 1.8.C. can be given by the formulae

(1.35) yr (r) = d? (s) m$ (dx) p (s, x; t, r),
T E

(1'.36) p (t, y; s, dx) =ms (dx) a' (s, x; 1, y).

((1.35) is a particular case of (1.4) for -y(ds, dx) = m8(dx)dX(s).)
1.11. Apart from well-known facts from measure and integration theory,

we shall often use in proofs two lemmas on measurable functions and we
complete this introductory section by stating them.

L E M M A A. Suppose that the measurable structure on E is generated by
a system of sets Q that contains together with any two sets their inter-
section. Suppose that the family (W of non-negative functions contains the
indicators of all the sets of Q and has the following properties:

a) if f, , f2 E , then c, f, + c2 f2 E a5 for any non-negative constants
C,, C2;

b) if fl, f2 E and .f, < f2 < -, then f2 - fa E %;
c) if fn E &e and fn t f, then f E c;
d) I E M.
Then off' contains all measurable non-negative functions.
LEMMA B. Let E,, E2, E3 be measurable spaces, F a non-negative measurable

function on E, X E3 and µ(x2 , r) a measure on E3 with respect to r and
a measurable function on E2 with respect to x2. Then the formula

I) (xa, x2) = F (xa, x3) s (x2, dx3)
E3

defines a measurable function on E, X E2.
Lemma A is easily deduced from Lemma 1 . 1 of the book [ 1 ] . By the

latter J contains the indicators of all measurable sets. For any non-
negative measurable function f put

Akn = x: Zn (x) < k2 1} , fn (x) = j Zn XAkn (x).

k-0

Clearly fn t f. By virtue of a) f,, E ', and by virtue of c) f E off'.
The proof of Lemma B can be found in [I ] (see Lemma 1.7.).

§ 2. The construction of a Markov process
from an excessive measure and function

2.1. The aim of this section is to prove the following theorem:
T H E 0 R E M 2.1. Let p be any transition function and let the p-

excessive measure v and function h be connected by the relation

(2.1) {v, h} < oo.
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Then there exists one and only one measure Ph in the space of trajectories
l satisfying the condition: for any t, < t2 < ... < t E T, r, , r2, ..

...1rnE R

(2.2) Pv {xtf E rf, xt2 E rz, ..., xtn E rn} _

= S ... S vta (dy1) P (ti, yt; t2, dye) ... p (tn-1, yn-1; tn, dyn) htn (yn).
1'i rn

For Pv to be a probability measure it is necessary and sufficient that {v, h}= 1.
In this case Pv defines a Markov process with transition function

,1
S P (s, x; t, dy) ht (y) for 0 < hs (x) < 00,

(2.3) ph (s, x; t, r) _ h (x)
1.

0 for the other s, x.

The probability distributions of the birth time a and the death time Q are
given by

(2.4) Pv {a < t} _ {v, h}=, Pv {1 < t) = (v, l0t - vtht,
where

(2.5) {v, h}t = sup {v, h}A.
AC(--, t]

2.2 We first prove that (2.2) implies (2.4) - (2.5). First of all,

(2.6) Pv {xr E r) = h t (x) yr (dx) (t E T, FE )
r

and foranys<tE T,FE.W

(2.7) P,k {a < s, xt E r} = Pv {x$ E E, xt E r} = S S v8 (dx) p (s, x; t, dy) ht (y)
Er

Hence for s < t

(2.8) xrEE)=vtht-v,Piht

Connected with each set A = {to < t, < ... < tn) there is a random variable
aA defined by

to for
aA= th for

-4- oo for

a < to,
tk-1<a<tk (k=1, 2, ..., n),
to<a.

Comparing (1.3) with (2.7) - (2.8) we observe that

(2.10) {v, h}A = Pv {aA<S}.
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If A S (-°, t], then {aA < P} c (a < aA < t) c {a < t). Therefore
(2.11) {v, h}A < Pv {a < t}.

On the other hand, if A' is a countable dense subset of the interval (--, t]
and A. t A' then {a < t) = {aAn 4 a} and therefore {aAn < P T {a < t}.
Consequently, (v, h)A,, f P,",{a < t}. Hence the first formula of (2.4) follows
from (2.11). The second formula follows from the first one and (2.6). In passing
we have proved the useful equality

(2.12) {v, h}t = lira {y, h}An'

All these arguments are also applicable when t = +o. Then Pv{a < t} _
= Pv (Q) and {v, h}t = {v, h}. Consequently, Pv{S2} _ {v, h}, so that Pv
is a probability measure if and only if {v, h} = 1.

2.3. We now prove that the condition (2.2) defines Pv uniquely. For this
it suffices, by virtue of Lemma A, to prove that for any t1 < t2 < .. .

< to E T, r1i ..., rn E .tea the probability
h{(2.13) Pv xt1 E r1i ..., xtn E rn} = qt1 ... tn(r1, ..., rn)

is uniquely defined. The values qt to on Ma can be calculated from
the values on gb by means of the recurrence formulae

(2.14) gt1(r,) = gt1(ri) + xr1(a)[{v, h} - gt1(Eb)l,
(2.15) qt,... in (r1i ... , rn) = qt, ... in (ri, ... , rn) +

+ xr, (a) [qt2... in (Fs, ... , rn) -qt,. -An (E b, r" I.*

where r* = r n Eb. In their turn, the values qt, . . . in on Rb can be
expressed through their values on . and gt(Et1) by the formulae

(2.16) qt, (I') = qt, (r") -I- xr (b) [qt, (Eb) - g11(E)J,
(2.17) gt1...to (Ft, . . ., rn) =gt1...to (r;, . . . , rn)+

-}- xrn (b) [qt,... to-t (I',, ... , rn-,) - qt1... to (r1, ... , rn_1> E)[,

where r' = r n E. It remains to note that by (2.4)
(2.18) gt(Eb) _ {v, h}t.

2.4. Now we want to construct a measure Pv satisfying (2.2), starting
from any pair v, h connected by the relation (2.1.). Naturally, to this end
we make use of (2.14) - (2.18). As a preliminary we have to study the
function {v, h}` in (2.18).

L E M M A 2.1. If the p-excessive measure v and function h are connected
by (2.1), then:

2.4.A. The function (v, h)t is non-negative, non-decreasing continuous on
the left, and converges to {v, h} as t - -.



160 E. B. Dynkin

2.4.B. The function pt = {v, t}t - vtht is non-negative, non-decreasing
and continuous on the right.
2.4.C. For s < a the function

(2.19) F(s, u) = {v, h}" - {v, h}8 - v,, ht' + v,Pu hn

is non-negative, non-increasing and continuous on the left with respect to
s, non-decreasing and continuous on the right with respect to u.

2.4.D. For any A = (to < tl < ... < to )

(2.20)

For any t
(2.21)

n

{v, h}ta = pto + F (tk_t, tk) + {v, h}A.
k=.1

F(t - 0, t) = F(t, t + 0) = 0.

P R 0 0 F. Firstly we note that the value of (v, h)A can only increase for
expanding A. For if t A and A' = A U {t}, then

vt (ht - Ptohto) for t < to,

{v, h)A (Vt-vtk_1Ptk t)(ht-Pikhtk) for tk_, <t <tk,

(vi -vtnPtn) ht for t > tn,
and the expression on the right is non-negative in view of the fact that
p and h are p-excessive.

From the formula (2.5) defining {v, h}t, it is at once clear that {v, h}t
is non-negative, non-decreasing, and does not exceed (v, h). Since its limit
as t -+ + oo is not smaller than {v, h}A for any A, this limit is equal to
{v, h}. The fact that pt is non-negative follows from the relation vtht =
_ {v, h}A, where A - (t).

If s < u, A C (- °°, s] and A' is obtained from A by adding the points
s and u, then

{v, h} {v, h}A > (v, h)A + (vn - v8Pu)h

Hence it is clear that F(s, u) > 0. From the equality
(2.22) F(s, u) = F(s, t) + F(t, u) + (vt - v8Pi) (ht - Puh")

F(s, t) + F(t, u)

for s < t < u it is clear that F(s, u) is a non-increasing function of s and
a non-decreasing function of u.

Formula (2.20) follows from (2.19). By virtue of (2.20)

n
(2.23) F(tk_t, tk) < (v, h) - (v, h)A.

k=7
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Let us prove (2.21). By the definition of {v, h} the right-hand side of
(2.23) converges to zero for some sequence Am . This property remains
valid under expansion of the sets Am . Therefore we can assume that
t E A, cA2 ... = Am ..., that the sum of the Am is dense in T,
and that the sets A;n = Am n t) and A';,, = Am n (t, + oe) are
non-empty. Let sm be the largest element of A',,, and um the smallest
element of A;,, . By (2.23)

(2.24) F(sm, t) + F(t, um) < {v, h} - {v, h}xm.

Clearly sm t t, um 1 t. Therefore (2.21) follows from (2.24).
(2.21) and (2.22) imply that F(t - 0, u) = F(t, u) and F(s, t + 0) = F(s, t).

It is clear from (2.17) and (2.15) that {v, h}u = {v, h}u-o. Finally, from the
equality

P. - pt- F(t, u) + vt(ht - P,t hu)

and formula (2.21) we have pt+o = Pt.
2.5. We shall use the following well-known result (see for example, (71,

Chapter III, 3).
KOLMOGOROV'S THEOREM. Let (X, .%x) be a standard measurable

space and suppose that for each t, < ... < t there is a function
qt, ... to (I'i, , rn) (I'i, ..., rn E Rx), which is a measure relative to
each rf and satisfies the conditions:

2.5.A. qt(X) = 1
2.5.B. For any i = 1, 2, ..., n and Pt = X

(2.25) qt,... to (ri, ... , rn) = qt,.. Att,, . ' in (ri, ... , ri, ... , rn)

(the hat over the arguments ti and rf means that these arguments are to be
crossed out).

Then in the space fi' of all mappings of T to X there is a probability
measure P' such that for all t, < ... < t E T, r,, ... rn E -,8x

(2.26) P' {(O (ti) E I ' l l--- , w (tn) E rn) = gt,...In:(rt, ..., rn)

(this measure is defined on the minimal a-algebra Y',containing the sets
{w: w(t) E F) (t E T, F E .%x)).

2.6. We shall prove that the functions qt, ... In defined by (2.2) and
(2.14) - (2.18) satisfy the conditions of Kolmogorov's theorem with X =
= Ea, 'x = fa

It is clear that on the a-algebra . ' these functions are measures with
respect to each rf, and for rf = E (2.25) is satisfied for 1 < i < n, and
for i = 1 and i = n it is satisfied with = replaced by <. (This follows from
1.2.B., 1.3.A. and 1.3.A')

Further, taking into account 2.4.B, we can deduce from (2.16), (2.17)
and (2.18), using induction on n, that the functions qt, ... to on the
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a-algebra 21 are also measures with respect to each r,, and for rt = Eb
(2.25) is satisfied for i > 1, but for i = 1 we must replace = by <.

Finally, using (2.14) - (2.15) and the inequality {v, h)t < (v, h) (see
2.4.A) we show by induction that the qt, . . . t,, on fa are measures with
respect to each ri and satisfy 2.5.A - 2.5.B.

2.7. Let P' be the probability measure on 92' whose existence is asserted
by Kolmogorov's Theorem. For it

(2.27) P' (w (t1) E r1, ... , w (tn) E rn} = qt,... to (ri, ... , rn)
(ti< . . . <tn, ri, ..., rnE_Wa)

Hence by (2.14) - (2.18) we have

(2.28) qt(b) = pt, qt(a) _ {v, h} - {v, h}t
and for s < t

(2.29) get(Et, a) = q t(b, Ea) = 0,
(2.30) g8t(a, b) = F(s, t),
(2.31) g8t(a, Et') = {v, h}t - {v, h}8,
(2.32) q,t(Ea, b) = Pt - Ps,

where pt and F(s, t) are defined by Lemma 2.1.
Consider the set R of all rational numbers and introduce the functions
a((o) = inf {t: t E R, (o(t) # a), N(O) = sup {t: t E R, (o(t)# b).

It is easy to see that a < 0. Fix any c E E and put

c if a = (3 or if a < t < a and co (t) E E,

xt (w) = a if t < a,
w(t) if a < t < 0 and w(t,)EE,

b if3<t.
We shall prove that

(2.33) P'{xt(w) # w(t)} = 0.

It is clear that {xt(w) # (o(t)) gj C, U C2 U C3 U C4 U C5, where C, _
= {a = P), C2 = {a < t < w(t) = a), C3 = {a < t < P, w(t) = b},
C4 = (t < a, w(t) # a), C. = (t > w(t) # b). Therefore, to prove
(2.33) it is sufficient to check that P'(C,) = 0 (i = 1, . . ., 5).

Ifs < t E R, then (s < a = < t) {w(s) = a, w(t) = b), and by
(2.3Q)

P' (s < a = P < t) < gst(a, b) = F(s, t).

Since F(s, t) is continuous on the left in s and continuous on the right in
t, it follows that for any s < t

(2.34) P'{s < (x = S < t} < F(s, t).
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For any A = {to < t1< . . . < to }
n

P'{a= }<P'(a=p<to)+ E P'{tk_1<a=S<tk}+
n

+ P' {tn < a = P) < qt0 (b) 4- Y F (tk-1, tk) + qtn (a)
k=1

By (2.20) and (2.28) the right-hand side does not exceed (v, h) = (v, h)A,
and by (2.1) P'(C1) = 0. The set C2 is covered by the countable system of
sets (o) (s) a, co(t) = a) (s E R n (-oo, t)). According to (2.29), for s < t
we have P' (c)(s) a, (o(t) = a) = gt(E°, a) = 0. Consequently P'(C2) = 0.
Similarly P'(C3) = 0. We note that P'(C4) = lim P' {s < a, c)(t) a).

stt

But for S E R

P'(s < a, c)(t) a) < P'{ca(s) = a, (o(t) a) = gst(a, E°)

and by (2.31) and 2.4.A P'(C4) = 0. Finally,

P'(C3) = lim P' {o(t) b, P < u},
ult

P'{c)(t) 0 b, 0 <u) < P'{oo(t) * b, o(u) = b) = gtu(Ea, b)

and P'(C5) = 0 by (2.32) and 2.4.B.
2.8. (2.27) and (2.33) imply that

(2.35) P' (xt1 (w) E r1, ... , xtn (CO) "C rn} = qt,... to (r1, , rn)

(t1<... <t,ET. I'1, ..., rnE_q a)

Consider the mapping Vi that associates with each element w E E2' the
trajectory xt(w). It is easy to see that this is a measurable mapping of
(a', J") to (52, ,N'). Putting Ph(A) = P' {p-1(A)} (A E Y), we obtain a
probability measure on the space of trajectories, and by (2.35) the equality
(2.2) is satisfied.

Let us show that p" is a transition function and that PV belongs to 6p".
Obviously p" satisfies 1.2.A. We prove that it also satisfies 1.2.B. Put

ES = (x:h'(x) < oo), E's = (x:h'(x) = 0). Since Ptht(x) c hs(x),

(2.36)
( p(s, x; t, E\Et) = 0 for
t As, x; t, E \E_) = 0 for

xEEs,
x E E.

By (2.3), p" (t, y; u, r) = 0 for all t < u if y 0- Et \ E°. Therefore

S P" (s, x; t, dy) pk (t, y; u, r) _ Pk (s, x; t, dy) pk (t, y; u, r) -

E Et',E{
If x 0 ES \ E8, then the right-hand side is equal to 0 = p"(s, x; u, r).
If x E Es \ E8, then by virtue of (2.3) and (2.36) it is again equal to
p"(s, x; u, I').



164 E. B. Dynkin

To prove that Pv E ^ph, we must verify for s < t, r E R and a non-
negative ", measurable function i;, that

P,",{ , xs E E, xt E r) = P,h, { , x,, E E, Ph(s, xs; t, r)}.

By Lemma A it suffices to check this equality for x r , (xs,) x r n (xs )
(s,< ... < sn C s; r,, ..., rn E g Q), when it takes the form

(2.37) gs,... sns: (r,, ... , rn, E, r) gs.... sns (r,, ... , rn, dx) Ph (s, x; t, r) .
E

By (2.14) - (2.18) we have (2.37) for all r1 i ... F. from _WQ, if it is

satisfied for r1, ..., rn E .F5, . We note that

(2.38) gs(ES) = 0, gs(E\Es) = 0

(the latter follows from the inequality vshs < {v, h} < oo). From 2.5.B and
(2.38)

gs1 ... snst (rf, , rn, Es, r) < gs(E°) = 0,

gs1 .. sns, (r1, . . . , r,,, E\ES, r) < gs(E\E3) = 0.

Therefore the left-hand side of (2.37) is equal to

(2.39) gs, ... sns, (ri, ..., F, , Es\E3, r)
On the other hand, by (2.3) the right-hand side of (2.37) is equal to

(2.40)
J

f gs1... sns (r,, ... , rn, dx) /LS (x) p (s, x; t, dy) ht (y).
Es\ES r

According to (2.2) the expressions (2.39) and (2.40) are equal. Hence
(2.37) is satisfied.

§ 3 Excessive measures

3.1. In this section we study the spaces of p-excessive measures
and Rip introduced in 1.7.

We first prove that these spaces satisfy 1.6.A.
LEMMA 3.1. The formula

(3.1) Vt (r) _ vt (r) µ (dv)
-,p, h

_qp, h

associates with each probability measure p on 1R1, h an element v Of 'RP.h.

The formula

(3.2) v (r) _
J

v (r) µ (dv)

i
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associates with any probability measure p on ,AI' a point v of R?.
PROOF. Obviously for each t, Pt is a measure. Using Lemma A we

deduce that for any non-negative.-measurable function f, vt(f) is
measurable with respect to v and

(3.3) vt (f) =
J

vt (f) it (av)
&p, h

In particular, for f(x) = p(s, x; t, r) we have

v3P1(r) = v8l t (r)1. (dv).
-qp, h

Since the conditions 1.3.A' - 1.3.B' are satisfied for all v E ,rzp,h, they are
satisfied for all v. Further, it follows from (3.3) and (1.3) that

(3.4) {v, h}A =
J

{v, h}A µ (dv).

-qp, h

Let A' be a countable dense subset of T and let A. t A', where the An
are finite. By (2.12) (v, h)A. f {v, h}. Therefore (3.4) implies that
{v, h} = 1 and v E

It can be proved similarly that (3.2) defines a homogeneous p-excessive
measure v, where

{v, h) = f {v, h} µ (dv).

To complete the proof of the lemma it is sufficient to recall (see 1.7)
that if h is defined by (1.21), then {v, h) = v(l) for any homogeneous
p-excessive measure P.

3.2. L E M M A 3.2. Let f be an arbitrary non-negative measurable function
on E. Then for each t the function vt(f) (v E JWp,h) is measurable with
respect to P. If p(s, x; t, r) is measurable with respect to t, x for any
s E T, r E 2, then vt (f) (v E ,* P,h, t E T) is measurable with respect to
v, t. In particular, this is true for a homogeneous transition function satis-
fying 1.7.A.

PROOF. The first assertion follows at once from Lemma A. To prove
the second assertion we note that v8(lbt) is measurable with respect to
v, t for any non-negative function (Dt(x) that is measurable with respect
to t, x. This is easily deduced by means of Lemma A and the fact that
v$((Dt) = (t)v.(,p) if't(x) = By Lemma B the function Prf(x)
is measurable with respect to t, x and therefore F(s, t, v) = v$(Ptf) is
measurable with respect to v, t. It only remains to note that

vt(f)=lim (t)Ft, v).
n-.oo i=-oo n n
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3.3 T H E 0 R E M 3.1. The correspondence v - Pv defined by Theorem 2.1.
is an isomorphism of the convex measurable spaces .9p,h and 'ph.

PROOF. By Theorem 2.1. P, E 1 h for all v E If P = Pv, then

(3.5) vt (r) s vi (dx)

ht (x)
r

where

(3.6) vi(A) = P (xt E A), rt = r n (x: 0 < ht(x) < oo).

Thus, no element P of Xpn can have two different inverse images in 5 p,h .

Now let P be any element of oph. Define v by (3.5) - (3.6). Formula
(1.17) implies that for any t, < .. < tnr r1, ., rn E 9

(3.7) P {x11 E r1, ... , xtn E rn}

=
J

...
J vi, (dy1) ph (t1, y1; t, dy2) ... ph (tn-1, yn-t; tn, dyn)

r, rn

Because of (3.5) - (3.6) and (2.3) the right-hand side of (3.7) is equal to

J ... k, (dy1) p (t1, y1; t_ dye) ... P (tn-1, yn-1; tn, dyn) htn (yn)
rt rtn
1

The right-hand side of (2.2) is equal to this same expression by (2.36) and
(2.38). Hence it follows by Lemma A that p = P. Note further that

(3.8) Vt (r)=P {xr(xt)}
ht (xt)

and that v8Pt(r) = P (Xa<s, x1er1ht(xj)). Hence it is clear that v is p-
excessive. Since Pv(S2) = 1, by Theorem 2.1 {v, h} =1.

We have proved that the mapping v -> PV defines a one-to-one corres-
pondence between .` 3p,h and lrph and that the inverse mapping is given by
(3.8). The mapping (3.8) obviously preserves the convex and measurable
structures. To prove that the mapping v -> Ph has the same properties it is
sufficient to check that for any ' -measurable function t:

a) Pv( ) is measurable with respect to v;
b) if v is the centre of gravity of the distribution t, then

(3.9) ph (S) = f Pv () It (dv).
mp, h

By Lemma A it is sufficient to prove both these assertions when
$ = xr1(xt,) . . . xrn(xtn) (t1 < . . . < rn E W).
But in this case

vt1((D),
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where

a) (yi) = xrt (Y j) ... S p (ti, yi; t2, dye) ... P (tn-i, yn-1; tn, dyn) htn (Y,,),

r2 rn

so that our assertion is obvious.
3.4. We shall now prove that the measurable space Is is standard.
Fix any countable dense set T of T. We say that v is a p-excessive

measure on T if vt is defined and satisfies conditions 1.3.A' - 1.3.B' only
for t E T. For such measures {v, h) is defined as the supremum of
{v, h}. over all A T. Put v E s/P. Is, if {v, h} = 1. A measurable struc-
ture on 5&p, Is is given by the system of functions vt(r) (t E .P, F E .q).
The fact that . ' h is standard is an obvious corollary of the two
theorems:

T H E 0 R E M 3.2. For each p-excessive measure v put

(3.10) vt(r) = vt(r) (t E T, F E .).

The mapping (3.10) is an isomorphism of the measurable space 9' Is onto
.p' h. The inverse isomorphism is given by the formula'

(3.11) vt (r) = lim v8P't (r) i).
sft

T H E 0 R E M 3.3 The measurable space .&, Is is standard.
3.5 P R 0 O F 0 F THEOREM 3.2. If v is a p-excessive measure, then

according to 1.3.B' vIP'(r) -> vt(r) for s t t. If (3.10) is satisfied, then
v5Pt(P) = v5P7(r) for s E 7. Therefore (3.10) implies (3.11). We see that
v is uniquely recoverable from its restriction v on T.

Now let v be an arbitrary p-excessive measure on T. By virtue of
1.3.A', if s, , s2 E T and s < s2 < t, then

(3.12) vSjPt' = v81Pfi2Pi2 <v$ZP2.

Therefore v$P' converges to some measure Pt as s t t. By 1.3.B' Pt = vt
for t E T.
We show that v' is a p-excessive measure. By (3.4) v8Pt < Pt for s E T,
s < t. Hence for s < t E T

(3.13) v$PI = 1im vr.P;P =1im vrP' Gvi,
its rtt

so that 1.3.A' is satisfied for v'. (3.13) implies that v;Pt is a non-decreasing
function of s. Since it coincides with v6P't for s E T, we have

limv3Pt =1im v3Pi = v;.stt att

1 We do not specify that an argument tends to a limit over T if the function is undefined outside this set.
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Thus, v satisfies 1.3.B'.
Represent T as a union of an increasing sequence of finite sets A..

According to (2.12) (v, h) = lim {v, h}e,,..Therefore {v, h} = {v, h}.
We have shown that the formulae (3.10) - (3.11) establish a one-to-one

correspondence between 3P. h and .fln, h. The mapping (3.10) is obviously
measurable. To prove that (3.11) is measurable it suffices to note that
v8Pi(F) = vs(cpj), where cp1(x) = p(s, x; t, F), and to use Lemma 3.2.

NOTE. It is not difficult to see that the correspondence established between
.59P' h and asp, it also preserves the natural convex structure.

3.6. THEOREM 3.3 is proved on the same lines as Theorem 3.2 of the
paper [3].

The set ,A, h is contained in the space of all mappings of T into
the class elff of all measures p on E for which p(E) 5 1. We introduce, as
in [31, a compact topology on SET and check that the a-algebra of Borel
sets in this topology coincides with the a-algebra f, generated by the
functions F(v) = vt(P) (t E T, I' E ,%).

It remains to verify that ,%2P h E F7. Since E is standard, there is a
countable system W of functions f E . , separating the measures of A.
Condition 1.3.A' may be written in the form

(3.14) vPtfGvtf (fEW, s<tCT).
By 1.3.A' the condition 1.3.B' can be stated in the following way:

(3.15) lim v3Pt (E) = vt (E) (t E T).Sti

Finally, by virtue of (2.12), the condition {v, h} = 1 may be written down
by the formula:

(3.16) lim {v, h}An = 1.

Clearly (3.14), (3.15) and (3.16) define a set from .9

§ 4. Excessive functions

4.1. First of all we verify that the measurable structure on fin, v, intro-
duced in 1.8 satisfies 1.6.A. For this we need a general lemma.

L E M M A 4.1. Assume that in a standard measurable space E there is given a
a -finite measure v and a family of finite measures p(x, -) depending on a
parameter x from a measurable space X. Let p(x, r) be measurable with
respect to x for any r and be equal to zero if v(P) = 0. Then there is a
function 1r(x, y) measurable with respect to x, y such that

(4.1) p(x, dy) = 1i(x, y) v(dy).
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PROOF. It is sufficient to consider the case when v is finite. For if the
sets E, , ..., E , . . . have finite measure with respect to v and are pairwise
disjoint with union E, then applying Lemma 4.1 to the finite measures
vn (I') = v(l' n and p (x, I') = p(x, r n En) we construct a function
an (x, y), measurable with respect to x, y, so that pn (x, dy) = irn (x, y)v (dy)
and an (x, y) = 0 for y 0 E.; their sum is measurable and satisfies (4.1).

It is known (see for example, [6] Ch. 3, § 37, 11) that every standard
measurable space is isomorphic to one of the following spaces:

a) a finite or countable space whose subsets are all measurable;
b) the half-line (0, 00) with the Borel structure.
In both cases the measurable structure of E is generated by a monotone

sequence of partitions of E into disjoint sets En,1
> .,En,n,n (each set

En+1,i is contained in a set Enli). Let

p(x, En,i)
lrn(x,Y)= for y EEn,i.

v(En, i )

Put

(4.2) 7r(x, y) = lim 7rn (x, y) if the limit exists.
n

If the limit does not exist, we set ir(x, y) = 0. Martingale arguments show
(see, e.g., [4], Corollary to Theorem 0.2) that (4.2) holds for v - almost
all y and 7r(x, y) satisfies (4.1). Since lrn(x, y) is measurable with respect
to x, y, so is 7r(x, y).

R E M A R K. Lemma 4.1 and its proof remain valid for every space E with
a measurable structure generated by a countable family of sets.
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L E M M A 4.2. Put on the space d'p' V the measurable structure generated
by the functions F(h)= vt(htxr) (t E T, r E 9). Under condition 1.8.B the
function hs(x) (s E T) is measurable with respect to the pair x and h and
satisfies 1.6.A.

PROOF. By virtue of 1.8.B and Lemma 4.1 there exists a function
ir(s, x; t, y), measurable with respect to x, y, such that p(s, x; t, dy) _
= it (s, x; t, y) vt(dy). According to 1.3.B h8(x) = lim Ptht(x). But

U s

Ptht(x) = vt(,ptt ht), where pz(y) = 7r(s, x; t, y). Denote by off' the set of
all non-negative functions fx(y) for which vt(fht) is measurable with
respect to x, h. Obviously ' contains all functions of the form fz(y) _
= xr 1(x)xr 2 (y)(ri, r2 E _W), By Lemma A, o5l' contains all functions f', (y)
that are measurable with respect to x, y, in particular, it contains the
function apt, (y) for any t. Hence h'(x) is measurable with respect to x, h.
Let µ be any probability measure on d"' V and let

h'(x)=
J

ht(x)R(A).
gp, V

By Fubini's theorem, for any measure v' on E

(4.3) v (h) =
,

v' (h') t (dh).

e/p'V

Taking here v'(I') = p(s, x; t, r) we have

Pth=
J

P htN,(dh),

nl n'V

and the validity of 1.3.A - 1.3.B for h follows from their validity for all
h E Tp' v. From (1.3) and (4.3) it follows that

{v, h)A
J

(v, h)nµ (dh).
ffp, v

Using (2.12) we conclude that {v, h} = 1, so that h E c5p, v.
4.2. We prove a lemma on the limit of a monotonic sequence of

measures. It will be used in this and the following sections.
L E M M A 4.3. Let µ be a non-decreasing sequence of measures, bounded

above by a a -finite measure v. Then the formula

(4.4) µ(r) = lim µi1(F)

defines a a-finite measure µ, and µ(f) any non-negative measur-
able function f If all the measures µ1l are absolutely continuous with re-
spect to some a -finite measure v', then p is also absolutely continuous with
respect to v'.
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PROOF. By the Radon-Nikodym theorem we have µn(dx) =
for certain measurable functions an (x). Obviously an < an + I 1 (a.s. P)
for any n. Therefore a t a < 1 (a.s. v). For any measurable function
f> 0

(4.5) µn(f) = v(anf)fv(af)

In particular, µn(r) t v(aXr). Hence (4.4) defines a a-finite measure. The
relation (4.5) can obviously be rewritten in the form' µn(f) t µ(f).

The second assertion of the lemma is an obvious corollary of (4.4).
COROLLARY. If the measure p(s, x; t, -) is absolutely continuous

with respect to a a -finite measure vt, then all the p-excessive measures Pt'
are also absolutely continuous with respect to Pt.

For vBPtt vt for sf t. The equality vt(r) = 0 implies that

v3P1 (F) = vs (dx) p (s, x; t, r) = 0.
E

Consequently, i' P't is absolutely continuous with respect to vt. By Lemma
4.3 vt is also absolutely continuous with respect to Pt.

4.3. We now prove two lemmas which under certain conditions allow
us to construct, with respect to a function h, a p-excessive function h
(called the regularizer_of h).

L E M M A 4.4. If Pth t(x) is, for any s E T, x E E, a non-increasing
function of t for t > s, then for t 1 s

(4.6) Pth' (x) f hs (x),

where h is a p-excessive function.
PRO 0 F. From the condition we have PV t > Pu,hu' > Pvhti for s < t < u' <'v

By virtue of (4.6) P2,.hu' =PusPu.hu' f Puhu for u' f u < u. Therefore
Pih` > PUhu > P;,h" for s < t < u < P. When t 1 s, this inequality becomes

(4.7) hs > Puhu > P;,Ie

Taking u I s and v 1 s we have hence

(4.8) hs> urn Puhu lim Puhu> hs.
ujs tijs

Now h satisfies 1.3.A because of (4.7) and satisfies 1.3.B because of (4.8).
NOTE. The same arguments show with the help of Lemma 4.3 that if

v 8Pr(r), for any t E T, and T E Yr is a non-decreasing function of s for
s < t, then for s t t

us P"(T)Tvt(T),

If the sequence A. is non-decreasing, then the same argument proves the existence of a a-finite
measure p such that µn(f) 1 µ(f) for any non-negative function f satisfying the condition v(f) <
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where v is a p-excessive measure.
L E M M A 4.5. If 1.8.B is satisfied and if

(4.9) Piht < h (n. n. vs) for s < t,

then (4.6) defines a p-excessive function h. If, in addition,

(4.10) Pinhtn -> hs (n. n. vs) for to , S,

then hs = h s (a.s. vs) for all s.
PROOF. By virtue of 1.8.B, it follows from (4.9) that for r < s < t

piht = PS tht < Pshs,

and the first assertion of Lemma 4.5 follows from Lemma 4.4. From (4.9)
it follows that h8 < W' (a.s. v$). On the other hand, by (4.10) vs(h s) _
= I'M vs(Prnhtn) = vs(hs). Therefore hs = hs (a.s. v$).

4.4. We now pass on to the study of the correspondence described in
1.8 between p-excessive functions and p-excessive measures.

LEMMA 4.6. Under the conditions 1.8.A - 1.8.C there corresponds
to each v' of .9"0r one and only one element of r", I such that

(4.11) vt (dx) = hv (x) vt (dx).

For any t the function by-(x) is measurable with respect to v' and x.
PROOF. First of all we note that if h and h are p-excessive functions

and vt (dx) = ht (x) vt (dx) = ht (x) vt (dx), then by 1.8.B Ptht = Pth t for
s < t and by 1.3.B hs = hs for all s. Hence to each v' E . 1P r there corres-
ponds not more than one element h,,.

To prove the existence of such an element we apply the corollary to
Lemma 4.3 to the transition function p. By Lemma 4.1 we can find a
function h,t,'(x) that is measurable with respect to v', x and such that
vt(dx) = h,`,(x)vt(dx). As shown in 1.8, h satisfies (4.9) - (4.10). By
Lemma 4.5 the formula (4.6) defines a p-excessive function
h hv- (a.s. vs), so that (4.11) is satisfied. It follows from this equality
(see 1.8) that {v, h},,={v',r}p= 1 , hence h It remains to note that
by Lemma B the function Pfh,t,'(x), and hence also h,,'(x), is measurable
with respect to v', x.

T HE OR E M 4.1. Under the conditions 1.8.A - 1.8.C the formula

(4.12) v=(dx) = h' (x)vt(dx)

defines an isomorphic mapping of the convex measurable space rY", v to
the space r.

PROOF. In 1.8. we have seen that vh E gi r for all h E'".". By Lemma
4.6 the mapping h - vh is one-to-one and its inverse is the mapping
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v' -+ hr'. It follows from the definition of measurability in vFP,v that for
all t E T, F E .& the function Pt(F) is measurable with respect to h. There-
fore the mapping (4.12) is measurable. Lemma 4.6 and Lemma B imply
that for any t E T, F E .% the function vt(ht,'Xr) is measurable with respect
to v'. Therefore the mapping v' -

h is a distribution .t on fv,v, then by
Fubini's theorem

vt (T) = vi" (I') Ix (A)
ff7,,v

(the measurability of ht(x) with respect to h, x is used here). Hence the
mapping h - v" preserves the convex structure. On the other hand, if v'
is the centre of gravity of a distribution u on .91 " , then the function

lit (x) _ $ hV (x) !, (dv)

is the density of vt with respect to Pt (this can be deduced by means of
Fubini's theorem using the measurability of ht,(x) with respect to v, x).
It is easy to see that h E e`f'p,v. Consequently h = hv- and the mapping
v' - preserves the convex structures.

§ 5 Homogeneous excessive functions

5.1. In this section we assume that p is a homogeneous transition func-
tion satisfying condition 1.7.A. We first derive some properties of the
operators

Gaf (x) = e-,%tPtf (x) dt,
0

(i-tGA) (F) = e-1,1 (t Pt) (F) dt,
u

then prove two lemmas, similar to Lemmas 4.4 and 4.5, and with their
help check the equivalence of the conditions 1.3.a - 1.3.5, 1.3.a' - 1.3.5'
and 1.9.a - 1.9.5, 1.9.a' - 1.9.5'. After this the connection between the
spaces J;; and 91' is established in exactly the same way as that between
9'',v and ,9h ,r was established in § 4.

The semigroup property P8Pt = P,+t of the operators Pt implies that

(5.2) Ga, = Ga,+e + 6GaGa,+s,
(5.3) Ga = Ga.+a + 6Ga.+8Gx (?, 6 > 0).
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We shall prove that for any measurable function f ' 0
(5.4) lim 6GxGx+af > Gxf.

Put' f,, = f A n. By virtue of (5.1) Gxfn -- 0 as A Therefore (5.2)
implies that 6GxGx+afn - Gxfn as 6 -+ o. Hence the left-hand side of (5.4) is
not less than Gxf for any n. But Gxfn t Gxf as n

It is proved similarly that for any u-finite measure µ
(5.5) lim µ6Gx+6Gx > µG7,

T____

(i is approximated by finite measures µn(r) = µ(r n En), where E is a
fixed sequence of sets such that E. f E, It(En) < 00).

5.2. L E M M A 5.1. If AGxh (x) is for any x E E a non-decreasing func-
tion of A, and if as A -> 00

(5.6) AG,h(x) t.h(x),

then Gxh = Gxh for all A and functions h satisfying 1.9.a - 1.9.13. If
Av Gx(r) is for any r E . ' a non-decreasing function of A and if the measures
Av Gx(r) are bounded above by some v-finite measure, then the limit

(5.7) AvGx(r) t v(r) (A -* oo)

is a measure satisfying 1.9.a' - 1.9.13'. Here 'Gx = vGx for all A.
PROOF. Let 6 -> o. By virtue of (5.6) (6 + A) GxGx+bh t Gxh and con-

sequently SG,..G,,+bhtGxh. By (5.4) it hence follows that Gxh ' Gxh . On
the other hand, it is clear from (5.2) that SG,,Gx+ah < Gxh. Therefore
Gxh = Gxh . By virtue of (5.6) It satisfies 1.9.a - 1.9.13.

The second half of the lemma is proved similarly using (5.3) and (5.5)
and Lemma 4.3.

LEMMA 5.2. If for some A > O, x E E, the measure gx(x, -) is
absolutely continuous with respect to the o-finite measure v and if
AGxh < h (a.s. v), then the function h defined by formula (5.6) satisfies
conditions 1.9.a - 1.9.13.

PROOF. By Lemma 5.1 it is sufficient to check that 2,Gx,h > a,2Gx,h
for A, > A2 > 0. Replacing A by A2 and 5 by A, - A2 in (5.3) we have

(5.8) X2Gxyh = A2Gx1h + A2(A, - A2)Gx,Gx2h.

The inequality A2 Gx5 h < (a.s. P) implies that A2 Gx1 Gx3 W 5 Gx, h
everywhere. Therefore the right-hand side of (5.8) does not exceed
A,Gx,h.

5.3. T H E O R E M 5.1. The conditions 1.3.a - 1.3.13 are equivalent to
1.9.a - 1.9.0 and the conditions 1.3.a' - 1.3.a' are equivalent to 1.9.a' -
1.9.13'.

1 C1 A C. denotes the smaller of the two numbers C1, C2.
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PROOF. If we change the variable in (5.1) by means of the formula
At = u we obtain

? Ga = du.
0

Hence it is clear that the conditions 1.9.a - 1.9.0 follow from 1.3.a -
1.3.0 and 1.9.a' - 1.9.p' follows from 1.3.a' - 1.3.(3'.

Now assume that v satisfies 1.9.a' - 1.9.p'. Note that
00

v'G,%.Pt = ex" e-'X'v;Ps ds.
t

Hence clearly

(5.10) EtPt <el-'tµ,

if µ = v'Gx' for some measure v'. Replacing A by A' and 5 by A - A' in
(5.3) we have vGx = v'Gx' where v' = v - (A - A')vGX is a measure' for
A' E (0, A). According to (5.10) vG?,Pt < e' tvGx for all A' E (0, A).
Hence AvGxPt < AvGx. Letting A - - we have vPt < P. Clearly vPt is a
non-increasing function of t and according to the Note to Lemma 4.4 the
formula

(5.11) vPt(1') 4 v(r) and, t 4 0
defines a p-excessive measure v. It follows from (5.9) and (5.11) that

lim v?Gt,,(I') = v(I').

But by 1.9.p' the left-hand side is equal to v(17). This means that v satisfies
1.3.a' - 1.3.3'.

1.3.a - 1.3.3 are deduced from 1.9.a - 1.9.3 similarly. The difficulty
arising from the fact that h' = h - (A-A')Gxh is only defined on the set
(G?,h < no), can be overcome as follows. Consider the truncated functions
h, = h l\ c. Together with It they satisfy 1.9.a and for them we have
Gxh c < oo everywhere. Therefore

(5.12) XP,G"& < AGah .

For any x and c, AGjjx) is a non-decreasing function of A (this follows,
for example, from Lemma 5.1). Passing to the limit in (5.12) we have

(5.13)

where

Pthc < hc,

h,: = lim A.Gahe.

' The formula written down defines v'(r) only for sets r with v'GK(F) < -. For any measurable r we
put v'(r) = lim v'(F n En), where E. is a fixed sequence of sets satisfying the conditions E. t E and
v'(En) < --
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It is easy to verify that h, t h as c - -. Therefore (5.13) implies that
Pth 5 h. After this the validity of 1.3.a - 1.3.0 for h is derived in the
same way as that of 1.3.a' - 1.3.(3' was derived for P.

5.4. We are now prepared for the study of eY. The following propositions
hold:

5.4.A. Take the measurable structure on Yv generated by the functions
F(h) = v(hxr) (I' E W). Under the condition 1.9.B the function h(x) is
measurable with respect to h and x and satisfied 1.6.A.

5.4.B. If all the measures gx(x, -) are absolutely continuous with respect
to v, then all homogeneous p-excessive measures are also absolutely con-
tinuous with respect to v.

5.4.C. Under the conditions 1.9.A - 1.9.C, to each v' of .JL'p there
corresponds one and only one element hv' of 9V, for which v'(dx) _
= hv-(x)v(dx). The function is measurable with respect to v' and x.

5.4.D. Under the conditions 1.9.A - 1.9.C the formula vn(dx) =
= h(x)v(dx) defines an isomorphism of the convex measurable spaces dPv
and Wp.

These assertions are proved in the same way as the analogous assertion in
§4. Here the conditions 1.9.a - 1.9.0 and 1.9.a' - 1.9.0' are used instead
of 1.3.a - 1.3.0 and 1.3.a' - 1.3.p', (1.28) and (1.29) instead of (1.26)
and (1.27), and finally Lemmas 5.1 and 5.2 instead of Lemmas 4.4 and
4.5.

§6 The faces of the simplex MCP. Invariant and nullexcessive
measures and functions. The entrance laws

6.1. A measurable subset X of a convex measurable space Z is called a
face if the centre of gravity of a distribution p belongs to X when and only
when p is concentrated on X. If Z is a simplex, then any face X is also a
simplex, and its set of extreme points coincides with Z. n X. Faces X and
Y of a simplex Z are called complementary if XQ and Y,, are disjoint and
have the sum Z.

We shall investigate the faces of the simplex XP. It is easy to see that
for each measurable A the set

efj ={P: PE 'P, P(A)=1}
is a face. We shall prove that all faces are described in this way. Further,
each face corresponds to some set A depending on the initial behaviour of
a trajectory. The latter means that (A, t > a) E .i1/'t for any t. The collec-
tion of such sets (it is a a-algebra) is denoted by The set r ='P
of extreme points of the simplex A"' coincides with the set of all measures
P E XP, for which P(B) is equal to 0 or 1 for all B E X,,+ (see the small
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print on pp. 49-50). In [3] there was constructed a measure Pw Eel depend-
ing on w with the following properties:

a) for each measurable set .A, P" (A) is an 1/ a+-measurable function of
w;

b)for each PE7 P{w: P°'=P}=1.
Let X be any face of the simplex XP. By a) the set A = {w: P(' E X)

belongs to J'a,+. By b) for P E f the condition P(A) = 1 is equivalent to
P E X. Consequently 'A n 7/' = X n f, the faces i'4 and X have a
common set of extreme points, and hence X = e'A.

Associate with each A the set r A = r fl 'A of extreme points of the
face eTP. Let A,, A2 E r. Clearly P(A 1 n A 2) = 1 if and only if
P(A 1) = 1 and P(A2) = 1. Since P(A,) and P(A2) must be equal to 0 or 1,
the equality P(A, U A2) = 1 holds if and only if P(A 1) = 1 or P(A 2) = 1.
Therefore

7/'Al(1A2=r AlnrA2, TA1UA2=TA,urA2.

From these formulae it follows that the faces XAl and XA2 are comple-
mentary if and only if A2 is the complement of A, in E2.

Of special interest to us are the faces ffl, 6'I, X', where I = {a
J = {a > -oo }, L =,(a = 0). Obviously I, J, L E Xa+ and J is the com-
plement of I. Consequently eXI and iii; are complementary faces.

6.2. Let h be a strictly positive p-excessive function. Denote by .9rAh
the subset of the space i!p h corresponding to the face If P under the
isomorphism of the space XP, h, and irph, studied in § 3. Based on the
formulae (2.7) - (2.8), (1.3') and the footnote to p. 69 it is not difficult
to establish that

a) ,RI, h is the set of all p-invariant measures v for which lim v$hs = 1;

b) .i$J his the set of all p-null-excessive measures v normalised by the
condition {v, h} = 1;

c) ,9t'p h is the set of all measures vt for which
(6.1) vt = 0 for t < 0,
(6.2) vsP2 = vt for 0 < s < t,
(6.3) lim vshs = 1.

swo

Being faces of the simplex Zp, h, all of these sets are simplexes.
If p is a homogeneous transition function, then the measures vt(F)

(t E T, F E B), obtained by the conditions (6.1) - (6.2) are called the
entry laws for p. The set of entry laws satisfying (6.3) with the natural
measurable and convex structures is obviously isomorphic to %?i' h. The
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result that this space is a simplex was proved in [2] under a number of
additional assumptions on p and h.

6.3. If the transition function p is homogeneous and h is given by (1.21),
then the mappings rt of RP, h, constructed in 1.7 leave invariant the faces
gi''` and gJ' ". Applying the argument of 1.7 to each of these faces it is
not difficult to deduce that the sets Rip r = Si''' f R'I and . ?f J =
= 9 i It (1 .52i form a pair of complementary faces of the simplex RI.
The first of these is the set of homogeneous p-invariant measures v nor-
malized by the condition v(1) = 1; the second is the set of homogeneous
p-null-excessive measures v for which v(l) = 1.

6.4. Denote by 9Y'v, (YJ' v the sets that correspond to the faces Al
5$p'' under the isomorphism of the spaces dP'' and .9tP'r, considered in
§4 and by dy,t, 1f ,J the images of the faces .fir, .9R?J under the
isomorphism of § 5. The reader may convince himself that:

a) Q ,v is the set of p-invariant functions h for which lim vtht = 1;t--
b) 473'1 is the set of p-null-excessive functions h for which v(h) = 1;
c) cjPy,J is the set of homogeneous p-invariant functions h for which

y(h) = 1;
d) ?v,J is the set of homogeneous p-null-excessive functions h for which

y(h) = 1.

§7 Excessive functions and supermartingales

7.1. In this short section we study the random functions obtained by
substituting the trajectories of a process into the p-excessive function
ht(x). To define ht(xt) for all t E T we have to extend the function ht(x)
to E. We shall show that this can be done in such a way that ht(xt) for
any P E O'a is a supermartingale with respect to J!/'t, P, that is, so
that for all s < t

P(ht(xt) I J's) < h$(x3) (a.s. P)

It turns out that
(7.1) Bin Ph`('xt)=(v, h),

where

(7.2)

7.2. Consider the function

vt(I') = P{xt E I'}.

hl(xt) npll a < t <
0 IIPPI t



Integral Representations of Excessive Measures and Excessive Functions 179

It is clear that for any t and c
(7.3) (ut < c, a < t) E I/'t.

It follows from (1.17) that if P E W. then P{ut IXs) = Pih`(xs)
(a.s. P, x8 E E) for s < t. It is clear that P{ut I J's} = 0 = u,(a.s. P,
R < s) and from 1.3.A - 1.3.B

(7.4) P(ut I ,hs) < u (a.s. P, a < s)

and

(7.5) P {ut, I ,W'8} - u3 (a.s. P, a < s) for t .l s.

A function pt(w) defined for t > a(w) and satisfying (7.3) and (7.4). is
called a (P, Y't)-supermartingale with moment of birth a. If (7.5) is also
satisfied, then we say that pt is a supermartingale of class C.

In [5] it was proved that if µt is a non-negative (P, .N't)-supermartingale
with moment of birth a, then there exists a random variable (defined only
to within equivalence with respect to P) such that µt -> ua+ (a.s. P) when
t converges from the right to a over any countable dense subset of T. In
the same place it was proved (see (7)) that for any finite set A

(7.6) Puan < Pua+,

where an is a random variable defined by (2.9). It is not difficult to verify
that

(7.7) Pu,A = {v, h}A,

where v is given by (7.2) (see the derivative of (2.10)).
Let A' be a countable dense subset of the line T and let An t A'. It is

clear that aA n converges to aA from the right over A', and therefore
ua A - ua + (a.s. P). By Fatou's lemma lim PuO A ' Pua + . By means of
(7.6) it hence follows that Puann - Pua+. Taking (7.7) and (2.12) into
account we conclude that

(7.8) {v, h} = Pua+

7.3. In [5] it was shown that the extension
Put for t > a,

at - {ua+ I ''t} for t < a

of the function ut is a (P, Y't) -supermartingale on the whole line T. It
can be foreseen that if ut belongs to the class C, then ut also belongs to
this class.

It follows from Lemma A that every V't-measurable function is constant
on the set {a > t}. Therefore ut does not depend on w for t < a. If ht
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is extended to Ea by putting ht (a) = u t, h(b) = 0, then u t = ht(xt) for
all t and w. Consequently ht(xt) is a (P, .f't)-supermartingale of class C on
the whole line T. The equality (7.1) follows on comparison of Theorem I
of [ 5 ] with (7.8).

§8 The construction of the adjoint transition function

8.1. In conclusion we prove the result stated in 1.10.
T H E 0 R E M 8.1. Assume that the transition function p has property

1.10.A and let X(s) be an arbitrary strictly increasing function for which
(1.30) is satisfied. Define v and p by (1.31) - (1.34). Then the triple p,
p, v satisfies conditions 1.8.A - 1.8.B.

The proof is based on the following three propositions:
8.1.A. The relations

(8.1)

(8.2)
E

vt(dy) = at(y)mt(dy),

v8(dx)n(s, x; t, y) = at(y) (s < t, y E E)

are valid.
8.1.B. If At = (y: at(y) = oo), then mt(A1) = 0 and p(s, x; t, At) = 0

for all s, x.
8.1.C. If at(y) = 0, then tr(s, x; t, y) = 0 for all s < t, x E E. If

A't _ (y: at(y) = 0), then p(s, x; t, A°) = 0 for all s, x.
The equality (8.1) follows from (1.30), (1.33), (1.35), Fubini's theorem

and Lemma B, and (8.2) follows from (1.35), (1.31), and (1.33). Further,
ut(E) < - because of (1.35) and (1.32), and 8.1.B follows from (8.1) and
(1.30).

Finally, according to (1.33) the equality at(y) = 0 implies that for A-
almost all s'

(8.3) mq. {x': n.(s', x'; t, y) > 0} = 0.
If s < t, then (8.3) is satisified for any s' E (s, t), and by (1.30) and (1.31)

a (S, x; t, y) =
J

ji (s, x; s', x') m-s' (dx') n (s', x'; t, y) = 0.
E

8.2. We pass on to the proof of Theorem 8.1. Let us verify that p is a
transition function. The functions at(y) and 1r'(s, x; t, y) are measurable
with respect to y by Lemma B. Consequently p(t, y; s, I') is measurable
with respect to y. Further, from (1.36)., (1.34), (8.1), and (8.2) we have

p (t, y; s, E) vs (dx) a (s, x; t, y) at
1

t (J)E
(8.4)

P (t, y; s E) =, 0
for 0 < at(y) < -,
for at(y) = 0 and at(y) _ .
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Consequently 1.2.A is satisfied. To prove 1.2.B it is sufficient to verify that
for any s < t < u, x, z E E,

(8.5) i'(s, x; t, y)mt(dy)x'(t, y; u, z) = n'(s, x; u, z).
E

If a (z) is equal to 0 or oo, then by (1.34) both sides of this equality are
zero. If 0 < au(z) < oo, then according to (1.34) and (1.30), the left-hand
side of (8.5) is equal to

S a, (x) it (s, x; t, y) mt (dy) x (t, y; u, z)
1 --

au (z)E'

as (x) p (s, x; t, dy) x (t, y; u, z)
as (z) 'E'

where E' _ {y: 0 < at(y) < oo }. By virtue of 8.1.B and 8.1.C the value of
the latter integral is unchanged if we replace E' by E. According to (1.31)
and (1.34) this value is tr'(s, x; u, z). We now show that 1.8.A - 1.8.C
are satisfied for p, p, P. According to (1.30), (8.1) and (1.36)

vs(dx)p(s, x; t, dy) = m,(dx)a,(x)x(s, x; t, y)mt(dy),

vt(dy)p(t, y; s, dx) = at(y)mt(dy)x'(s, x; t, y)m8(dx).

To prove that these expressions are equal we note that by virtue of 8.1.C
and (1.34) a,(x)7r(s, x; t, y) = at(y)tr'(s, x; t, y) for at(y) < °°, and by
virtue of 8.1.B mt {at(y) = oo } = 0. Therefore 1.8.A is satisfied. If
vt(I') = 0, then by virtue of (6.1) mt(r) = m(r n A°), and (1.30) and
8.1.B imply that p(s, x; t, r) = p(s, x; t, I' A Ap) = 0. Consequently 1.8.B
is valid. Finally, we show that if v,(r) = 0 then p(t, y; s, r) = 0, thus
fulfilling 1.8.C. In view of (8.4) it is sufficient to consider the case when
0 < at(y) < -. In this case (1.36), (8.1) and (1.34) imply that

v, (dx) x (s, x; t, y) at -) = 0.
r

The manuscript was read carefully by S. E. Kuznetsov. The author is
grateful to him for remarks which led to the removal of a number of in-
accuracies.

Appendix

THE DECOMPOSITION OF QUASI-INVARIANT MEASURES
INTO ERGODIC MEASURES

Yu. I. Kifer and S. A. Pirogov

1. In a standard space E (see 1.2.) let rt (t E T = (- o, + on)) be a one-
parameter group of measurable transformations, where r(x, t) = rt(x) is a
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measurable mapping of E X T onto E (the Borel structure is put on T).
Consider the class St of all probability measures 1 on E satisfying the

condition

(1) J.t(tisdx) =

where the functions 0 < pt(x) < - on E X T is measurable and such that
(2) Pt+e(x) = Pt(x) P8(Ttx).

Denote the a-algebra of measurable subsets of E by 9 and put on a#
the measurable structure generated by the functions F(p) = 2(f) (f E B).'

A measure p is called ergodic if µ(A) = 0 for any A in the a-algebra of
measurable sets which are invariant with respect to rt.

T H E O R E M 1. The set e#e of all ergodic measures from 4 is measur-
able, and any measure p from S can be uniquely represented in the form

(3) [t(r) = It(f)v(dFt) (I E R)
.0,

where v is a probability measure on A, concentrated on o fe.
The proof of Theorem 1 is obtained by means of a general theorem on

the decomposition into 4 -ergodic measures, which was proved in [3]
(Theorem 2.1). On the strength of this result, to prove Theorem I it is
sufficient to construct a countable system W of functions separating
measures from a#, and a kernel µx(r) satisfying the conditions a) µx E a#
for each x E E; px(r) is 4-measurable for any t E .;B'; b) µ(I' 14) = px(r)
(a.s. p) for it E A, I' E R.

2. In the construction of the j ' a basic role is played by
T H E 0 R E M 2. If p E M and p([fl) < -, then the following limit exists

p-almost surely2
rc

.l / (rtx) Pt (x) dt

(4) f (x) = I'M r = It (f . ) (a.s. p).
Pt(x)dt

PRO OF. It is sufficient to consider the case f > 0.
We apply theorems from [7] to the operator Uf(x) = f(r1 1(x). We

put r

F* (x) = S f (itx) Pt (x) dt,
s

r
G r (x) = Pt (x) dt> F = Fo, G = Go.

1 As in [31,
2

f r yg. means that f > 0 and is .:+ -measurable.
In the set where the limit in (4) does not exist we take f = 0.
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Note that F;',+' = U'F and FT-- = 7U"F. Similar formulae are valid for
n

G. It is easy to see that µ(F) = µ(J) < - and that G is strictly positive and
p(G) = 1.

The set C = {x: G+-Z = oo } is called the conservative part and the set
D = E \ C is called the dissipative part of E. It is clear that C = C U C',
where C' = (x: Go +- = i oo) and C" =(x: G°_ = +oo).

According to Proposition V.5.2 of [7] F±=- < oo for µ-almost all x E D,
and consequently the limit (4) exists and

(5) f (x) =
F4-

0_- (_)

It is obvious that f(rtx) = f(x). Let A E 4. Rearranging the integrals and
making the change of variable y = rtx we obtain

J
f dµ =

J (G±-- (x))-'µ (dx) J f (ttx) pt (x) dt = f f dµ.
A A -oo A

Consequently

(6) f(x) = µ(f 14) (a.s. µ. D)

and for x E D the relation (4) is proved.
To prove that (4) is satisfied in C we use the Chacon-Ornstein theorem

([7], 289). By this theorem the limit

(7)

m
lim -° ='tp (a.s. µ, C')

m +oo Gin

exists. Here m passes through integer values, J denotes the set of all

measurable sets for which PA = A and ip = h
µ

l G I .) . We derive from the

same theorem, replacing F by UF, that

(8) lim Fl +' _ µ (UF I J)
m-.oo Go u (G I .7) _ (a.s. µ, C).

From (7) and (8) we have

(9)
m.i

lim G n = O (a.s. p, C').
M goo U

This relation also applies to f = 1 and therefore

(10)
Gm+1lim G,n = O (a.s. µ, C) .m-- o
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Since
F,

Gm ++,
Fi <F ml for m < t < m +1, by virtue of (7), (9) and (10)
Go Go

t

(11) lim
F` =1U (a.s. µ, C).

t +- Got
It is proved similarly that

(12) lim FQ =y (a.s. C').
s_-c Gs

It is now not difficult to show that

t
(13) lim Fs

=1U (a.s. p, C).s - Gs

For (11) and (12) imply that (13) is satisfied in C n C. On the other
hand, according to proposition V.5.2 of [71, F; < - on C \ C' and
F°_ < - on C \ C. Therefore (13) is satisfied on C \ C' and C \ C'.

It follows from (13) and the definitions of the functions f and that
µ (F 13) = f. µ (G 1,Y) (a.s. p, C). It is easily verified that f E .4 and .4 c_
therefore

(14) µ (F I A) = f - µ (G I A) (a.s. µ, C).

We note further that for h E .4

it (F h) =
J dt

J h (x) f (i'x) Pt (x) µ (dx) = !t (f h)
0 E

and consequently µ(F I i) = µ(f .4) (a.s. 1). Similarly µ(G I .-l) = 1
(a.s. p). Therefore from (6) and (4) we have f = µ(f I (a.s. p), which
completes the proof of Theorem 2.

3. It is known (see [3], 3.2) that in any standard space there exists a
countable system W of bounded measurable functions with the following
properties:

A. Let H be a system of functions containing W and having the following
properties: if f, , f2 E H and c, , c2 are numbers, then c, f, + c2 f2 E H;
if the sequence f E H is uniformly bounded and converges to f at each
point, then f E H. Then H contains all bounded measurable functions.

B. 1 E W and W separates probability measures.
C. If for probability measures p the sequence p, (f) converges for any

f E W, then there is a probability measure p such that

µn(f) - - µ(f) for f E W.

Now consider the set E' on which the limit (4) exists for all functions
of W. By Theorem 2 E' E r and p(E) = 1 for any µ E cdi. It follows from
B and C that for any x E E' there exists a unique measure µ" such that
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f(x) = µx(f) for f E W. Hence for any bounded h E -4 , µ E A and f E W

(15) µ(/ h) = µ(µx(1) h).

By property A, (15) is satisfied for all bounded measurable f.
Since / E .4, we see that µx(f) is .4-measurable as a function of x for

f E W and hence, taking property A into account, for any bounded
measurable f. From (15) we derive that µx(f) = µ(f 1.4) (a.s. µ).

Put Vtf(x) = f(T-tx). It is clear that for all µ E 94

µ(Vtf I -4) = µ(Ptf I -4) (a.s. µ).

Hence it follows that for µ-almost all x

(16) µx(Vtf) = µx(ptf)

Using property A of W it is not difficult to show that there exists a set
Qt E .4 such that µ(Qt) = 1 for µ E Al and (16) is satisfied on Qt for all
f E R. Denote by Q the set of x E E' for which (16) is satisfied for all
f E .W and almost all t E T. By Fubini's theorem Q is ,4 -measurable and
P(Q) = 1.

For x E Q denote by Vx the set of those t E T for which (16) is satis-
fied. It is clear that V. is a set of full Lebesgue measure on the line that
is closed with respect to addition, and hence Vx = T.

Thus, for x E Q µx E 4. For x 0 Q put µx equal to some measure of
4. The kernel thus constructed satisfies conditions a) and b) of I and
this proves Theorem 1.

In conclusion we note that Theorems 1 and 2 are valid for a group of
measurable transformations r"(n = 0, t l, ±2, ...), and here the proof is
simpler although it follows the same plan.

The authors are grateful to E. B. Dynkin for raising this problem and
for a number of remarks contributing to its solution.
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REGULAR MARKOV PROCESSES

This article is concerned with the foundations of the theory of Markov processes. We
introduce the concepts of a regular Markov process and the class of such processes. We show
that regular processes possess a number of good properties (strong Markov character,
continuity on the right of excessive functions along almost all trajectories, and so on). A
class of regular Markov processes is constructed by means of an arbitrary transition function
(regular re-construction of the canonical class). We also prove a uniqueness theorem.

We diverge from tradition in three respects:
a) we investigate processes on an arbitrary random time interval;
b) all definitions and results are formulated in terms of measurable structures without the

use of topology (except for the topology of the real line);
c) our main objects of study are non-homogeneous processes (homogeneous ones are

discussed as an important special case).
In consequence of a), the theory is highly symmetrical: there is no longer disparity

between the birth time a of the process, which is usually fixed, and the death time Q,
which is considered random.

Principle b) does not prevent us from introducing, when necessary, various topologies in
the state space (as systems of coordinates are introduced in geometry). However, it is required
that the final statements should be invariant with respect to the choice of such a topology.

Finally, the main gain from c) is simplification of the theory: discarding the "burden of
homogeneity" we can use constructions which, generally speaking, destroy this homogeneity.

Similar questions have been considered (for the homogeneous case) by Knight [8] , Doob
[21, [3] and other authors.
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§ 1. Introduction

I.I. Measurable spaces. Mathematicians use the term "space" widely,
understanding by it a set equipped with a definite structure (topological,
linear, and so on). We shall be concerned with measurable spaces: the
measurable structure in X is given by a certain a-algebra 5 (X) of subsets
of X (measurable subsets). Particularly important for us are spaces that are
isomorphic to the Borel subsets of complete, separable metric spaces. We
call them Borel spaces.

We shall use the following notation. If F is any a-algebra in the space
X and f a function on X, then the expression f E .F denotes that f is non-
negative' and measurable with respect to -F-

1.2. Random processes. Suppose that to each t in a certain set T there
corresponds a set X. To give a process in Xt means to associate with
every t a point xt E Xt. If T is an interval of the real line, then the
parameter t is interpreted as time and the function xt as a trajectory of
motion.

A random process is a process that depends on chance, that is, on a
point w of a certain auxiliary set 12. Here it is assumed that 12 and Xt are
measurable spaces and that for a fixed t, xt(w) is a measurable map of 12
into Xt. We call 12 the space of elementary events. The collection .F(1) of
all measurable sets of the space 12 is often denoted by A.

If a random process xt(w) is given, then to every subset T of T there
corresponds in 12 a minimal a-algebra .f(T), containing all the sets

{o : xt(O)) E r) (t E T, r E F (Xt)).

The measurable structure in 12 corresponding to V = Y' (T) is called the
structure generated by the random process xt.

1.3. Filtration of a measurable space. From now on we assume that
T = [-°°, +°°] is the extended real line. We apply the term filtration of a
measurable space 2 to a system of a-algebras 4t satisfying two conditions:

1.3.A. At a# for all t.
1.3.B. aIs c At ifs 5 t.
A filtration alit is called continuous on the right if At for any t coin-

cides with the intersection ct+ of all Au with u > t.
We say that a random process xt(w) is adapted to a filtration At if

{w: xt(w) E r } E At for all t E T, I' E F (Xt). Every random
process is adapted to the filtration .ft = J' [-°°, t] . We call this the
filtration generated by the random process xt.

When speaking about non-negative functions, we mean functions with values in the extended half-
axis [0,+-].
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A mapping r of the space fl into T is called a Markov time with respect
to the filtration At if for any t E T

(w: T(w) < t) E At.

To every such time there corresponds a a-algebra YKz in fl , which is
defined in the following way: A E s if (A, r < t) E At for any t. It is
clear that etc A and that r is measurable with respect to Gov.

To an arbitrary filtration At of the space St there corresponds a
measurable structure in the space T X 92, generated by real-valued random
processes zt(w) that are adapted to At and continuous on the right
in t for every w. We call it the natural measurable structure in T X SZ
associated with the filtration At.

1.4. Random processes on a random time interval. We suppose that for
every co E St there is given an interval 0(w) C T. It can be closed, open
or half-open, but it must not degenerate to a point. Let at and bt be two
distinct points in Xt and let Et = Xt\ (at, bt). We say that xt(w) is a
random process on 0(w) if the singletons (at) and {bt) are measurable
and'

xt(w) = at for t < A(w),
xt(w) E Et for t E A(w),
xt(w)=bt fort>A(w).

We call Et the state space, at and bt fictitious states, xt the extended
state space. (The introduction of two fictitious states corresponds to the
assumption that if a particle is not observable, then it is known whether it
has not yet appeared or has already disappeared.) We denote by a(w) and
g(w) the ends of the interval o(w). We call the first of these the birth
time and the second the death time. It is easy to see that these are
Markov times. Under our assumption a(w) < (3(w ).

1.5. Canonical random processes. Suppose that with every t E T there is
associated a measurable space Et. A canonical random process in the spaces
Et is constructed as follows. We define a trajectory in Et to be a function
of w associating with every t E T the point w (t) in the extended state
space Xt = Et U (at, bt) such that for certain a < R the following
conditions hold:

w(t)=at for t a,
w(t)EEt fora <t<(t,
w(t)=bt for0<t.

We denote by 92 the set of all trajectories and put xt(w) = w(t). The space
St, with measurable structure generated by the xt, serves as the space of

' The notation t < A (t > 0) means that t < u (t > u, respectively) for all u E A.
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elementary events. The interval o = (a, (3) is open.
1.6. Families of measures. Sets of probability measures given on the

same measurable space will be called families of measures. The family con-
sisting of one measure P is also denoted by P. The integral of a function
with respect to the measure P is denoted by (If t is defined on a
measurable subsets SZ of 92, then Pt is defined to be zero outside 92.)

Every family of measures K is regarded as a measurable space: the
measurable structure in K is defined by means of the system of functions
F(P) = P(A) (A is an arbitrary measurable set).

Let K be a family of measures on 92. To an arbitrary probability measure
µ on K there corresponds the measure on E2 defined by the formula

P, (A) (A) [t (dP).

If P, E K for any µ, then the set K is called convex. A point P E K is
called extreme if P * Pµ for any measure t not concentrated at P. A
measurable set A C 92 is called K-negligible if P(A) = 0 for all P E K. If
a property holds for all w E 12 lying outside a K-negligible
set A, we say that this property holds K-almost surely on fl or briefly
(K-a.s., 2). The symbol 92 is omitted if fl = St.

Let .4 be any subset of the a-algebra F (St) of all measurable sets. With
every measure P on f2 two extensions of the system ,4 can be associated.
The closure .P is defined as the totality of all B E ,1F (92) such that

P(AUB\AnB)=0
for some A E 4. The completion ..M is given by the following
condition: B E .M if there exist A, , A2 E . such that A, c B C A2 and
P(A 1) = P(A2)-

The completion (closure) of A with respect to a family of measures K
is defined as the intersection of .P (respectively, .4p) over all P E K. The
closure and completion with respect to K contain all K-negligible sets. If .'4
is a a-algebra, then the closure and completion of , are also a-algebras.

The closure of .IF (S2) always coincides with F (E2), but the completion
of F(92) is usually larger. All measures P E K can be uniquely extended
to the completion of , (S2) with respect to K. (The extended measures
are usually denoted by the same letters.) The completion of .1F(fl) with
respect to the family of all probability measures on E2 is called the
universal completion, and its elements are called universally measurable sets.

1.7. Stochastic processes. A stochastic process is a pair (xt, P), where xt
is a random process and P is a probability measure on the space of elemen-
tary events U. To every family of measures K on St there corresponds a
family of stochastic processes (xe, K). We call this family rigid if the
a-algebra X generated by xt separates measures from K (that is, if the
coincidence on N of two measures P1, P2 E K implies their equality). In
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particular, the family (xt, K) is rigid if A is generated by xt, or genera-
ted by xt and the K-negligible sets, or is the completion of Jn with
respect to the family K.

A set l = (xt, aft, K), where xt is adapted to At , is
called a family of stochastic processes with filtration. The completion of
such a family is defined as the family X = (xt, e#t, K) that is obtained
in the following way: we consider the completion A of the a-algebra
A = ,y (Sb) with respect to K, we denote by k the set of measures
obtained as a result of extending to it all measures in K, and we form
the closure '11t of the a-algebra At with respect to K.

If xt(w) = xt(w) for all t E T (K-a.s.), then we say that the random
processes xt and xt are K-indistinguishable or that the families of stochastic
processes (xt, K) and (zt, K) are indistinguishable.

1.8. Meyer processes. Let l C' = (zt, At, P) be a real-valued stochastic
process with filtration given on a time interval T. We call it a Meyer
process if the filtration At is continuous on the right and if we can find
a random process at that is P-indistinguishable from zt and measurable with
respect to the natural structure in T X 2 associated with At (see 1.3).
Let ' =(zt, o#t, P) be the completion of the process aC. From Meyer's
results [10] (VIII, Theorems 15 and 21; IV, Theorems 49 and 52) it
follows that for any constant c the formula'

i(w) = mf {t: zt((O)> c}

defines a Markov time with respect to the filtration t ; for every a; > 0
we can find a Markov time "re (with respect to i t such that

{T. < oo } = {zTE > C), P {'t < 0 0 ) < P (te < oo) + E.

1.9. Supermartingales. Let (zt, At, P) be a non-negative stochastic process
with filtration on a random interval i(w). We call it a supermartingale if
for any s < t

P(zt 14,) < z,s (P-a.s., s E p(w)).

It is known [61 that an arbitrary supermartingale is the restriction to A(W)
of a supermartingale defined on the whole line T. Moreover, if zt(w) is
bounded above or below by a constant c for all t E A (w ), then the same
bound holds for the extended supermartingale.

We assume that the filtration At is continuous on the right. Let z",(w )
be a sequence of random processes on the interval A (w) with values from
the half-line [0, +o] and suppose that z' (w) t zt(w) for every w. If
(z',, At, P) are supermartingales, then (z, At, P) is also a super-
martingale. If in addition the zi(w) are continuous on the right on 0(w) (P-a.s.),

1 The infimum of the empty set is defined to be +-.
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then zt(w) has the same property. The case when A does not depend on
co was proved by Meyer Q101, VI, Theorem 16). The proof is easily
extended to the general case.

1.10. Transition functions. For each t E T, let Et be a measurable space.
A function p(t, x; u, r) (t < u E T, x E Et, F E .IF is called a
transition function if:

1.10.A. p(t, -; u, r) is a measurable function on Et.
1.10.B. p(t, x; u, -) is a measure on E.
1.10.C. p(t, x; u, 1.

1.10.D. For any s < t < u E T, x E Ea, r E F (Eu )

S p(s, x; t, dy) p (t, y; u, r) = p (s, x; u, r)
Et

(Kolmogorov-Chapman equation).
1.10.E. p(t, x; u, 1 as u 1 0
We say that a transition function separates states if the equations

p(t, x; u, r) = p(t, y; u, r) (u > t, r E .y (Eu))
imply that x = y.

It is convenient to extend the definition of p(t, x; u, r) to all pairs t, u,
taking it to be zero if u < t.

The properties 1.10.A to 1.10.E are preserved if we extend all measures
p(t, x; u, -) to the a-algebra of universally measurable sets. It is natural
to call this operation completion of a transition function.

Of special interest is the homogeneous case, when the state space Et is
the same for all t E (-oo, +o) and for any finite s

At + s, x; u + s, r) = At, x; u, r).
The set of pairs (t, x) (t E T, x E Et) is denoted by E and called the

phase space. We introduce in E a measurable structure with the help of the
system of functions

At, x; u, r) (u E T, F E F (E.)).
We call it the p-measurable structure.

By virtue of 1.10.A, the mapping x - (t, x) of Et into E is measurable.
From 1.10.E it follows that

((t, x): t C to) = U {(t, x): p(t, x; r, Er)>0),

where the sum is taken over all rational r < to. Therefore the function
f(t, x) = t is p-measurable.

We also mention that if the transition function p separates states, then

t Condition 1.10.E is often not included in the definition of a transition function, and is called the
requirement of normality.
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it separates the points of the space 6 as well.
1.11. Markov families and Markov classes. A family of stochastic processes

with filtration &' = (xt, At, K) is called a Markov family if for any
PE K,t<u,rE.F(Eu)

(1.1) P(xa E 1' I alt) = At, xt; u, r) (P-a.s., t E A(w)),

where p is a certain transition function (the so-called transition function of
the Markov family). When K consists of one element P, the Markov family
leads to one Markov process. The term "Markov family" and "family of
Markov processes" will be used as synonyms.

From (1.1) it follows that for any non-negative measurable function p
on E.

(1.2) P{tp(xu.) I At) = p(t, xt; u, (p) (P-a.s., t E A(w)),

where

(1.3) P (t, x; u, q) _ P (t, x; u, dy) cp (y)

We agree to denote by Kt the totality of all P E K satisfying. the
condition

(1.4) P(a = t) = 1.

For P E Kt, x, = a, when s < t, x, * a, when s > t (P-a.s.) (one cannot
say anything definite regarding the value of xt).

A Markov family l = (xt, At, K) is called a Markov class if for any
t E T, x E Et there exists a measure Pt, x E Kt such that for u > t

(1.5) Pt. x{xu E r) = p(t, x; u, r).

By virtue of (1.4)

(1.6) Pt,x{a=t)=1.
From (1.2) and (1.5) it follows that for any E (t, -] the function
Pt, x g is measurable in x and for any measure P E K

(1.7) P{l; 14t) = Pt,xtb (P-a.s., t (=- A).

Therefore

(1.8) PRo(t)? = PPt,xts

Under the operation of completion described in 1.7, a Markov family
goes over into a Markov family and a Markov class into a Markov class.
Simultaneously with the completion of a Markov family one can complete
the transition function p.

A Markov class ell' _ (xt, e/ff t, K) in the spaces Et is called a canonical
class if xt(w) is the canonical random process in Et, constructed in 1.5,
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at is the filtration generated by it, and K is the totality of all probability
measures in f satisfying (1.1). In this way the canonical class of a transi-
tion function is unambiguously defined. On the other hand, if p is an
arbitrary transition function in the Borel spaces Et, then by means of
Kolmogorov's theorem we can construct measures Pt, x in the space of
trajectories S2 satisfying (1.1), (1.5) and (1.6), therefore we can construct
the canonical class corresponding to p.

1.12. Regular families. A Markov process (xt, /19,t, P) with transition
function p is called regular if:

1.12.A. The state space Et is Borel (for any t).
1.12.B. The interval A = (a, R ] is closed on the right and open on the

left.
1.12.C. The filtration at is continuous on the right.
1.12.D. The functions p(t, xt; u, 1') are continuous on the right with

respect to t on the interval A (P-a.s.).
We shall study various families and, above all, classes of regular Markov

processes. We call these briefly regular families (regular classes).
Let X=(xt, at, K) be a regular class. A state x E Et is called essential

if
(1.9) Pt.x{xt = x} = 1.

The remaining states are called branch points.
In §4 it will be proved that the set of trajectories containing branching

points is K-negligible.
1.13. The adjoint random process. Re-construction. Let e' = (xt, At, K)

be some Markov class. The random process

Yt(W) = Pt, xt(w)'

for which Kt serves as state space, is called the adjoint random process.
Let o'il' = (xt, alt, K) and &l = (xt, it, K) be two Markov classes

with a common space of elementary events and a common set of measures
K (but generally speaking, with different state spaces). We say that X and
X are indistinguishable if the corresponding adjoint processes are K-
indistinguishable, that is, if

Pt, xt = Pt zt for all t E A = A (K-a.s.).

We say that & is a re-construction of Z' if for any P E K

(1.10) Xo (t) = X; (t), Pt, xt = Pt, xt (P-a.s.),

with the exception of an at most countable set A(P) of values t.
If & is a re-construction of e, then the intervals A and Z may be

different. However, they have ' -almost surely the same closure and there-
fore can differ only in the inclusion or exclusion of their endpoints.
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Indeed, by (1.10) for any P E K there exists a countable everywhere dense
set S such that

(1.11) Xo(t) = Xo(t) for all t E S (P-a.s.).

If the closures of A and A are distinct, then there exists a t E S for
which Xo (t) 0 Xo (t). By (1.11) the probability of this is zero.

1.14. The plan of the article. In §§2-5 we obtain the properties of
regular processes. §6 contains a proof that two rigid, regular re-
constructions of any class & ' are indistinguishable. Finally, in §§7-8 we
prove the existence of a regular re-construction for the canonical class
corresponding to any transition function p.

§2. Measurable structures in the phase space

2.1. In this section we consider two types of measurable structure in the
phase space E. The first of these, introduced in 1.10, is connected with the
transition function. The second is defined in terms of the family of regular
Mark-v processes 6'.'

We need certain lemmas.
LEMMA 2.1. Every countable system of measurable functions separating

points of a Borel space E generates a measurable structure of E.
The proof of the lemma is based on the fact that for a one-to-one

measurable mapping of one Borel space into another the image of a
measurable set is measurable (see [91, § 39, 5, Theorem 2). Let
f,, (n = 1, 2, . . . ) be a given family of functions. Then
F(x) = { f, (x), f2 (x), . . ., f (x), . . . } is a measurable mapping of E into
the direct product T°° of countably many lines. The latter is a Borel space.
The mapping F is one-to-one. Hence for any r E .F(E) the set F(r) is
measurable in T-. We investigate in E the a-algebra generated by the
functions {fn}. It is obvious that it contains the inverse image of all
measurable sets from T. But for any r E F (E) we have r = F-' [F(r)] .

LEMMA 2.2. Let T be a countable everywhere dense subset of T, and
let W be a countable system of functions in Eu, separating measures. If
the transition function p separates states, then the same property holds for
the countable system of functions

(2.1) p(t, -; U, f) (u E T, f E Wu).

PROOF. Let

p(t, x; u, f) = p(t, Y; u, f)
for alluET,fE W. Then for all u E T

p(t, x; u, -) = p(t, Y; u, - )

If. u' > t, then we can find u in T belonging to the interval (t, u'). By
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1.10.D

p (t, x; u', r) =
J

p (t, x;; u, dz) p (u, z; u', r) _
Eu

_ p (t, y; u, dz) p (u, z; u', r) = p (t, y; u', r)..
Eu

For u' < t, both parts are equal to zero. This means that x = y.
LEMMA 2.3. Let l = (xt, fit, K) be a Markov class. If a measurable

structure in St is generated by xt, or by xt and the system of all K-
negligible sets, then

a) the sets

(2.2) {w: xt((o)Er) (t E T, F E .7 (Et)),

(2.3) {w: xt((o)=at} (t E T)

separate measures from K.
b) a measurable structure of K is generated by the functions F(P) = P(A),

where A are sets of type (2.2) and (2.3).
If moreover, Pt, x {xt = at) does not depend on x, then the function

f(l, x) = Pt,:t
is p-measurable for any bounded measurable function t.

Assertion a) holds for any rigid class X.
PROOF. Let &i7 consist of bounded measurable functions tsuch

that
a') the coincidence of two measures PI, P2 E K on the sets (2.2) implies

that P,(; = Pet;
b') the function Ft(P) = P is measurable with respect to the a-algebra

generated by the functions F(P) = P(A), where A are sets of type (2.2) and
(2.3).

It is obvious that the family &P contains the constants and is closed
with respect to linear operations, with respect to taking uniform limits, and
bounded monotone limits. By a standard lemma in set theory (see, for
instance, [101, Theorem 20) if n contains a set of functions ',
closed with respect to multiplication, then it contains all bounded functions
measurable with respect to the a-algebra generated by ?.

We denote by the totality of all functions

(2.4) t(w) = f1(xt) ... fn(x
where t, < ... < t E T, ft is a bounded measurable function on X. and
ft(att) = 0. by (1.8),

(2.5) Pxo(tt)t = P4,(xt,),

where is the function on Et defined by the formula
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(2.6) 41(x) =
l

f1 (x)Pt z.f2 (xt,) ... f,,(xt,,) for n > 1,
f1(x) for n = 1.

Further,
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(2.7) P (1- xe (t1)) = Pxt1> e _
= ft (bt1) ... f. (btn)11- P {xt1 E Et1} - P {xt1= at1}1.

From (2.5) and (2.7) it follows that 9 sz- M.
Since a generates the same measurable structure in 92 as x, it follows

that properties a) and b) are proved under the assumption that ¢/t _ X.
If at is generated by J' and K-negligible sets, then for each C E a$ there
exists C' E ' such that P(C) = P(C) for all P E K. This means that also
in this case a) and b) are true.

If ' is any rigid class and P1 , P2 are two distinct measures in K, then
P1(C) * P2 (C) for a certain C E I/' and, as we have proved, P1 and P2
cannot coincide on all sets (2.2) and (2.3).

We now denote by " the set of bounded measurable t for which the
function Pt, x is p-measurable. If Pt, x { xt = at } does not depend on x,
then the function Pt,X xt (= at,) also does not depend on x and is there-
fore p-measurable (see 1.6). From (2.5) and (2.7) it is clear that N' contains
a ; hence it contains all bounded measurable functions t.

2.2. THE 0 R E M 2.1. Let p be a transition function in Et separating
states. If Et is Borel, then the mapping x - (t, x) is an isomorphic
embedding of Et in 9.

P R O0 F. By 1.10, our mapping is measurable. Distinct points of Et go
into distinct points of 6. Therefore it is sufficient to verify the fact that
the images of all measurable sets are measurable.

We denote by ' the set of all functions F on Et such that the function

F(s,x)= F(x)fors=t,
0 for s t

is p-measurable. Relying on the measurability of the mapping (t, x) -> t,
which was proved in 1.10, it is easy to see that X contains all functions
(2.1), and also all constants. By Lemmas 2.1 and 2.2 the functions (2.1)
generate a measurable structure in Et. As " is closed with respect to
addition, multiplication, and taking limits, M contains all measurable
functions in Et. Putting F = Xr, where r E IT (Et), we conclude that the
image of r' under the mapping x - (t, x) is p-measurable.

2.3. We now investigate properties of the p-measurable structure under
the assumption that the transition function p corresponds to a certain
regular family 6 L' _ (xt, #,, K).

A function f in 9 is called X -continuous if f(t, xt) is continuous on
the right on the interval (K-a.s.). We denote by 16 the set of all bounded
p-measurable X -continuous functions. According to 1.12.D, ce, contains
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all functions f(t, x) = p(t, x; u, r) and therefore generates a p-measurable
structure of 6. Since W is closed under multiplication, we obtain the
following result.

LEMMA 2.4. Let be a regular family with transition function p, and
suppose that the set of of functions in Y is closed under linear operations,
taking uniform limits, and monotone bounded limits. If c contains 6,
then A' contains all bounded p-measurable functions. If, moreover,
contains not only non-decreasing sequences of non-negative functions but
also their limits, then P contains all non-negative p-measurable functions.

2.4. We derive a number of corollaries of Lemma 2.4.
LEMMA 2.5. Let mil' _ (xt, At, K) be a regular family with transition

function p. Then for any p-measurable function f and any Markov time r
(with respect to Wit) the function f(rr, xT) coincides K-almost surely with a
certain a -measurable function.

P R O O F. We denote by off' the set of all functions f for which the asser-
tion of the lemma holds. By Lemma 2.4 it is sufficient to show that c5l'
contains W. But this assertion follows from [ 10] (IV, Theorems 47 and 49).

THEOREM 2.2. Let X = (xt, 4t, K) be a regular class. If f is a
bounded (or non-negative) p-measurable function on 9, then the function

F(t, x; u) = Pt, xf(u, xu )

is measurable jointly' with respect to (t, x) and u, and also jointly with
respect to x and u.

For F is p-measurable with respect to (t, x) and measurable with respect
to x. If f E 16, then F is continuous on the right in u and thus measurable
jointly with respect to (t, x) and u, and also jointly with respect to x and
u (see, for example, [71, Lemma 1.10). It remains to apply Lemma 2.4,
denoting by ' the class of all functions f for which the statement is true.

2.5. In the homogeneous case the space Et does not depend on t, and
66 = T X E.

THEOREM 2.3. Suppose that a homogeneous transition function p
separates states and that, for every I' E ,F (E), the function
p(0, x; t, r) is measurable jointly with respect to t and x. Then the
a-algebra 5(e) of all p-measurable sets is equal to 5(T) X g7(E).

PROOF F. For every t E T, r E F (E)

p(s, x; t, r) = p(o, x; t - s, r)

is measurable jointly with respect to x and s ; hence IF (6) .F(T) X 5(E).

Let Y and Z be two measurable spaces. We say that a function F(y, z) (y E Y, z E Z) is measurable
jointly with respect toy and z if it is measurable with respect to the a-algebra 9 (Y) X S (Z).
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The inclusion ,y (T) c g7 (6) follows from the measurability of f(t, x) = t
(see 1.10). It remains to prove that 97(E) c ,F(e). Obviously, for this it is
enough to construct a system 0 of measurable functions on 6 that do
not depend on t and generate a measurable structure of E.

The required system is

(2.8) e-a(L ) p (t, x; u, f) du,
t

where A ranges over the non-negative rational numbers and f over a
countable system W of non-negative functions separating measures on E (the
existence of such a system follows from the fact that the space E is Borel).
Because p is homogeneous none of the functions (2.8) depend on t.
By Fubini's theorem these are measurable functions from 6 to E. Let us
show that the system off' separates points of E. If all functions in 641
coincide at the points x and y, then there exists a subset A of the line T
having zero Lebesgue measure such that p(0, x; u, f) = p(0, y; u, f) for all
u 0- A, f E W. By Lemma 2.2 it follows that x = y.

2.6. THEOREM 2.4. Let 6T _ (xt, a4t, K) be a rigid, regular class. Let
T be a countable everywhere dense subset of T and Wt a countable system
of bounded functions on Et separating measures. Then the system of
functions

(2.9) Pt(xt) (t E T, Pt E Wt)

separates the measures in K. Together with the functions xa > t (t E T) it
separates measures in K.

PROOF. Let P1, P2 in K satisfy the relations

PZ.Pt(xt) (t E T, ,pt E Wt).

Then for t E T
(2.10) P,f (xt) = P2.ft(xt)

for all measurable functions ft in Et. In particular, if ft(x) = f(t, x) E V
then (2.10) is satisfied for all t E T', hence also for all t. By Lemma 2.4
it follows that (2.10) holds for all t if ft(x) = f(t, x) is any measurable
function in W. Relying on Theorem 2.1 we conclude that P1 and P2
coincide on all the sets (2.2). Further, the functions Pi{xt = at} = P;{a > t}
(i = 1, 2) are continuous on the right in t. Therefore, if the equation
P1 {a > t } = P2 {a > t } holds for t E T, then also for all t E T. Conse-
quently, P1 and P2 also coincide on the sets (2.3). By Lemma 2.3 P1 = P2.
If P1, P2 E K,,, then the equation P;{a > t} =P2{a > t } holds automatically,
because by (1.4) P;{a > 0= X,>t.

2.7. Now let e' = (xt, 4t, K) be a Markov family with transition
function p. A function f on 6 is called X' -measurable if for any P E K
there exist p-measurable functions f, and f2 such that
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a) f, f-f2;
b) f, (t, xt) = f2 (t, xt) for all t E A (P-almost surely).
The class of X -measurable functions contains the constants and is closed

under addition, multiplication, and limit passage. From this it follows that
sets whose indicator functions are is-measurable form a a-algebra and that
the class of is-measurable functions coincides with the class of functions
measurable with respect to this a-algebra.

LEMMA 2.6. If x =(xt, e/flt, K) is a regular Markov family with
transition function p, then for any universally measurable r C E the
function p(t, x; u, F) is iF-measurable and i C-continuous.

PROOF. We consider in E. the measure
u

µ (A) e t Pp (t, xt; u, A) dt

and we introduce r, , r2 E . (En) such that r, c r c r2 and
µ(r2 \r,) = 0. For brevity we write r(t) = p(t, xt; u, r), ri(t) = p(t, xt; u, ri)
(i = 1, 2), S = r2 - r, . Obviously,

U

P
J

et b(t)dt=Ft(F2\F,)=0.

Since S (t) is non-negative and continuous on the right (P-a.s.), it follows
that S (t) = 0 for all t (P-a.s.). It remains to note that the functions
p(t, x; u, r) are p-measurable and X -continuous.

2.8. THEOREM 2.5. Let X =(xt, cit, P) be a regular Markov process.
With each function f on we associate a real-valued random process

zt(w)
f(t, x,(-)) for t e o(w),

0 for t 0- A(w).

If f is 9C -measurable, then (zt, d1t, P) is a Meyer process.
PROOF. The set off' of functions f for which this assertion holds

contains 6 and is closed under linear operations and limit passage. By
Lemma 2.4 (X contains all p-measurable functions. It remains to note that
if f is e% - measurable and f, , f2 are functions defined by conditions a)-b)
of 2.7, then the processes f, (t, xt) and f2 (t, xt) are P-indistinguishable.

2.9. We derive some corollaries from Theorem 2.5.
COROLLARY 1. If f is a X -measurable function and r is a Markov

time with respect to the filtration at then f(r, xr) is measurable with
respect to 4.t.

For the proof it is sufficient to compare Theorem 2.5 with the results
of [10] (VIII, Theorem 15 and IV, Theorem 49) and to note that if the
processes zt and zt are P -indistinguishable, then the IT TI of zr
follows from that of zT.

COROLLARY 2. If A is a X -measurable set, then
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TA(w) = inf(t: (t, xt(w))E A)

is a Markov time with respect to c/lit and for any e > 0 there exists a
Markov time re (with respect to cfl t) such that

(2.11) {ire E A) _ ((tie, x.te) E A),

(2.12) P(TAEA)<P{iEEA}-f-s.
For the proof it is sufficient to apply Theorem 2.5 and the result of

Meyer stated in 1.8 with f(t, x) = XA (t, x) and c = 1.

§ 3. The strong Markov property

3.1. We shall show that regular Markov processes have the strong Markov
property. A weaker form of this property will be proved in Theorem 3.1,
and a stronger form (for regular classes), in Theorem 3.2.

3.2. THEOREM 3.1. Suppose that a Markov process (xt, alt, P) with
transition function p satisfies conditions 1.12.B and 1.12.D. Let T be a
Markov time with respect to at. Then for any r E .7 (Et)

(3.1) P{xt E F I 1tti} = P(r, xti; t, I') (n. H. P, T E At),

where At = A n [-o, t).
REMARK 1. Theorem 3.1 applies, in particular, to regular processes and

also to their completions.
REMARK 2. From (3.1) it follows that for any non-negative measurable

function f on Et

(3.2) P {f(xt) I A) = P(T, xs; t, f) (P-a.s., r E At).

PROOF. Let S = {S o < s1 < . . . < sn) be any finite set of numbers.
We put

(3.3) ,ps(t) = si for st_1 < t < si,

where s_1 = -°°, +oo. We consider an increasing sequence of sets
S. whose sum is everywhere dense in T, and put ,psn(r) = T,,. It is easy to
see that r, is a Markov time. If A E alt, then {A, T = s E A
= {A, i < s, r0 = s E A) E 4, and by (1.1) for s < t
P{A, T. =sEA, xtEF}= P{A, T. =sEA, p(s, xs; t, T)} _

= P {A, 2n = s E A, p (2n, x. ; t, M.
Summing these equations over all values s of the Markov time T

belonging to At we have

(3.4) P{A, T. E At, xt E F) = P{A, T. E At, P('rn, xtin; t, r)}.

Since rn 1 r, by 1.12.E and 1.12.D (3.4) implies that

P (A, T E At, xt E F) = P {A, i E At, P(i, x,; t, F)).
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Since the functions p(r, x,; t, r) coincide P-almost everywhere with a
JIT-measurable function (see Lemma 2.5). This implies (3.1).

3.3. THEOREM 3.2. Let e^dC = (xt, At, K) be a Markov class satisfying
conditions 1.12.E and 1.12.D, and let T and n be Markov times with
respect to alt, where i is measurable with respect to Ati. Then for any
p-measurable function f> 0 and P E K

(3.5) P {f(ii, x,) I SILT} = F(i, xT, 71) (P-a.s., r S t, r E 0),
where

(3.6) F(t, x, u) = Pt, f(u, xu)
If the transition function p for the class JL is homogeneous then for

any P E K, t > 0, and any measurable function f > 0 in E

(3.7) P (f(xT+t) I o#,,) = p(t, xT, f) (P-a.s., r E A)

REMARK. Theorem 3.2 applies, in particular, to regular classes 6 and
also to their completions. For the latter case, (3.5) extends to all
X-measurable functions f > 0, and (3.7) holds for all universally
measurable functions f > 0.

P R 00 F. Let cps (t) be defined by (3.3). We consider the sequences S. as
defined in the proof of Theorem 3.1, and put n,, = psn (77 ).

By 1.10 f `(x) = f(s, x) is a measurable function on ES, and by (3.2)
and (1.5)

(3.8) P (f 8 (x3) I a ) = p (r, xT; S, f8) _

= PT, .,f' (x8) = F (r, xT, s) (P-a.s., r E 0,).

The set A n, ran = s > r E A) belongs to A., and on it r E 0, and
ran = s. By (3.8)

(3.9) P UGAnsfnn

(xnn) 112 T) =

= yAnsF (T, XT, S) = XAnsF (ti, xT, tln) (P-a.s.)

Summing over all s we obtain
y(3.10) P(xnn>TEt8 fnn(xnn)I A")=xnn>TEAF(T, xT, ry,'In) (P-a.s.)

To begin with, let f E V. Then the function F(t, x, u) is bounded and
continuous on the right in u. Going to the limit in (3.10) and taking
rln 1 17 into account we get (3.5).

Lemma 2.4 applies to the set a5 7 of all functions f for which (3.5)
holds. Thus, cE contains all p-measurable, non-negative functions.

If the transition function p is homogeneous, then by Theorem 2.3 the
measurable function f on E is a p-measurable function of (t, x). Applying
(3.5)-(3.6) to n = r + t and noting that F(s, x, s + t) = p(t, x, f) we
obtain (3.7).
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3.4. For the case when r = a, the strong Markov property can be
expressed in the following form.

THEOREM 3.3. Let X = (xt, o9t, K) be a regular class and let ,IF be
the a-algebra on f2 generated by the random process xt and by all
K-negligible sets. Then for all P E K, t E y F.

(3.11) P (g 1 exa) = P. .g (P-a.s.)

PROOF F. The set of functions for which (3.11) holds is closed under
linear operations and taking non-increasing limits. Therefore, to prove that
(3.11) holds for all E F it suffices to verify that it holds for the
functions

(3.12) t =ff(Xt,) ... fn(xtn),
where t, < ... < t E T and f, is a measurable non-negative function on
Xtt that vanishes at at, .

If A E a#a then (A, ti E A) = (A, a < tt) n {P > t,} E c/tt1 and by
(1.8)

P {XA, t1Ee ) = P (X., t,Ee f (xt1)),

where

f (x) = fi (x) Pt1, x f2 (xt,) ... f- (xtn)

Hence

(3.13) P { A.) = P (f (xt1) J u#a) (P-a.s., t, E A).

From Theorems 2.1 and 3.2 (for ' = t,) we have

(3.14) P {/.(xt) 1 -0a) = Pa, xa f (xt) (P-a.s., a < t, ).

From (3.13) and (3.14) we have

(3.15) P01 Aa) = Pa, xa f (xt1) (P-a.s., t, E A).

On the other hand, by (1.7) for s < t,

(3.16) P,, x {g I c t,} = f (xt1) (P-a.s., t, E A).

If t, < a, then t = f(xt) = 0; if /i < t,, then t = f(xt) = f,(bt,) ... fn(btn).
Therefore, (3.15) and (3.16) are also satisfied for t, 0 A. From (3.16) we
have

(3.17) P8, P8, x.f(xt, )

Comparing (3.15) and (3.17) we obtain (3.11).
§ 4. Essential points

4.1. We call a point (t, x) of the phase space 9 essential if the state
x E Et is essential, that is, if (1.9) is satisfied. The set of all essential
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points of 9 is called its essential part and is denoted by 9'. The
essential part Et' of the state space Et is defined analogously. The aim of
this section is to prove that almost all trajectories of a regular class consist
only of essential points.

4.2. We shall use one general result concerning the integral representation
of measures ([4], Theorem 2.1). Let M be a separable' family of
measures on a a-algebra F in E2, and let .4 be a a-algebra contained in
F. We assume that for all P E M and all C E F

(4.1) P(C I,) = P'(C) (P-a.s.)

where P' E M for every w E E2 and P' (C) is an A -measurable function
for every C. We denote by Me the set of measures P in M such that P(A)
is equal to 0 or 1 for all A E A. Then the set Me is measurable in M, is
contained in the set {P' I and any measure P E M can be represented in
the form

(4.2) P = J P µ OP),
Me

where

(4.3) µ(B) = P{o: P(O E B).

4.3. THEOREM 4.1. Let l = (xt, %t, K) be a class of regular Markov
processes with transition function p that separates states. Then the essential
part 6' of the phase space is p-measurable, and for any P E K, C E .A

(4.4) P(C)_ Pt.x(C)dµ,
16,

where

(4.5) µ(r)=P ((a, x«) E r).
P R 00 F. We denote by F, Ft and , the a-algebras in fl generated by

the system of all K-negligible sets together with .4', 4t f V' and S1 (1 J',
respectively. Let M be the set of measures P E K restricted to F. It is
easy to see that (xt, Ft, M) is a class of Markov processes. By
Theorem 2.4 the family M is separable, and by Lemma 2.3 Pt, x (C) is
p-measurable for any C E F.

We now apply Theorem 3.3 to (xt, Ft, M). By this theorem, (4.1) is
satisfied if we denote by P' the restriction to .IF of the measure
Pa, x,, E K. By Lemma 2.5 it follows that P" (C) = P,,, xn(C) is
.4 -measurable for any C E y F. By 4.2 the set Me is measurable in M, is
contained in the set { P1 X } and any measure P E A can be represented in
the form (4.2).

' We say that the family M is separable if we can find a countabley y system of functions separating
measures in M.
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By the definition of measurable structures in 9 and M the formula

(4.6) (t, x) -> Pt, x

defines a measurable mapping of 6 into M. We shall show that
coincides with the inverse image of Me (consequently, 6' is
measurable)- and 6' is mapped onto Me isomorphically (consequently (4.2)
and (4.3) are equivalent to (4.4) and (4.5)).

If A E ac, n .N', then by (3.11) for any P E K

Pa,xa(A) = P(A Ii«) = XA (P-a.s.)

In particular, for (t, x)

Pt,,, (A) = P., xa(A) = XA (Pt,x -a.s.)

hence Pt, x E Me.
On the other hand, if Pt, x E Me, then any , -measurable function is

constant (Pt, x -a.s.). In particular, this applies to p(a, xa ; u, f) = P' f(x ).
However, Pt, x {a = t} = 1, hence p(t, xt; u, f) = const (Pt, x-a.s.). By
Lemma 2.2 it follows that for a certain y E Et

(4.7) xt = y (Pt, x-a.s.)

From (1.4), (1.8) and (4.7) we conclude that for any u > t and
r E . (E )

p(t, x; it, r) = Pt,x{xu E r} = Pt,xPt,xt {xu E r}=
= Pt,xp(t, xt; it, r) = p(t, y; it, r)

hence x = y. Therefore (4.7) implies that Pt, x {xt = x} = 1, so that
(t, x)E

Since the functions p(t, x; u, r) separate points of (see 1.10), (4.6)
establishes a one-to-one correspondence between 9' and Me. We already
know that this mapping is measurable. It remains to verify that the image
of any p-measurable set 1' C 6' is measurable in M. But this image is
described by the formula

(4.8) (P : P E Me, P[(a, xa) E F] = 1).

By Lemma 2.5 the p-measurability of Xr(t, x) implies that of Xr(a, X,,)-
Therefore the set (4.8) is measurable in M.

4.4. THEOREM 4.2. Under the assumptions of Theorem 4.1

(4.9) Xt E Et for all t E 0 (K-a.s.)

PROOF. Putting I' in (4.5) and C = fl in (4.4) we conclude that
for any P E K

P{(a, xa) E V} = 1.
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Hence it follows from (1.6) that for any t, x

(4.10) Pt,x{(t, xt) E I'} = 1.

Since the set A = \ 9' is p-measurable, by Corollary 2 of 2.9 for P E K
ands > 0 there exists a Markov time i = Te with respect to

_t
for

which (2.1l)-(2.12) hold. We apply Theorem 3.2 to the completed process
(xt, a'i, F), the p-measurable function f(t, x) = XA (t, x) and the Markov
times r and t = r. We have

(4.11) P{f(i, x.,)I T} = F(t, x, ti)
where F(t, x, u) = Pt, xf(u, x,,). But by (4.10)

F(t, x, t) = Pt,=f(t, xt) = Pt,x{(t, xt) E '} = 0.

Therefore it follows from (4.11) that

P{(ti, xz) E A) = PF('r, xT, ti) = 0.

By (2.1l)-(2.12) it follows that P{TA E A} < s. Since s > 0 is arbitrary,
P(rA E A) = 0, which is equivalent to the assertion of the theorem.

§ 5. Excessive functions

5.1. Let p(s, x; t, 1') be a transition function in the spaces Et. A non-
negative function ht(x) (t E T, x E Et) is called excessive with respect to
p (or, more briefly, p-excessive), if:

5.1.A. For every t, ht(x) is universally measurable with respect to x.
5.1.B. For all s < tE T, x EEa

p(s,x;t,he)<h8(x).
S.I.C. p(s, x; t, ht) -+ h8(x) as t 1 s.
From these properties and the Kolmogorov-Chapman equation 1.10.D, it

follows that p(s, x; t, ht) is a non-decreasing and right-continuous function
of t.

The aim of this section is a proof of the following result.
THEOREM 5.1. Let X = (xt, 4t, K) be any regular family with

transition function p. Then all p-excessive functions are ell' -measurable
and X -continuous.

5.2. The proof of Theorem 5.1 relies on two lemmas.
LEMMA 5.1. Let p be an arbitrary transition function. The class of all

p-excessive functions can be described as the minimal class of non-
negative functions on 6 containing all functions'

(5.1) At, x; u, r) (u E T, r E .T(E..))

I F (Eu) denotes the universal completion of the a-algebra F(Eu).
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and having the properties:
5.2.A. If hl, h2 E $ , c1 i c2 > 0, then c, h, + c2 h2 E o` .

5.2.B. If hnE 'and h.th,then hCE '.
PROOF. From the Kolmogorov-Chapman equation the fact that the

function (5.1) is p-excessive follows easily. The class X of all p-excessive
functions obviously has the property 5.2.A. We verify that it also has the
property 5.2.B. Let hn be p-excessive and hr(x) 1 ht(x). Obviously h satis-
fies 5.1.A. By Fatou's lemma h also satisfies 5.1.B. From the inequalities
p(s, x; t, h,`,) < p(s, x; t, ht) < h'(x) it is clear that the lower and upper
limits of p(s, x; t, ht) as t 1 s are contained between h,,(x) and h8(x).
Letting n -+ -, we see that h satisfies 5.1.B.

Now let off' be any class with the properties described in the lemma.
We prove at first that ' contains all functions

(5.2) At, x; u, (P) (u E T, (P E .T(E.)).

We put

(p, (x) = 1 for x E rin = j x: 2n < tp (x) <
a 2 11

It is clear that pn t p and, consequently, p(t, x; u, pn) t p(t, x; U, 1p). But

P (t, x; it, TO 2n P (t, x; u, rin)

By 5.2.A. and 5.2.B, (5.2) belongs to M.
Let us prove that o 2 contains every excessive function h. We consider

a finite set of numbers S = {si < s2 < . . . < sn, } and put
m-1

(5.3) Ft (x) = I p (t, x; si, fi) -j- p (t, x; sm, hsm),
j=1

where f1(x) = h'i(x) - p(si, x; si+i , h'i+i ). By 5.1.B fi > 0 and by 5.2.A
F E . We put s,, = -°°. If si_1 < t < si (i = 1, ..., m), then

to
P (t, x; sj, h'i) -p (t, x; si+i, h!+1) for j > i,

for j < i.

Therefore

(5.4) Ft (x) = p (t, x; si, h'i) for si_1 < t < si (i = 1, 2, ... , m).

Let
1N(t) = si for si_1 < t < si (i = 1, 2, . . ., m).

From (5.3) and (5.4) it is clear that,

(5.5) Ft (x) _ {

0

p (t, x; V (t), h"(i))
for t > sm
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Now let S range over an increasing sequence of sets S. whose union is the
set of all rational numbers. We denote by F and Wn the corresponding
sequences of functions (5.3) and (5.4). It is easy to see that ,pn(t) 1 t. By
(5.5), 5.1.B and 5.1.C, F,t,(x) f ht(x). From 5.2.B we conclude that h EBB.

LEMMA 5.2. Let (xt, At, P) be a Markov process on the interval 0(w),
with transition function p. Then for any u E T, f E 5 (E,, ), the triple
(p(t, xt; u, f), St, P) defines a supermartingale on A(w ). Let (xt, jt, P)
be the completion of the process (xt, Sit, P). To each p-excessive function
h there corresponds a supermartingale (ht(xt), Nt, P) on o(w).

PROOF. By (1.2) and 5.1.B

P {ht (xt) I i } = p (s, x,; t, ht) <hs (xs) (P-a.s., s E A).

By 1.6.A the process p(t, xt; u, f) is adapted to the filtration alt.
From 5.1.A it follows that for any p-excessive function h the process ht(xt)
is adapted to (Xt.

5.3. PROOF OF THEOREM 5.1. By Lemma 2.6 the class Q' of all non-
negative X -measurable, &1 -continuous functions contains all functions (5.1)
and satisfies 5.2.A. By Lemma 5.1 the theorem will be proved if we can
show that a5' satisfies 5.2.B. If hn E o%' and h t h, then h, obviously,
is i -measurable. To prove its X-continuity it is sufficient to apply the
proposition at the end of 1.9 to the supermartingales (ht(xt), P), where
P is an arbitrary measure in K.

5.4. We derive some corollaries from Theorem 5.1.
COROLLARY 1. If (xt St,P) is a regular Markov process with transition

function p and h is any p-excessive function, then (P-a.s.) ht(xt) has l e f t -
h a n d limits at all points o f the interval (a, R ] .
_ For the right-continuous non-negative supermartingale (ht(xt), JKt, P)
P-almost surely does not have a discontinuity of the second kind and has a
limit as t -> 00 (if +- E A). If A is not random, then this is proved, for
example, in [10] (VI, Theorems 3 and 6). We can pass from a random
interval to a non-random one by means of the extension theorem stated in
1.9.

COROLLARY 2. Let X be a regular class. I f t E I " (t, oo ] , then (K-a.s.)
the function PS, ,,, is continuous on the right at s in the interval [a, P A t].

For in accordance with (1.8) for s < t

Ps, xT;Xd>t = P3, xSXe (t) = Ps, xPt, 4=p (s, X; t' (p),

where o(x) = Pt, x g and the right-hand side is l -measurable by Theorem
5.1. On the other hand, tX0, t does not depend on co, hence Ps, x Xp< t
does not depend on s and x.
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§6. The uniqueness of a rigid regular re-construction

6.1. Two theorems will be proved in this section. The first one expresses
in terms of i a random process adjoint to a regular re-construction of
the class X. The second one asserts that the rigid regular re-constructions
of i are indistinguishable.

THEOREM 6.1. Let l _ (xt, alt, K) be a regular re-construction of
the class X = (xt, aIflt, K) and R a countable everywhere dense subset of
T. Then for any u c T, p E 9" (En)

(6.1) pt z. q) (xu) =limp (r, xr; u, (p) for all t E Z (K-a. s. ).
rER
r t

The proof is based on the following lemma.
LEMMA 6.1. In the notation of Theorem 6.1 the function

(6.2) cDt(x) = Pt.x(P(xu)

is excessive with respect to the transition function p of &. For any t E T,
PEK

(6.3) (D t(xt) = P{cp(xu)Ict+} (P-a.s., a < t < 0).

PROOF. Applying (1.8) to the Markov process (xt, alt, P3jS) we have

(5 (x) = P5. xPt, xtq) (xu)

According to (1.10), for

allDt

outside the countable set A(PS,x)

Pt xt = Pt, xt (P5, x-a.s.).

Therefore

(6.4) D5 (x)=P5. xPt zt(p (x,) =p (s, x; t, V)

for all t 4PE A(P5, ) in the interval (s, u). From (6.4) it follows that
u

(6.5) cDs (x) = u` S J
p (s, x; t, (Dt) dt.

By Theorem 2.2 the function p(s, x; t, bt) = Ps is measurable
jointly with respect to x and t. Therefore Fubini's theorem is applicable,
and by the Kolmogorov-Chapman equation 1.10.D, (6.5) implies that for
r<s<t

u

p (r, x; s, V) =
1

P (r+ x; t, fit) dt.u-s
s

The right-hand side does not decrease as s 1 r and tends to 45r(x). Therefore
tk is p -excessive.
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By Theorem 5.1 for any t E T, P E K

(6.6) 41t(xt) = l im 4)r(Xr) (P-a.s., t E a).

But for r 05 A(P) by (1.2)

(6.7) D7 (xr) = Pr, xr(p (xu) = Pr, xrtP (xu) _

=P(T(xu)IS1r) (P-a.s., r (=- 0).

(6.6) and (6.7) imply (6.3).
6.2. PROOF OF THEOREM 6.1. The existence (K-a.s.) of the limit on

the right-hand side of (6.1) follows from Lemma 5.2 and a well-known
property of supermartingales (see, for example, [1) (Chapter VII, Theorem
3.3). Obviously this limit is continuous on the right in t. On the other
hand, from Lemma 6.1 and Theorem 5.1 it follows that the left-hand side
of (6.1) is also continuous on the right in t (K-a.s.). Therefore, to prove
(6.1) it suffices to verify that the equation is satisfied for any t E T and
any P E K (P-a.s., t E 0). This is so by (6.3) and the equations

(6.8) limp (r, xr; u, (p) = lim P {cp (xu) Jtr} _
rjt rJ.t

rER rER

= P {cp (xu) I /It t+} (P-a.s., t E 0).

(see (6.7)).

6.3. T H E O R E M 6.2. Any rigid regular re-constructions * and * of
the Markov class ' are indistinguishable. _

P R 00 F. Let '7C _ (xt, 4t, K), ' _ (xt, et, k), (xt, dt, K). By the
definition of a re-construction, K = K = K. If a and p are the end-points
of the interval 0, then by 1.12.B and 1.13, Z = [a, R) = 0 (K-a.s.).

We consider the system of functions (2.9) separating measures in K. By
(6.1)

Pu, xuTt (xt) = Pu, x,J' (xt) for all u E [a, (t) (K-a.s.).

Therefore (1.10) is satisfied and e'& ' is indistinguishable from *.

§7. The adjoint process of a regular re-construction

7.1. The aim of the two concluding sections is to construct a regular re-
construction 9 = (xt, 4t, K) of a canonical class Or = (xt, a0t, K) corres-
ponding to an arbitrary transition function p.

The key to the construction is given by Theorem 6.1, which states that
if a regular re-construction exists, then the corresponding adjoint random
process Pt = Pt, zt(,,) is expressed in terms of e by (6.1). The construction
of P't will be carried out in this section, and the construction of the class
6L' in the following section.
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7.2. We fix a countable everywhere dense subset R of T and denote by
v(t, a; u, w) the limit on the right-hand side of (6.1). By Lemma 5.2 and
well-known properties of supermartingales (see, for example, [I I, Chapter 7,
Theorem 3.3) it follows that this limit exists for all t E [a, 13) if w does
not belong to a certain K-negligible set 2(u, vp). We select in every space
E (u E R) a countable family of functions Wu and denote by S2' the
sum of the 62(u, gyp) over all u E R, p E Wu W. It is obvious that 92' is
K-negligible and that

(7.1) v (t, cp; u, (o) =limp (r, xr ((0); u, T)
rjt
rER

for all w 0 2', t > a(w ), u E R, 5p E Wu.
For a special choice of the families W. we construct measures

vu. , in the spaces E such that

(7.2) v (t, (P; u, (0) = vu..((P)

for all w 0- 2', t > a, u E R, p E Wu. After this we construct a
K-negligible set S20 D 92' and measures Pt E Kt for which

(7.3) Pt {xu E r} = vu, . (r) for co 0 E2 0, t E [a, 0), u E R, r E r (E,,).

7.3. It is known (see [4], 3.2) that in any Borel space E a support
family can be constructed, that is, a countable family of non-negative
bounded functions W containing unity and satisfying the following
conditions:

7.3.A. If µ is a sequence of finite measures on E and converges
for any p E W, then we can find a finite measure p on E such that

p(ip) for all p E W.
7.3.B. If a set v ' of non-negative functions on E contains W and is

closed under addition, multiplication by positive numbers, subtraction
(leading to non-negative differences) and non-increasing limit passages, then
d contains all functions p E F (E).

Let W,, be a support family in Eu. By 7.3.A the existence of
measures vu, L, satisfying (7.2) follows from (7.1). By (7.1) and (7.2) we
have

(7.4) vu , (q) = lim p (r, xr (w); u, (p)
rot
r5R

for all w 0- f2',t>a,uER,cpEWu.
We denote by

a_t

the minimal a-algebra in 92 containing c*t+ and all
K-negligible sets. From (7.4) and (6.8) it follows that for any u E R and
any P E K

(7.5) vu,.(q) = P{q(xu)IAt} (P-a.s., a c t).
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Since this equation holds for p E Wu, it follows by 7.3.B that it holds
for all p E g 7(E,,).

7.4. The construction of the measure Pt from the system of measures
vu ,,, is based on some lemmas.

LEMMA 7.1. Let Rt be a countable everywhere dense subset of the half-
line (t, oo), and for every u E Rt let v be a measure on E . Let

S vu (dx) p (u, x; v, r) = v0 (r) for all u < v E Rt, r E ,F (E,)
Eu

and

lira vu (En) = 1.
Ujt

Then there exists a unique measure P E Kt such that

P(xu E r) = vu(r) for all u E Rt, r E .F(Eu)
The proof of this lemma follows easily from Lemma 3.1 of [4].
LEMMA 7.2. For any u E R, p E .l" (Eu ), P E K, the triple

(vu , (gyp), Gt, P) defines a supermartingale on the interval [a, oo) which is
continuous on the right (P-a.s.).

PROOF. We denote by d% the set of all functions p E . (Eu), for which
the assertion of the lemma holds. From (7.4)-(7.5) it follows easily that
Wu E J'. By 1.9 the set vi' is closed under non-increasing limit passages. It
is obviously also closed under the other operations listed in 7.3.B. By this
condition off' m .F(Eu)

LEMMA 7.3. The limit

(7.6) ct ((o) = lim vu (En)U"
uER

exists for all co 0 S2', t > a, and for any P E K the triple (ct, it, P) is a
supermartingale on the interval [a, 00); ct is continuous on the right (P-a.s.).

PROOF. We put vu = vu, ,,, (Eu ). By (7.6) and 1.6.D, it follows that vu
does not increase in u for u > t. Therefore the limit (7.6) exists. By (7.5)

(7.7) vu = P (xu E Eu I Wt) = P (P> u I eat) (P-a.s., a < t).

Let ap(t) be any non-decreasing function with ap(t) > t for all t. By (7.7)
for s < t

P {v(Pct) I $} = P (S > (P (t) I A,) < P (P > (p (s) 14.) = vwc$> (P-a.s., a < s).

Moreover, v ,(t) is measurable with respect to It. Hence (vl(t), d i, P) is a
supermartingale.

Let s,,, t °. We associate with the set S = {si , ..., s,,, , ...) the function
ps(t) = 5,,, for 5,,,-i < t < s,,, (m = 1, 2, ...),
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where so We note that the function
tD,p,(t) = P;r for t E [sm-t,sm)

is continuous on the right in t. We now consider an increasing sequence of
sets S. whose union is R. It is obvious that cpsn(t) 1 t. According to (7.6)
v`asnM t ct, and the assertion of the lemma follows from the properties of
supermartingales stated in 1.9.

7.5. By (7.5) and (1.2) for any t < u < v, p E W,,, P E K

J
vu . (dx) p (u, x; v, y) = P {p (u, xu; v, (P) Sit) _

eu
= P {P [(p (xa) I Wu] I d1Lt) = P {(p (x,,) I Jt) = vti . ((p) (P-a.s., t > a).

By (7.6) and (7.7)

ct ((o) =1tim vu l, (En) = P (t < S I At+) =1 (P-a.s., a < t < R).
uER

Therefore we can find a K-negligible set 12" D 92' such that

(7.8) vu
to (dx) p (u, x; v, (P) = v',, . ((P)

Eu

for all co St", t E R n (a, (3); v > u E R n (t, oo), t p E .f (E ):

(7.9) ct(w)= 1 for all w 0E2", t E R n (a, 0).
But by Lemma 7.2 both sides of (7.8) are K-almost surely continuous on
the right in t (the left-hand side is equal to v,t,, 4, (f) for f(x) = p(u, x; v, ,p)).
By Lemma 7.3 a similar property holds for ct(w). Therefore outside a
certain K-negligible set S20 D W', (7.8)-(7.9) are satisfied for all t E [a, p),
v > u E R n (t, oo) and p E W. By 7.3.B it holds for any 0 E F
By Lemma 7.1 for any w 0 S20 there exist for all t E [a, g) measures Pr
satisfying condition (7.3).

7.6. We formulate a theorem, which summarizes and somewhat comple-
ments the results obtained in 7.1-7.5.

THEOREM 7.1. Let 3 ' _ (xt, 51 t, K) be a canonical class of Markov
processes with transition function p. Let R be a countable everywhere
dense subset of T and Wu a support family in Eu. There exist a K-
negligible set 92. and measures P't E Kt such that

(7.10) Pi cp (xu) =1im p (r, xr; u, (p)
rjt
rER

for allw f- f2o,tE W.
We denote by 4t the minimal a-algebra containing at+ and all K-

negligible sets. For any P E K, E .A' (t, -]
(7.11) P { Ja1Lt} = Prt (P-a.s., t E [a, /3)).
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For any ]; E Y' [u, -] the function Pf t is K-almost surely continuous
on the right in t on the interval [a, u A 0).

PROOF. The first assertion of the theorem follows from (7.3)-(7.4)
already proved. It is sufficient to verify (7.11) for functions t of the form
t = f, (xt,) ... where t < t, < ... < t,,, fi E F (E,,)-. We put
pr(x) = Pr,,x(;. Let r E R n (t, t, ). Taking into account that c'1Gt c cor
Pt E K and using (1.8), (7.3) and (7.5) we have

(7.12) P{xe(r)
I

P {(Pr (Zr) I fit) = Pi'cpr (Zr) = Pl'xa (r) (P-a. s., t E [a, li))

As r 1 t (r E R), X, (r) -+ Xla (t), and (7.12) goes over into (7.11).
Now let t E P' [u, -1. We choose r E R n (-00, u). Since [; E J'(r, 00]

and Pr E Kt, by (1.8) and (7.3)

(7.13) Pt 1C6>r5 = P%A (r) = Pt q r (Zr) =
=vt w((pr) forw 0120i tE [a,rA(3).

On the other hand, (; E .f (r, -] is constant on the set < r) and
therefore

(7.14) Pt xs,,.t= const Pi {P <r} = const [1-vi, W (Er)].

By Lemma 7.2 the right-hand sides of (7.13) and (7.14) are continuous on
the right in t for t > a (K-a.s.). Consequently Pt t is continuous on the
right in t on the interval [a, r A p) (K-a.s.). Since [a, u A p) is the union
of a countable number of intervals [a, r A i3) for r < u in R, Pr is
continuous on the right on [a, u A (3) (K-a.s.).

§8. Existence of a regular re-construction

8.1. In the preceding section we have constructed measures Pi in terms
of a canonical class e' for all w 0- l0i t E [a(w), 0(w)), where E20 is a
certain K-negligible set. We extend them to 120 by the formula

(8.1) Pt = Pt for t E [a(w), (3(w)),

where Pt is some element of Kt.
We put

(8.2) xt(w) = P.

We consider the filtration it described in Theorem 7.1 and prove that the
set YC = (x-t, cit, K) defines a regular re-construction of ell'.

8.2. For the random process xt(w) = P't the state space is k, = Kt. We
denote by Xt the extended state space obtained by adjoining to Et two
fictitious states at and bt.
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We need the following lemma.
LEMMA 8.1. Let .4t be the minimal a-algebra containing J'(t, oo) and

all K-negligible sets. If F is a measurable function on Xt, then F[zt(w)] is
measurable with respect to the a-algebra t A,,¢t.

PROOF. For brevity we put dfLt n ,,fit = F. According to Lemma 2.3 a
measurable structure in K and hence also in Kt is generated by the functions

F(P) = P(xu E r) (u E T, F E .F(X.)).
Therefore to prove the lemma it suffices to convince ourselves of the
,F-measurability of the functions

(8.3) F (xt (co)) = F (Pi) = Pi {xuEr} (u E T, r E .F (X.))
Since Pi E K, by (1.4)

P t {xuEr} = Xr (au) for u < t,
Pt {xu,=au}=0 for u > t.

It is therefore sufficient to verify the .F -measurability of the functions
(8.3) for u > t, r E F (Eu ).

We note first of all that by (7.10) and (8.1) the functions Pr ,p(xu) are
,F-measurable for u E R, v E W,,. The F -measurability of these
functions for all u E R, p E F (Eu) follows from 7.3.B of the support
system Wu. Finally, for any u > t we can find u in R belonging to the
interval (t, u). By (1.4) and (1.8)

Pt '(P (xu) = Pi xe (u) <P (xu) = Pip (u, x5; u, (P)

Hence Pt ,p(xu) is F -measurable for any u > t, V E F (Eu ).
8.3. We show that the formula

(8.4) p (t, P; u, r) = P {xuEr} (P E Et, r E .F (Eu))

defines a transition function in the spaces Et = K.
By Lemma 8.1 for r E F (Eu )

{xuEr)EJu(] ug Yx.

Therefore p satisfies 1.10.A. It is obvious that 1.10.B-1.10.C also hold.
Let s < t < u and P E K. By (7.11) and (8.4)

P {xuEr} = P {P [xu E r I Jt]} = PPt {xuEr} = Pp (t, Pi ; u, r) PP= (t, xt; u, r),

from which 1. 10.1) follows. Finally, as u 1 t

p(t, P; u,

so that 1.10.E holds.
By Lemma 2.3 the transition function p separates states.
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8.4. Let P E K. From Lemma 8.1 and (7.11), (8.2) and (8.4) we have
for any t < u, r E F (E )

P 6. E r I Ji ) = Pt {xu E I'} = P (t, Pi; u, r) = P u, I') (P-a.s., t E [a, Q))

Therefore (xt, 4t, P) is a Markov process with transition function p.
By the definition of Et, to each x E Et there corresponds a measure

Pt, x E K, and (8.4) implies (1.5), so that X is a class of Markov
processes.

We show that this class is regular. According to 15], § 3, K is a Borel
space, Kt is a measurable set in K and therefore is also a Borel space.
Consequently 1.12.A holds. It is obvious that 1.12.E and 1.12.C hold.
Finally, Theorem 7.1 implies that 1.12.D is satisfied, since according to
(8.2) and (8.4)

P(t, xt((o); u, r) = Pt {xu E r}.

8.5. We prove finally that 6 is a re-construction of the class i . Since
O = (a, p), O = [a, p), for any probability measure P

P{xo(t) * x;(t)} = P{a = t}

can be different from zero only for a countable set of values t.
Further, the equation

(8.5) Pt, xt = Pt, xt

is equivalent to the countable system of equations

(8.6) Pt, "t p (xu)=Pi(P (xn) (u ER, (PEWu)

By (7.3) the equation (8.6) can be written in the form

(8.7) P (t, xt (w); u, (P) = vt, . (tP)

But from the theory of martingales it is known (see [ 1 ] , Ch. 7, Theorem
11.2) that if (zt, Ft, P) is a supermartingale, then

lim zr = zt (P-a.s.)
rlt

rER

with the possible exception of a countable set A(P) of values of t. Apply-
ing this result to the supermartingale (p(t, xt; u, gyp), Ot, P) (see Lemma
5.2) and taking (7.4) into account we conclude that if It f A(P), then (8.7)
holds (P-a.s.). Consequently the system of equations (8.6) and therefore
also (8.5) hold (P-a.s.).

Thus, fit' is a re-construction of X.
8.6. We now assume that the transition function p is homogeneous and

show that in this case the transition function p corresponding to X is
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also homogeneous (under a suitable identification of the spaces Et).
In order to identify the spaces ft = Kt we consider the transformations

AS of the space 2 defined by the formula

(8.8) (08()(t) = o(t+s) (ec -s<t< -s).
The transformations 0, induce operators on the functions and measures
P in the space St acting according to the formulae

(08) (w)
(8.9) { (PO8) (A) = P (0;'A)

Here

(8.10) (P85)O = P(08 ).

Relying on the homogeneity of the transition function p it is not difficult
to verify that K is invariant with respect to the operators O. By (8.9) the
K-negligibility of 0' 'A follows from that of A. From the equation
Bsa = a - s it follows that O8Kt = Kt_3. Moreover, BS is an isomorphism of
the measurable spaces Kt and Kt-s. It is this isomorphism that we use for
the identification of Kt and K,-,. We prove that

(8.11) n(t + s, P0-8; u + s, r0-8) = p(t, P; u, r).

By (8.4) this equation can be rewritten in the form

(8.12) (P0-$){xu,+8 E FO-,) = P{xu E r}.

The left-hand side is equal to

P{xu+S(0-8(O) E re_.)

and taking (8.1) into account we can put (8.12) in the following form:

P{w: Pe+$ 08 E r}=P{w: PO,) E r}.

Therefore (8.11) will be proved if we show that outside a certain K-
negligible set

(8.13) Pu+°103=Pu for all u E [a, p)

We make use of Theorems 6.1 and 2.4. Let R be a countable everywhere
dense subset of T, and let W be a supporting system of functions in the
state space E. By Theorem 2.4, to verify that two measures in K (the
left- and right-hand sides of (8.13) are such measures) coincide, it suffices
to check that these measures coincide on the functions
p e W). By Theorem 6.1 (applied to the set R + s) we can find a K-
negligible set 2' such that

(8.14) Pu+s. Cp (xa+s) = lint p (r, xr (w); v+ S, (P)
r.u+s, rER+s
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for all w 92', u E [a(w) - s, (3(w) - s), v E R, p E W. But

zu+8 = Pu8 and by (8.10), (8.7) and (8.14)

v+ s, (P) ==x ) lim p (r, Zr (0,0));(PO-S3 08) rP(xv) = Pu+s, xu+s (8-sw) ( n+s
rlu+s, rER+s

lim p (r-}-s, xr (w); v+s, cp) = Jim p (r, Zr (w); v, (p)
rJu, rER rtu, TER

for all w 0- 0S92', u E [a(w), 13(w)), v E R, p E W. By Theorem 6.1 the
right-hand side is equal to Pu for all w St",

u E [a, (3), v E R, p E W, where St" is a K-negligible set. Thus (8.13)
holds outside the K-negligible set 0,R' U S2".
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MARKOV REPRESENTATIONS OF
STOCHASTIC SYSTEMS

A great deal of research into the theory of random processes is concerned with the problem of construct-
ing a process that has certain properties of regularity of the trajectories and has the same finite-dimensional
probability distribution as a given stochastic process xt. It is a complicated theory and one that is difficult
to apply to those properties that we most need for the study of Markov processes (the strong Markov
property, quasi-left-continuity, and the like.)

The problem can be usefully reformulated. In an actual experiment we do not observe the state xt at a
fixed instant t, but rather events that occupy certain time intervals. This is the motivation behind the
Gel'fand-U6 theory of generalized random processes. Kolmogorov, in 1972, proposed an even more general
concept of a stochastic process as a system of a-algebras F (I) labelled by time intervals I. Developing
this approach, we introduce the concept of a Markov representation xt of the stochastic system . (I)
and prove the existence of regular representations. We construct two dual regular representations (the
right and the left), which we then combine into a single Markov process by two methods, the "vertical"
and the "horizontal" method. We arrive at a general duality theory, which provides a natural framework for
the fundamental results on entrance and exit spaces, excessive measures and functions, additive functionals,
and others. The initial steps in the construction of this theory were taken in [6). The note [5] deals with
applications to additive functionals (detailed proofs are in preparation). We consider random processes
defined in measurable spaces without any topology: the introduction of a reasonable topology allows of a
certain arbitrariness. The relation between our definitions of regularity and more traditional properties
stated in topological terms (continuity from the right, the existence of a limit from the left, etc.) are
considered in the Appendix, which is written by S. E. Kuznetsov.
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§ 1. Introduction

I.I. Stochastic systems. A a-algebra of subsets of a set S2 determines
a measurable structure in 92. We then call 62 a measurable space and refer
to the elements of ,F as measurable sets.

Let (S2, ,F) be a given measurable space and T = (a, R) a real interval.
For each open interval I C T, let F (I) be a a-algebra contained in F. We
call ,F(I) a stochastic system if the following conditions hold:

219
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1.1.A..F(h) = F(I2) when It C_ 12.
I.I.B. If In T I, then j7(I) is the minimal a-algebra containing all the

a-algebras ,y'(I,J.
I.I.C. Suppose that In t I and that for each n, Pn is a probability

measure on 9'(In), such that Pn (A) = Pn_1(A), whenever A E 9;'V,,-,)-
Then there exists a measure P on y (I) that coincides with Pn on
.' (In) (n = 1, 2, ...).

Let us describe an important method of constructing such systems. For
each t E T, let (Et, .fit) be a given measurable space and let 12 be the
space of all functions w(t) E Et (t E T). For each t E T the formula
xt(w) = w(t) defines a mapping of S2 into Et. Let g7(I) be the a-algebra
of subsets of 12 generated by the mappings xt(t E 1). Conditions 1.1.A and
1.1.B are obviously satisfied, and Condition 1.1.C follows from the well-
known theorem of Kolmogorov on measures in infinite products, provided
that Et is a Borel space (that is, Et is isomorphic to the Borel subsets of
a complete separable metric space).

Let ,F(I) be a stochastic system. We write 97<t = 5(a, t), y>t = 5(t, 0).
For arbitrary s < t E T, we define the a-algebra g7(s, t+) as the intersection
of all 5(s, u) with u > t. The a-algebras 5(s-, t), j5(s-, t+) etc., are
defined similarly.

A probability space is a triple (Q, F, P), where (S2, y) is a measurable
space, and P a probability measure on ,yam'. We shall be interested in
stochastic systems in probability spaces.

1.2. Markov representations. Transition and co-transition probabilities.
By a random process we mean a set of measurable mappings xt(w)(t E T)
from a probability space (Q, ,y, P) into Borel measurable spaces
Er (the state spaces). We call the random process xt a Markov representation
of the stochastic system.F(I), if the following hold:'

1.2.A. The mapping xt is measurable with respect to (I) when t E I.
1.2.B. For any t E T, t E ,g<t and Tl E ,y>t

PMrl I xt) = P(g I xt)P{r) I xt) (P-a.s.).

We denote by F<t the minimal a-algebra containing ,q<t and all the
sets (xt E r) where r r gt. The notation ,j>t, ,y (s, t], ,y [s, t) is defined
similarly. (We emphasize that all these a-algebras depend on the choice of
the representation xt of the stochastic system g(I).)Then the condition
1.2.B is equivalent to each of the following conditions:

1.2.B'. For any t E T and ri E 5>t

P{rj I y <t }= P{rj I x.) (P-a.s.).

The notation 9 E Fmeans that g is a non-negative F-measurable function. By Pt we denote the integral
oft with respect to the measure P. If PE < -, then we say that the function t is P.integrable.
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1.2.B". For any t E T and E J<t

P{ I 9_,t) = P(l; I xt) (P-a.s.).

Of course, not every stochastic system has a Markov representation; for
one to exist it is necessary that for arbitrary t E T, E F<t, Ti E F>t

P{trl I t+)} = P{t I f(t-, t+)}P{rl I y(t-, t+)} (P-a.s.).
This condition is sufficient, provided that for all t the a-algebra
,F(t-, t+) is generated by a measurable mapping xt from 92 into a Borel
space Et, and by P-negligible sets.' We intend to choose the Markov
representation in the most expedient form, assuming that such
representations do exist at all.

We have to assume even more, namely, that there is a Markov representation
having transition (or co-transition) probabilities. The transition probabilities
for xt are a set of probability measures Pt x (t E T, x E Et), where the
measure Pt x is defined on the a-algebra,F>t, the function Pt x77 is measur-
able with respect to x for arbitrary ii E 5>t and

(1.1) Ps. xbrl = P8, x Pt, ,,Tl for s < t E T, t E ,F(s, t), 1) E >t,
(1.2) Pq = PPt, ,,ii for t E T, 'n E .F>t

From (1.2) and 1.2.B' it follows that
(1.3) P{ 1 I xt) = Pt, xt tl (P-a.s.) .

Therefore, under condition (1.1), the set of requirements (1.2) and
1.2.B' is equivalent to

(1.4) Purl = PPt, xt'1 for t E .F;t, rl E F>t-
The pair (xt, Pt x ), where xt is a Markov representations of a stochastic
system . (I) and Pt x are transition probabilities of xt, is called a right
Markov representation of (I). To establish that (xt, Pt x) is a right Markov
representation of a stochastic system ,y (I), it is sufficient to verify that the
conditions 1.2.A, (1.1), and (1.4) are satisfied (and that Pt x rl is measurable
with respect to x).

In contrast to Markov representations, we may talk of right Markov
representations when a stochastic system g" (I) is defined in a measurable
space (9, 9), but the measure P is not fixed. Here only the Conditions
1.2.A and (1.1) remain.

We say that the right representation (xt, Pt,x) separates the states if
Pt,x # Pt,y when x * y.

We say that a probability measure P', defined on the a-algebra g>s, is
dominated by (xt, Pt,,), and we write P' E Ks(xt, Pt,x), if

(1.5) P'11 = P' Pt, xt'1 for all t E (s, 0), Ti E . >t-

1) We say that a set C is P-negligible if P(C) = 0, and P-certain if P(C) = 1.
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By virtue of (1.1), P,_, E K,(xt, Pt x). The condition (1.2) is equivalent to
the requirement that P E K,, (xt, Pt x). We say that the representation
(xt, Pt x) is dominated by (xt, P,,x) if each measure Pt x is dominated by
(xt, Pt,x ), that is, if for arbitrary s < t, 11 E 9;'>t

(1.6) Ps. xPt, xt 71 = Ps. A.

We call two right representations (xt, Pt x) and (xt, Pt x)_equivalent if
there exist a P-certain event 92', measurable sets Ei C Et, Et' E Et, and an
isomorphism y of Et onto Et, such that Pt,x = 1,7(x) when x E Et;

xt(w) E E't, xt(() E E't and y1xt(w)1 = xt((o) when u E Q'.

Together with right representations we also consider left Markov
representations (xt, P") of a stochastic system,F (I). The co-transition
probabilities Pt,x are probability measures on Ft, and (1.1)-(1.4) are
replaced by

(1.7) Pu Ii = P", x (pt' for t < u E T, E .F<t, nl E .F It, u);
(1.8) P = PPt' xt for t E T, t E .F<t;
(1.9) P{l; I xt} = Pt, xt (P-a.s.) for E y <t;
(1.10) Ptq = P(Pt, xt )ii for t E .f<t, T1 E F>t

We define a two-sided Markov representation as a set (xt, Pt x,
pt,x)

where xt is a Markov representation, Pt x are its transition probabilities, and
Pt.x its co-transition probabilities. The definition of equivalence extends
naturally to left and two-sided Markov representations. The representation
(xt, pt x, Pt.x) separates states if from the equations Pt,x =Pt,y, pt,x =pt,y
it follows that x = y.

1.3. Transition and co-transition functions. If (xt, Pt,x) is a right Markov
representation, then the function

(1.11) p(s, x; t, r) = P3, x{xt E I'} (s < t E T, x E Es, I' E . 9u)

has the following properties:
1.3.A. p(s, -; t, r) is a measurable function in the space E.
1.3.B. p(s, x; t, -) is a probability measure in the space Et.
1.3.C. For arbitrary s < t < u E T, x E Es, r E .f u

p (s, x; t, dy) p (t, y; u, r) = p (s, x; u, I')

(the Chapman-Kolmogorov equation).
A function satisfying the conditions 1.3.A.-1.3.C is said to be a

transition function. We extend it to all values s, t E T by setting
p(s, x ; t, I') = 0 for s < t.

To each right Markov representation (xt, Pt x) there corresponds a
transition function (1.11). The converse holds if the stochastic system
,F(I) and the random process xt are constructed according to the method
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described in § 1.1; in this case the transition probabilities Pt x are con-
structed from the p(s, x; t, I') by means of the Kolmogorov theorem.

The co-transition function p(t, r; u, x) = P",x(xt E F) corresponds to
the left Markov representation (xt, The integrals of q with respect to
the measures p(s, x; t, -) and p(t, -; u, x) are denoted by p(s, x; t, (P)
and p(t, (p; u, x) respectively.

We define the phase space, which we denote by 9 as the union of the
spaces Et for all t E T, with the measurable structure generated by the
functions

f(t, x) = p(t, x; u, r) (u E T, r E -fa)
The function At, x) = t is measurable on , because

{(t, x): t < u} ={(t, x): p(t, x; u, E.) = 1).
Therefore, to each measurable subset A of the interval T there corresponds
the measurable set 6(A) =((t, x): t E A) in 9 .

1.4. Regular right representations. Let ,(I) be a stochastic system over
the time interval (a, (3) in the probability space (Q, F, P) The right Markov
representation (xt, P,,x) is said to be regular if it can be extended to the
interval [a, (3) so that the following condition holds:

1.4.A. For any a < u < 0 and 11 E , >a the function Pt,xt t7 is P-almost
surely right-continuous in tin [a, u).

It is said to be completely regular if it satisfies the following stronger
requirement:

1.4. B. For any a ' s < u < 0. P' E KS (xt , Pt x) and 11 E 97>, the
function Pt xn is right-continuous in t in [s, u), P'-almost surely.

In contrast to 1.4.A, 1.4.B is meaningful even when no measure P has
been fixed in (S2,

We shall prove the following theorem in §2.
THEOREM I.I. Given a Markov representation (xt, Pt,x) of a stochastic

system ,¢(I) there exists a completely regular right representation
(xt+, Pt+.x ), which is dominated by it, separates the states, and for which
the following condition holds:

1.4.C. For any t E [a, (3), xt is measurable with respect to F (t, t±).
Every right regular representation dominated by (xt, Pt x) and separating

the states is equivalent to (xt+, Pt+,x ).
The representation (xt+, Pt+,x) constructed in Theorem I.I. is called the

regularization of the right representation (xt, Pt x). The regularization of
the left representation is defined similarly.

1.5. In the proof of the uniqueness assertion of Theorem I.I. we utilize
the following property of regular right representations: for any t E [a, 0)
and 11 E 97>t

(1.12) P{1 I 9:,<t+) = Pt, xt'l (P-a.s.).
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For completely regular processes this property can be strengthened as
follows: for any a < s < t < 0, P' E KS(xt, Pr x), and q

(1.13) P, (T) 19 (s, t+)} = Pt, xtrl (P-a.s.).

§3 begins with the derivation of the following regularity criterion. The
right representation (xt, Pr x) is regular if and only if for any u E (a, (3)
and r E -*u the function p(t, xt; u, r) is right-continuous with respect to
t in [a, u) P-almost surely. It is completely regular if and only if for
arbitrary a < s < u < 0, P' E Ks(xt, Pt,x) and I' E .% the function
p(t, xt ; u, P) is right-continuous in t in [s, u), P'-almost surely.

This criterion together with (1.12), (1.13) enables us to establish a
connection between regular right representations and the concepts of a
regular Markov process and a regular Markov class, introduced in [4). Relying
on the results of [4], we describe in §3 a number of important properties
of regular right representations. The second half of §3 is concerned with
the construction of "good" co-transition probabilities for these representations.
We obtain partial results only, but they are sufficient for an exhaustive
analysis, in §4, of the absolutely continuous case.

1.6. The fundamental densities of absolutely continuous Markov
representations. We say that a random process xt is absolutely continuous
if each of its finite-dimensional distributions mt t is absolutely continuous
with respect to the product mt X ... X mtn of the corresponding one-
dimensional distributions. If xt is a Markov representation, the requirement
that this condition is satisfied when n = 2 is sufficient.

Our study of absolutely continuous representations is based on the
following property.

THEOREM 1.2. If xt is an absolutely continuous Markov representation
of a stochastic system F (I), then the density p(s, x; t, y) of the measure
mst with respect to ms X mt can be chosen in such a way that the
following conditions hold:

1.6.A. For any s < t < u, x E Es, and y E Eu

J
p (s, x; t, z) mt (dz) p (t, z; u, y) = p (s, x; u, y).

1.6.B. For any s < t, x E Es and y E Et

ms (dz) p (s, z; t, y) =
J

p (s, x; t, z) mt (dz) = 1.

By means of this density we can construct the transition and co-transition
probabilities for xt according to the formulae

(1.14) Ps, T1 = Pp(s, x; t, xt)i for s < t E T, E F>t,
(1.15) P", x = Pp(t, xt; u, x) for t < u E T, E F <t.

We call the density of mst with respect to ms X mt that satisfies the
conditions 1.6.A, 1.6.B the fundamental density of the process xt. We say
that p(s, x; t, y) is the fundamental density of the right representation
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(xt, Pt x) if (1.14) holds, that it is the fundamental density of the left
representation (xt, Pt,x) if (1.15) holds, and that it is the fundamental
density of (xt, Pt x, Pt,x) if both (1.14) and (1.15) hold.

1.7. Absolutely continuous right representations. The transition probabilities
constructed according to (1.14) have the following property: for any
s < t, x E Es and 11 E F>t it follows from Pi = 0 that PS Xrl = 0. If this
condition is satisfied, we say that the Ps ,x are absolutely continuous and
also that the right Markov representation (xt, Pt,x) is absolutely
continuous.

We prove the following propositions.
1.7.A. A necessary and sufficient condition for the right representation

(xt, Pt x) to be absolutely continuous is the absolute continuity of the transition
function p (s, x; t, F) = Ps, x{xt E F} (the latter means that if mt(I') = 0,
then p(s, x; t, F)= 0 for all s < t, x E Es ).

1.7.B. A Markov representation xt is absolutely continuous if and only
if there are absolutely continuous transition probabilities Pt x for xt.

1.7.C. An absolutely continuous right representation has a fundamental
density.

1.7.D. A right representation is absolutely continuous if it is dominated
by an absolutely continuous right representation.

1.7.E. An absolutely continuous right representation is dominated by an
arbitrary right representation.

1.8. The construction of "good" co-transition probabilities. The studies
which we begin in the second half of §3 lead to a satisfactory conclusion
in the absolutely continuous case. The result is the following.

T H E O R E M 1.3. If xt is measurable with respect to 4 (t, t ±) and if the
regular right Markov representation (xt, Pt,x) is absolutely continuous, then
it has a fundamental density, jointly measurable with respect to (s, x) and
(t, y), such that the co-transition probabilities defined by (1.15) have the
following property: for arbitrary bounded E<t the function Pu,xu t
is right-continuous on [t, 13), P-almost surely.

(If this condition holds, we say that the left representation (xt, Ptfl is
co-regular).

The next theorem can easily be derived from Theorems 1.2 and 1.3.
THEOREM 1.4. If a stochastic system 97(I) has an absolutely continuous

Markov representation xt, then it has two-sided Markov representations
(xt+, Pt+,x, Pt+,x) and (xt_, Pt-,x, Pt-,x) having fundamental densities
p(s+, x; t+, y) and p(s-, x; t-, y) that are measurable (jointly in their
arguments) and such that the following conditions hold:

1.8.A. The representations (xt+, Pt+,x) and (xt_, Pt-,x) are completely
regular.

1.8.B. The representations (xt ., Pt-,x) and (xt+, Pt+,x) are co-regular.
1.8.C. If Pt+ x = Pt+ y, then x = y. If Pt-,x Pt-,y, then x = y.
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1.8.D. For arbitrary t E [a, 0), xt+ is measurable with respect to F(t, t+).
For arbitrary t E (a, (3), xt- is measurable with respect to ,#'(t-, t).

1.9. The first (vertical) central representation. We say that a representation
(xt, Pt,x, Pt,x) is regular (respectively, completely regular) if both the
representations (xt, Pt x) and (xt, P(,X) are regular (respectively, completely
regular).

THEOREM 1.5. If a stochastic system y (I) has an absolutely continuous
Markov representation, then it has a completely regular two-sided Markov
representation (zt, Pt Z, Pt,z) having a fundamental density and separating
the states. It can be constructed from the representations described in
Theorem 1.4. according to the formulae

(1.16) zt = xt_ x xt+, Pt. xxy = Pt+, y,
Pt, xxy = Pt_,x (a < t <

and its fundamental density is given by the formula
(1.17) p(s, x x y; t, x' X y') = Pp(s+, y; q+, xq+)p(r-, x,_; t-, x'),

where q, r are arbitrary points of the interval (s, t) with _q < r.
Any regular two-sided Markov representation (zt, Pt Z Pt,z) of a stochastic

system g7(I) separating the states, is equivalent to (zt, Pt Z) Pt,Z)
We say that the representation (zt, Pt z, P") constructed in Theorem

1.5 is the first (or vertical) central representation of
1.10. The second (horizontal) central representation. This representation

requires the splitting of time.
We associate two points t- and t+ with each point t E T = (a, (t) and

single points a+ and 0- with the ends a and 0. We order the set V of all
these points, by setting t- < t+ and s± < t± when s < t. The points t-
and t+ are said to be neighbours. Let v1 < v2 E V. We denote by (v1,v2)
the set of points v E V for which v1 < v < v2 (it is empty if and only if
v1 and v2 are neighbours). The sets [VI, v2) and (v1, v2] are defined
similarly.

We define a mapping u -* v of V onto [a, 01, by setting 6 = t for
v = t- or t+. Let F (I) be a stochastic system on the interval T = (a, (3)
We associate with each pair u < v E V a a-algebra v) in 92 by the
following rule: if u and v are not neighbours, then . "(u, v) = 9 (u, v);
if u and v are neighbours, then ,y (u, v) is the trivial a-algebra consisting
of the two elements 0 and 92. Then the family y (u, v) satisfies the
conditions 1.1.A-1.1.C, and it is natural to call it a stochastic system with
the parameter set V. The definitions of Markov representations and also of
right, left and two-sided Markov representations, carry over unchanged to the
situation where the parameter set is not T but V (or any other ordered set).
The definition of fundamental density p(u, x; v, y) also holds with one
reservation: the density must be defined only for non-neighbouring pairs
u and v.

We introduce a topology in V, taking as neighbourhoods of t+ the
intervals [t+, u) with u > t+, and as neighbourhoods of t- the intervals
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(u, t-] with u < t-. We say that the two-sided representation
(x,,, P,,,x P°.x) is completely regular if for any u < w E V and any
P-integrable t E ,F >,,. and ii E f>w the function P x ri is continuous in
v for v E [u, w] almost surely with respect to Pt+,x) and the
function pU,xv l; is continuous in v for v E [u, w] almost surely with
respect to Ku'(xt_, Pt-,X).

THEOREM 1.6. Let 97(I) be a stochastic system on the interval T and
let k(u, v) be the corresponding stochastic system with the parameter set
V. If _F(I) has at least one absolutely continuous Markov representation
xt, then ,y (u, v) has a completely regular two-sided Markov representation
(x,,, P,,,x, P"), which has a fundamental density, separates the states, and
satisfies the following condition:

1.10.A. For P-almost all co the set of points t E T for which
Pt-.x t-

* Pt+,xt+ or pt-,xt_ * pt+,xt+ is at most denumerable.
The representation (x,,, P,,,x, P°,x) can be constructed by combining the

representations (xt+, Pt+ x, Pt+,x) and (xt-, Pt-,x, p` 'x) described in
Theorem 1.4. The fundamental density p(u, x; v, y) is obtained from the
functions p(s+, x; t+ y) and p(s-, x; t-, y) of Theorem 1.4. by setting

(1.18) p(s+, x; t-, y) = Pp(s+, x; q+, xq+)P(r-, xr-; t-, y),
(1.19) p(s-, x; t+, y) = Pp(s-, x; q-, xq-)P(r+, x,+; t+, y),

where q and r are arbitrary numbers in (s, t) with q < r.
Any regular two-sided Markov representation separating the states is

equivalent to this representation.
1.11. We conclude this section by describing the apparatus we shall use

in the proofs.
We make frequent use of the standard results of measure theory, such

as Fubini's theorem, the Radon-Nikodym theorem, and so on. We state
some less well known propositions which are also required.

I.H.A. Let d' be a family, closed under multiplication, of non-negative
functions in a space E and .F the u-algebra generated by this family. Suppose
that d' contains and the identity and is closed under addition, under
multiplication by non-negative constants, and under monotonic increasing
passage to limits. Then v% contains all functions f E 9

1.11.A'. Let Y' be a family, closed under multiplication, of bounded
functions in a space E, and ,F the v-algebra generated by it. Suppose that
? contains d' and the identity and is closed under linear operations and
bounded limit passage.' Then ' contains all bounded F -measurable
functions.

1.11.B. Let E1, E2, E3 be measurable spaces, F(x1, x3) (x1 E E1, X3 E E3)
a non-negative function, jointly measurable with respect to x1, x3, and
t(x2i P) a measure on E3 relative to I' and a measurable function with respect to

We say that fn converges boundedly to f if fn converges pointwise to f and all the functions fn are
uniformly bounded.
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x2. Then the formula

D (xi, x2) _
J F (xi, xa) It (x2, dxa)
Ea

defines a function that is jointly measurable with respect to xl and x2.
Propositions 1.11 .A and 1.11.A' are easily derived from Lemma 1.1 of

[11 or from [91, Chapter II, Theorem 20. A proof of 1.1.B can be found
in [ 1 ] (see Lemma 1.7.)

1.12. The concept of a support system is of particular importance for us.
A support system in a measurable space (E, 2) is a denumerable family W
of bounded functions (PER, that contains the identity and has the following
properties.

1.12.A. If a set oJ' of non-negative functions contains W and is closed
under addition, multiplication by non-negative numbers, subtraction (leading
to a non-negative difference) and monotonic increasing passage to limits,
then contains all non-negative measurable functions.

1.12.A'. If a set off' of bounded functions contains W and is closed with
respect to addition, scalar multiplication and bounded limit passage, then
c contains all bounded measurable functions.

1.12.B. If µn is a sequence of probability measures on 9 and if for
each ip E W the limit µ.((p) -+l(q)) exists, then there is a unique
probability measure µ on 9 such that g((p) = l((p) for all cp E W.

A support system (of course, non-unique) can be chosen in every Borel
space (E, 9) (see, for example [3], §3.2; Propositions 1.11.A and 1.11.A'
are used to verify 1.12.A and 1.12.A').

1.13. We also use the concept of a filtration.
A family of a-algebras .fit (t E T) in a space 0 is said to be a right

(respectively, left) filtration if .,s c At when s < t (respectively, when
s > t). If F (I) is a stochastic system, then .F<t and .F>t are, respectively,
right and left filtrations. Apart from these we also consider other filtrations.

A right (respectively, left) filtration At is said to be continuous if 4t
for any t is equal to the intersection of all 4u. with u > t (respectively,
u < t). A continuous right filtration can be constructed from an arbitrary
right filtration .4t by taking the intersection 4t+ of the a-algebras u1u for
all u > t. In particular, we obtain by this method a filtration F<t+ from

that if P is a probability measure whose domain of definition
contains all the a-algebras 4t, then the P-closures Xt of the a-algebras
.alt also form a filtration; dlP is continuous if.att is.'

We say that a random process xt is adapted to a filtration .alt if
xt for every t is measurable with respect to .alt .

Let F (I) be a stochastic system in a probability space (S2, ,F, P) and
(xt, Pt x) its right Markov representation fit. We say that a right filtration

' By the P closure of a a-algebra4we mean the a-algebra generated by.4 and all P-neglible sets.
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At is admissible for (xt, Pt,x) if xt is adapted to -4t and if for any
Ti E .F>

(1.20) P{rl IA) = Pt,,t,n (P-a.s.).

By (1.4.), the filtration is always admissible. According to (1.12),
for a regular representation (xt, Pt ,) the filtration F<t+ is also admissible.

Let At be a right filtration of 92. A Markov time (with respect to At)
is a mapping T of E2 into an interval T, extended to include the point 00,
such that {o): T(o) < t} for every t E T belongs to At. Here .4, denotes
the class of all sets A for which A of l { T < t) E 4t for any t E T. (This is
a a-algebra in 92.)

A Markov time T is said to be predictable if there exists a sequence of
Markov times Tn such that Tn f r and T1 < T2 ... < Tn ... for the set
(T < oo }. If T is a predictable Markov time, then .Lti_ denotes the minimal
a-algebra, which contains all the algebras .,f. (It is independent of the
choice of the sequence Tn.)

n

1.14. Let .At (t E T) be a right filtration, tt a non-negative random
process adapted to it, and P a probability measure whose domain of
definition contains all the a-algebras .4t. The triple (Ct, .4t, P) is called a
supermartingale if for any s < t E T

1 dls} < s (P-a.s.).

It is called a martingale if equality holds.
We need the following properties of non-negative supermartingales.
1.14.A. Let (fit, dlt, P) be a non-negative supermartingale and R a

denumerable everywhere dense subset of T = (a, (3). Then there is a
P-certain set E2' such that for w E 92' the function ir(w) has right limits
in R at all points t E [a, (3) and left limits in R at all points t E (a, 01.

1.14.B. Let st be a continuous right filtration and t" a non-decreasing
sequence of non-negative random processes such that to T tt. If
(lt, ./t, P) is a supermartingale, then so is (fit, .4t, P) Furthermore, if
the functions ti are right-continuous P-almost surely, then tt has the same
property.

Proofs of 1.14.A and 1.14.B can be found in [ 11 ] , Corollary 2.2 and
[9], Chapter VI, Theorem 16, respectively.

The following proposition can be derived from 1.14.A (see, for example,
[7], Chapter VII, Theorem 4.3).

1.14.C. Let 9 7,, =- F, be an increasing sequence of a-algebras in a
probability space (Q, F, P) and F the minimal a-algebra containing
all the F. If t E F and P t < o , then

lim P( I F.) = P(I; I (P-a.s.).
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§2. Regularization of a right Markov representation

2.1. We begin with a stochastic system 97'(1) in a measurable space
(Q, ,y) with parameter set T = (a, (3). Let (xt, Pt x) be any right Markov
representation of .f (I). Its regularization (xt+, Pt+,x) proceeds in three
stages. Firstly, in § §2.1.-2.3, we construct the state space Et+ as a certain
class of probability measures on the a-algebra ,y>t. Then, in §§2.4 and
2.5, we construct a random process xt+ = IIt u, with values in Et+. Finally,
in § 2.6, we prove that the set (xt+, Pt+ x) satisfies all the requirements of
Theorem 1.1, where Pt+,x is the measure corresponding to the point
x E Et+, according to the definitions of Et+. §2.7 deals with the unique-
ness question.

We consider the class K,, = K,(xt, Ptx), introduced in §1.2, of all
probability measures P on § >s dominated by (xt, Pt,x ). If P E K, then

(2.1) P Pt, xt 1j for all s < t, E ,¢'(s, t], 'n E ,yam'>t.

For by 1.1.B it suffices to verify this for ET (r, t], r E (s, t). But accord-
ing to (1.5), for such t the left-hand side is equal to PPr xr i; rl and the
right-hand side to PPP,xr i Pt,xt 11, and (2.1) follows from (1.1). The
condition (2.1) can be written as

(2.2) P{1 I y (s, t]) = Pt, xtri (P-a.s.) for s < t, ri E 97>t.

We equip Ks with the measurable structure generated by the functions
F(P) - Pg ('g E .F>,) The measurable space so obtained serves as a state
space Et+ for the process xt+. Our next task is to study the structure of
this space.

2.2. Throughout the remainder of this paper, we denote by R an
arbitrary denumerable everywhere dense subset of (a,13), and by
RCS, R>s, Rst its intersections with the intervals ( - 00, s), (s, + oo), (s, t).
We denote by Wu an arbitrary support system in the state space Eu.

LEMMA 2.1. Let s < v. If P' and P" are measures in Ks and
(2.3) P'p(xu) = P" cp(x,,) for all u ERs,,, cp E W.,

then P' = P".
PROOF. By 1.11.A, since (2.3) holds for all cp E W,, it holds for all

cp EX, For K E Rsv, 'g E97>. and cp(x) = P. x71, from the definition of
Ks we have P'1 = P'cp(x,), P"1 = P"cp (xu) and hence P'rl = P"rl. It remains
to observe that, by 1.1.B, if two measures coincide on all a-algebras F>
for u E Rsv, then they coincide on j->,.

2.3. We denote by At the set of all probability measures on the space
Et with the measurable structure generated by the functions
f(v) = v(r) (r E .%t). Let &#,a be the product of the spaces ale for all
t E Rsv. Then it is known (see, for example, [31, § 3.2) that At is a
Borel space. Hence ",#s, is also a Borel space.
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LEMMA 2.2. We fix s < v E T and associate with each P E K. the
family of measures

(2.4) mt(I') = P{xt E r) (t E R

Then the formula (2.4) defines an isomorphic mapping of Ks onto the subset
Y,,, of Jm that is characterized by the conditions

(2.5) mug (r) =
J

m,,, (dx) p (u,, x; u2, r) for all u, < u2 E R3,,,,
Eu,

Z,,, is measurable, so that Ks is a Borel space.
PROOF. We note that (2.5) is equivalent to the conditions

(2.6) mug (cp) _- f m,,, (dx) p (u,, x; u2, p) for all
Eui

FE.:u2.

u1<u2ER3,

q E Wu2.

(To derive (2.5) from (2.6) we have to use 1.12.A.) Both sides of (2.6)
are measurable functions on Asa. Therefore, the set Z., is a measurable subset
of Asa.

We now show that the set of one-dimensional distributions mn correspond-
ing to a measure P E K, satisfies (2.6). Indeed, the left-hand side of (2.6)
is equal to Pcp(xu2), and the right-hand side to PPu1,,;u, Cp(xu2), so that (2.6)
follows from (2.1). Thus, (2.4) defines a mapping from K, into Y,,. By
Lemma 2.1 distinct elements have distinct images.

We now show that to every m E Ysv there corresponds a P E K. that is
connected with m by (2.4). We choose a sequence rn y, s(rn E R,,) and

consider on y >,n the measure P,,(A) _ m,n (dx) P,n, x (A). By (2.6), these
E,'

measures are compatible, and by 1.1.C there is a measure P on s that
coincides with Pr on 97>,n; We claim that P E Ks. For every t > s there
exists an rn E (s, t). By (1.1), Prn,x t7 = Prn,x Pt,xt rl for all i7 E 97'>t, and
x E Ern, hence, Pnn = Pnpt,xt77 But P = Pn on ,f>t, therefore,
Pri = PPt xtiq. It remains to verify that (2.4) holds. For any u E Rs we
choose an rn E (s, u). Then for r E .%u by (2.5),

mu (r) = m,n (dx) p (rn, x; u, r) = P. {x,, E r} = P {xu E r}.

We have shown that (2.4) defines a bijective mapping of K, onto Z.
It is clearly measurable. To show that the inverse mapping is likewise
measurable, it suffices to check that the functions F(P) = Pri go over into
measurable functions on Y,,,. But by (2.4), these functions go into
f(m) = mt(W), where w(x) = P. xi.

2.4. We proceed to construct the random process rl,,, in the state space
K.
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THEOREM 2.1. Let 9F(I) be a stochastic system in a measurable space
(Q, y-) on the time interval T = (a, R), and let (xt, Pt x) be a right Markov
representation of it. Then there are measures nt ,, E Kt(t E T, w E 92)
having the following properties.

2.4.A. For any Ti E F>t the function Hr n is measurable with respect
to ,F (t, t+), and for s < t and P E Ks

(2.7) P{1 I .F(s, t+)} = Ht, rl (P-a.s.).

2.4.C. Let s < u, P E K, ii E F>u and R any denumerable everywhere
dense subset of T. There is a P-negligible set SZ' such that for all
WEE 92', t E [s, u)

(2.8) lit. w1 = Urn Pr, xrhl
ryt, rER

The way to prove the theorem is shown by Lemma 2.2: to construct the
measure nt W it is sufficient to construct a set of measures mu = m rt , in
sta. By comparing (2.4) and (2.8), we see that if the required measures
mu w exist, then for any u E RS,,, P E KS and q) E W. we must have(2.9) rr,. ((p) = liym p (r, Zr; u, (p) for all t E [s, ul (P-a.s.).

rER

This equation serves us as a guiding light. First of all, we must verify that
the limit on the right-hand side exists. To do this we use martingale theory.

We set p(r, xr; u, (p) = gr, ,F(s, r] = .ir. By (2.2), for s < r < u and
P E KS

Sr = P{cp(xu) I 4r} (P-a.s.).

Thus, Ar, P) is a martingale on (s, u). By 1.14.A, except in a
P-negligible set D(s, u, (p) E,F(s, u) for all t E [s, u), the limits of r(w)
exist as r tends to t through R. The set D(s, u, cp) does not depend on
choice of P in K. We form the union of the D(s, u, (p) for all
u ERs,,, cP E Wu and denote its complement by CS,,. Clearly,
C.. E ,F(s, v), 1 and for w E CS., the limit on the right-hand side
of (2.9) exists for all u E Rs and (P E Wu, t E Is, u). By 1.12.B, there are
measures mu,w on -Wu such that (2.9) holds for all
(o ECSa,uCR8,mEWu*

2.5. We now fix u E Rs,,, P E Ks and prove that for arbitrary (P E 9u.
2.5.A. mu j(p) = P{(p(xu) I F(s, t+)} (P-a.s.) for t E [s, u).
2.5.B. Outside a certain P-negligible set, the function mu

w
((p) is continuous

from the right in t on Is, u).
We denote by & the set of all (P Eflu, for which these assertions hold.

By (2.9) and (2.2), W,s c a5 . Hence, it suffices to confirm that cM is
invariant under the operations listed in 1.12.A. Only for 2.5.B and the
monotonic ascending limit passage is this not obvious. We observe that if

cP E dW, then the system (n u((p), F(s, t+), P) defines a supermartingale
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on [s, u) that is continuous from the right (this is clear from 2.5.A and
2.5.B). It remains to refer to 1.14.B.

We write w E 2tv if w E Ctv and the set m = mu u, (u E Rtv) defines
a point of Zt,, , that is, if

(2.10) mu (dx) p (u1, x; uz, (P) = mug, , (cP)

for all u1 < uz E Rtv, cP E Wuz.

Clearly, Qt,, E,y(t, v). By Lemma 2.2., to each point w E &2tv there
corresponds a unique measure IIt W in Kt such that

(2.11) IIt, wcP(xu) = mu, ((f) for u E Rtv, cp E .Au.

This measure clearly does not depend on the choice of v E (t, p), so that
the measures IIt , are defined on the union &t+ of all the s2tv(v E (t, ji)).
This union belongs to the a-algebra y (t, t-j-). Outside 92t+ we define
11 G, to be an arbitrary fixed measure in Kt.

Let P E Ks. By (2.2) and 2.5.A, for any u2 > u1 > t > s and cP E W1

5 mu1, w (dx) p (ui, x; u2, (P) = P {p (u1, xu1; u2, w) I F (s,, t

=P{P{cp(xua)IF(s, u1)) IF (s, t+)}=P{tP(xuz)I.c (s, t+)}
= muz, .((p) (P-a.s.),

so that (2.10) is satisfies P-almost surely. But according to 2.5.B, both
sides of this equation are continuous from the right P-almost surely.
Therefore, the intersection of the Slt for all v > t > s is P-certain. A
fortiori, the intersection of the E2t+ for all t > s is P-certain.

We prove now that the measures IIt, W satisfy 2.4.A. By (2.9) and (2.11),

(2.12) IIt, .cp (xu) = l ym p (r, xr; it, (p) for u E Rtv, T E Wu, w E Qtv
riR

Moreover, since IIt w E Kt, by (2.1), for t < u and Ti E F>u we have
(2.13) nt..11 = IIt, . Pu, &i.

We write rl Eon', if IIt u, rl is measurable with respect to F(t, v). From
(2.12) it is clear that a% contains all the functions cp(xu) (u E Rtv, (P E W,,).
By 2.2, this is also the case for all cp E 9u. From (2.13) it follows that
o E _ Y>u for any u E Rt v. By 1.1.B, %' ,y>t. Thus, for any
11 E.F>t, IIt, Ti is measurable with respect to y(t, v). Since v is arbitrary,
nt ,, rl is measurable with respect to F(t, t+). By comparing (2.11) and
2.5.A we conclude that (2.7) holds if '] = cp(xu), it E Rtv, cp E.Wu. Relying
on (2.13), we extend this formula to i E F>u, and by using 1.1.B, to
Ti E F>t.

It remains to prove 2.4.B. Now (2.8) is satisfied P-almost surely for fixed
t, because by (2.7) and (2.2), both sides of (2.8) are equal to
P{i J,y(s, t+)}.The right-hand side of (2.8) is right-continuous on [s, u).
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Therefore, it is sufficient to show that the left hand-side is right-continuous
P-almost surely. This follows from 2.5.B., (2.11), and (2.13).

2.6. We proceed to the proof of Theorem 1.1. We consider the random
process xt+(w) = IIt G, (t E [a, 0)) in the Borel space Et+ = Kt and denote
by Pt+ the measure on ,4F>t corresponding to x E Et+ in accordance with
the definition of Et+. Clearly,

(2.14) Pt+,xt+= nt.0)
We prove that (xt+, Pt+,x is a right Markov representation of the stochastic
system ,F(I), satisfying the conditions of Theorem 1.1.

By 2.4.A, the mapping xt+: 92 -> Et+ is measurable with respect to
,F(t, t+) and for any P' E Ks

(2.15) P'{n I .F(s, t+)} = Pt+,xt+( )1 (P'-a.s.) for n E F>t
In particular, setting P' = P5., we see that

Ps+, Ps+, xt+n for E 5"(s, t+), 11 E ,F>t,

so that (xt+, Pt+,x) satisfies (1.1). On the other hand, applying (2.15) to
P' = P,,x, we have

(2.16) Ps, xn = Ps, xPt+, xt+ n for n E F>t
We verify that (xt+, Pt+ x) satisfies (1.4). It is sufficient to prove that the
condition is satisfied for bounded i; and 77. Let t < r < u, E F,t, rl E.F>u.
(the a-algebra .F ,t is constructed in accordance with the representation xt).
Since (xt, P,,x) satisfies (1.4), and since F;t = F<, and Y>. SE: 97>r,
we have Purl = PtP, x 77. Passing to the limit as r y. t, and taking 2.4.B and

r(2.14) into account, we conclude that (1.4) holds for all T] E y>u, t < u.
By 1.1.B, (1.14) holds for all Ti E F>t.

From 2.4.B and (2.14) it follows that the representation (xt+, Pt+,x) is
completely regular. Clearly, it separates states. Since Pt+ x E K, it is
dominated by (xt, Pt,x). Finally, 1.4.C has already been established above.

2.7. Before proving the last part of Theorem 1.1, we verify that each
regular right representation (xt, Pt x) satisfies (1.12). ((1.13) can be verified
similarly.) For any t < r < u and any bounded functions t E F<t+ and
r E F> u by (1.4),

PET) = xrt1.

Passing to the limit as r .y t, we have
(2.17) Ply = P Pt, xtn.

By 1.1.B, since this equation is valid for all u > t and n E 9 >u it holds
for all n E.F>t. Since Pt xtn is measurable with respect to F<t+, (1.12)
now follows from (2.17).

The final statement of Theorem 1.1 follows immediately from the
following lemma.

LEMMA 2.3. If two regular right representations (xt, Pt,x) and (xt, Pt,x )
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are dominated by some representation (xt, Pt,x) then

(2.18) Pt xt = Pt zt for all t E [a, Q) (P-a.s.).

If, in addition, 0, Pr,z) and (xt, Pt ,t) separate states, then they are
equivalent.

PROOF. From (1.12) it follows that for any t < u, rl E F>u

Pt Pt, xtrl (P-a.s.)

Therefore, by 1.4.A, on a P-certain set 92',

(2.19) Pt xttP(xu) = Pt xt(P(xu) for all t E [a, 0), u E R>t, cp E TL,,

But the measures Pt
xt

and Pt
Xt

belong to Kt = Kt (xt, Pt x), and by
Lemma 2.1, it follows from (2.19) that Pt

xt
= Pt,zt on S2' for all

t E [a, p), so that (2.18) holds.
The formula x -* Pt x defines a measurable mapping from the state space

Et of xt into Kt. It is bijective if (xt, Pt x) separates states. It is known
(see [9], §39.5, Theorem 2) that under a bijective measurable mapping
from one Borel space to another the imUes of measurable sets are
measurable. Therefore, the image Qt of Et in Kt under the mapping
x -> Pt x is measurable, and this mapping is an isomorphism of Et onto
Qt. Similarly, the mapping x -+ Pt x is an isomorphism from Et onto a
measurable subset Qt of Kt. We set Kt = Qt_fl Qt and denote by Et and
Et the inverse images of this set in Et and Et. To_each x E Et there
corresponds a unique y(x) E Er such that x = Pt ry(x), and in this way
we establish an isomorphism from Et' to Et. By (2.18), for w E 62' and any
t E [a, R) we have xt(w) E Ell, xt (w) E Et and y[xt (w)] = xt(w).

§3. Regular right representations

3.1. In § 1.5 a criterion for regularity and for complete regularity were
formulated in terms of transition functions. The necessity is obvious. Let us
prove the sufficiency. The cases of regularity and complete regularity are
treated in exactly parallel fashion, hence we give the details only for the
former. We denote by a the set of all functions cp on En for which
p(t, xt; u, (p)is continuous from the right in t on the interval [a, u),
P-almost surely. By hypothesis, cW contains indicators of all sets r E R.-
Clearly, <' is invariant under linear operations. By 1.14.B, dW' is also
invariant under monotonic increasing limit passage. Therefore, according to
1.11.A, o4B contains all functions cp E .u. Next, if ri E .y'>u, then

(3.1) Pt, xill = At' Xt; U, (p),

where qp(x) = Pu, xri, Hence Pt xtq is right-continuous in [a, u), P-almost
surely.
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We note two further properties of regular right representations.
3.1.A. If 1l E F (t, t+), then there is a function p E R t t such that

(3.2) 1] = q(xt) (P-a.s.) .

For (1.12) is applicable to rl, and the right-hand side is equal to rl, the
left-hand side to cp(xt) for tp(x) = Pt, xnl.

3.1.B. If 'l E F>., then for P-almost all w the function Pt, xt(()1i has

left limits at each point of the interval [a, u).
For it is clear from (1.12) that the triple (Pt, xtyl, y <t+, P) defines a

martingale on [a, u). By 1.4.A, this is continuous from the right. Hence
the assertion follows from 1.14.A.

3.2. Let At be a (right or left) filtration of S2, and P a probability
measure whose domain contains all the a-algebras .fit. A real-valued
random process 71,(w) that is adapted to At and P-almost surely right-
continuous in t is said to be strictly measurable if -41 is a right
filtration and strictly reconstructable if At is a left filtration. A process
flt(w) that is P-almost surely left-continuous in t and adapted to the
right filtration .'t is called strictly predictable. In T )C E2 we consider
the a-algebra generated by all the strictly measurable processes. We can
sets and functions that are measurable with respect to this a-algebra
well-measurable. Similarly, we define reconstructible and predictable sets
and functions as those that are measurable relative to the structure
generated by the strictly reconstructible and strictly predictable processes.

Under the hypothesis that the measure P is complete, that the right
filtration At is continuous, and that each a-algebra At contains all
P-negligible sets, a well-measurable structure has a number of remark-
able properties.

3.2.A. If A is a well-measurable set, the formula
T(to)= inf {t: (t, (o) E A) defines a Markov time.' (It is called the debut of
A).

3.2.B. If the function tp(t, (o) is well-measurable, then for any
Markov time r the function cp[T((o), w] is measurable with respect to Al.

3.2.C. For two well-measurable functions tpl and tp2 to be
indistinguishable, it is necessary and sufficient that
P(tpl(T, w) cp2(T, (0)) - 0 for every Markov time T.

(Two functions q and P, are said to be indistinguishable if P-almost
surely 91(t) = (p,(t) for all t.)

3.2.D. For a bounded well-measurable function p(t, w) to be
right-continuous in t P-almost surely, it is necessary and sufficient that

-J, Pgp(lim TO for any non-increasing sequence of Markov times rn.

1) If A is empty, we set inf A = + -.
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3.2.E. For a predictable function 4p(t. w) to be left-continuous P-almost
surely, it is necessary and sufficient that tp(,r,,) - cp(lim in,) P-almost surely
for any non-decreasing sequence of predictable Markov times rn.

Proofs of these properties can be found in [91 (Ch. VIII, Theorems 15
and 21; Ch. IV, Theorems 49 and 52) and [101 (Ch. IV, Theorem 28.11
and Theorem 24). (Properties 3.2.A and 3.2.B are proved under the require-
ment of progressive measurability, which is weaker than well-measur-
ability.)

3.3. We recall that with each transition function there is associated a
measurable structure in the phase space 6 (see §13). It is generated by
the functions

(3.3) At, x) = p(t, x; u, r) (u E T, r E fu).
To each right Markov representation there corresponds a transition function
and hence, a measurable structure in 6.

The application of Propositions 3.2.A-3.2.D to Markov representations is
based on the following lemma.

LEMMA 3.1. Let (xt, Pt,x) be a regular right Markov representation. If
f is a measurable function on .6, then f(t,xt) is well-measurable
with respect to 97<t+.

PROOF. The functions f for which the assertion holds form a set that
is invariant under linear operations, multiplication, and limit passage. The
functions (3.3) belong to this set, since the corresponding process f(t, xt)
is continuous from the right P-almost surely and compatible with 3<t+.

3.4. We now derive some properties of the measurable structure in 6,
which we need later.

3.4.A. If it E ,F>u, then Pt xri is a measurable function on
6-<u = 6la, ul.

The proof proceeds on the same plan as the derivation of the regularity
criterion in §3.1.

3.4.B. The measurable structure in 9 is generated by the denumerable
family of functions

(3.4) f(t, x) = p(t, x; it, (P) (u E R, (P E Wu)
For let 9 be the a-algebra in 9 generated by the functions (3.4).

Relying on 1.12.A, we can see that all the functions
p(t, x; it, (p) (u E R, (P E £ ) are measurable with respect to ff. For any
u E T and any FE£u by 1.3.C,

p (t, x; it, r) _= lim p (t, x; r, (pr),
rtu, rER

where <pr(y) = p(r, y; it, r), from which it follows that the functions (3.3)
are measurable with respect to d.

3.4.C..Suppose that the right representation (xt, Pt,x) is regular. Then
there is a P-certain set f2 such that F(t, xt(w)) is a Borel function of t for
any measurable function F on 9 .
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For let us write w E E2 when F(t, xt(w)) is right-continuous in t for all
functions (3.4). Clearly P(S2) = 1. Thus, the set oft' of functions F for
which 3.4.C is valid contains the functions (3.4) and the identity and is
closed under addition, multiplication, and limit passage. It remains to use
1.1.A.

3.4.D. Let (xt, Pt x) be regular. If f is a measurable function on
9>t then f(t, xt) is measurable with respect to the P-closure

. t of F>t. Moreover, it is reconstructable with respect to the filtration
P>.F>t.
From the relation

p (t, xt; u, r) =limp (r, x,.; u, r) (P-a.s.)rt
it follows that the assertion holds for all the functions (3.3). The further
arguments are the same as in the proof of 3.4.C.

3.5. Let .4t be an admissible filtration for (xt, Pt x ). We assume that
to every u E T there corresponds a random variable Ylu E>u, and we set

(3.5) F"(t, x) = Pt, xilu (t < u).
Since the filtration .fit is admissible, by (1.20) for t < u

(3.6) P{T]u I .fit) = F"(t, xt) (P-a.s.).

The representation (xt, Pt x) is said to be strong Markov if the corresponding
equation

(3.7) P{rl, I ,,r} = F"(t, xt) (P-a.s., z < u)

holds for any Markov time z (with respect to 4t).
Every right regular representation (xt, Pt x) is strong Markov. This

follows at once from Theorem 3.1. of [41.1
We need a corollary to (3.7). Let a be an A,-measurable random variable

with values in T, having at most denumerably many values. Multiplying (3.7)
by the indicator function of the set a = u > z and summing over u we
obtain

(3.8) P(rla I Ar) = F6(t, xr) (P - a.s., r < a).
If nu is right-continuous on [s, o) Ps,x -a.s. for all s, x and if the repres-

entation (xt, Pt x) is completely regular, then (3.8) also holds when a has
arbitrarily (not necessarily denumerably) many values. This can be shown
by a limit argument or it can be derived from Theorem 3.2 of [4].

3.6. A set r in 9 is said to be inaccessible for (xt, P) if xt r for
all t, P-a.s.

Let (xt, Pt,x) be a fixed completely regular right Markov representation.

1) Strictly speaking, (3.7) is proved in [4] only for'lu = xr(xu), but the proof also holds for arbitrary r1u.
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We call a set F c t polar if for any s with a < s < 0 and any
P' E K,(xt, Pt, x) P'{xt §4 P for all t E (s, jl)} = 1. Finally, we call a
point x E Et essential if Pt, x{xt = x} = 1.

From results in [4], §4 it follows that the set of all inessential points
is a) measurable in 6 and a Borel space; b) polar; and c) inaccessible.
Therefore, from any arbitrary completely regular representation we can obtain
a completely regular representation without inessential points (by simply
discarding the latter).

3.7. Let (xt, Pt x) be a right Markov representation and (xt+, Pt+,x) its
regularization, as described in §2. The state space coincides with the class
of measures Kt = Kt(xt, Pt x). It is not difficult to show that a measure
P' E Kt is an essential point if and only if P'(A) = 0 or 1 for all
A E ,g(t, t+). In the terminology of [31, this means that the set of
essential points can be identified with the entrance space for (xt, Pt,x ). Thus,
the regularization (xt+, Pt+ x) of a right Markov representation can be
regarded as defined in the entrance space for (xt, Ptx)

3.8. Let p(s, x; t, I') be a transition function in spaces E. A non-negative
function ht(x) (t E T, x E Et) is said to be excessive if a) for any t it is
measurable in x; b) p(s, x; t, ht) < hs(x) for all s < t;
c)p(s, x; t, ht) -hs(x)astls.

From [41, §5 it follows that if p(s, x; t, r) is a transition function of a
regular right representation (xt, Pt x), then every excessive function h has the
following property: ht(xt) is P-almost surely right-continuous in t on [a, $3).
If the representation (xt, Pt x) is completely regular, then for any
s E [a, (3) and P' E KS(xt, Pt x), the function ht(xt) is P'-almost surely
continuous from the right in t on [s, (3).

3.9. We fix a regular right Markov representation (xt, P,,x) and set
2P-4t =

We say that the two functions fi and f2 on 9 are equal quasi-
everywhere or quasi-equivalent if they are equal outside some inaccessible
set. By 3.2.C and Lemma 3.1, this is the case if and only if
P{fi(i, xT) fz(r, xs) } = 0 for any Markov time z (with respect to At )
(assuming that both functions are measurable.)

Let 71t(w) be a non-negative function on T X 92, jointly measurable with
respect to t and w (in T we consider the Borel measurable structure). We
define the projection of ri on 9 to be a measurable function on 9 satisfy-
ing the following condition: for any Markov time 7-

(3.9) P(,nt I ,) = f(-r, xt) (P-a.s., r < °°)

If the projection exists, it is unique to within quasi-equivalence.
THEOREM 3.1. The projection on 9 exists for any bounded recons-

tructable function r!. If rl is strictly reconstructable, then its projection is given by
the formula
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(3.10) f (t, x) = lim Pt, xilr quasi-everywhere.
rlt, rER

and f(t, xt) is P-almost surely continuous from the right in t.
PROOF. The family of functions 17 having projections on , is closed

under linear operations and monotonic increasing passage to a limit. (If
if t 77 and f" is the projection of rln, then outside a certain inaccessible
set f" is non-decreasing and its limit is the projection of rl). By 1.11 .A, it
is sufficient to prove the theorem for strictly reconstructable functions.

Thus, let rl be strictly reconstructable. We set (t, x) E B if the limit on the
right-hand side of (3.10) exists. We denote the limit by f(t, x) and set
f(t, x) = + o outside B. We now claim that f is the projection of rl on 9.

To show that f is measurable it is sufficient to establish the measurability
of the lower limit fl and the upper limit f2 of Fr(t, x) = Pt x77r as
r . t, r E R. We observe that

f t (t, x) =1im inf F,,(t, x),
n- oo rER

where F,(t, x) = Fr(t, x) where t < r < t + n and + o elsewhere. Since
Fr and t are measurable functions on , so is and hence also fl.

The measurability of f2 is proved similarly.
We choose a version t(w) of the conditional mathematical expectation

P{r I At} and let C ={i C oo, f(r, xt)}. If 1w E C, then for some
positive s(o) > 0 there is in any interval ( i, i + a point r E R such
that

(3.11) I - F'(i, x.) I > 8((o).

We enumerate the points of R and denote by a, the first point belonging
to i, i n) for which (3.11) holds (if there is no such point, we set

a, _ + o), It is easily seen that the function a, is measurable with respect
to -4,r- On C, a, > r, a, --. r and F6" (i, x,) I > s((o) for all n. On
the other hand, by (3.8),

F"(-r, xT) = P{17(," I Eli) - . PIT I, ,fit) (P-a.s., C)
Hence P(C) = 0 and f satisfies (3.9).

Since rl is bounded, it follows from (3.9) that P{f(,r, xti) = oo} = 0
for any Markov time r. Since f is measurable, the set f = 00 is inaccessible.
But this set is the complement of B. Therefore, (3.10) holds.

From (3.9) it follows that Pi?, = Pf(r, xr), and from 3.2.D and the right
continuity of qt it follows that f(t, xt) is continuous from the right.

3.10. We extend Theorem 3.1. to functions whose values are probability
measures.

We denote by ,111(Y) the set of all probability measures on a measurable
Borel space Y. A function ?It,,, with values in AI (Y) is said to be reconstruct-
able (respectively, strictly reconstructable) if for any non-negative measurable
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function cp on Y the real-valued function Tit, .((p) is reconstructable (respect-
ively, strictly reconstructable).

T H E ORE M 3.2. If rlt u, is a strictly reconstructable function with values in
elt(Y) then there exists a function pt " with values in i/t (Y) such that
Pt, x((P) is the projection of 'qt, w((P) on F, for any non-negative
measurable function cp on Y.

PROOF. We consider a support system W in the space Y and set
v;"(F) = Pt,"rlr(1). By (3.10), the limit

(3.12) lim v;' x (cp)
ryt, rER

exists for all cp E W if (t, x) is outside some inaccessible set C. By 1.12.B,
to each (t, x) C there corresponds a probability measure pt," on Y such
that the limit (3.12) is equal to Pt. x((p) for all cp E W. For (t, x) E C we
set p, ,x = v, where v is an arbitrary fixed probability measure on Y. By
Theorem 3.1., pt, x((p) for cp E W is the projection of 11t. .((p) on 9. But
(3.9) remains valid under linear operations and monotonic increasing passage
to a limit, and by 1.12.A, the theorem holds for all non-negative measurable
cp.

3.11. We now apply the general results on projections to the study of
Markov processes.

THEOREM 3.3. Let (xt, Pt,") be a regular right representation and
y(w) a measurable mapping of (Q, F<,+) into a Borel space (Y, My).
Then there is a function p, ,x defined on t->3, taking values in St(Y) and
such that for any bounded function cP E .4 y the following conditions hold:

3.11.A. Pt, x(cp) is measurable with respect to (t, x).
3.11.B. Pt, xt (cP) is P-almost surely right-continuous in t on [s, (3).

3.11.C.Fort>s,

(3.13) P{(p(y) I F>t) = Pt. xt ((p) (P-a.s.)

These properties define pt 'x uniquely to within quasi-equivalence.
We call pt " the indicatrix of y(co).
PROOF. 1°. Let W be a support system in Y. If p' and p2 are two

indicatrices of the mapping y, then, by 3.11.C, P-almost surely
Pt, t(T) = Pi, xt((q) for all t E R and cp E W; by 3.11.B, equality holds for
all t E [s, R) and cp E W, outside some P-negligible set C. By 1.12.A, it
follows that outside C it holds for all t E [s, (3) and all cp E Say. Hence
pt, = p2 X quasi-everywhere. This proves the uniqueness of the indicatrix.
We now proceed to prove the existence.

2°. Since Et and Y are Borel spaces, there is a function 7rt x with values
in e4t(Y) such that at, x((q) for cP E My is measurable in x and

(3.14) P{(P(y) I xt ) = at, xt((q) (P-a.s.).

Since cp[y())] E F<t for s < t, according to (1.10) it follows from (3.14)
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that

(3.15) P{cp(y) I .y>t) = at, xt(w) (P-a.s.),

so that (at, xt((P), F>t, P) is a martingale on the interval (s, (3). According
to 1.14.A, there is a P-negligible set C such that for w C the limit

lim nr, x,{W) ((P)
ryt, rER

exists for all t E [s, (3) and p E W. By 1.12.B, for w C and t E [s, (3)

there is a measure rlt, w E 41(Y) such that
(3.16) 11t, (tP) = lim nr,,It,

rER

3°. We denote by c the set of all bounded functions cp for which
(3.16) holds P-almost surely, and prove that ' contains all bounded
R -measurable functions. By 2°, R contains W. Clearly, e7E' is closed under
addition and scalar multiplication. By 1.12.A', it suffices to verify that off'
is closed under bounded convergence.

Thus, suppose that functions cpn in e ' converge boundedly to w ; we
claim that cp E &. Clearly 11t, °,((p,,) -+11t. .((p) Therefore, it is sufficient
to verify that for some sequence nk

(3.17) sup I nr, Sr (w) -nr, Sr ((Pnk) I - . 0 (P-a.s.).
rER>s

For brevity we write zn,(r) = nr, xr(tP - (wr) Using the well-known
Kolmogorov martingale inequality, for any c > 0

P { sup Iz, (r) I:>c}<c
rER>s rER

By (3.15), the right-hand side is equal to c-1P I q(y) - WPn(y) I and tends
to zero as n -* -. We choose the nk so that P I cp(y) - pnk(y) I < 1/0.
Taking c = Ilk we observe that, with probability not less than
1 - Ilk', sup I zn (r) I < Ilk. (3.17) now follows from the Borel-Cantelli
lemma.

4°. By (3.16), rlt , is a strictly reconstructable function on [s, (3) X fl with
values in J7(Y). We denote by pt, its projection on 9>8 as defined in
Theorem 3.2. Then 3.11 .A is satisfied by the definition of a projection.
3.11.B follows from Theorem 3.1, since by (3.16), ??is strictly reconstructable.

It remains to establish (3.13). The function 17t, (,(cp) is measurable with
respect to .4t = .y <t+. Applying (3.9) to r = t, we have

Pt, xt((p) = P{rlt. °,((p) I .att) = Tit, 0,((p) (P-a.s.).
But from (3.15), (3.16) and 1.14.C it follows that

71t.. ((P) = lim P ((P (ii) I . >r} = P ((p (y) 13>t} (P-a.s.).'It, rER

3.12. LEMMA 3.2. Let (xt, Pt.x) be a regular right representation,
r1 < r2 E T, and yi(w) measurable mappings from (Q, .F<rt+) into a
Borel space (Y`, R) that are connected by the relations

(3.18) P{y1(co) E F 1 .41 = p(I', y2((o)) (P-a.s.),



Markov representations of stochastic systems 243

where .4 is a a-algebra containing p is a probability measure with
respect to I' ER, and a .%2 -measurable function with respect to y2. Then
the indicatrices p' of the mappings yi are connected by the relations

pi, x((p) = f p(q, z)pi, x(dz) quasi-everywhere on F,r2,

and the exceptional inaccessible set is measurable and does not depend on
(pER'.

PROOF. It is sufficient to verify that the right-hand side is an indicatrix
of y,. It can be written in the form pt, x(cp), where p(z) = p((p, z). Now
3.11.A and 3.11.B are obvious from this. It remains to prove 3.11.C, but by
(3.18) and (3.13), for t > r2 we have
P{p(yl) I .F>t} = P[P{q (yl) 1 -A} I ,F>tl = _

= Plcp(y2) I ,>t1 = Pi, x((p) (P-a.s.).

§4. Absolutely continuous Markov representations

4.1. To prove Theorem 1.2. we need a number of auxiliary propositions.
Let xt be an absolutely continuous Markov representation of a stochastic

system Al"). We consider a density p(s, x; t, y) of measure mst
with respect to ms X mt and set

(4.1) p (s, x; t, B) = f p (s, x; t, y) mt (dy),
B

(4.2) p (s, A; t, y) = f ms (dx) p (s, x; t, y).
A

4.1.A. For any s < t < u and f ERt

(4.3) P If (xt) 12 } = P (s, x8; t, f) (P-a.s.),

(4.4) P If (xt) I >u} = P (t, f; u, xu) (P-a.s.).

To establish (4.3) it suffices to note that for any cp E 93

P(P (x3) P (s, x3; t, f) = f f ms (dx) cP (x) p (s, x; t, y) f (y) mt (dy) = Pcp (x$) f (xt),

and to use 1.2.B'. (4.4.) is proved similarly.
4.1.B. For any s < t < u
(4.5) p(s, x; t, Et) = 1 for ms-almost all x.
(4.6) p(t, Et; u, y) = 1 for mu -almost all y.
This follows at once from 4.1.A.
4.1.C. For any s < t < u, cP E M 3, and V E R.

(4.7)
J

p (s, x; t, dy) p (t, y; u, V) = p (s, x; u, )

for m,.-almost all x, and

(4.8) f p (s, cp; t, y) p (t, dy; u, z) = p (s, (p; u, z)
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for mu-almost all z.
Let us prove (4.7), for example. By (4.3),

AS, x3; u, ,V) = P{p(xu) I P{P[iy(xu)

= P{p(t, xt; u, '1') I .F 3} = p(s, xs; t, f) (P-a.s.),
where f(y) = p(t, y; u, V/). This is equivalent to (4.7).

LEMMA 4.1. We can construct a transition function p(s, x; t, B) and a
cotransition function p(s, A; t, y) such that for any s < t, A E R8, and
BERt

(4.9) P {x$ E A, xt E B} _ m, (dx) p (s,, x; t, B) =
J

p (s, A; t, y) mt (dy)
A B

and that the measures p(s, x; t, -), p(t, -; u, y) are absolutely continuous
with respect to mt.

PROOF. We write x E Es if (4.5) holds for all t E R,, and (4.7) for
all t < u E R>, and 0 E Wu. By means of 1.12.A (4.7) can be extended
to all 1V E Ru. By 4.1.B and 4.1.C, we have m,s(Et \ Es) = 0.

We denote the left-hand side of (4.7) by p(s, x; t, u, Vi). Let
ri < r2 E Rst. Setting t = rl, u = r2, t(z) = p (r2, z; t, B) in (4.7), we
conclude that for x E Es the expression

(4.10)
JJ

p (s, x; ri, dy) p (ri, y; r2, dz) p (r2, z; t, B)

is equal to p(s, x; r2; t, B). On the other hand, for m,. -almost all y
S P (ri, y; r2, dz) n (r2, z; t, B) = p (r1. y: t, B),

therefore (4.10) is equal to p(s, x; rl; t, B). Hence, for x E Es, p(s, x;r, t, B)
does not depend on the choice of r E Rst. We denote it by p(s, x; t, B).
For x E ES \ Es we set p(s, x; t, B) = p(s, as; t, B), where as is a fixed
point of E. Since p(s, x; t, B) = p(s, x; t, B) for ms-almost all x, the first
equation of (4.9) is satisfied. It is easy to see that p(s, x; t, B) satisfies
1.3.A-1.3.C and is absolutely continuous with respect to mt.

LEMMA 4.2. Let p(s, x; t, B) be a transition function satisfying the
conditions of Lemma 4.1. Then we can choose a density p(s, x; t, y) of
the measure p(s, x; t, -) relative to mt that is jointly measurable with
respect to (s, x) and y, and satisfies 1.6.A.-1.6.B.

PROOF. By the definition of the measurable structure in 46 (see § 3.3),
the function p(s, x; t, B) is measurable with respect to (s,x) for each B.
Therefore, the measure p(s, x; t, -) has density p(s, x; t, y) relative
to mt, which is jointly measurable with respect to the pair (s, x) and y
(see, for example [21, §0.15). Clearly, p(s, x; t, y) is also a density for
mst with respect to ms X mt, so that Propositions 4.1.A-4.1.C are
applicable to it.

Let Eu be the subset of Eu such that (4.6) holds for all t E R,,,, and
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(4.8) for all s<tER<u and ipEWS. By 4.1.B-4.1.C,mu(Eu \Eu)=0.We
write _

(4.11) p (s, x; r; t, y) = p (s, x; r, dz) p (r, z; t, y) _

= f p (s, x; r, z) p (r, dz, t, y).

From (4.8) it follows that for z E Eu and ri < r2 E R<u

p(rl, y; r2; u, z) = p(r1, y; u, z) for mr -almost all y.

Integrating with respect to p(s, x; ri, -) and using 1.3.C, we have
p(s, x; r2; u, z) = p(s, x; ri ; u, z). Hence, for arbitrary s < t, x E Es, and
z E Eu the function (4.11) does not depend on the choice of r E Rsu.
We denote it by p(s, x; u, z). For z E Eu \ Eu we set p(s, x; u, z) = p(s, x; u, bu ),
where bu is a fixed point of E. By the definition of p(s, x; t, y), for
z E Eu

(4.12) f p (s, x; t, y) mt (dy) p (t, y; u, z) _

((r
J

J J J
{

p (s, x; ri, dzt) P (ri, zi; t, y) mt (dy) P (t, y; r2, dz2) P (r2, z2; u, z) =

p (s, x; ri, dzi) p (ri, z1; t, dy) p (t, y; r2, dZ2) P (r2, z2; u, Z) _

_ p (s, x; r2i dz2) p (r2, Z2; u, z) = p (s, x; u, z)

(here ri E Rst, r2 E Rtu, and we have used 1.3.C). Moreover,

(4.13)
J

p (s, x; t, y) mt (dy) = f
1

p (s, x; r, dz) p (r, z; t, y) mt (dy) _
B a

=
J

p (s, x; r, dz) p (r, z; t, B) = p (s, x; t, B).

By (4.6), for y E Et
(4.14) f ms (dz) p (s, z; t, y) =

= r J m,, (dz) p (s, z; r, v) p (r, dv; t, y) = 5 p (r, dv; t, y) = 1.

Clearly, 1.6.A follows from (4.12) and 1.6.B from (4.14). By (4.13),
p(s, x; t, y) is a density for p(s, x, t, -) with respect to mt. Finally, from
(4.11) it is clear that p(s, x; t, y) is jointly measurable in (s, x) and
Y.

4.2. The first part of Theorem 1.2., asserting the existence of a fundamental
density follows at once from Lemmas 4.1 and 4.2. We claim that (1.14)
defines transition probabilities for xt.

For any s < t and x E ES we consider the measure Ps x on F>t defined
by

Ps, x(C) = PP(s, x; t, xt)xc.
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Suppose that t < u, cp E `fi't, 'n E _F>u and that p(t, y; u, is measurable
jointly in y and w. Applying Fubini's theorem and using (4.4) we have

Pw (xt) Pt xtTl = w (tJ) mt (dy) Pt vrl = P w (y) mt (dy) P (t, y; u, xu) T1=

Pp (t, w; U, xd) '1= P {P ]w (xt) I>ul TI} = Pw (xt) '1

Hence it follows that for t < u and il E .F>u
(4.15) P{rl I xt} = Pt xt rf (P-a.s.)

Now let s < t < u and 'n E F>u. By 1.6.A and (4.15),
(4.16) P$ -l = PP (s, x; u, xu) 1l =

= P
J

p (s, x; t, z) mt (dz) p (t, z; u, xu) 1=

= I P (s, x; t, z) rat (dz) Pt zT1= PP (s, x; t, xt) Pt xt,q=

= Pp (s, x; t, Xt) P {11 I xt} = PP (s, x; t, xt)11 = PSt, xll

We consider an arbitrary sequence to y, s. By (4.16), ptn = Ptn+1 on
s,x

six,F>t,,. Therefore, by 1.1.C, there exists a measure P, ,x on 'F>s that
coincides with Ps x on ,y >tn. For any t > s there is a to E (s, t), and
by (4.16), Ps,x = Ps x = Ps,x on ,7>t. Hence (1.14) is satisfied. From (1.14)
it follows that PS x77 is a measurable function of x.

According to (4.15), for t< u and i E F>u

P{rl I xt} = Pt, xt 11 (P-a.s.),

therefore (1.2) is satisfied. As xt satisfies 1.2.B', (1.4) also follows from
this.

Lets <r< t, E . (r, t] and Ti E g>t. By (1.12) and (1.4),

P3. xh = Pp(s, x; r, xr) x Pt. xtr)-

Hence (1.1) holds for E ,¢(r, t] and r E (s, t). Using 1.1 .C, we conclude
that (1.1) holds for all l; E F(s, t]. Thus, the P, ,x are the transition
probabilities for xt.

4.3. We now prove the results stated in § 1.7.
PROOF of 1.7.A. The absolute continuity of the transition function

p(s, x; t, r) clearly follows from that of (xt, Pt x). On the other hand, if
Ti E .F>t, then, with w(x) = Pt, x n we have, by (1.1) and (1.2),

Prl = Pw(xt) = MAO, PS, xli = PS. xw(xt) = AS, X; t' (p).

Therefore, the absolute continuity of p(s, x; t, r) implies that of
(xt, Pt,x )

PROOF of 1.7.B. If (xt, Pt x) is absolutely continuous, then according
to 1.7.A, p(s, x; t, dy) = p(s, x; t, y)mt(dy). The density p(s,x; t, y) can
be chosen to be jointly measurable in x and y. For any A E M. and
BE Mt we have
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m,t(Ax B)=P{xeEA, xtEB}=PXA(x8)PS,xe{xtEB}_

= f J
m8 (dx) p (s, x; t, y) nit (dy).

A B

Therefore, mst is absolutely continuous with respect to ms X mt. This
proves one half of 1.7.B. The other half follows from Theorem 1.2.

PROOF of 1.7.C. According to Lemma 4.2, we can choose a fundamental
density p(s, x; t, y) so that

PS, x (xt E F) _ 5 P (s, x; t, y) mt (dy) _= PP (s, x; t, xt) xr (xt).
r

By 1.11.A, it follows from this that for any 1p E.%t

PS.xtp(Xt) = PP(s, x; t, xt)q(xt)

Setting cp(x) = Pt, x11 and bearing (1.1) and (1.2) in mind, we arrive at
(1.14).

1.7.D. is clear.
PROOF of 1.7.E. If (xt, Pt,x) is absolutely continuous and if

p(s, x; t, y) is a fundamental density for it, then for any right
representation (xt, P,. ), for s < r < t and 11 E F> t,

PS, ,q = Pp(s, x; r, x,)Tl = Pp(s, x; r, xr)Pt,attl = PS..Pt,xtrl.
4.4. THE PROOF OF THEOREM 1.3. is divided into several steps.
10. Let p(s, x; t, y) be a fundamental density for the representation

(xt, Pt,x) (its existence is guaranteed by 1.7.C). Then

(4.17) P. A = PP(s, x; t, xt)1l (s < t, i E.7'>t)

By (4.4), for s1 < s2

(4.18) P{x81 E r I">,2} F; s2i x,2) (P-a.s.).= P(s1,

We denote by pt y the indicatrix of the mapping xs(w). By Lemma 3.2,
outside some measurable inaccessible set (depending on s1 and sz)

(4.19) S p(s1, T; .s, z) pie(dz)=Pi'y(w) on >S2

for all (P E . 81. Hence there is a measurable inaccessible set C outside
which (4.19) holds for all s1 < s2 E R and q E.31 Now we set

(4.20) p (s, x; r; t, y) = f p (s, x; r, z) pt
v

(dz).

From (4.19) it follows that for r1 < r2 E Rst
(4.21) p (s, x; r2; t, y) =

J
p (s, x; rt, z) mr1 (dz) p (r1,

By (4.2) and (4.19), for (t, y) C

z; rz; t, y).

(4.22) Pt,, y(dx) = m81(dx)P(s1, x; r2; t, y),
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and by (4.21), (4.22) and (4.20),

p (s, x; r2; t, y) = p (s, x; r1, z) pt's (dz) = p (s, x; r1; t, y).

Consequently, if (t, y) C, the value of p(s, x; r; t, y) does not depend
on choice of r in Rst, so that we can omit the argument r and rewrite
(4.20) in the form

(4.23) p (s, x; t, y) =
J

p (s, x; r, z) p i
v

(dz) ((t, y) C).

For (t, y) E C we set
(4.24) p(s, x; t, y) = p(s, x; t, xt(co0)),

where wo is an arbitrary point of &2 such that (t, xt(wo)) C for all t,
and f(t, xt(wo)) is measurable in t for any function f that is measurable
on V . (By 3.4.C, almost all wo have these properties).

2°. To prove that the function defined by (4.23) and (4.24) is jointly
measurable in (s, x) and (t, y) it is sufficient to verify that

a) the function F1 (s, x; t, y) = sup p(s, x; r; t, y) is jointly measurable
re- R

in (s, x) and (t, y) (here we assume that p(s, x; r; t, y) = 0 for r (s, t);
b) the function F2 (s, x; t) = p(s, x; t, xt (wo)) is jointly measurable in

(s, x) and t.
Now a) follows from the joint measurability of p(s, x; r, z) in (s, x) and

z (see Lemma 4.2), from the measurability of prt 'Y (r) with respect to (t, y)
(see 3.11.A), and from 1.11.B. To prove b), we observe that
F2(s, x, t) = F1(s, x; t, xt(wo)). But if F(s, x; t, y) is any function that
is jointly measurable in (s, x) and (t, y), then F(s, x; t, xt(wo)) is
jointly measurable in (s, x) and t. For a function F that can be expressed
as a product G 1(s, x)G2(t, y) this follows from the choice of wo. Since the
property in question is conserved under linear operations and limit passage,
it extends to any measurable F.

3°. Since xt E 97(t, t+) is measurable, we have 97>-.t =.F>t and from
(3.15) and (4.18) we obtain

Pt' xt ((P) = P{(q(xt) I ,y>t) = p(r, (p; t, xt) (P-a.s.).

Consequently, p, y(y) = p(r, (p; t, y) for mt-almost all y. But by (4.23),
AS, x; t, y) = At, 1,((p) for cp(z) = p(s, x; r, z), and bearing in mind 1.6.A,
we have

(4.25) p(s, x; t, y) = p(r, (p; t, y) = p(s, x; t, y) for mt-almost all y.

From (4.17) and (4.25) it follows that p(s, x; t, y) satisfies (1.14).
4°. We now verify that p(s, x; t, y) satisfies 1.6.A and 1.6.B. Since p

satisfies these conditions, by (4.23)
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(4.26)
J

p (s, x; t, y) mt (dy) p (t, y; u, z) =

55 P (s, x; t, y) mt (dy) P (t, y; r, v) Pu, z (du) _

_ p (s, x; r, v) pu
Z
(du) = p (s, x; u, z) for (u, z) C,

(4.27) f ms (dx) p (s, x; t, y) = f f ms (dx) p (s, x; r, z) pi
y

(dz) _

_ pt
v
(dz) =1 for (t, y) C.

From (4.26) and (4.25) it follows that outside C 1.6.A holds and 1.6.B
holds, by (4.27) and (1.14). The extension of these properties to (t, y) E C
is obvious.

5°. By Theorem 1.2, (1.15) defines co-transition probabilities for xt. Let
E .f<t be bounded. We now prove that the function Pu.xu is P-almost

surely continuous from the right on (t, (3). To prove this, it is sufficient to
verify that for any r E R> t the function Pu,x u is P-almost surely
continuous from the right on (r, 03). We choose s E (t, r) and set
cp(z) = By (1.7), (1.15), and (4.23), for u > r and (u, z) C we
have

Pu. Z = Pu, ZT (xs) = Pcp (xs) P (s, xs; u, z) =

5
m, (dx) tP (x) P (s, x; r, y) pu, z (dy) = Pu, z (f),

where

f (y) = J
ms (dx) cp (x) P (s, x; r, y) = P (s, (p; r, y).

Therefore, the required property follows from 3.11.B.
6°. It remains to show that, in the notation of 5°,

lim P"' "ay = Pt. "t (P-a.s.).
uyt

By (1.10), for u > t

P{
I '>u) = Pu' "uY (P-a.s.).

Hence, (P'4'', F _>u, P) is a martingale

Son

(t, 0), and by 1.14.A and 5°,
the limit in question exists. By 1.14.C, it is equal P-almost surely to
P{g It remains for us to observe that

P{Z; I ,F>t}= Pt' "t (P-a.s.).

4.5. The proof of Theorem 1.4 takes up a few lines. By Theorem 1.2,
from the existence of an absolutely continuous Markov representation xt it
follows that there are an absolutely continuous right representation
(xt, Pt'x) and a left representation (xt, P'x ). Their regularizations
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(xr+, Pr+ x) and (xr_, Pr_ x) satisfy the conditions 1.8.A, 1.8.B, and 1.8.D.
By 1.7.D, they are absolutely continuous. The remaining statements of
Theorem 1.4. follow from Theorem 1.3.

4.6. We divide the proof of Theorem 1.5 into several steps.
1°. We show that (1.16) defines a completely regular, two-sided Markov

representation of the system ,:'(I).
Since 1.2.A holds for xr_ and xt+, it also holds for zt. Next, since xr_

is measurable with respect to F<t (see 1.8.D), the a-algebras ,yy`(s, t] and
,y,t for the process zr coincide with the a-algebras ,F(s, t] and . -<t for
xt+. Therefore, the validity of (1.1) and (1.4) for (Zr, Pt z) follows from
their validity for (xt+, Pr+ x). Thus, (Zr, Pt,z) is a right Markov representation
of g7(I). Since (xt+, Pt+,x) is completely regular and Pr zt = Pr+ xr+, the
representation (Zr, Pt z) is also completely regular.

Similarly it can be verified that (Zr, Pr,z) is a completely regular left
representation of F (I).

2°. We prove that (1.17) defines a fundamental density for
(Zr, Pt,z' Pr,z).

In the first place, by (1.14) and (1.15),

(4.28) p(s, x x y; t, x' X y') = Ps+, yp(r-, x,.-; t-, x') _
= Pt-' x'p(s+, y; q+, xq+)

From this it is clear that the expression does not depend on r nor on q.
We now check that (4.28) is connected with Pt z by (1.14).
We denote the one-dimensional distributions of the processes zt, xt_,

and xr+ by mr, Mr_, and mr+, respectively, and set

p(t-, x; t+, B) = Pt-, x (xt+ E B).
Let E f <t, Ti E .7>t, cP E `.t-. Since (xr-, Pr-,x , Pr .X) is a two-sided
Markov representation of f (I), by (1.14) and (1.10)

(4.29) Pcp Pcp(xt-)SPt-, xt T1 = P<P(xt-)(Pt-. xt_71)Pt ,

In particular,

P {xt- E A, xt+ E B} = PX A (xt-) Pt-, xt (xt+ E B) _ mt- (dx) p (t - , x; t -I- , B),
A

which can be rewritten more compactly as

(4.30) mt(dx, dy) = mt_(dx)p(t-, x; t+, dy).
Relying on (1.16), (1.14), and (4.29) we deduce that for s < q < t and
z x X Y

P8,2tEAXB}=Pp(s+, y; q+sxq+)XA(xt-)XB(xt+)=
=

J
mt_ dx Pt' -x s ; x (t-, x; t+, B).

A
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By (4.30) and (4.28), the right-hand side is equal to

mt (dx', dy') p (s, x x y; t, x' X Y') =Pp (s, z; t, zt) XAxB (zt)
AxB

By means of 1.11 .A we derive from this, that for any non-negative
measurable function f
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P3. Z/(zt) = PP(s, z; t, zt)f(zt)

Setting f(z) = Pt z'1 and bearing (1.1) and (1.4) in mind we arrive at (1.14).
(1.15) can be verified similarly. 1.6.B follows from (1.14) and (1.15).
Let us verify 1.6.A. By (4.28), for s < q < t < r < u

(4.31) p (s, z; t, z') mt(dz') p (t, z', u, z") =

= P
(Pt,Ztp

(s -I- , y; q + , xq+)) (Pt, Ztp (r - , xr-; it - , x ")) -

Applying (1.4) and (1.10) to zt, Pt z, and Pt,z, we conclude that the
right-hand side of (4.31) is equal to

Pp(s+, y; q+, xq+)p(r-, xr-; u-, x") = AS, X X y; u, x" X Y")'

By 1.8.C the representation (zt, Pt z, Pt,z) separates the states.
3°. We now prove the final statement of the theorem. _
By 1.7.E, the representation (zt, Pt z) is dominated by (zt, Pt z), so that

Lemma-2.3 can be applied to these two representations. Therefore,
Pt z = Pt z for all t E (a, (3) (P-a.s.). By symmetry arguments, Pt,zt = Pt'zt

for all t Et (a, (3) (P-a.s.). The measures Pt z and Pt z belong to the class
Kt = Kt(zt, Pt,z) and the measures Pt,z and Pt,z to the corresponding class
Kt associated with the left representation (zt, Pt,') We map the state
spaces of the processes zt and zL into Kt X Kt by means of the formulae
z -' (Pt,z, Pt,z) and z -* (Pt z, Pt,z). The proof of the equivalence of
(zt, Pt z, Pt,z) and (zt, Pt z, Pt,z) is completed in the same way as that of
Lemma 2.2.

4.7. To prove Theorem 1.6 we need several lemmas.
LEMMA 4.3. Let t < u E T and let rl be a bounded ,y >u. -measurable

function. We set (p (t, 0)= Pt+, xt+(O))rI, *(t, w) = Pt_ xt_(O) l Then

(4.32) lirm q (r, co) for all t E (a, u l (P-a.s.),

(4.33) lim V (r, co) = (p (t, w) for all t E [a, u) (P-a.s.)
r,t

PROOF. By the regularity of (xt, Pt+ x) and by Proposition 3.1.B,
cp(t, (o) is for P-almost all w right-continuous and has left-hand limits on
[a, u]. By the co-regularity of (xt-, Pt-,x ), the function >!t(t, w) is P-almost
surely left continuous and has right-hand limits on the same interval (the
latter is proved by considering the martingale (ip(t, w), ,f<t, P)). We observe
that by (1.12), P{rI I .7 <t+)= cp(t, (o) (P-a.s.), and applying (1.4) to the
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right representation (xt_, Pt- ,x we have P {rl (o) (P-a.s.).
Hence, for every t,

(4.34) 1 m tp (r, (o) = lim P {i I <T+} = P (TI I <t} _ i (t, o) (P-a.s.).

Since both sides of (4.34) are almost surely left-continuous, (4.32) follows
from (4.34), and (4.33) is proved similarly.

LEMMA 4.4. Let .4t = For any predictable Markov time r and
any i E.f>u

(4.35) P {r I ,4t-) = Pti_, xz_'n (P-a.s., r < u).

If qt is a non-negative recoverable function, then

(4.36) P {r), l .IT-) = tV"('r, xt-) (P-a.s.),

where ,u(t, x) = Pt-,x77u
PROOF. Suppose first that rl is bounded. Applying (3.7) to the

representation (xt+, Pt+,x) and using 1.14.C, we have
P {i1 I dtT_} = lint P {i1 I -4".) = lim Pin+,xin+T1'

(4.35) now follows, by Lemma 4.3. (4.35) can be extended to unbounded
functions 11 by means of 1.11.A. Finally, (4.36) is derived from (4.35) just
as (3.8) from (3.7).

LEMMA 4.5.1 If the functions E -F<. and 11 E Y>. are P-integrable,
then for P-almost all w the function Pt+'xt+ t is right continuous in [u, R),
while the function Pt_ xt rl is left continuous in (a, u) .

PROOF. We denote by i(t, w) the function that is equal to Pt_,xt-ri
for t < u and vanishes for t > u. According to 1.8.B, if ri is bounded, it
is strictly predictable. Relying on 1.11.A, we conclude from this that it is
predictable for any Ti E F>,,. According to 3.2.E, the left continuity of
the function Pt_ xt rl will follow if we verify that

(4.37) 'P(in, to) _V1 (,r, (o) (P-a.s.)

for any non-decreasing sequence of predictable Markov times rn-4 r. According
to (4.35),

(4.38) P (P-a.s., rn < u).

But the minimal a-algebra containing all the is A-,- and by 1.14.C
(4.37) follows from (4.38).

The second statement of Lemma 4.5 is proved similarly.
COROLLARY. Lemma 4.3 holds for all P-integrable 1 E F>..
For the boundedness of t? was required only to use the left continuity

of t(t, w) and right continuity of cp(t, (o) (P-a.s.). But according to Lemma
4.5, this continuity follows from the P-integrability of rl.

1) Communicated to the author by S. E. Kuznetsov.
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4.8. We now prove Theorem 1.6. We consider a triple (x,,, P,,,x, P°,x)
obtained by combining the representations (xt+, Pt+,x, Pt',') and
(xt_, pt_ x, Pt-,x), constructed in Theorem 1.4.

1°. We verify that (x,,, P,,,x) is a right Markov representation for
, '(vl, v2). Clearly, x is measurable with respect to 9:'(v1, v2) for
V1 < V < v2. We now show that

(4.39) Pu. Pa, 'SPv, x'11

for all u< v E V, t E ,'(u, v], 1 E .f>v,
(4.40) Phi = PZ;Pv, for all v E V, S E it E >ro

We note that
,ti = .F <t,

k,ro c F <t+,
,5F (u, VI =.q- (u, t) for v=t-,
.(u, v] ,y (u, t +) for v = t+.

Since (xt_, Pt_ x) satisfies (1.4) and (xt+, Pt+,x) satisfies (1.12), (4.40) holds
for any v. Next, being absolutely continuous, the two representations
(xt_, P,-,x) and (xt+, Pt+,x) dominate each other. Therefore,
Pn,x E Ku(xt+, Pt+,x), and (4.39) follows from (1.13) for u = t+. For
v = t- the equation is satisfied because Pu,x E Ku (xt Pt-,x )

Let Ti E F >u and let At = {w: Pv, x,71 is continuous in v on [t±, u]}.
From the corollary to Lemma 4.5 it follows that P At = 1 for t E [a, u).
By (1.14) and (1.5) it follows from this that P' At = 1 for s E [a, t) and
any P' E Ks(xt+, Pt+.x ). For s = t the corresponding result follows from
1.8.A.

Combining the properties of (x,,, P x) with corresponding properties of
(x,,, Pv,x) (which are valid by symmetry), we conclude that (x,,, P,,,x,
is a regular two-sided Markov representation of the stochastic system "F(I).
By 1.8.C, this representation separates states.

2°. We now prove 1.10.A. The measures Pt- 'X and Pt+ y belong to
Kt(xt+, Pt+ x). By Lemma 2.1, we need only verify that for
r E R, cP E W, and for P-almost all w the set

{t: t E (a, r), Pt-, ,t-(P (xr) Pt+, xt+(P (x,)) .

is at most denumerable. But the points of this set are discontinuity points
of cp(t, a) = Pt+, t+(p(x,). Since the latter has almost surely no discontinuities
of the second kind, the number of discontinuity points is at most
denumerable.

3°. We now verify that the function p(u, x; v, y) defined in the statement
of the theorem is a fundamental density for (x,,, P,,,x, P°fx)

From (1.18), (1.19) and (1.14)-(1.15) we have

(4.41) p(sH-, x; t-, y) = P8+, xp(r-, xr-; t-, y) = Pt-, vp(s+, x; q+, xe+),
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(4.42) p(s-, x; t+, y) = PS-, xP(r+, xr+; t+, y) _
= Pt+, vp(s-, x; q-, xq-)

(cf. (4.28). From this it follows that the expressions (4.41) and (4.42) do
not depend on r and q.

We claim that for any non-neighbouring u < v E V, 1i E 97>,:
(4.43) Pt,, xrl = PP(u, x; v, xv)rl-

Let u = s±, v = t±. For the combinations of signs ++ and -- (4.39) reduces
to (1.14). In the case of + -, by (4.41), (1.10) and (1.11) the right-hand
side of (4.43) is equal to

pTjpt-, xt-P(S+, x; q+, xq+) = Pi)p(s+, x; q+, xq+) = Ps+, xrl-
Finally, in the case of -+, by (4.42), (1.10) and (1.14) it is equal to

Pr[ Pt+, xt+P(s-, x; q-, xq-) = Pr)p(s-, x; q-, xq-) = Ps-, xll
Thus, (4.43) is proved. It can be shown similarly that for any non-
neighbouring u < v E V and t E J7<,,

(4.44) P"X = PSP(u, xu; v, x).

From (4.43) and (4.44) it follows that p(u, x; v, satisfies the conditions
of 1.6.B and is a density for m,,,, with respect to mn X m,,. It remains to
verify that for any non-neighbouring u < v < w

(4.45)
J

p (u, x; v, z) m" (dz) p (v, z; w, y) = p (u, x; w, y)

Let u = s±, v = r±, w = t±. We know already that the equation holds for
the combinations of signs +++ and ---. Lets <p <r <a < t. Using
(4.41) we note that, in the case +-- the left-hand side of (4.45) is equal
to

P,,+,xP (P - , xP-; r-, z)mr_(dz)p(r-, z; t - , y)

=PS+,xP(P-, XP-; t-, y)=p(s+, x; t-, y),
and in the case ++- it is equal to

p(s+, x; r4-, z)mr+(dz)Pt-,vp(r+, z; a+, x6+)_

- Pt-,[up (S + , x; G4-, Xn+) = P (S + , x; t-, Y)-

The cases -++ and --+ are dealt with similarly by means of (4.42).
Finally, in the case +- +, using (4.41) and (4.42) we observe that the left-
hand side of (4.45) is equal to

Pr-,zp(S+ x; p4 P, p 6 x t + y)=
, x _

=P [p'- r p(s+, x; P+, xP+)1[Pr-,xr-P ((' +, xa+; t+, y)1=

= PP [P (s + , x; P + , xP+) I xr-J P [P (a + , xQ+; t + , y) I xr-]
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Since xt_ satisfies 1.2.A, this equation is equivalent to
Pp(s+, X; P+, x,+)P(6+, xa; t+, y) =

= Ps+, xp(a+, xa+; t+, y) = P(s+, x; t+, y)
(here (1.14) and the property 1.6.A of p(s+, x; t+, y)) are used). The case
-+- is treated similarly. _

4°. Finally, let (x,,, P,,.x, P°.x) be any regular two-sided representation of
a stochastic system separating states. Then (xt, PP,x) is a right
representation of the system .-F(I) and by 1.7.E, it dominates the right
representations (xt+, Pt+ x) and (xt-, Pt_ x). By Lemma 2.3
Pl+,xt+ = Pt+,zt+ for all t E [a, Q) (P-a.s.). By the regularity of
(x,,, P0,x, and (x,,, P,,,x, P°fl it follows from this that
P,,,x

U
= P,,,x

V

for all v E [a+, (3-) (P-a.s.). By similar arguments,
Pu,x = Pu,x

for all v E [a+, (3-) (P-a.s.). The measures P x and P, ,,x belong
to the class K = K;,(xt+, Pt+ x), and the measures P°"x and P°,x to the
corresponding class K° associated with the left representation (xt_, pt-,x)

We map the state spaces of the processes x and x into K X K° by
the formulae

ro, xx -> (Pro, x,
Pro,x),

x - - (P0, x, P )

The proof that (x0, P,,,x, P°'x) and (x,,, P0,x, P") are equivalent is com-
pleted in the same way as that of Lemma 2.3.

Appendix

REGULAR TOPOLOGICAL REPRESENTATIONS

S. E. Kuznetsov

1. We shall show that if a stochastic system (.'(I), P) has an absolutely
continuous Markov representation, then we can construct for it in a good
topological space a pair of regular Markov representations (xt, P) and
(yt, P) with trajectories having no discontinuities of the second kind. More-
over, xt is almost surely continuous from the right and yt from the left,
xt_ = yt and yt+ = xt. If we reverse the time in the process yt, then we
obtain a pair of dual Markov processes of the kind that is usually treated
in potential theory.

2. Let P) be a stochastic system. Let xt and yt be two two-sided
Markov representations with a common state space Et and common transition
and co-transition probabilities Pt x and Pt,x (but, generally speaking, distinct
transition and co-transition functions!). We call the pair (xt, yt) a regular
topological representation if the following conditions are satisfied.

2.A. 9 = U Et is a Borel subset of a complete separable compact
t

metric space and the function f(t, x) = t is continuous.
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2.B. The trajectories of the process xt are P-a.s. continuous from the
right and have left-hand limits, and the trajectories of yt are P-a.s. left-
continuous and have right-hand limits. Moreover,
lim y = xt, lim xS = yt, (P-a.s.) for all t.
uyt stt

2.C. The representations (xt, Pt,x) and (yt, Pt.x) are completely regular,
and (xt, Pt,x) and (yt, Pt,x) are co-regular.

3. THEOREM M. Suppose that a stochastic system (.F(I), P) has an
absolutely continuous Markov representation xt. Then F (I) also has a
regular topological representation.

We construct a topological representation using the representations
(xt+, Pt+ x , Pt+,x) and (xt_, Pt- ,x , Pt-,x) constructed in Theorem 1.4. Let
x E Et_, y E Et,. We write (x, y) E Dt if

(1) Pt-. x=Pt+, >!, Pt ,x=pt+,>,

Let R be a denumerable everywhere dense subset of T, R> t = R fl (t, g),
and R<t = R fl (a, t). By Lemma 2.1 the equations (1) are equivalent to
the denumerable system of equations

Pt_, xWP1,(xu) = Pt+. yp (x..), tP E W., u E R>t,
(2) { pt-, xv (xs) = Pt+, v* (xs), * E W8, s E Rat.

(Here W,t denotes a support system of functions in E,,, the state space of
xn ). Since the functions in (2) are measurable, Dt is a Borel subset of the
product space Zt = Et_ X Et+. Similarly, Ti = U Dt is a Borel subset of

tZ=UZt.
t

We write Dt_ = prEt_ Dt, Dt+ = prEt+ D. Since the representations
(xt+, Pt,x) and (xt_, Pt_ x) separate states, every point of Dt_ and Dt+ has
a unique inverse image under projection. Hence, Dt_ and Dt+ are one-to-one
measurable images of a Borel set, and by [81, §39N V are also Borel sets.
Hence

Et =Dt U (Et-\Dt-) U (Et+\Dt+)

is a Borel space.' By similar arguments

U
t

is also a Borel space, where 6+= U Et+, 9-= U Et-, 9+= U Dt+ and
._ = U Dt- t t t

t
The spaces Et_ and Et+ have natural embeddings in Et (here Dt_ and

Dt+ are identified). The transition and co-transition probabilities Pt x and
Pt,x can be transferred to Et without ambiguity. We set xt = xt+ and
yt = xt_. Then 2C is satisfied.

We set cp(t) = 0 for t S 0, T(t) = t for 0 < t < 1, and ip(t) = 1
for t > 1. We take it that Pt xf(xu) = 0 for u < t and 0 for
s < t.

')If X and Y are two disjoint measurable spaces, then r c X u Y is taken to be measurable if r n X and
r n Y are.
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We take as a denumerable coordinate system in 6 the function of the
form

(3)

F (t, x) = cp (u- t) Pt, xf (xu), u E R, f E Wu,

1 F(t,x)=(P(t-s)Pt'xf(xs), sER, fEW8

We may assume that all the functions f E Wn are bounded by 1. Then the
coordinate system separates states, and no coordinate exceeds 1. By means
of this coordinate system 6 is mapped injectively into the Hilbert cube
H, and according to [81, §39. V its image in H is a Borel set. Now 2B is
a corollary to Theorem 1.6( the regularity of the horizontal representation).

4. We show now that not only the transition and the co-transition
probabilities Pt X and Pt,X, but also the fundamental density p(s, x; t, y)
transfer in a natural way to E. It suffices to prove that

j p (t - , x; u±, z) = p (t -I- , y; a±, z) for t< u, (x, y) ED,,
P (s, x, t- , y) = p (s, x, t-}- , z) or s < t, (y, z) C t.

We prove, for example, that p(t-, x; u-, z) = p(t+, y; u-, z) for t < u and
(x, y) E D. By (1.18) and (1.14), for t < q < r < u

(5) p(t+, y; u-, z) = Pp(t+, y; q+, xq+)p(r-, xr-; u-, Z) _
= Pt+, yp(r-, xr-; u-, z)

On the other hand, from 1.6.A and (1.14) it follows easily that
(6) p(t-, x; u-, z) = Pp(t-, x; q-, xq-)p(r-, xr-; u-, z) _

= Pt-,xp(r-, xr-; a-, z).
For (x, y) E Dt, the right-hand sides of (5) and (6) coincide by definition.
The remaining equalities are proved similarly.

Using 1.6.A, (1.18) and (1.19), we can easily verify that the fundamental
density p(s, x; t, y) satisfies the Chapman-Kolmogorov equations

f a (s, x; t, y) mt- (dy) p (t, y; u, z) = p (s, x; u, z),
Et

p (s, x; t, y) mt+ (dy) p (t, y; u, z) = p (s, x; u, z),
Et

where mt_(dy) = P {xt- E dy}, mt+(dy) = P {xt+ E M. Therefore,
p(s, x; t, y) is really a fundamental density in the sense of § 1.6.

5. We mention one important case. We assume that for every t and any
s E Rat, u E Rat, cp E Wu+ and V E Ws_ for P-almost all w the functions
p(t+, xt+; u+, (p) and p(s-, ip; t-, xt_) are continuous at t. Then by
Theorem 1.6 and Lemma 2.1., for every t

(7) Dt-, xt_ = Pt+, xt+'
Pt-, xt- = pt+" xt+ (P-a.s.).

By definition of Dt and Et, xt_ = xt+ (P-a.s.) in Et. Thus, the processes
xt_ and xt+ have identical one-dimensional distributions mt = mt_ = mt+.
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The transition and cotransition functions can be expressed in terms of the
fundamental density and the one-dimensional distributions of the process
by the formulae

p(s, x; t, dy) = p(s, x; t, y)mt(dy),
p(s, dx; t, y) = m3(dx)p(s, x; t, y).

Therefore, when (7) holds, the processes xt_ and xt+ have common transition
and cotransition functions that are dual, that is,

m,,(dx)p(s, x; t, dy) = p(s, dx; t, y)mt(dy).
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SPECIAL INVITED PAPER

SUFFICIENT STATISTICS AND EXTREME POINTS'

A convex set Mis called a simplex if there exists a subset M, of M such
that every P e Mis the barycentre of one and only one probability measure
p concentrated on M,. Elements of M, are called extreme points of M. To
prove that a set of functions or measures is a simplex, usually the Choquet
theorem on extreme points of convex sets in linear topological spaces is
cited. We prove a simpler theorem which is more convenient for many
applications. Instead of topological considerations, this theorem makes
use of the concept of sufficient statistics.

1. Introduction.

1.1. If Mis a simplex in a finite-dimensional linear space, the set M of extreme
points is finite, and to say that P is a barycentre of a probability measure tt con-
centrated on M, means that

P = EPEE, XP)P,
where p(P) Z 0 for all P e M, and EP,,,, tL(P) = 1. The concept of a barycentre
can be naturally extended to probability measures on spaces of functions and
measures. Simplexes in such spaces play an important role in various fields of
mathematics. Here are some examples:

1.I.A. The set of all probability measures invariant with respect to a meas-
urable transformation T of a measurable space ((, .9). (Extreme points are
ergodic measures.)

1.1.B. The set of all Gibbs states specified by a given family of conditional
distributions.

I.I.C. The set of all symmetric probability measures on a product space (with
infinite number of factors). Extreme points are product measures.

1.1.D. The set of all Markov processes with a given transition function.
I.I.E. The set of all stationary probability distributions for a given stationary

transition function.
1.1.F. The class of all normed excessive functions associated with a given

transition function. A particular case is the class of all positive superharmonic
functions h in a domain D of a Euclidean space normed by the condition h(c) = 1,

Received August 3, 1977.
I Research supported by NSF Grant No. MCS 77-03543.
AMS 1970 subject classifications. Primary 60-02; Secondary 60J50, 60K35, 82A25, 28A65.
Key words and phrases. Extreme points, sufficient statistics, Gibbs states, ergodic decomposi-

tion of an invariant measure, symmetric measures, entrance and exit laws, excessive measures
and functions.
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where c is a fixed point of D. This class is associated with the Brownian motion
in D.

These classes were treated by many authors from different points of view.
We mention here the works of Krylov and Bogolubov [13] (related to the class
1.1.A); Dobrushin [2] (class 1.1.B); de Finetti [9], [10]; and Hewitt-Savage [11]
(1.I.C); Martin [15]; Doob [3]; and Hunt [12] (1.1.F).

In the present paper, all these classes of measures and functions and some
others will be investigated by constructing suitable sufficient statistics.

1.2. The role of a special type of sufficient statistics (we call them H-sufficient)
is revealed by Theorem 3.1. This theorem was first published in 1971 ([4],
Section 2) in a slightly different form and without explicitly mentioning sufficient
statistics. The theorem was applied to the class of all Markov processes with a
given transition function (class 1. l.D) in [4] and to excessive measures and ex-
cessive functions (I.1.F) in [5].

We start with general definitions of a barycentre, extreme points, etc., in
Section 2. Relations between H-sufficient statistics and decomposition into ex-
treme points are investigated in Section 3. The main method of constructing
H-sufficient statistics is a special kind of passage to the limit which is studied
in Section 4. The rest of the paper is devoted to various applications. In par-
ticular, Sections 9-12 contain an improved version of the results on Markov
processes published in [4] and [5]. The presentation is self-contained, but we
refer to [5] for some technical details.

2. Convex measurable spaces.

2.1. Let (M, ./'N) be an arbitrary measurable space. We say that a convex
structure is introduced into M if a point P, the barycentre of ,a, is associated
with each probability measure p on . f,,. A space (M, %d) provided with such
a structure will be called a convex measurable space.

We say that P is an extreme point of M, and write P E M if P is not a barycentre
of any measure p except the measure concentrated on P. A convex measurable
space M is called a simplex if M, is measurable and each PE M is a barycentre
of one and only one probability measure p concentrated on M.

Let (M, and (M', be convex measurable spaces and let T be a map-
ping of M into M'. We say that T preserves the convex structure if T is measurable
and transforms the barycentre of a measure p into the barycentre of the measure

p'(I') = p(T 'r) , I' E ,,, .

We say that T is an isomorphism if it is invertible and T and T-' preserve convex
structure.

An axiomatic theory of convex measurable spaces can be developed but our
task is rather an analysis of concrete spaces.

2.2. Let M be a collection of positive functions on an arbitrary set Z. (By
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a positive function we mean a function with values in an extended real half-line
[0, + oo].) Let .fix be an arbitrary o,-algebra in M with the property:

2,2.A. For each z E Z, the function F,((p) = (p(z) is Y measurable.
Let p be a probability measure on %x. We define a barycentre cps, of p by the

formula

(2.1) p,,(z) = S. cc(z)p(dp)

If M contains the barycentres of all probability measures, it is a convex meas-
urable space.

A measurable structure in M is called natural if it is determined by the minimal
or-algebra . with the property 2.2.A. Unless otherwise stipulated we consider
in M the natural measurable structure, and we always consider in M the convex
structure defined by formula (2.1).

Formula (2.1) makes sense also for finite nonprobabilistic measures p. In this
case, we call (p,, a generalized barycentre of u. If M contains all generalized bary-
centres, we say that M is a convex cone.

2.3. Now let M be a set of probability measures on a measurable space (Q, ).

The set M can be considered also as a class of positive functions on and we
can apply all the definitions of Subsection 2.2.

If M is a simplex, the formula

(2.2) P(A) = S., P(A)p(dP)

establishes a one-to-one correspondence between M and the set of all probability
measures on M.

We consider one example. Let M(.9") be the class of all probability measures
on a o-algebra _577. It is easy to check, step by step, that:

(i)
(ii)

M(. 7) is convex.
Measures Q' (A) = 1,,((o), A E . are extreme points of M(-q-).

(iii) Each PE M(.5) is a barycentre of a measure p defined by formula

(2.3) p(I') = P{m: Q' E 1') .

This measure is concentrated on the set M(AY) of extreme points of M(..).
(iv) If P is an extreme point, then P = Q, for some m.
(v) If p is a measure concentrated on M(.) and P is a barycentre of p,

then p and P satisfy (2.3).
(vi) M(.f) is a simplex.

We prove all these statements in a much more general situation in Section 3.

2.4. We shall use the following abbreviations. If f is a function and .Z is a o-
algebra, then the expression f E :/-means that f is .f -measurable and bounded.
An expression Pf (or P(f)) means an integral off with respect to a measure P.

Let M be a class of probability measures on (I2,^). A set A is called M-null
if A E _ and P(A) = 0 for all P E M. We say that A, B E .l-are P-equivalent if
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1 A = 1 e a.s. P. Two a-algebras ._;/, ( c are M-equivalent if, for each PE M,
every A c . is P-equivalent to a BE and vice versa.

3. H-sufficiency and the decomposition into extreme points.

3.1. Let Mbe an arbitrary class of probability measures on a measurable space
(SZ, We say that M is separable if . contains a countable family .ff sepa-
rating the measures in M (which means that for each pair of different elements
P P, of M there exists A e .51 such that P,(A) # P,(A)). The class M(.9) is
separable if - is countably generated (i.e., generated by a countable family of
sets).

A a-algebra . ° C is called sufficient for M if all measures PE M have a
common conditional distribution relative to .9 °; in other words, if for each
to e Q there exists a probability measure Q' on .t such that, for each A, Q'(A)
is .Z -measurable and

(3.1) P(AI = Q'(A) a. s. P for all Pc M.

A sufficient a-algebra will be called H-sufficient if, in addition,

(3.2) QI e M a.s. M
(which means that P(Q1 e M) = 1 for all P E M).

If is M-equivalent to and if ° is sufficient (H-sufficient) for M,
then so is . '.

THEOREM 3.1. Let .Z° be an H-sufficient a-algebra for a separable class M.
Then the set M of extreme points of M is measurable and each P E M is a barycentre
of one and only one probability measure p, concentrated on M, If M is convex, it
is a simplex.

Let Q, be measures satisfying (3.1) and (3.2). Then M, is a subset of a set {Q°}
and the measure p, is given by formula

(3.3) pp(f) . P{w: Q, E I'} .

A measure P E M belongs to M, if and only if

(3.4) P{cu : Q" = P} = 1 .

PROOF. 1 °. We start with the following elementary observation: If P is any
probability measure on a a-algebra and if is any subalgebra of then
the conditions (i), (ii), (iii) are equivalent:

(i) P is trivial on

(ii) Each .t '-measurable function Z is constant as. P.
(iii) P{P(A j # P(A)} = 0 for each A c

21. Denote by M° the set of all measures PE M which are trivial on
According to 1 °, M° can be described by the condition (iii). Taking into account
(3.1), we rewrite (iii) in the form

(3.5) P{Q'°(A) # P(A)} = 0 for all A E .Y.
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Let sl be a countable family of sets separating measures of M. Obviously (3.5)
implies that

(3.6) P{Q`°(A) * P(A) for all A e .51} = 0 .

Since P and Q° belong to M, (3.6) implies that

(3.7) P{Q"#P}=0.
It is clear that (3.5) follows from (3.7); hence each of the conditions (3.5), (3.6)
and (3.7) characterizes the set M°. The condition (3.5) can be rewritten also in
the following form:

(3.8) f,(P) = 0 for all A E . !,

where

(3.9) .,(P) = S. Q°(A)2P(d(o) - P(A)2 = S [Q"(A) - P(A)]2P(dw).

Evidently, fA is .,W measurable. Therefore M° e It follows from (3.7) that
for each P e M. there exists w e Q such that P = Q°.

3°. Now we prove that

(3.10) Q` a M0 a.s. M.

It follows from (3.1) that Q'°Y = P(YI.0) as. P. Setting YA = Q°'(A)2, we
conclude from (3.9) that

.f4(Q1) = Q, Y" - YA = P(YAI.SJr°) - Y.
and hence

(3.11) PJA(Q°) = 0 .

But it is clear from (3.9) that fA > 0. Therefore (3.11) implies that fA(Q') = 0
a.s. P. We see that, for almost all w, the measure Q'° satisfies the condition
(3.8) which implies that Q' E M,).

4°. Let a measure uP be defined by formula (3.3). Then the formula

(3.12) SM F(P)iP(dP) = S. F(Q°)P(dw)

holds for indicator functions F = lr, I' E .sM. Standard arguments show that
(3.12) is true for all bounded ,,-measurable functions F. For F(P) = P(A),
A e the right side of (3.12) is equal to P(A). Thus P is a barycentre of PP.
According to 3°, It, is concentrated on M0.

5°. Now let Pe Mbe a barycentre of a measure It concentrated on M°. For
every r' C M°, F e :%;,

(3.13) P{Q" a I'} = S M0 P(Q° E I')p(dP) .

The left side is equal to a (r). By (3.7) P(Q° E I') = 1r(P) for PE M0. Therefore
the right side of (3.13) is equal to

SMO 1 r(P)1 (dP) =fi(r)
Hence ,u,. = It.
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6°. Let Pe M. According to 4°, P is a barycentre of pp. Therefore ftr is
concentrated on P which means that P{Q`° # P} = 0, and Pe M° by 2°.

7°. Now let PE M. be a barycentre of a measure p on M. According to 2°,
P{Q°' # P} = 0. Hence p is concentrated on the set M' = {P: P(Q° # P) = 0}.
But if P e M', C E 5 then P(C) = PP(C = S Q°(C)P(dw) = P(C). There-
fore M' = {P} and p is concentrated on P. This proves that P E M,.

3.2.

THEOREM 3.2. Let a separable class M have an H-sufficient a-algebra and let
' be the class of all sets A E ._9 with the following property:

(3.14) P(A) = 0 or P(A) = 1 for all PE M, .

Then a a-algebra is H-sufficient for M if and only if it is M-equivalent to .'.

PROOF. We need only to prove that each H-sufficient a-algebra ° is M-
equivalent to .f'. By Theorem 3.1, .7° c . '. Therefore it is sufficient to
construct, for every fixed P E M, A E a set BE . ° which is P-equivalent
to A. A function Q°(A) is P-equivalent to a ' °-measurable function f. Sets
B = {o): f(u)) = 1} and C = {w : f(ow) = 0} belong to and

1B + 1c = 1 a.s. P,
P(BA) = P1BQ°(A) = P(B) , P(CA) = P1,Q'°(A) = 0.

Hence IA = lA 1B = 1B a.s. P. Our theorem is proved.
Now suppose that a class M is a simplex and let .f ' be defined by (3.14).

It is clear that

(3.15) P(A = P(A) for each P e M, .

Therefore is H-sufficient for M, (and consequently for M) if and only if a
measurable mapping co --+ Q'" of (Q, _7-1) into M, exists such that P(Q° = P) = 1
for all P E M,. In this case, every two measures of M, are singular on .' with
respect to each other. If M, is at most countable, this condition is not only
necessary but also sufficient: It implies the existence of decomposition of S2 into
the sets Q, E ', P E M, with the property P(S2P) = 1, and the mapping Q° can
be defined by formula Q° = P for w E Up.

3.3. We discuss now the concept of H-sufficiency from a slightly different,
more algebraic point of view.

A real-valued function Q°(A) = Q(w, A), w E S2, A E is called a Markov
kernel if, for each w E S2, Q(w, .) is a probability measure and, for each A E ._' ,

A) is an .1 -measurable function. A linear operator on the space of bounded
-5--'--measurable functions and a linear operator on the space M(_/) of all prob-
ability measures are associated with every Markov kernel Q. We denote them
by the same letter and call them Markov operators. They are defined by the
formulas

(3.16) Qf(w) = S Q(w, d(.')f(('') = Q"(f) ,
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and

(3.17) (PQ)(A) = S P(dw)Q(w, A) .

We shall consider the first operator also on unbounded functions f (in this case
Qf is defined only on a part of S2). The second operator can be extended too:
the formula (3.17) makes sense not only for Pe M(. ") but also for Pe M(. ')
if .t ' is a a-algebra with the property that Qf e for all f e .f . Two Markov
operators Q and Q' are called M-equivalent if Qf = Q'f a.s. M for all f e

We say that a set A E .2 is Q-invariant if QI,, = 1_a.

LEMMA 3.1. If all sets of a a-algebra ._ ° are Q-invariant, then

(3.18) Q(gf) = gQf
foreach fE. 'gE_70and
(3.19) P(f P{Qf1°} a.s. P

for every Q-invariant measure P and every f E ./.

PROOF. It suffices to check (3.18) for f = 1,,, g = 1B where A E . , B E .9'0.
In this case

and

Q(gf) - gQf = (I - g)Q(gf) - gQ[(i - g)f}

0 < (1 - g)Q(gf) < (1 - g)Qg = 0 ,
0 <gQ[(1 -g)f} <g(1 -g)=0.

Formula (3.19) follows immediately from (3.18).
A Markov operator Q is called a sufficient statistic for M if there exists a a-

algebra.T° c -,'7-such that

(3.20) P(f Qf a.s. P

for all P E M and all f e _;77. If, in addition, (3.2) holds, we say that Q is H-
sufficient for M. Obviously (3.20) is equivalent to (3.1).

If Q is a sufficient (or an H-sufficient) statistic for M, then so are all operators
M-equivalent to Q.

THEOREM 3.3. If a convex separable class M has an H-sufficient statistic, then
there exists an H-sufficient statistic Q, such that

(3.21) Q(f Qg) = Qf Qg for all f, g e

and M coincides with the class of all Q-invariant measures.
Every Markov operator Q with the property (3.21) is H-sufficient for the class M

of all Q-invariant measures. The corresponding H-sufficient a-algebra _"e° can be
defined as the collection of all Q-invariant sets. A mapping P -> P°, where P° is the

.restriction of the probability measure P to .-°, is an isomorphism of M onto M(-;7-')
The inverse mapping is given by the formula P = P°Q.
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PROOF. 11. Let Q° be an H-sufficient statistic for M. By Theorem 3.1 S2, _
(o): Q`° E M,} is an M-null set. Hence an operator

Q f = Of on S2,° ,

= Of(-*) on S2, ,

where u,* is a fixed point of Q,°, is H-sufficient for M too.
By (3.4), for all w1E S2,", Q°'i{m: Q' = Q-1} = 1, and

Q(fQg)((o,) = S f((o)Q1(g)Q0'(dw) = S f(w)Q1,(g)Q1'(d(,)

= Q"(g)Q"'(.f) =

2°. It follows from (3.20) that PQf = Pf for all P E M, f e Therefore all
PE Mare Q-invariant. On the other hand, if P is Q-invariant, then

P(A) = S P(dw)Q'(A)

and PC At since Q°EMfor all U,EQ.
3°. Let Q be a Markov operator with the property (3.21) and let be the

totality of all Q-invariant sets. It is easy to see that r ° is a a-algebra. By
Lemma 3.1, all functions f E ' ° are Q-invariant. To prove the converse, we
denote by H the class of all measurable transformations (D of the real line such
that '(f) is Q-invariant for every Q-invariant f. The class H contains linear
functions and is closed under addition and monotone convergence. By virtue
of (3.21), it is closed also under multiplication. Therefore it contains all bounded
Borel functions, in particular, functions P(u) = for all constant c. Hence
for each Q-invariant f, the sets (o): f(o)) > c} belong to °, and f is .Z
measurable.

4°. Setting f = 1 in (3.21), we see that Q2 = Q. Hence Q f e 5 ° for all
f E . The identity (3.21) implies that Q(gf) = gQ f for f E . , g E . °. Hence,
for each Q-invariant measure P,

P(gQf) = PQ(gf) = P(gf),
and (3.20) is satisfied; Q is a sufficient statistic for the class M of all Q-invariant
measures and . ° is the corresponding sufficient a-algebra. On the other hand,
the identity Q2 = Q implies that Q° E M of all cu, and Q is H-sufficient.

Since Q f e . ° for all f E .9 , an equality PQ = P implies that P°Q = P where
P° is a restriction of P E M to .X°. Obviously P°Q e M for every P° E M(.2°).
Therefore we have a one-to-one correspondence between M and M(.' °). It is
easy to check that this correspondence is an isomorphism in the sense of Subsec-
tion 2.1.

3.4. We shall prove that under certain circumstances sufficiency implies the
H-sufficiency.

A family of Markov operators V, satisfying the condition V, V, = V,+, for all
s, t is called a one-parameter semigroup if t takes values on the positive real
half-line, and it is called a one-parameter group if t takes values on the real line.
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We say that V, is measurable if, for each f E -% , the function V, f(w) is meas-
urable with respect to the pair t, co (the measurable structure on 0 is given by
-5i '-and on the real line by the a-algebra of all Borel sets).

THEOREM 3.4. Let ' be a finite or countable family of Markov operators or a
measurable one-parameter semigroup or group in (4, ./ ) and let .5 be countably
generated. Suppose that .Z ° c is sufficient for the class M of all -7-'^-invariant
measures and (3.19) holds for all P E M, Q E 7'. Then .9-° is H-sufcient for M.

PROOF. Consider a Markov operator Q satisfying condition (3.20). To prove
(3.2), we need only to check that for each P E M and each f E -5;-

(3.22) QVf = Qf for all VE 9 a.s. P.

(Indeed (3.22) implies that, for almost all w, all measures Q' V, V E -coincide
with Q, on a countable family of sets separating measures of M(.9-) and there-
fore coincide everywhere.)

It follows from (3.19) that

(3.23) QVf = Q f a.s. P for every VET
If 7--is at most countable, then (3.23) implies (3.22) and our theorem is proved.

In the case of a Markov semigroup or a group, we consider the set A =
{(t, w) : Q,V, = Q''}. It follows from (3.23) that for each t, P{w : (t, w) E A} = 1.
The set A belongs to .:' x .9 . By Fubini's theorem there exists a set Sl, such
that P(Q,) = 1 and, if (o e O then, for almost all t, (t, w) E A, that is, Q' V, = Q'.
Taking into account that V. V, = V,+, for all s, t, we easily prove that Q`°V, = Q'
for all w E 9, and all t.

REMARK. Theorem 3.4 and its proof are valid for a group of Markov op-
erators if there exists a a-algebra in {' and a a-finite measure 2 on ., such
that: (1) Vf((o) is x .> -measurable for each f E .Y; (ii) A(VB) = 2(B) for

B E _ , F , and each V E _V.

3.5. Let .9, and ., be sufficient a-algebras for a class M and let Q, and Q,
be correspondent sufficient statistics. It is easy to see that Q,Q, = Q,Q, a.s. M
for all f E if and only if .5 , and , are conditionally independent given

° n In this case 9° is a sufficient a-algebra for Mand Q,, = Q, Q,
and Q = Q,Q, are corresponding sufficient statistics.

Now let M be a convex class and let Q, and Q2 be 11-sufficient. The set Q,
(0j': Q,'' E M) is M-null and/therefore

Qi(A) = S0 Qi (d(o')Q,`"'(A) .

Hence Q;, E M if Q,' E M, and Q is H-sufficient for M.

4. Asymptotic sufficiency.

4.1. We say that a sequence of Markov operators Q. converges M-almost
surely to a Markov operator Q and write Q,, Q a.s. M if for each PE M and
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each f E .2

(4.1) Qf= a.s. P.
A sequence Q. is called an asymptotically sufficient statistic for M if there exists
a sufficient statistic Q such that Q. Q a.s. M. If Q is H-sufficient, we say
that Q. is asymptotically H-sufficient.

To prove that a sequence Q. is asymptotically sufficient, we use a concept of
a support system.

4.2. A countable family W of bounded measurable functions in a measurable
space (9, .5") is called a support system if the following two conditions are
satisfied:

4.2.A. If pa is a sequence of probability measures on if lim S f dp =
1(f) exists for each f E W, then there is a probability measure i such that 1(f) =
Sfdu for all feW.

4.2.B. If a class H of real-valued functions contains W and is closed under
addition, multiplication by constants, and bounded convergence, then H contains
all bounded measurable functions. (We say that f converges boundedly to f if
f converges pointwise to f and all the functions f are uniformly bounded.)

A measurable space (S2, will be called a B-space if there exists a support
system in (9, .2 ). The unit interval I = [0, 1] with the Borel measurable
structure is an example of a B-space: a support system is formed by functions
1, x, x', ,x^, .

A measurable space (9, .') is called a Borel space if it is isomorphic to a
Borel subset of a complete separable metric space. It is well known (see, e.g.,
[7] or [19]) that all uncountable Borel spaces are isomorphic. By this fact it is
easy to prove that all Borel spaces are B-spaces.

It follows from 4.2.B that a support system generates a-algebra Z. Therefore,
for any B-space (9, the or-algebra .' is countably generated and M(_5' )
is separable.

4.3.

LEMMA 4.1. Let (0, .7) be a B-space and let

(4.2) P{ f I = Q. f a.s. P

for every PE M and all f E .9. Then Q. is asymptotically sufficient for M and .2°
is a sufficient a-algebra for M.

PROOF. Put w e Or if lim Q.1(f) = 11(f) exists for all elements f of a support
system W. If co c 12', then, by 4.1 .A, there exists a probability measure Q' such
that Q'(f) = 11(f) for all f E W. It follows from (4.2) that P(Q') = 1 and that

(4.3) P{ f j .2°} = Q"(f) = Qf ((o) a.s. P

for all f E W, P E M. By 4.1.B, (4.3) holds for all f E .7. Therefore Q is suf-
ficient for M. It follows from (4.2) and (4.3) that Q. Q a.s. M.
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4.4. It follows from Theorem 3.1 that, if Q is an asymptotically H-sufficient
statistic for M, then

(4.4) Pf = lim Q. f a.s. P

for P E M, and f E . . Formula (4.4) is valid also for all unbounded functions
f for which (4.2) is true. In most applications, (4.2) and (4.4) hold for all P-
integrable f.

Let us fix an arbitrary countable family W of bounded , measurable func-
tions and define a convergence of measures by the condition that P. --+ P if
P .(f) -+ P(f) for all f r= W. The formula (4.4) implies that each Pin M, is the
limit of for some o,.

4.5.

LEMMA 4.2. Let M be a class of probability measures on a B-space (0, .f ). If
Sr, are sufficient a-algebras for M, then _;W-1 = . , n is also sufficient

for M. (Here . is the minimal a-algebra which 97, and all M-null sets.)
If V; is a sufficient statistic corresponding to S 7 (i = 1, 2), then formulas

1, 2, .. .(4.5) Q, = V, . Qak = Va Qak-1 . Qak+i = V1 Q11 for k=
define an asymptotically sufficient statistic corresponding to °.

PROOF. According to Lemma 4.1 it is sufficient to check formula (4.2). This
formula follows from one result of Burkholder ([1], Theorem 4).

COROLLARY. If ,fit i = 1, 2, are sufficient for M, then -57-o = n .9% is
also sufficient for M.

PROOF. By Lemma 4.2 all a-algebras _V. = 5 , n ... n n = 1, 2,
are sufficient for M. Let Q. be corresponding sufficient statistics. Then

a.s. P

for all P E M and all f E .i.
5. Gibbs states.

5.1. Let L be a directed set, i.e., a partially ordered set with the property
that for each two elements A,, A, of L, there exists A E L such that A > A, and
A > A,. We consider two directed families indexed by L: a family of a-algebras

c .%' and a family of Markov operators II,, in (0,
Following H. Follmer, we say that (./ A, HA) is a specification in (0, .2) if:
5.1.A. .:T;, c A.
5.1.B.
5.1.C.
5.1.D. 11, f = f for f e .',W-A.
Concrete examples of specifications will be discussed in Sections 8 and 9.
A probability measure P on (Sl, . _) is called a Gibbs state specified by
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II=(.:(_:W-A' 1I') if

(5.1) P{fI.t }=HAf a.s. P

for each f e c and A E L.
We assume that the directed set A contains a cofinal sequence AA, i.e., a se-

quence with the property that for every A E L there exists A. > A.
Evidently, each Gibbs state P is a HA-invariant measure for all A E L. On

the other hand, if a probability measure P is invariant relative to the family
{HA), then, by 1.5.D, 1.5.C, and Lemma 3.1,

pt"A fI.t A) = IA f a.s. P

and P is a Gibbs state. Now let P be invariant with respect to operators II,,,
corresponding to a cofinal sequence AA. For each A E L there exists a A. > A
and, by 5.1.B, II,,AH, = HA.. Therefore

P = PHA. = PIIAA HA = PHA .

We see that the class G(II) of all Gibbs states specified by II coincides with the
class of all probability measures which are invariant with respect to a countable
family "A.-

5.2. We define the tail or-algebra ° as the intersection of all

THEOREM 5.1. Let II = (.,. II,) be a specification in a B-space (S2, .7). Then
the tail or-algebra -'.7-1 is H-suffcient for the class G(H) and, to each cofinal sequence
AA, there corresponds an asymptotically H-sufficient statistic II,,A.

PROOF. It is clear that .L A. 1 .i70. Therefore

(5.2) limP{fIP{fIa.s. P
for each probability measure P and each P-integrable f. If PE G(H) then (5.2)
implies (5.1). By Lemma 4.1, HAA is an asymptotically sufficient statistic and

° is a sufficient a-algebra for G(H). Since

P(HA f I .J°} = P{P{ f I . AA} I P{ f I a.s. P

for P E G(H), f E . % , the a-algebra _W-1 is H-sufficient for G(II) by Theorem 3.4.

6. Shifts.

6.1. To each measurable transformation T of a space (S2, there cor-
responds a Markov operator which transforms functions according to the formula

T.f(w) = f(Tw)
and measures according to the formula

(PT)(A) = S P(dw)1A(Tw) = P(T-'A) .

Markov operators of this kind will be called shifts.

LEMMA 6.1. If T is a shift of a B-space (S2, then

(6.1) Q. = n-' k=0 T"
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is an asymptotically H-sufficient statistic for the class M of all T-invariant meas-
ures and the a-algebra of all T-invariant sets is the corresponding H-sufficient
a-algebra.

PROOF. By Birkhoff's ergodic theorem (see, e.g., [18], V-6), the relation (4.2)
is satisfied, and Q. is asymptotically sufficient for M by Lemma 4.1. H-suf-
ficiency follows from Theorem 3.4 and Lemma 3.1.

COROLLARY. Suppose that a shift T of a B-space (0, .5) transforms into itself
a class M C M(JW") and a a-algebra c .9'. If J57-1 is H-sufficient for M,
then the collection 3 r of all T-invariant sets of .9° is H-sufficient for the class
MT of all T-invariant measures PE M.

This follows from Lemma 6.1 and 3.5 because the limit Q of operators (6.1)
commutates with the conditioning with respect to .°.

THEOREM 6.1. Let G be a finite or countable group of shifts of a B-space (Q,
The a-algebra .9° of all G-invariant sets is H-suffcient for the class M of all G-
invariant measures.

PROOF. Denote by `V T the minimal a-algebra containing all M-null sets and
all T-invariant sets A E By Lemma 6.1, "VT is sufficient for M. By Lemma
4.2, an intersection ..1 of SVT over all T E G is sufficient for M. Obviously,

° c On the other hand, if A E . /, then T l,, = 1,, a.s. M for each T E G.
The union B of T-'(A) over all T E G is G-invariant and 1A = 1B a.s. M. Hence
_V and .'° are M-equivalent and ,. ° is sufficient for M. H-sufficiency of .' °
follows from Theorem 3.4 and Lemma 3.1.

REMARK. Theorem 6.1 holds for important classes of uncountable groups G.
Suppose that there exists a countable subgroup G' of group G with the property
that -z_1 is M-equivalent to the a-algebra .7' of all G'-invariant sets. As we
know, .9' is sufficient for the class of all G'-invariant measures. Hence
is sufficient for M, and .f _O is sufficient for M too. By the remark at the end
of 3.4, .57-0 is H-sufficient for M if G satisfies conditions (i), (ii).

Now let G be a locally compact group. Then condition (ii) is satisfied for Borel
a-algebra :%'G and Haar measure 2. Condition (i) implies that, for each PE M
and every square integrablef, T -* Tf is a continuous mapping of G into L2(Q, P)
(see, e.g., [17], Section 29). Using this fact, it is easy to prove that, if G has a
countable everywhere dense subgroup G', then is M-equivalent to _/o and
_5W_1 is H-sufficient for M.

The role of a-algebra .° for decomposition of invariant measures into extreme
elements was discovered independently by Farrell [8] and Varadarajan [21 J. The
fact that .9 0 is a sufficient a-algebra for M is proved in [8] also for a certain
class of abelian semigroups.

6.2. We consider now a slightly wider class of operators than shifts.

THEOREM 6.2. Let T be an invertible transformation of a B-space (Q, . ), let
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T and T-' be measurable, and let Y(w) be a strictly positive .r measurable function.
Let Uf(w) = Y(w)f(Tca). Then

V»f= E%Ukf
E%Ukl

is an asymptotically H-sufficient statistic for the class M of all U-invariant probability
measures. The corresponding H-sufficient a-algebra consists of all T-invariant
sets.

PROOF. We prove that

(6.2) P{f I.9°} = V. f a.s. P

for every P E M and every P-integrable f.
Put r-' = E Uk1, rp = Ukf, summing over all integers k. Let Q. 01,

S2, = [o): r > 0). By the Chacon-Ornstein theorem (see, e.g., [18}, V, 6.4) (6.2)
holds on Q. and, in order to prove that it holds on S2 we need only check that

(6.3) P{ f (.'°} = Sor a.s. P on Q,.

The obvious relations U(p = cp, U1-' = r-' imply that Trp = (p Y-1, Tr = 7Y, and
T((pT) = cr. Hence (pr is Je-°-measurable. On the other hand, (Uf )g = U(f T-'g)
and therefore

(6.4) P(gUf) = P(f T- 1g)

for all P E M and all positive ... -measurable f, g. It follows from this that

P(grU"f) = P(gfT-kr)
for g E . ° and k = 0, ± 1, .. Hence

(6.5) P(grcp) = P(gfa) ,

where a = E T-kr. Since a is .'°-measurable, (6.5) implies that

(6.6) aP{fly°}=r'-
Now a does not depend on f. Taking f = 1, we see that a = 1, and (6.6)

goes into (6.3). By Lemma 4.1, i ° is sufficient for M. Formula (6.4) implies
(3.19), and .'° is H-sufficient for M by Theorem 3.4.

REMARK. Suppose that T, is a one-parameter group of shifts and U, f(m) _
Y, f(T,(o) where Y,+, = Y,T,Y,. Then Theorem 6.2 holds with

V, U.
V` U, l ds

instead of V,,. This result was first proved by Yu. 1. Kifer and S. A. Pirogov
in an appendix to [5].

6.3.

THEOREM 6.3. Let a class M of positive functions be a B-space and a simplex
and let krp E Al if c E M and k # 1. Suppose that T is an automorphism of a
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cone M* _ {kcp: o e M, k > 0) (which means that T and T-' preserve generalized
barycentres). Then the set M, of all points So E M such that Tip = So is also a simplex.
This statement is true also for a one-parameter group of transformations T.

PROOF. For each 1p E M* there exists one and only one positive number k(lo)
such that <p/k(1p) E M. Put Y(cp) = k(Tcp) and Tip = Tcp/Y(So). Obviously T is an
invertible transformation of the measurable space (M, BN), and T and T-' are
measurable. Each 0 E M can be uniquely represented in the form

(6.7) = SN,p(d)
Hence

T5p = SN, T'pp(d'5) = S.M, Y(,p)T'Dp(d(p) = SN, Op 1(&P)

where

p1(d(P) = Y(T-c')p(T-1 do)

It is clear that TSo = o if and only if p1 = p which is equivalent to the relation
pU = p where UF(ci) = Y(5i)F(T(P). By Theorem 6.2, the class of all U-invariant
probability measures is a simplex, and formula (6.12) establishes an isomorphism
of this class and M,..

7. Symmetric measures.

7.1. In the rest of the paper we investigate various classes of measures on
product spaces. We start with the necessary notations.

Let there be given an arbitrary set S and a set E, associated with each s of S.
We call a configuration and denote by xs a collection of x, E E s E S. The product
space E, is the set of all configurations xs. A space E of configurations x over
A corresponds to each subset A of the set S.

Now let a a-algebra :X, in E, be fixed for each sE S. We denote by .?fJ'A the
minimal a-algebra in E,, which contains sets IX,,: x, E T} for all S E A, r E A.
To each probability measure P on (Es, z 's) and each A c S, there corresponds
a probability measure P on (E,,, .:,W,,) defined by the formula

(7.1) AEP,.
A collection of measures P for all finite A C S is called a system offinite-dimen-
sional distributions. If (E ;) are Borel spaces, then (7.1) establishes a one-to-
one correspondence between all probability measures P on (Es, . i3S) and all
consistent systems of finite-dimensional distributions (Kolmogorov's theorem).
In particular, to each family of probability measures p s E S, there corresponds
a product measure P for which all finite-dimensional distributions PA are the
products of p s E A.

A system of random variables on the probability space (Es, P) is given
by the formula

X,(w)=x, for a =xs, sES.
These random variables are independent if and only if P is a product measure.
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Sets {x3 : x E A}, A finite, A E .-W,,, are called cylinders. Two measures on . 3s

are identical if they coincide on all cylinders.

7.2. In this section we assume that (E .:.) = (E, 6') does not depend on s
and we write ES for ES ands for S. Any transformation g of S induces a
transformation xs = T°xs of the space ES given by the formula x,' = xg,. Put
g e G if g is invertible and gs # s only for a finite number of s. Measures,
measurable sets, and functions invariant with respect to the family of operators
T,, g E G, will be called symmetric.

Let r be a finite subset of S. Denote by Gr the totality of all g E G such that
gs = s outside G. Denote by yTr the class of all elements of :5-invariant
relative to To, g E Gr. Let Vr be an arithmetic mean of operators T, g E Gr. It
is easy to see that

(7.2) P(. f I ,5 r} = Vrf a.s. P

for each symmetric measure P and each P-integrable f.

THEOREM 7.1. Let S be a countable set, (E, . ) a Borel space and M the class
of all symmetric measures on (ES, .S). Then:

(a) M is a simplex;
(b) a measure P is an extreme point of M if and only if P Is a product of identical

probability measures p, = p, s e S (in other words, if X s E S are identically dis-
tributed independent random variables);

(c) the class .9° of all symmetric sets is an H-sufficient a-algebra for M and
Vrx is the corresponding asymptotically H-sufficient statistic if r T S.

PROOF. The fact that JW-° is H-sufficient for M follows immediately from
Theorem 6.1. If IF. T S, then r 137-1 and (7.2) implies that

P{ f I .9°} = lim Vr* f a.s. P

for all P E M and all f c: . By Lemma 4.1, Vin is an asymptotically sufficient
statistic for M. The statement (c) is proved. By Theorem 3.1, (c) implies (a).

It remains to prove (b). Let S = (0, 1, , n, } and F. = (0, 1, , n - 1).
By virtue of (c) and (4.4)

(7.3) Pf = lim Vr. f a.s. P

for P E M. and f e In order to prove that P is a product measure, it suffices
to check that, for all m and all A E urn, B E

(7.4) P{x,. E A, x E B} = P{xrm E A}P{x a B} .

It follows from (7.3) that

(7.5) lim,.,,, P{IA(xr.)Vrw 1a(xm)} .

Evidently V1. IB(x,R) = n 1 Z1=1 IB(xk) for n >_ m. Since

P(xrm E A, xk E B} = P{xrm E A, x,,, E B)

for all k >_ m, (7.5) implies (7.4).
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Now we prove that each product measure P E M belongs to IV, Since P is a
barycentre of a probability measure p concentrated on Af we have

(7.6) S, P[4p(xo)(P(x.)}p(dP)

for every c e. Here P and P are symmetric product measures and therefore
(7.6) is equivalent to

[Pcc(xo)}2 = SN, P4r(xo)'p(dP) ,

which implies that

(7.7) S,,, [Ap(xo) - Pw(xo)}'p(dP) = 0.

It follows from (7.7) that p{P: P E M P = P} = 1. Thus P E M,.

7.3. The statements (a) and (b) of Theorem 7.1 are true for uncountable S
too. Indeed, if A is a countable subset of S, then the measure PA, introduced
by (7.1), characterizes a symmetric measure P uniquely because it defines all
finite-dimensional distributions of P. Hence the mapping P--, PA is a,one-to-
one mapping of M onto the set of all symmetric measures on (EA,"). This
mapping preserves the convex structure, and P is a product measure if and only
if PA is a product measure also.

The statement (c) has to be modified as follows. Let A be an arbitrary count-
able subset of S. Denote by the collection of all sets of the form A x E"
where A is a symmetric subset of E. Then 2° is an H-sufficient a-algebra
for M.

8. Stochastic fields.

8.1. Let (ES, s'S) be a product of spaces (E s e S, and let L be a col-
lection of subsets of S ordered by inclusion. Denote by JA a a-algebra in ES
generated by random variables X s e S\A. Assume that, for each A E L, a
measure PA( I xs\A) is given on (E,,, .'A) which depends on XS\A, and put

(8.1) IAf(xs) = SES\Af(xs\AYA)PA(dYA I xs\A)

(We denote by X5\A YA a configuration which coincides with yA over A and with
Xs\A over S\A.) If H = ('A' HA) is a specification (i.e., if 5.1.A-5.1.D are
satisfied), we say that p is a specifying function.

We say that (X P) is a stochastic field specified by p if

(8.2) P{XA E A I XS.,A} = PA(A I Xs\A) a.s. P

for each A E L and each A e eA. Obviously (8.2) is equivalent to (5.1). Hence
Theorem 5.1 can be applied to the set of all stochastic fields specified by p.

8.2. Let S be a countable set and let L be the collection of all finite subsets
of S. To each real-valued function U(I', xr), r e L, xr e E, there corresponds
a specifying function

(8.3) PAC I xs\A) = Z-1 Sc [exp E U(r, xr)} 11 AA.(dx.) ,
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where IF runs over all finite subsets of S such that I' n A * 0, 2, is a measure
on (E,, and Z is independent of x and can be calculated from the condition
pAE, I xS\A) = 1. (The only restriction on U is convergence of series in (8.3).)

Now suppose that S is a graph. A specifying function p is called Markov if
M' I depends only on xd where 5A is a collection of all points of S\A
which have neighbors in A. A function (8.3) is Markov if and only if the
inequality U(I', xr) * 0 implies that each two points s s, of I' are neighbors.

Proofs of all statements of subsection 8.2 can be found, for example, in [20].

8.3. Now suppose (E .ice',) = (E,:%) does not depend on s. Let L be the
collection of all finite subsets of a countable set S. Consider the family {.fir,
I' E L} of a-algebras in Es which has been defined in 7.2. Obviously .fir ) i

if r c: I'. Suppose that, for each I' E L, a measure pr(. I xs) on (Er, ,f r) is given
depending on xs and such that operators

IIr f(xs) = SE sf(Xs\r)Pr(dy,, I Xs)

satisfy conditions 5.1.B-5.1.D. Theorem 5.1 can be applied to the class of all
probability measures P satisfying the condition

P{Xr E A . r} = pr{A jXs} as. P for all F E L and all Ac-."'.
The tail a-algebra .° = fl ._rr coincides with a collection of all symmetric
subsets of Es.

9. Markov processes with a given transition function.

9.1. A stochastic field (X,, P), s E S, is called a stochastic process if S is a
subset of a real line. The case when S is an interval is the most important.

We denote by the a-algebra in E s generated by X t < s, t E S. The
notations _57-, have an analogous meaning.

A real-valued function p(s, x; t, r), s < t E S, x E E r e is called a Markov
transition function if p(s, x; t, ) is a probability measure, p(s, .; t, r) is a
measurable function, and

(9.1) p(s, x; u, I') = S , p(s, x; t, dy)p(t, y; u, r)

for all s<t<uES,xre E,,FE.5
Starting from a transition function p, we define a specification H(p) in the

following way. We consider a family of finite-dimensional distributions

p(s dx,, , s,,, dx.)

(9.2) = p(s, X; s dX,)p(s x,; s dx,) . . . p(s._ X._,; s., dx.)
s,<S2< ... <s.EA,=Sn (s,+oo)

and denote by P,,, the corresponding probability measure on ,,. We define
L as the totality of all sets A,, s E S, and put

(9.3) = .9' , Iln,f(XS) = S f(xS\A,ye,)P,,,,(dye) = P..=.f(XS,A, XA,)
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Then II(p) = (F,,, is a specification. (Formula (9.3) is a particular case of
(8.1) with pjA I xs ) = P,,,JxA. E A}.) We will use an abbreviation II, for the
operator II,,..

We say that (X P) is a Markov process with a transition function p and we write
P M(p)if
(9.4) P{A I .mss,) = P,,JA) a.s. P

for each s E S, A E,,. Obviously M(p) coincides with the set of all Gibbs
states specified by II(p).

9.2. THEOREM 9.1. Let r = inf S. If r c- S, then II, is an H-sufficient statistic
for M(p) and the corresponding H-sufficient or-algebra is generated by X. If r E S,
then an intersection . 0 of all a-algebras s E S is an H-sufficient a-algebra
for M(p) and, to each sequence s., j r, S. E S these corresponds an asymptotically
H-sufficient statistic II,..

PROOF. In the case r E S, we need only check that

(9.5) P{ f X,} = II, f a. s. P

if P E M(p) and f E It is sufficient to prove this only for functions of the
form f(xs) = But for such f the left side of (9.5) is equal to

0(X,)P{((XA,) i ,} = w(X.)P,, X, O(XA,)

and, by the definition of II the right side of (9.5) is the same.
Suppose now that r E S. Then to each s,, 1 r, s E S there corresponds a cofinal

sequence A,,, and, if (Es, Bs) is a B-space, we can apply Theorem 5.1. This is
the case if S is countable.

If S is not countable, we consider a countable subset A = {s,} of S where
s, 1 r and we use the same trick as in 7.3 replacing each measure P by PA.

Since s J°, we have
(9.6) P{ f I . °} = lim, , II,. f a.s. P

for each PE M(p) and each P-integrable f, and our theorem will be proved if
we construct a Markov operator Q with the properties

(9.7) P{f I.9°} = Qf as. P,
Q`° E M(p) a.s. P ,

for each P E M(p). It follows from (9.4) that, for P E M(p),

P{ f 1 _57-1} = P{P{ f 19s,} I.°} = P{P,,X. f I. °} a.s. P.

Therefore if

(9.8) P{op(X,J I .9°} = Qp(X.) a.s. P E M(p)

for all n = 1, 2, . and all c c then (9.7) is true for all n and all f c- -57-,
and hence, it is true for all f e .`'.
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Denote by M(p) the class of all Markov processes on (E,,, with the transi-
tion function p and by .> ° the corresponding tail a-algebra. It follows from
(9.5) and an analogous formula for that

(9.9) P{cp(x.) .57"1} = Pf p(x,.) 1 9 °} a.s. P E M(p) .

The mapping P -+ P is a one-to-one mapping of M(p) onto M(p). As we know,
there exists a Markov operator in (EA, Be) such that O" E M(p) a.s. ft(p) and

(9.10) P{fo(x,n) _ L)L(x,.) a.s. P

for each Pe R(p) and each w E M,.. Denote by Q" a measure of class M(p)
which corresponds to Q". It follows from (9.9) and (9.10) that Q satisfies (9.8).

10. Entrance and exit laws.

10.1. Let p(s, x; t, I') be a Markov transition function. Put

P,'h`(x) = SE,P(S, x; t, dy)h`(y) ,

("I pl%r) = SE, v.(dx)P(s, x; t, IF).

(Here h' is a V,-measurable function with the values in the extended half-line
[0, +oo]; v, is a measure on ::3i.)

We say that v is an entrance law if v, P,' = v, for all s < t c: S and we say that
h is an exit law if P'h° = h' for all s < t E S.

If v is an entrance law and h is an exit law, then the value of v,(h,) does not
depend on t and we denote it by {v, h}. If {v, h} = 1, then the formula

P(t dx , t,,,

(10.1) = v,,(dx,)p(t,, x,; t8, dx,) ... p(tn_l, x,,_1; t., dx«)h`"(x,,)

t,<
defines a family of consistent finite-dimensional distributions, and we denote
by P," the corresponding probability measure on (Es, .Ys).

Let oo > hl(x) > 0 for all s, x.
Let Rp" be the class of all entrance laws v normed by the condition {v, h} = 1

with natural measurable and convex structures. Let M(p") be the class of all
Markov processes with the transition function

(10.2) p"(s, x; t, dy) = h'(x)-'P(s, x; t, dy)h`(y)

It is easy to see that v -+ P.I. is an isomorphism of convex measurable spaces R,"
and M(ph). According to Theorem 9.1 and 3.1, the space Ry" is a simplex. If
v is an extreme point of R,h, and if oo, then by 4.4, for every
sequence S. 1 r

(10.3) P."[(o`(X')] = lim P1 XaR,p'(X,) a.s. P,"

Formula (10.3) implies that for each v,-integrable f

(10.4) v,(f) = lim h'n(X,,,)-' S E,* P(s,,, X,n; t, dy)f(y) as. P,"
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10.2. Now we investigate a class S," of all exit laws normed by the condition
{v, h} = 1 under the following additional assumption:

10.2. A. If v,(r) = 0, then p(s, x; t, r) = 0 for all s c t, x E E.
We proved in [6] (see Lemma 4.2) that a density p(s, x; t, y) = p(s, x; t, dv)/v,(dy)

can be selected in such a way that

(10.5) S E, p(s, x; t, y)v,(dy)p(t, y; u, z) = p(s, x; u, z)

for ails < t<u, xEE, and

(10.6) S p(s, x; t, y)v,(dx) = 1 for all s , x

The formula

(10.7) f(s, dx; t, y) = v,(dx)p(s, x; t, y)

defines a backward transition function. Starting from p, we define probability
measures P",z on .<. exactly in the same way as measures P,., were defined
with the help of forward transition function p. We say that (X,, P) is a Markov
process with a backward transition function f if

P{A 1}= P""X"(A) a.s. P for A E-<" .
We consider a measurable structure in S,' generated by functions F(h) _

v,(<ph'), S E S, c E It was proved in [4] (Lemma 4.2) that hl(x) is measurable
with respect to the pair h, x, and hence the condition 2.2.A is satisfied. It is
easy to check that the mapping h P." is an isomorphism of S,n onto the class
M(fi) of all Markov processes with the backward transition function ft defined
by (10.7). Now we use Theorem 3.1 and propositions dual to Theorem 9.1 and
to formula (4.4), and we conclude that SP is a simplex and that

(10.8) lim lim S co'(x)f(t, dx; u", X"n) a.s. P,"

if h is an extreme point of Sw", if u" ? r, and if oo.

It follows from (10.8) and (10.7) that

S h°(x),p`(x) v,(dx) = lim S p(t, x; u,,, X"n)'p`(x)v,(dx) a.s. P."

if h°cp° is v,-integrable. Applying the last formula to

(p°(x) = p(s, x; t, y) for t>S,
=0 for t<s,

we see that, if h is extreme and if hl(x) < oo, then

hl(x) = lim p(s, x; u,,, X"") a.s. P," .

REMARK. S. E. Kuznecov [14] has proved that the assumption l0.2.A is not
only sufficient but also necessary for the class Spy to be a simplex.

11. Excessive measures and excessive functions.

11.1. In this section, the results of Section 10 will be extended to wider
classes of measures and functions associated with a transition function p. Let
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S coincide with the set of all real numbers. An excessive function h and an
excessive measure v are defined, respectively, by conditions

P,'ht < h' , P'ht T h' as t j s
and

P. P,' < v v, P,' T v, as s T t .

It is convenient to replace in the definition of a Markov transition function
the condition p(s, x; t, E,) = 1 by a weaker condition p(s, x; t, E,) < 1. An
immediate gain is that an extended class is invariant with respect to transforma-
tion p -. ph defined by formula (10.2) for each strictly positive finite excessive
function h.

Let v be an excessive measure and h be an excessive function. We put {v, h} _
-boo if v,(ht) = +0o for some t. If v,(ht) < oo for all t, we define {v, h} as a
supremum of sums

vty(htl) Li k S [vth(h`°) - vth_,(Ptk lh`h)}

over all finite subsets t, < t, < . . . < t of S. (This is consistent with the defini-
tion given in Section 10 for the case of an entrance law v and an exit law h.)

The crucial point is the construction of a probability measure P,h corresponding
to a triple p, v, h such that {v, h} = 1. As in Section 10, we start from formula
(10.1). However P,h will be defined not on (Es, .is) but on a different space
(Q. F). In order to construct this space, we add to E, two extra points a, and
b and denote by a a-algebra in B. = E, u a, U b, generated by V, and the
one-point sets {a,} and {b,}. We define Q as a subset of the product space
(Es, `mss) = n,Es (E 0.), namely, xs of E. belongs to Q if there exist two real
numbers a < A such that

x, = a, for s 5 a , x, E E, for s E (a, 19) , x, = b, for s > /3 .

The random variables a(w) and i9(tu) are called the birth time and the death time.
To each s E S there corresponds a function X. on S2 defined by the formula

X,(cu) = x, for w = xs ,

and we denote by .t`' the a-algebra in 0 generated by X, S E S.
We proved in [5} that, if {v, h} = 1, then there exists one and only one prob-

ability measure P,h on (0, F) such that, for every t, < ... < t E S, r, E
Ew

P,h{a < t X,1 E r ... xt E r A > p(t1, ri, , t,., r,.) ,

where the right side is defined by formula (10.1).
To each s E S, X E E, there corresponds an excessive measure

v,'s(r) = p(s, x, t, r) for t > s ,
=0 for t<s.

We say that a probability measure P on .ir defines a Markov process (X P)
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with a transition function pk if, for all s c S and A c

P{A . 5s}=P,1(A) as. P on {a:a<s<i4}.
Let A = {t1 < ... < be a finite subset of S and let to = - oo, -1- 00.

Put

aA = Ik+1 if tk < a < tk+1 NA = tk if tk < / C tk+1
k=0,1, ,m

Theorem 9.1 can be extended to processes with random birth and death times
as follows.

THEOREM 1 1 . 1 . Put A E J ° i f {A, a < s} E for all s e S. Then . ° is an

H-sufficient a-algebra for M(pk). To each increasing sequence of finite sets A. with
a union everywhere dense in S, there corresponds an asymptotically H-sufficient sta-
tistic 11Ax.

Now all the results of Section 10 can be easily carried over to excessive measure
and functions. We have to replace s by a,. in (10.4) and u, by jA, in (10.6).

11.2. We proved in [5] that the space of all p-excessive measures is a Borel
space (the main point is that each p-excessive measure is defined uniquely by
the values v, for rational t). Therefore all simplexes M(p), Rpk, S,9 investigated
in Sections 9, 10 and 11 are Borel spaces.

12. Stationary transition functions.
12.1. We suppose now that a Markov transition function p(s, x; t, r) is station-

ary which means that: (i) S is a subgroup of the additive group of real numbers;
(ii) all spaces (E . ,) _ (E, .i') are identical; (iii) p(s, x; t, F) = p(t - s, x, I')
depends only on the difference t - s. We shall consider only two possibilities:
S is the group of all integers (the discrete case) and S is the group of all real
numbers (the continuous case). In the second case we assume that p(t, x, I') is
measurable with respect to the pair t, x.

We denote by 0, a shift in (Es, which corresponds to the transformation
s - s + t of S. A Markov process (X,, P) is called stationary if P is invariant
with respect to the group b,, t E S.

THEOREM 12.1. Let -9-1= n . 5, be the tail a-algebra and let . B be a col-
lection of all A E 9_1 which are invariant with respect to the group B,. Then . 7B
is an H-suficient a-algebra for the class MB(P) of all stationary Markov processes
with a transition function p.

PROOF. In the discrete case we can apply the corollary to Lemma 6.1 to
T = B1, the class M = M(p), and a-algebra . ' ° (which are invariant with respect
to T). In the continuous case (Es, _iS5 s) is not a B-space. This obstacle can be
overcome in the same way as in the proof of Theorem 9.1 but we will not go
into details.
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12.2. A probability measure v is called a stationary distribution for p if PP, = v
for all t E S. (Here P, = P,° are the Markov operators associated with the transi-
tion function p.) Each stationary distribution defines an entrance law v, = v,
t e S. The corresponding Markov process P.' belongs to the class MB(p) inves-
tigated in Theorem 12.1. In this way we establish an isomorphism between the
class N of all stationary distributions and MB(p). Hence N is a simplex.

12.3. An excessive measure v, is called stationary if v, does not depend on t.
Obviously a measure v on (E, .-R) is a stationary excessive measure if and only
if PP, 5 v for all t E S and vP, T v as t 10. In a similar way, we introduce the
concept of a stationary excessive function.

THEOREM 12.2. Let I be a strictly positive measurable function on (E, .id). A
class of all stationary excessive measures v normed by the condition v(l) = I is a
simplex.

PROOF. Since p is stationary, the formula (Tv), = v,+, defines for each t a
transformation of the set of all p-excessive measures. Obviously, v is stationary
if and only if it is invariant with respect to the group T.

Consider a p-excessive function

hl(x) = i So e-i.+"'P*l(x) du .

A simple calculation shows that, for each excessive measure v,

(12.1) {v, h} = j S+

which implies that

(12.2) {v, h} = v(l) if v is stationary,

and

(12.3) (Ti, ,h} S e'''{v, h}

Denote by M* the set of all excessive measures v satisfying the condition
{v, h} < oo and by M the set of v E M* for which {v, h} = 1. According to
Section 11, M is a Borel space and a simplex. It follows from (12.3) that M*
is invariant with respect to T, and Theorem 12.2 follows from Theorem 6.3.

12.4.

THEOREM 12.3. Suppose a stationary transition function p(t, x, r) is absolutely
continuous with respect to a measurer for each t and x. Then the set of all stationary
excessive functions h normed by the condition 7(h) = 1 is a simplex.

PROOF. We consider transformations (T,h)' = h°}t of the set of all excessive
functions. The formula

ve(r) = I So a-u^",(rP.)(I') du
defines an excessive measure, and we have

{v, h} = I S+: e-1117(hl) du
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for every excessive function h. In particular (v, h) = r(h) for a stationary h.
To complete the proof, we apply Theorem 6.3 in the same way as in the proof
of Theorem 12.2.

REMARK. Put

92(x, r) = So e-'`p(t, x, r) dt , A > 0 .

If a measure

)2,(r) = Se r(dx)92(x, r)

is a-finite for some A, then Theorem 12.2 remains true if p(t, x, I) is absolutely
continuous with respect to >)a (Kuznecov [14], Theorem 3).
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MINIMAL EXCESSIVE MEASURES AND FUNCTIONSR

ABSTRACT. Let H be a class of measures or functions. An element h of H is
minimal if the relation h - h, + h2, h h2 E H implies that hR, h2 are proportional
to h. We give a limit procedure for computing minimal excessive measures for an
arbitrary Markov semigroup T, in a standard Borel space E. Analogous results for
excessive functions are obtained assuming that an excessive measure y on E exists
such that TJ - 0 if f = 0 y-a.e. In the Appendix, we prove that each excessive
element can be decomposed into minimal elements and that such a decomposition
is unique.

1. Introduction.
I.I. In 1941 R. S. Martin [13] published a paper where positive harmonic

functions in a domain D of a Euclidean space were investigated. Let H stand for
the class of all such functions subject to condition f(a) < oo where a is a fixed
point of D. Martin has proved that:

(a) each element of H can be decomposed in a unique way into minimal
elements normalized by the condition f(a) = 1;

(b) if the Green function of the Laplacian in D is known, then all minimal
elements can be computed by a certain limit process.

J. L. Doob [2] has discovered that the Martin decomposition of harmonic
functions is closely related to the behaviour of Brownian paths at the first exit time
from D. G. A. Hunt [9] has shown that, using these relations, it is possible to get
Martin's results by probabilistic considerations. Actually only discrete Markov
chains were treated in [1] and [5], however, the methods are applicable to Brownian
motion as well.

In [10] Hunt has studied Markov processes with a continuous time parameter on
a separable locally compact space and he has proved results of Martin type under
certain regularity conditions for the transition functions. The regularity conditions
were relaxed by H. Kunita and T. Watanabe [11] and by the author [3], [4]. Now
we are able to eliminate them completely and to develop a theory applicable to
arbitrary Markov processes in standard Borel spaces. In particular, the theory is
easy to apply to general diffusion processes without any restrictions on diffusion
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and drift coefficients. (In the case of Brownian motion we get in this way a new
proof of Martin's results.)

The decomposition of excessive measures and functions into minimal elements
was studied in [6] and [7]. In the present paper we concentrate on computation of
minimal elements. In the Appendix, we give a new proof of existence and
uniqueness of the decomposition into minimal elements. This proof is based on
constructing sufficient statistics for certain classes of Markov processes.

1.2. We say that a function f is positive if it takes values from the extended real
half-line [0, + oo]. We write f E 'b if f is a positive function measurable with
respect to a a-algebra J3. If m is a measure on JB, we write f E L'(m) if f is

-measurable and m-integrable, and we write f E L+ (m) if in addition f > 0
m-a.e. We denote by m(f) the integral off with respect to m.

2. Discussion of results.
2.1. Let (E, lJ3 ) be a measurable space. A function p,(x, B), t > 0, x E E,

B E J'v is called a stationary transition function if it is 61 -measurable in x, is a
measure with respect to B and if

p, (x, E) < I for all s, x; (2.1)

f ps(x, dy)p,(y, B) = ps,(x, B) for all 0 <s < t, x E E, B E',. (2.2)
E

If (2.2) but not necessarily (2.1) holds, we call p a generalized stationary transition
function.

We put

mT,(B) = fE m(dx)p,(x, B) (2.3)

and

TTh(x) = fEp,(x, dy)h(y) (2.4)

These formulae are meaningful for all measures m on i and all functions h E 61.
We say that m is an excessive measure if it is a-finite and if, for each B E S,

mT1(B)Tm(B) as tJ.O. (2.5)

A function h E , is called excessive2 if it is finite a.s. with respect to all measures
p,(x, ) and if, for every x E E,

T,h(x)Th(x) as tJA. (2.5a)

2.2. Throughout this paper we assume that:
2.2.A. (E, i) is a standard Borel space.
2.2.B. For each B E S, p,(x, B) is a S. X JS -measurable function ('JSi R denotes

the a-algebra of all Borel subsets of the real line R).

2Hunt's definition of excessive functions requires measurability with respect to the completion of '
relative to an arbitrary probability measure. This looks less restrictive than 13 -measurability. However,
under the assumption 2.2.B, both conditions are equivalent for functions h with the property (2.5.a).
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In all propositions on excessive functions we assume in addition that:
2.2.C. All the measures p,(x, ) are absolutely continuous with respect to a

a-finite measure y.
The role of this condition is revealed by the following lemma.

LEMMA 2.1. Under condition 2.2.C, a Radon-Nikodym derivative

p,(x,y) =p,(x, dy)/y(dy) (2.6)

can be chosen to be measurable in x, y and to satisfy the relation

fE ps(x, y) y(dy)p,(y, z) = p,.,(x, z) (2.7)

for all x, z E E, s, t > 0. If the measure y is excessive, then we can assume in
addition, that

f y(dx)p,(x,y) < 1 (2.8)

for all t, y.

We say that y is a reference measure if y(B) = 0 if and only if p,(x, B) = 0 for all
t and x. If a measure y satisfies condition 2.2.C, then

yi(B) = f dt e-`fE y(dx)p:(x, B) (2.9)

is a reference measure. Obviously all reference measures are equivalent, and each
excessive measure y satisfying 2.2.C is a reference measure.

2.3. We fix a stationary transition function p and we denote by M the set of all
excessive measures and by H the set of all excessive functions.

All minimal elements of M can be obtained by passage to a limit from the Green
measure g,, x E E, and the truncated Green measure g,", x E E, u > 0, which are
defined by the following formulae

gx(B) = f p,(x, B) dt, (2.10)

gX (B) = f up, (x, B) dt. (2.11)
0

We say that an element m of M is conservative and we write m E MM if
gx(1) = oo a.s. m for all strictly positive measurable 1. We say that m E M is
dissipative and we write m E Md if gx(1) < oo a.s. m for all m-integrable positive 1.

LEMMA 2.2. Each minimal element m of M belongs either to MM or to Md. If
mEMMthen mT,=mforallt>0.

THEOREM 2.1. Let a minimal element m of M belong to M, If p, 4, E L'(m),
m(,G) # 0, then

lim (gx(p)/gx(P)) (2.12)

for m-almost all x.

Theorem 2.1 is true for all generalized stationary transition functions.
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THEOREM 2.2. Let a minimal element m of M belong to Md. There exists a
probability measure P on the space E °° of all sequences x x2, .... xk, ... E E such
that, if T, 4, E L'(m), m(4') 9& 0, then

m(q)/m(4) = lim(gj'P)/gxk(P)) (2.13)

for P-almost all sequences {xk}.

2.4. The following implications of Theorems 2.1-2.2 rather than the theorems
themselves are useful for practical computation of minimal elements.

COROLLARY. Let S be a countable family of positive 61 -measurable functions. We
write m = S-lim mk if mk((p) -* m(qq) for all m-integrable functions 9) E S. Let m be
a minimal element of M. If m is conservative, then

m = S- lim c(u)g," for some x E E.
U-M

If m is dissipative, then

m = S-lim ckg., for some x x2, ... E E.

Here c are constants (which can be expressed by formulae

c(u) = m(')/&" (), ck = m()/gzk (0)

for an arbitrary function 4, E L+(m)).

2.5. Now let y be a reference measure and let

gy(x) = f p,(x,y) dt, (2.14)

guy (x) = f p,(x,y) dt (2.15)

where p is described in Lemma 2.1. We call gy the Green function and gy, the
truncated Green function.

Put yh(dx) = h(x)y(dx), yy(dx) = gy(x)y(dx). An element h of H is called
conservative if yy(p) = oo yh-a.e. for each strictly positive (p, and it is called
dissipative, if yy(g)) < oo yh-a.e. for each yh-integrable positive qq. These definitions
are independent of the choice of reference measure. The set of all conservative
elements of H is denoted by H, and the set of all dissipative elements by Hd.

LEMMA 2.3. Suppose that condition 2.2.C holds for an excessive measure y. Then
each minimal element h of H belongs either to H, or to Hd. If h E H, then T,h = h
for all t > 0.

THEOREM 2.3. Suppose that h is a conservative minimal element of H. If h is
integrable relative to measures and q and if ri(h) 0, then

?;(h)/TI(h) = lim (2.16)

for y h-almost ally.
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THEOREM 2.4. Let h be a dissipative minimal element of H. Then there exists a
probability measure P on the space Eo0 such that, if h is integrable with respect to
and ,l and if q(h) # 0, then

(h)/"1(h) = lim(6(gyk)/n(Sy")) (2.17)
for almost all sequences { yk }.

COROLLARY. Let S be a countable family of measures on (E, J6 ). We write
f = S-lim fk if (fk) - (f) for all E S such that f is -integrable. Let h be a
minimal element of H. If h E H, then

h = S-lim c(u)gy, for some y e E.

If h E Hd, then

h = S-lim ckgyk for some y y2, ... E E.

(Constants c can be calculated by the formulae

c(u) = ck = l(h)/r)(gyk) (2.18)

where 11 is an arbitrary measure such that q(h) < oo.)
REMARK. For (B) = 18(x), formulae (2.16) and (2.17) can be rewritten in the

following form

h(x) = lim (2.16a)

h(x) = lim ckgy(x) (2.17a)

where c are given by formulae (2.18). Let v be a a-finite measure such that
p{h = oo} = 0. By Fubini's theorem, for y*-almost all y, formula (2.16a) is true for
p-almost all x. Analogously, for P-almost all sequencesyk, formula (2.17a) holds for
p-almost all x.

2.6. Theorem 2.4 implies immediately Martin's results on minimal positive
harmonic functions. The condition 2.2.C is satisfied for Lebesgue measure y. The
density p,(x, y) is symmetric and

f 8y(x)Y(dx) = f f y(dx)p,(x, y) dt = f p,(y, D) dt = EyP
D 0

where fi is the first exit time of Brownian motion from the domain D. For a
bounded domain D, the right side is finite and therefore all elements of H are
dissipative. Suppose that h is a minimal element and that h(a) = 1. According to
the remark at the end of Subsection 2.5, there exists a sequenceyk E E such that

h(x) = lim(gy(x)/gy(a)) for y-almost all x E D. (2.19)

Take a convergent subsequence and, changing notations, denote it yk again. If
lim yk = y E D, then h(x) = gy(x)/gy(a) y-a.e., hence everywhere in D (because
both functions are superharmonic). If y E D, then the limit in the right side of
(2.19) is a harmonic function (gy is a harmonic in DN(y) and Harnack's inequal-
ity implies uniform convergence on each compact subset of D). The sequence yk
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corresponds to a point of the Martin boundary and the function defined by (2.19)
is the minimal harmonic function associated with this point 3

We see how small the part of this picture which depends on the analytic
properties of classical harmonic functions is.

2.7. Although an explicit description of the measure P in Theorems 2.2 and 2.4 is
not important for computing minimal elements, it is instructive from the point of
view of stochastic processes.

Consider a decreasing sequence tn, n = 0, 1, ... , and a sequence of a-finite
measures v, subject to the condition

v,,T,q_ _,. = ,._., n = 1, 2, .. (2.20)

Let 1 be a positive function and v,,(1) = 1. Formulae

m,,(dxo) = v,a(dxo)l(xo), (2.21)

m.,..... ,p(dx,,, 1, . . . , dxo)

= D,(dxn)p,_,_,(xn, xn-1) ... p,,-1 (x1, dxo)l(xo)

define a compatible family of finite-dimensional distributions, and by
Kolmogorov's theorem, there exists a sequence X. of random variables taking
values in E such that is the probability distribution of X,,, Xt.-,, ... , X,o
In other words, there exists a measure P in E °° such that m,̂  ... ,o(I',, x ... X I',) is
the measure of the cylinder with the base Fn x . . . x I'o.

Now each minimal element m of M is either invariant, i.e., mT, = m for all t, or
mT, J.0 as t -* oo (in the second case we call m null-excessive).

If m is invariant, then (2.20) is satisfied for v,, = v, _ ... = v. _ = m.
For m E Md, Theorem 2.2 holds for every measure P corresponding to a sequence
v^ = m, tn1-00.

If m is null-excessive, then it can be represented in the form

m= f 00 vtdt
0

where

(2.22)

vsT,-s = v, for all 0 < s < t.

Theorem 2.2 holds for every measure P corresponding to a sequence
The random variables X,, form a Markov process. It is natural to interpret the set

of minimal elements of M (with proportional elements identified) as the entrance
space for this process. This space consists of two parts: the entrance space at time 0
corresponding to the null-excessive elements and the entrance space at -oo corre-
sponding to the invariant elements.

3The points corresponding to the minimal harmonic functions form only a part of the Martin
boundary. The fundamental results on minimal positive harmonic functions described in Subsection 1.1
have been obtained originally by using a representation of harmonic functions as integrals over all the
boundary. The subsequent development has shown that not the entire boundary but only its minimal
part is of real importance.
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Using (2.21) for a fixed to and variable t1, t2, ... , it is possible to define a
Markov process X, for all t < to. The statement of Theorem 2.2 remains true if t
tends to 0 or -oo over any countable subset of (-oo, to). It can take all real values if
the paths of X, have certain regularity properties (as in the case of Brownian
motion).

2.8. To construct a measure P mentioned in Theorem 2.4, we consider an
increasing sequence t,,, n = 0, 1, ... , a sequence of positive measurble functions
q ^ subject to conditions

and a measure v such that v(pi`o) = 1. Let P be a measure on E°° corresponding to
the finite-dimensional distributions

m,,(dxo) = v(dxo)9p0(xo),

m,o,, ... , (dxo, dx 1, ... ,
d
x )

= v(dxo)p,_10(xo, dx1) . . . p,,_,,,_,(x _1, dx)(p1-(x .

If a minimal element h of H is invariant (i.e., T,h = h for all t), then Theorem 2.4
holds for a measure P corresponding to 4p^ = h, oo. If h is null-excessive (i.e.,
T,hJ 0 as t - oo), then

=
fo

h gtdt (2.23)

where

T,_,,q)` = (p' for all s < t < 0,

and we can use any measure P corresponding to (p^ and
The set of minimal elements of H, with the identification of proportional

elements, can be interpreted as the exit space at time 0 for null-excessive elements,
and at time + oo for invariant elements. (Time 0 can be replaced with any other
finite time so.)

From a probabilistic point of view, it is more natural to consider a stochastic
process with random birth time a and death time,8 and to interpret elements of the
entrance and exit spaces as possible birth and death places (cf. Theorems 7.2 and
7.4).

3. Conservative minimal elements.
3.1. A function v(x, B), x E E, B E i, is called a kernel if it is a , -measurable

function of x for each B E S, and is a measure relative to B for each x E E. A
kernel v(x, B) defines a transformation of measures

mV(B) = fE m(dx)v(x, B)

and a transformation of positive measurable functions

VO(x) = fg v(x, dy)q'(y).
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Two kernels v and v' are dual relative to a measure m if

f gq(x)V,i(x)m(dx) = f 4,(x)V*sp(x)m(dx)

for all cand P.
To each V there correspond the Green operator

Gq(x) _ I VkP(x)
k-0

and the truncated Green operator
n-1

Gnga(x) = I
Vk(P(x).

(3.2)
k-0

The following proposition is one form of the Chacon-Ornstein ergodic theorem.

THEOREM 3.1. Let v be a kernel on (E, J6) and let a a -finite measure m on
satisfy the condition

mV(B) < m(B) for all B E GJ3 . (3.3)

Then m = mm + and where
3.1.A. The measures m, and md are singular with respect to each other,
3.1.B. Gqp = 0 or + oo m,-a. e. for each q' E 61,
3.1.C. Grp < oo and-a.e. for each 9) EE L'+ (m).

These properties define the measures mm and and uniquely. For each 1 E L+(m), we
have m,(B) = m(B n Er), md(B) = m(B n Ed) where EE = (x: Gl(x) = oo), Ed =
(x: Gl(x) < cc).

The measures mm and md are called the conservative and dissipative parts of m
relative to V.

The following statments hold.
3.1.D. If rp = 0 md-a.e., then Vqp = 0 md-a.e. and m((p) = m(p).
M.E. If V1 < I m-a.e., then the equality ¢ = 0 mc-a.e. implies the equality

Vi, = 0 m,-a.e.
3.1.F. Suppose that and = 0. Put B E dim if B Ei and if

f 99dm = f Vgdlm for all T E 61 .
a e

The class ' is a a-algebra in and

lim(Gnq,(x)/Gn4(x)) = Jm) (3.4)

for m-almost all x if q) E L1(m), 0 E L+(m). (Here m't'(dx) = 4(x)m(dx).)

All these statements, except 3.1.E, are proved, e.g., in [14] (§§V.5 and V.6).
Let us prove 3.1.E. If VI < 1, m-a.e., then m(,iV l) < m(,') for all

¢ E J6, and V* satisfies condition (3.3). Let G' be the corresponding Green
operator. Take 1 E L+(m). As we know, mr and and are the restrictions of m to
EE = (GI = oo) and Ed = (Gl < oo ). Because of 3.I.C, there exists a function
1 E L1(m) such that l = 0 on E, 1 > 0 on Ed and m(1Gl) = md(fGl) < oo. We
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have m(lG*l) < oo, hence m(G*l = oo) = 0. Let m,, and and be the conservative
and dissipative parts of m relative to V*. By 3.1.B mj0 < G*1 < oo) = 0 and

G*1 } = 0. However G*l > 1 > 0 on Ed. Hence ?k(Ed) = 0 and, for all
B E GJ'o , md(B) = m(B n Ed) = md(B n Ed) < md(B). Because the roles of V and
V* are symmetric, we also have and < md. Hence and = md, A, = m,

Now let p = 0 and a.e., q', = 0 m,-a.e. Then, by 3.1.D, V*qp = 0, and = md-a.e. and
m,(pV¢) = m(4V*q,) = 0. Hence V¢ = 0 m.-a.e.

REMARK. Using the relation GGVgp + p, it is easy to prove that the limit
(3.4) coincides m,-a.e. with the limits

lim lim (Gng)(x)/Gn+i*p(x)). (3.5)

3.2. Now we apply Theorem 3.1 to investigating the class M of all excessive
measures associated with a stationary transition function p,(x, B). Let T, be
operators defined by formulas (2.3) and (2.4). Consider the Green measure gx and
the truncated Green measure g," introduced by (2.10) and (2.11).

We put
E0= (x:p,(x,B)=0forallt,B)

and we notice that, if I is strictly positive, then

gx(1) > 0 on E\Eo. (3.6)

Indeed, if gx(l) = 0, then p,(x, E) = 0 for almost all t, and x E E0 because of
(2.2).

LEMMA 3.1. Fix a strictly positive function I E ',, and consider, for each measure m
oni , its restrictions me and md to the sets

EE = (x: gx(l) = o), Ed = (x: gx(1) < 00)-

If m E M and m(l) < oo, then mm E MM and md E Md. Moreover mm is invariant
with respect to operators T,.

PROOF. 1 °. Since (3.3) holds for V = T, we have a decomposition m = m' + and
where m' and and satisfy conditions 3.1 .A, B, C. For each qp E 61

gx(q)) = where gg((p). (3.7)

It follows from 3.1.B and (3.7) that md(EE) = 0, m'(Ed\EO) = 0. Besides GT,1(x) =
1(x) on E0 and, since 0 < I < 00 m-a.e., we have mc(Eo) = 0 by 3.1.B. Let B, Bd
stand for the intersections of B E lj with EE and Ed. We have mc(B) - m(BB)
m'(BB) = mn(B). Thus mm = m,. Analogously md = md.

2°. Let q7, Pd be the restrictions of q' E 153 to E, Ed. By 3.1.D and 3.1.E, we have

m°(T,T) = MAT-WO = m(T,pp) = m(90 = ma(p),

md(Ttq,) = md(T pd) = m(T pd)Tm(Wd) = md(gp) as t,,A.

Hence m, and and belong to M and m, is invariant with respect to T.
3°. It follows from 3.1.B, C, (3.6) and (3.7), that gx(q)) = oo, mm = m'-a.e. if

(o>0,and gx(p)<oo,md=mda.e.if (i>0,m(g))<o0.Hence mmEM, mdE
Md.
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3.3. Evidently Lemma 3.1 implies Lemma 2.2. Theorem 2.1 follows from the
following result.

THEOREM 3.2. Let m E M.. Put B E '3T if B E ) and

f (pdm = f TTdm for all t > 0, (p E
B

The class Jim is a a-algebra in E. If 9) E L'(m), 4, E L+ (m), then

(3.8)

Jim (gx (0/gx(i)) = m''(4, I ST) (3.9)

for m-almost all x. If m is a minimal element of M, then the right side of (3.9) is
equal to m(p)/m(4,).

PROOF. We apply part 3.1.F of Theorem 3.1 to V = T,. Notice that G in formula
(3.4) and gx in (2.11) are connected by the relation

G. ( (x) < gx (y)) < (x) for nt < u < (n + 1)t (3.10)

where fi(x) = gx(T). We can write (3.10) in the following form

G, /cx(u) < gx(ro)/cx(u) < Gn+19'/cx(u) (3.11)

for nt < u < (n + 1)t where cx(u) = G fi(x) for nt < u < (n + 1)t. Since m(q3) _
tm(9) < oo, it follows from (3.4), (3.5) and (3.11) that

uin; (gx(p)/cx(u)) = m+ IJim), m-a.e. (3.12)

It is easy to check that the right side of (3.1`2) equals tm+(ip/,,ISv). Since this
expression is equal to t for 9) we have from (3.12)

Jim (gx(9))/gx(0) = m"( IS'), m-a.e. (3.13)

Denote by F the left side of (3.13) (on the set where the limit does not exist, we
replace it by lim sup). It follows from (3.13) that F E ,F for all V = T,. Hence
F E J3r and (3.13) implies (3.9).

It is easy to see that if m E M, then its restriction mB to any set B E Jar
belongs to M. If m is minimal then mB is proportional to m, hence m(B) = 0 or
m(E\B) = 0. Therefore each ffi,,-measurable function is constant a.s. m. The last
statement of Theorem 3.2 follows easily from this observation.

REMARK. In Subsections 3.2, 3.3, only the proof of Lemma 3.1 makes use of 3.1.E
and therefore depends on the part (2.1) of the definition of a stationary transition
function. The rest is valid for generalized transition functions as well.

3.4. PROOF OF LEMMA 2.1. We start from any version p,(x, y) of the Radon-
Nikodym derivativep,(x, dy)/y(dy) measurable in x, y and we put

Ps (x, Z) = f Ps-,(x, y)y(dy)p,(y, z)

= f p,-,(x, dy)p,(y, z), 0 < r < s.
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We set z e E' if, for all rational s > r > 0,
ps (x, z) = p,(x, z) for -y-almost all x. (3.14)

It is easy to check that

f f Y(dx)ps (x, z)Y(dz) = f f Y(dx)p:(x, z)Y(dz)
B, B2 B2

for all B1, B2 E , . Hence (3.14) holds for y-almost all z, and y(E\E') = 0.
Now if z E E' and 0 < r1 < r2 < s are rational, then

Ps2(x, Z) = f Ps-r2(x, dy1)P,,(y1, z) = f Ps-r2(x, dy1)Prn'(Y1, Z)

= f Ps-r2(x, dtJp,2-,,(y1, dY2)pr,(Y2, z)

= f Ps-,,(x, dY2)P,(Y2, z) = Ps.(x Z),

and we can define p,(x, z) for z E E' by the formula p,(x, z) = p, '(x, z) for any
rational r E (0, s). For z E E' we put p,(x, z) = p,(x, zo) where za is a fixed
element of E'. Obviously p satisfies (2.6) and (2.7).

If y is excessive, then, for each B E JG',, , s > r > 0

f Y(dx)f p, (x, z)y(dz) = f Y(dx)P2(x, B) < Y(B)

hence for y-almost all z

f y(dx)p,(x, z) < 1. (3.15)

Put z E E" if z E E' and (3.15) holds. Since y(E'\E") = 0, we can replace E'
with E" in the definition of p, and we get a function which satisfies (2.8) as well as
(2.6) and (2.7).

3.5. The investigation of excessive functions associated with a stationary transi-
tion function p can be reduced to investigating excessive measures associated with
another stationary transition function fi.

Suppose that y E M is a reference measure for p and let p,(x, y) be the function
defined in Lemma 2.1. Then the formula

P,(x, dy) = Y(dY)P,(y, x) (3.16)

defines a stationary transition function. Let f, be the operators corresponding to p.
For all p,¢E ffi,t>0

Y(PTi ) = 7(40- (3.17)

Hence

Sx (9 ), Y(pgX) = 8x(90
where g and gX are defined by (2.14), (2.15), and

8x (B) = f UPr(x, B) dt = fE Y(dY) fB

(3.18)

gX(B) = gx°(B) (3.19)
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are the truncated Green measure and the Green measure for p. Denote by M the
class of excessive measures fore. Put

Yh(dy) = h(y)Y(dy). (3.20)

By (3.17) y'(1 p) = y(pT,h). Hence if h E H, then yh E M. Now suppose that
m E M. Then (mT,)(B) = fB a,(y)y(dy)Tm(B) as tJ0 where a,(y) =
f m(dx)p,(x,y). This implies the existence of a function h E H such that
a,(y)Th(y) m-a.e. as tJ0 (see [6, §§4 and 5] for details). Obviously m = yh. Hence
the mapping h - yh defined by (3.20) is a 1-1-splitting of H onto M. It is easy to
see that under this mapping the sets of minimal, conservative and dissipative
elements of H correspond to analogous subsets of M. Hence Lemma 2.3 follows
from Lemma 2.2.

3.6. Now we prove Theorem 2.3. Let h be a conservative minimal element of H.
Then Yh is a conservative minimal element of M. By Theorem 2.1, if ip, >V E L'(yh)
and yh(ii) 0, then

hm yh-a.e. (3.21)
U-M

(Since Theorem 2.1 holds for generalized stationary transition funcions, we do not
need an assumption that the reference measure y is excessive.)

Let h be integrable with respect to a measure . Put q(y) = f (dz)p,(z, y). We
have

yh(cp) = (Th) = (h) < oo (3.22)

!+u
8x f ds f (dz)p,(z, x) (3.23)

Here (g,) < oo Y h-a.e. since

f (g,)Yh(dx) = f r Thds I = oo. (3.24)

It follows from (3.21), (3.22), (3.23) and (3.24) that

lim yh-a.e.

where c(u) This implies Theorem 2.3.

4. Time-dependent excessive measures and functions.
4.1. The space M of excessive measures associated with a stationary transition

function is a subset of a larger space TM of time-dependent excessive measures.
Put

p(s, x; t, B) = pr-.!(x, B),

T"9)(-) = f p(s, x; t, dy)T(y),

(nT,)(B) = f n(dx)p(s, x; t, B).

Suppose that for each t E R a a-finite measure n, on (E, ,) is given and let
n,T, Tn, as sTt. Then we say that n is a time-dependent excessive measure and we
write n E TM.
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An important example of time-dependent excessive measures are entrance laws.
We say that an element n # 0 of TM is an entrance law at time s° (- oo < s° <
+ 00) if n =0fort <s0,n,T,' = n, for so <s <t.

4.2. Let a positive measurable function f' on E be given for each t E R and let f'
be finite a.e. with respect to all measures p(s, x; t, -). We say that f is a
time-dependent excessive function and we write f E TH if f < oo a.s. with respect
to all measures p(s, x; t, ) and T, f'Tf' as t J s. An element f # 0 of TH is called an
exit law at time u°, - oc < u° < + oo, if f' = 0 for t > u, T, f' = f' for s < t < u°.
It is easy to see that f' < oo a.s. n, for every f E TH, n E TM.

4.3. All these definitions are applicable also to nonstationary transition functions
p(s, x; t, ). (In the nonstationary case, the state space (E,, 'B,) can depend on t
and p(s, x; t, B) is defined for s < t E R, x E E B (=- To get the definition
of such functions, we replace conditions (2.1)-(2.2) by

p(s,x;t,E)< 1 for ails <t ER, XE E, (4.1)

f p(s, x; t, dy)p(t, y; u, B) = p(s, x; u, B) (4.2)
E

for all s<t<uER,xEE,BE6J3.
We put p(s, x; t, B) = 0 for s > t. Obviously n,(B) = p(s, x; t, B) is an entrance

law at time s, and f'(x) = p(s, x; t, B) is an exit law at time t.
4.4. Condition 2.2.B implies that, for each n E TM and every T E , n,(p) is

measurable in t. Indeed, for every finite set A = It, < t2 < .. < the func-
tion

FA(t) = 0 for t < t, and t > tt,

FA(t) = n,,(T,`9)) for tk < t < tr+,

is measurable in t, and FA,(t) -* n,(4p) if Ak is an increasing sequence with the
union everywhere dense in R. The same arguments show that if, for each t, n,(qo) is
a measurable function of a parameter w, then it is measurable in t, w.

4.5. Let c(t), t E R, and 1(x), x E E, be positive measurable functions and y be a
measure on E. Then

n,(B) = f ds c(s) f y(dx)p(s, x; t, B) (4.3)
0o E

is a time-dependent excessive measure, and

f'(x) = f dt c(t) fEP(s, x; t, dy)1(y) (4.4)

is a time-dependent excessive function.
4.6. Let p(s, x; t, B) be a nonstationary transition function. Put x E E,° if p(s, x;

t, B) = 0 for all t, B. (For a stationary transition function, E° does not depend on s
and coincides with E° defined in Subsection 3.2.) If f E TH, then f'(x) = 0 for all
x E E,°. We set f E TH + if J(x) > 0 outside E,°.

For each q E TH+, the formula

p9(s, x; t, dy) = q''(x)-'p(s, x; t, dy)q'(y) for 0 < q'(x) < oo,
= 0 if q'(x) = 0 or q'(x) = oo (4.5)
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defines a new transition function. A function f is a time-dependent excessive
function forp if and only if

fq'(x) = f`(x)/q`(x) for 0 < qt(x) < oc,

= 0 otherwise
is a time-dependent excessive function for p4. Analogously n is a time-dependent
excessive measure for p if and only if n,°(dx) = q`(x)n,(dx) is a time-dependent
excessive measure for p q

5. Markov processes.
5.1. A stochastic process on a random time interval is determined by the following

elements:
(i) a measure: (2,OY, P),
(ii) two measurable functions a(w) <#(w) on 0 with values in the extended real

line [ - oo, + oo ],
(iii) for each t E R, a measurable mapping x,(w) of the set (w; a(w) < t <f(w)}

into a measurable space (E fir,).
The moments a and /3 are called the birth time and the death time.
We say that a path w is given if a point w(t) of E, is fixed for each t of an open

interval I C R, and we say that a process x, is canonical if S2 coincides with the
space of all paths, if x,(w) = w(t), t E I = (a(w), /3(w)), and if q is the minimal
a-algebra in 9 which contains the sets

(a < t), (,8>t), (a<I,x,EB,$>t) (5.1)

for all t E R, B E

THEOREM 5.1. Let p be a transition function on a standard Borel space (E, J ) and
let n E TM, f E TH. Then there exists a canonical stochastic process (x P,',) such
that

Pt{a<ti, x, EB...... x,kEBk,tk<B}

= f f nr (dX1)P(t1, XI+ t2+ dX2) . . . P(tk_I, xk_I, tk, dxk)frk(xk) (5.2)
a, ak

f o r all k = 1, 2, ... , all II < t2 < < tk E R and B...... Bk E S. We have

P.(Q) = (n,f> (5.3)

where <n, f> is the supremum, over all finite sets A = (t, < ... < tk), of expres-
sions

k k

f (5.4)CA = I n,, (f) - 2 nr_, Tt;a_' f

(We put CA = oo if n,(fl) = oo for some i.) Also <n, f> = lim cn for every increas-
ing sequence AA with the union everywhere dense in R.

Theorem 5.1 has been proved in [6] for the case <n, f> = I and in [12] for the
general case. (An even more general situation has been discussed in [8].)
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5.2. Evidently <n, f> is linear in n and f. We remark that a = so a.s. Pt if and
only if n is an entrance law at time so, and, in this case,

nt(ft)T(n, f> as tjsa. (5.5)

Analogously /3 = ua a.s. P,1, if and only if f is an exit law at time ua. In this case,

n,(J')T(n, f) as tTuo. (5.5a)

A measure corresponding to m,(B) = p(s, x; 1, B) is denoted by PS P. It
follows from (5.5) and (2.5a) that PL(f2) = J'(x).

A simple calculation shows that

(n, f) = f y(./')c(s) ds (5.6)

if n is defined by (4.3), and
R

(n, J> = fR n,(l)c(t) dt (5.7)

if f is defined by (4.4).
5.3. With each interval I, we associate a sub-a-algebra '(I) of the a-algebra T

generated by the sets (5.1) with t E I, B E fJi . We use the following abbreviations

OY<, _ (-oo, t), F<t = DT(- 00, t], 9>t = W(t, +oo),

t, + oo), f<,+ = n<,,, etc.
U>t

We put A E-= Ea if {A, a < t} E<, for all t E R and A E f,, if {A, 8 > t) E
OY>, for all t E R, and we call 6Y. and 9. the germ a-algebras at time a and /3.

5.4. We need the following properties of the measure P,1,.
5.4.A. If f E TH, q E TH+, n E TM, then for each Y E W<,

PtYIa<,<6 = PPYf`(x,)/gt(x,)4

If A E <t and P,?(A) = 0, then P'(A) = 0. The same is true for A E ja.
5.4.B. Let f E TH +. If X E<s, Y E=- F>,, then

Pt(Xla<s«Y) = P,t, Xf'(xs) tP('Y .

5.4.C. Let f E TH +. A measure P on ((i, 1) coincides with one of the measures
PL n E TM if and only if

P (x, E B19<s } = pf(s, xs; t, B) a.s. P on {a < s <,O } (5.8)

for all s < t E R and all B E S.
5.4.D. A restriction of a measure Pt, n E TM, f E TH +, to an arbitrary set

A E Ya is again a measure of the form Pt, for some n E TM.
Properties 5.4.A and 5.4.B follow directly from the definition of the measures P,;.

The necessity of (5.8) follow from 5.4.B and the sufficiency was proved in [6] (see
Theorem 3.1). To prove 5.4.D it is sufficient to check that P(dw) = 14(w)Pt(dw)
satisfies (5.8). This is easy to do using 5.4.B.

4We omit the factor Ia<,<6 since f'(xt)/q`(x,) is not defined outside the set (a < t < P).
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5.5. The shift w' = Ow of the path w is given by the formula w'(t) = w(t + s),
a - s < t < /3 - s. We put O,Y(w) = Y(Ow) for each function Y(w). Obviously
9,a = a - s, 0,/3 = 6 - s and the a-algebras Fa and Sa are invariant with respect
to O.

We put A E 9.9 if A E OF. and 0. 1, = 1, a.s. Pm for all s E R, m E M, f E TH.
Let the transition function p be stationary.
5.5.A. The formulae

(k,n), = nt+t (kJ)' = f'+S

define transformations k, of the classes TM and TH, and

Pt(B5Y) = PJY (5.9)

for all Y E f.
5.5.B. A restriction of a measure P4, m E M, f E TH +, to a set A E is a

measure of the form P,j,-, where in E M. If m is a minimal element of M, then P,f is
trivial on Sa (i.e., each Ja-measurable function is constant P4-a.e.).

The statement 5.5.A is an implication of formula (5.2), and 5.5.B follows from
5.4.D, 5.4.A and 5.5.A.

6. Three lemmas.
6.1. In this section we prove three lemmas which make possible the computation

of dissipative minimal elements. In the first lemma the behaviour of the ratio of
two time-dependent excessive functions along a path is studied. The second one
establishes a fundamental identity involving two time-dependent excessive func-
tions and the ratio of their integrals with respect to 1. The third lemma gives an
approximation of the birth time a by stationary stopping times.

6.2. We denote by TK the class of all measures P,f, n E TM, f e TH. It follows
from Subsection 4.6 that the classes TK corresponding to the transition functions p
and p 9 are identical for each q E TH +.

Let Y,(w) be a positive function defined for all w E 2, a(w) < t < /3(w). We say
that Y,+ is a right TK-modification of Y, if Y,+ E f<,+ and if, for each countable
everywhere dense subset A of R,

Y,+ = lim Y, for all t E (a, /3) a.s. TK. (6.1)
ryt
sEA

The left TK-modification Y,_ of Y, is defined in an analogous way.

LEMMA 6.1. There exist a right TK-modification Y,+ and a left TK-modification
Y,_ of the function

Yt = f'(x,)/q'(x,) (6.2)

for every f E TH, q E TH +. For each P E TK,

Y,+ = Y, = Y,_ a.s. P on (a < t < /3 } (6.3)

for all t except at most a countable set (depending on P).
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PROOF. Fix A and denote by N(v v2; s, u) the number of upcrossings of [v v2]
by Y, over the set A n (s, u), i.e., the maximal positive integer k such that there
exist s, < u, < < sk < uk E A n (s, u) with the property YS ..... Y,k < v
Ya, .. , Yuk > v2. Put A(s, u) _ (a < s, f > u, N(v v2; s, u) = oo for some v,
< v2). The existence of Y,+ and Y,_ and the equality (6.3) will be proved if we
show that PPA(s, u) = 0 for all s < u, h E TH, n E TM (cf. [1, Theorem 11.21). By
5.4.A, it suffices to check this only for h = q, and since P,.1 is a-finite on the
a-algebra Y<,, it is sufficient to prove that

J ZP,?(dw) = 0 (6.4)
A(s,u)

for each P,?-integrable Z E <,. By 5.4.A and (6.2)

P,?Z la<,XY, = P,f,Z la<,,,«X for all s < t, X (6.5)

Put P'(dw) = 1a<,Z P,?(dw). It follows from (6.5) that (Y, S< P') is a super-
martingale on [s, oo). By Doob's inequality

P'N(v v2; s, u) < (v2 - v,)-'P'(Y, + v)
which means that

P,?Z 1a<,N(v v2; S, u) < (v2 - la<s< + v,PFZ 1a<,).

This implies (6.5).
6.3. Now we suppose that the transition function p is stationary. It follows from

(5.9) that, if all measures P of TK vanish on A E W, then they vanish on all sets
0,A, s E R.

Let

0,Y, = Y,+s for all s and t (6.6)

and let Y,+ be a right TK-modification of Y,. Then both 0, Y,+ and Y,+s+ are right
TK-modifications of Y,+,. Hence

0, Y,+ = Y,+s+ for all t a.s. TK. (6.7)

If m E M, h E H, then, by (5.9), Pk{Y, # Y,+) is independent of 1. It follows
from (6.3) that

P,h { Y, # Y,+) = 0 for all t. (6.8)

6.4. A function T(w) is called a stopping time if a(w) < T(w) < f(w) for each w
and {T < t} E j<, for every t E R. If 0,T = T - s a.s. TK for all s E R, we say
that T is stationary.

We put A E IF, if A E S and {A, r < t) E 3<, for all t E R, and we put
A E if, in addition, 8,A = A a.s. TK for all s.

LEMMA 6.2. Let m E M, f E TH +, h E TH and let functions

AX) = fR f`(x) dt, k (x) =
fR

h'(x) dt
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be finite m-a.e. Suppose that r is a stationary stopping time, X E and YY+ is a
right TK-modification of

E. B. DYNKIN

Y, = h (x1)/f (xl)
Then

PPXYT+ = PmX 1r<0* (6.10)

PROOF. Put

We have

T+b
F(S) = P4X f Y1+ dt, S > 0,

Z, = X 1r<0<T+s Yo+ fl (xo)/f (x0)

F(S) = fR P4 (0,Z1) dt = fR P4 Z, dt

(6.11)

and, by Fubini's theorem,

F(8) = PmfR Z, dt = PmX 1r<0<T+s Yo+

By (6.8), Y0+ = Y0 a.s. P4, and by 5.4.A and (6.9)

F(S) = PmX IT<o<T+s

The right side is independent of f. Hence F(S) does not change if we replace f by h,
and, by (6.11), (6.9),

PmX
fT+s

Y,+ dt = PmXf T+s
la<1<t: dt.

r r

Dividing by S and tending S to 0, we get (6.10).

6.5. LEMMA 6.3. If m E M is dissipative, then there exists a sequence of stationary
stopping times T. such that

T, J,a a. s. P, (6.12)

for all h e TH.

PROOF. Fix I E L+ (m) such that m(l) = 1 and put

q(x) =
fo°°

TI(x) dt = gg(l ), q,(x) = f 'o e-1Tl(x) dt,

f(x) = gx(gj)

We have f, q E TH+ and 1 - f/q = q,/q > 0. Denote by Yl+ the right modifi-
cation of Yl = f(x1)/q(x,), and put

au
= fuAR (1 - Y1+) di.
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We prove that
6.5.A. For P,9-almost all w,
(i) 0 <au <a,2 for all a <u, <u2 </3,
(ii) a < oo for all a < u < /3,
(iii) a is continuous in u and au10 as ula.
6.5.B. a E 5<u.
6.5.C. O3au = au+,. for all u a.s. TK.
First, we remark that q - f = q, > 0 on E\E0 and q < oo m-a.e. By Lemma 6.1

there exists an at most countable set A such that

1-Y,+=1-Y,=q,(x,)/q(x,)> 0a.s.P,4 on{a<t</3}foreach tEO
(6.13)

which implies 7.1 .A, (i). We have

Pmau
q(

f= f F(s) dsx 0

where

Therefore

a g1(xu-s) q,(xu) ( q1 T4
/

F(s) - -P Im
q(xu

=
-,) q(xu)

m `
s

P9au qiC u) =
mI qqf < m(q1) < m(l) = 1.

xu

Taking into account (6.13), we have 6.5.A, (ii). The property (iii) is an obvious
implication of (ii), and 6.5.B, C follow from the fact that Y,+ E 3<,+ and (6.7).

For each e > 0, we set

T,=inf(t: a, > e), Te=/3 if a, < e for all t.

This is a stationary stopping time. Indeed, {T, < t} _ {a, > e) U { /3 < t) E y<,
by 6.5.B, and B,.T, = T, - s a.s. TK by 6.5.C. If then r,, J,a a.s. P,', and (6.12)
follows from 5.4.A.

7. Dissipative minimal elements.

7.1. THEOREM 7.1. Let m be a dissipative element of M, f E TH +, h E TH and let
<m, f> < oo, <m, h) < oo. Suppose that the functions

f (x) = f f(x) dt, h (x) h'(x) dt (7.1)
R R

are finite m-a.e. Then there exists a function Ya+ E such that

Ya+ = lim (h (x,)/f (x,)) a.s. P,? (7.2)

rEA

for each countable everywhere dense subset A of R and each q E TH. Moreover

PPXY.+ = P,nX for all X E (7.3)

and, if m is minimal, then

1'.+ _ <m. h)/<m,f) a.s. Pt,. (7.4)
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PROOF. If T is a stationary stopping time, then so are T + u for all u > 0. By
Lemma 6.2, ifs < t, X E q,+ then

pmXY,+t+ = PmX 1,+t« < PmX 1,+,<9 = PmXY,+r+

where Y, is defined by (6.9). Hence

(Y,+t+, +t+' Pm/1>0
is a supermartingale. It follows from (6.10) that PL Y,+ < <m, h>. Let Nr be the
number of upcrossings of [v v2] by Y. over (T, oo). Since Y, is right-continuous
in t a.s. Pm, we have

P4NN < (v2 - v,)-'(<m, h> + v,<m, f >).

Applying this inequality to the sequence T. and passing to the limit, we get the
inequality Pf N,, Goo. Put 2' = (N,, < oo), S2" = 2\2'. Obviously 2' and 2"
belong to 6 and P4(2") = 0. Put Y,,+ = lim,la Y,+ on S2', Ya+ = 0 on 2". Then
Y,, E and (7.2) holds for q = f. By 5.4.A it holds for all q E TH.

By Fatou's lemma, it follows from (6.10) that

PmYa+ oo.

Hence Ya+ < oo a.s. Pm and, by 5.4.A, Y,, < oo a.s. P, as well. Thus, for each
e > 0, there exists c, such that P.'( Ya > c,) < e, and, by (6.10)

Pml a+>4Y,.+ <P, {Ya+ >Ce} <e.

Hence Y,n+ are uniformly integrable relative to Pm and (6.10) implies (7.3).
If m is minimal, then, by 5.5.B, there exists a constant C such that Ya+ = C a.s.

P. We have PmYa+ = CP4(S2) = C<m, f> and, by (7.3), C = <m, h> /<m, f>.
This proves (7.4).

7.2. We apply Theorem 7.1 to the excessive functions

W(x) = f p(s, x; t, dy)-p(y) = T,-,-p(x) (7.5)

and

f°(x) = f '* dt c(t) f p(s, x; t, dy)4,(y) = f
00

T ¢(x)c(s - u) du (7.6)

where 4 ,> 0, c(t) > 0 and f R c(t) dt = 1. Obviouslyf E TH

<m, f > = m(i1), <m, h> = m(p), f (x) = gz(!'), h (x) = gg(p)
Hence, in this case,

Ya+ = lim (gx,((p)/g,('P)) a.s. (7.7)

rEA

and we arrive at the following result.

THEOREM 7.2. Let m be a dissipative minimal element of M. Then for all
cpEE L'(m),4, EL+(m),gEE TH

m(9D)1m(%') = lim (g,(p)/g,,(P')) a.s. P,q,,. (7.8)

rEA
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(The meaning of A is the same as in Theorem 7.1.)

7.3. COROLLARY. If

m= f v,ds
R

where v E TM, then (7.8) holds a.s. P,.

Indeed, the relation (7.9) implies that m = fR k,v ds. Let 2' and St" be the sets
defined in the proof of Theorem 7.1. We have

0 =
f ds
R

and, by (5.9),
P,t(e,SZ") = Py(St").

Hence P( (St") = 0, and (7.8) holds a.s. Pt. By 5.4.A, it holds a.s. Pq.
REMARK. It has been proved in [6] that each m E TM has an integral representa-

tion m,,(B) = f n,(B)µ(dn) where It is a finite measure on the space of minimal
elements of TM (which are entrance laws). It has been proved also that if m is a
minimal element of M and if I > 0, m(l) = 1, then for each 99 E L'(m) and
IL-almost all n

n1(g))/n1(1) -+ m(p) as ITR

where nl(g)) means the integral of n,((p) over a finite interval I. If m is a
null-excessive element (i.e., if mTT -+ 0 as t -* oo), then µ is concentrated on the
entrance laws at finite times and nR(l) < oo. Hence m(q)) = nR(q))/nR(l), and (7.9)
holds with v, = nR(1)-1n,. It holds also for all entrance laws Thus (7.8) is
satisfied a.s. P, for some entrance law v at time 0. This justifies the construction
described in Subsection 2.7.

7.4. To investigate dissipative elements of H we introduce a backward transition
function

P(s, dx; t,y) = y(dx)p,_J(x,Y) (7.10)

and we denote by TM, TH the corresponding classes of time dependent excessive
measures and functions. The notations k, N, TM + have an analogous meaning.
To each m E TM, f E TH there corresponds a measure Pm, and we set <m, f>' _
PP(Sl).

Considering reversed time direction, we get the following version of Theorem 7.1.

THEOREM 7.3. Let m be a dissipative minimal element of M and let f E TH
q E TH, <m, f)' < oo, <m, q>' < oo,

f (Y) = f .fs(Y) ds < oo, q(Y) = f q3(Y) ds < oo m-a.e.
R R

Then there exists a function Y - E such that

YR- = lim (q(x,)/.f (x,)) a.s. Pm
rT#
rEA
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for each countable everywhere dense A. Moreover

PMX Yp_ = PQX for all X E

and, if m is minimal, then

Y9- = <m, 4>'/<m,f>' a.s. P.

7.5. The following result follows immediately from Theorem 7.3.

THEOREM 7.4. Let h be a dissipative minimal element of H. If f E TM and if h is
integrable with respect to measures and q, then

t(h)/n(h) = lTms (t(g ")/rl(g')) a.s. P1. (7.11)

rEA

To prove this statement, we apply Theorem 7.3 to the measure m(dx) = yh(dx)
= h(x)7(dx) which, according to Subsection 3.5, is a minimal and dissipative
element of M, and to the functions

4'(y) = f (dx)p, (x, y),

By simple computations we get the formulae

<Y', q> = (h), <Y",f) = n (h), 4(y) = (gy),

f'(y) = f c(s + u) du f rl(dx)p (x,y)

AY) = n(gy)
and we notice that the measure 1i . corresponding to p, Y h' f coincides with the
measure PY.

7.6. As in Subsection 7.3, we prove that, if

h=fR('dt (7.12)

where 9) E TH, then (7.11) is fulfilled a.s. P7,. If h is null-excessive, then (7.12)
holds for some exit law at time 0.

Appendix. Decomposition into minimal elements.
0.1. Let p,(x, B) be a stationary transitive function in a standard Borel space

(E,,) and let M and H be the corresponding classes of excessive measures and
functions. For every I 195, , we put M' = (m : m E M, m(l) = 1) and we denote
by i 2 (M) the a-algebra in M' generated by the sets (m : m E M', m(B) < u),
BE , u ER. For every measure von i,weputH''=(h:hEH,v(h)=1)
and we denote by J& (H') the a-algebra in H' generated by the sets (h : h E III,
J(h) < u), is a measure on S, u E R. Our objective is to prove the following two
results.

THEOREM 0.1. Let r be the set of all minimal elements of M which belong to M'.
Suppose that I E i is strictly positive. Then r E 61 (M) and, for each m E M',
there exists one and only one probability measure µ on (M) concentrated on r such
that

m(B) = f n(B)µ(dn) for all B E Gd . (0.1)
r



MINIMAL EXCESSIVE MEASURES AND FUNCTIONS 307

THEOREM 0.2. Let r be the set of all minimal elements of H belonging to H'. Let v
be a a-finite measure with the property:

0.1.A. There exists an excessive reference measure y and a strictly positive function
l such that

y(1h) < v(h) for all h E H. (0.2)

Then F E (H') and, for every h E H', there exists one and only one probability
measure µ on i (H') concentrated on I' such that

h(x) = f f(x)µ(df) for all x E B. (0.3)

0.2. Comments to Theorem 0.2.
(a) If y is a reference measure and if h E H, then h < oo a.s. y. If h 0, then

y(h) > 0 and y(lh) = 1 for some strictly positive function 1. The measure v(dx)
l(x)y(dx) obviously satisfies O.1.A, and h E H'. Hence each h E H can be decom-
posed into minimal elements. (The analogous statement for in E M is obvious.)

(b) Let y satisfy condition 2.2.C and let g" be the corresponding Green function
defined by (2.14). Suppose that the function q(y) = v(g'') is finite y-a.e. and
strictly positive. Then the measure v has property O.I.A. In fact,

YI(B) = fB ,(dx)g,(B) = fB q(y)Y(dy)

is an excessive reference measure and y,(lh) < v(h) for all h E H where

1(y) = q(y)-' f °° dt e-`f ,(dx)p,(x,y)

is strictly positive.
(c) In case of Brownian motion remark (b) is applicable to Lebesgue measure y

and any measure v concentrated at one point.
(d) If y is a reference measure, the a-algebra Jf (H') is generated by the sets

(h : h E H', y(1h) < u), 1 E ffi , u E R. This follows from the relation

E(h) = lim y(l h) where 1,(y) = f (dx)p1(x,y)
tjo

(e) The function f(x), f E H, x E E is i (H') x i -measurable. In fact, it is
easy to see that f r(x, y) y(dy)f(y) is & (H') X i -measurable if r(x, y) is f x f'i -
measurable, and measurability of f(x) follows from the formula f(x) _
lim,lo f p1(x, y)Y(dy)f(y)

(f) By remark (e) and the Fubini theorem, it follows from (0.3) that (h) _
f r (f)µ(df) for each measure C.

0.3. Theorem 0.2 follows easily from Theorem 0.1. First, if v(dx) = I(x)y(dx)
where y is an excessive reference measure and I > 0, then the mapping (3.20)
establishes a 1-1 correspondence between H' and All (we use the notations of
Subsection 3.5). Obviously this mapping is measurable. By 0.2.d the inverse
mapping is also measurable, and the representation (0.1) of the measure in = Yn E
M' is equivalent to the representation (0.3) of h E H'.



308 E. B. DYNKIN

Now let v satisfy condition O.1.A and let v,(dx) = l(x)y(dx). We note that
0 <v,(h) < I for all h e H'. Put Hog = (h : h E H11, v(h) < oo). Formulae
F,(h) = h/v,(h) and F(h) = h/v(h) determine inverse measurable mappings F, of
H' onto Ho', and FZ of Ho " onto H'. Evidently they preserve minimal elements.
Therefore to prove Theorem 0.2 for the measure v, it is sufficient to check that each
element h E Ho " has a unique integral representation through minimal elements of
H which lie in Ho". Since Theorem 0.2 has been proved for the measure v there
corresponds to every h e H a unique probability measure µ on f'i (H") con-
centrated on the set r, of minimal elements such that

h(x) = f f(x)µ(df ).
r,

By 0.2.f this implies an equality

)v(h) = f ,(f)µ(dfr

and since v(h) < oo, the measure µ is concentrated on r, n He".
0.4. The rest of the Appendix is devoted to proving the following statement.

THEOREM 0.3. Let 1 > 0 and let

fs(x) = u) ds (0.4)

where c(t) > 0 and fR c(t) dt = 1. Let be the a-algebra defined in Subsection 5.5.
There exists an M'-valued function n' on St with the properties:

0.4.A. n'(B) is f-measurable for every B E J3.
0.4.B.P4 {ZI }=PPZa.s.PmforallZ E F,in EM'.
Properties 0.4.A, B mean that is an H-sufficient a-algebra for the class K of

probability measures P4, in E M', and Theorem 0.1 follows from Theorem 0.3
because of the general relation between H-sufficient statistics and minimal ele-
ments established in [7] (see Theorem 3.1).

0.5. In each standard Borel space (E, i) there exists a support system W i.e., a
countable family of positive bounded functions with the properties:

0.5.A. If µ is a sequence of probability measures on % and if lim iy,(p)) = q(p)
exists for every 9) E W, then there is a probability measure µ such that µ(p) = q((P)
for all q) E W.

0.5.B. If a class 5 of positive functions contains W and is closed under addition,
multiplication by positive constants and if 5 contains together with each increasing
sequence its limit, then S contains all functions p E .

We put x E E' if the limit

lim (gx(pI)/gs(1))
00

exists for all p e W. By 0.5.A for each x (=- E' there exists a probability measure it,
such that the limit (0.5) coincides with µx(p). We put q)' = qp1-', nn(dy) _
µX(dy)l -'(y). Obviously n,c(l) = 1 and

lim (gz ((p)/gx (l )) = nx((p) if x E E', p' E W. (0.6)
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Let A0 be the set of all rational numbers. We put w E 2' if x, E E' for all r (=- A0
and if

lim n (q))
r1a

rEA0

exists for all pJ E W. Again by 0.5.A, for every w E S2', there exists a measure
n"(q)) such that n"(1) = 1 and

n"(p) = lim nx (4p) for all w e S2', p' E W. (0.7)
rya

rEA0

We shall see that E' and 12' are not empty (except the case where M' is empty, in
which case our theorem is trivial). Let

E" = EKE', S2" = S2\S2'.

Fix arbitrary points x' E E' and w' E SZ' and put nx = nx, for x E E", n" = n" for
w E W.

The function n"((p) is i-measurable if p' E M. By 0.5.B, the same is true for all
E S. Therefore n" satisfies the condition 0.4.A. Theorem 0.3 will be proved if

we show that, for each m e M',

PP(n"EM) =0 (0.8)

and 0.4.B is fulfilled. We check this separately for dissipative and conservative m.
0.6. Suppose that m E M' is dissipative. Obviously (0.6) holds with

nn(9p) = gg(9))/gz(1), (0.9)

if gx(1) < oo. Hence E" c (x: gx(1) = oo) and m(E") = 0.
Let p' E W. Comparing (0.7), (0.8) and (7.7) and applying Theorem 7.1, we

conclude that P4(0") = 0, that the function n"(q)) is -measurable and that

PLXn"(q,) = (0.10)

with h'(x) = T,_,(p(x) for all X E 9.9, t E R. By 5.4.11 and 5.4.A, fors < t,

Pm[X Pm

P,(Xla<,<).

Since / = t a.s. P,",,, we get by setting sT t

PP[Xf'(x,) 'p(x,)] = PmX. (0.11)

It follows from (0.10) and (0.11) that

P.'(x,)-'p(x,)X = PfXn"(q,) (0.12)

Established for p' E W, equality (0.12) can be extended for all p E S using 0.5.B.
Suppose that

qP(x) = P[ Z, Z E
Since X la<t E Y< formula (0.12) and 5.4.B imply that

PPXn"(q,) = PmX la<,<tiZ.

(0.13)

(0.14)
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We apply this formula to t = - u < 0 and Z = (xo)/f°(x°) and we get

PLXn"(T q') = PmX Ia<_ Oxo)

.f°(xo)

On the other hand, it follows from (0.12) that

PLXn"(0) =
Comparing (0.15) and (0.16) we have

n"(J') a.s. Pm

and

(0.15)

(0.16)

(0.17)

n"(TllkJ) - n"(ii) a.s. L. (0.18)

The set C = {(u, w): n"(T"tp) > n"(,(i) for some 4,1E W) is 1R X 6j--
measurable and all its u-sections have Pm measure zero. By Fubini's theorem, there
exists a set S20 E F such that P4(22\92°) = 0 and (u, w) E C for almost all u and all
w E S2o. Using 0.5.B and the semigroup property of Tr, we prove that
n"() for all w E 12° and all u E R. Because of (0.18), there exists a set 2, C 52o
such that Pm(SZ\S21) = 0 and n"(TI/k) -* n"(q,) for all w E 0, and all q/' E W.
Applying 0.5.A and 0.5.B, it is easy to prove that n" E M for all w E 91.

To prove 0.4.B, we establish that, for each Z E ,

(i) P,(,.Z coincides P4-a.e. with an -measurable function,
(ii) P"f,XZ = P,f"(XP,fZ) for all X E V..
It is sufficient to check this for Z = 1a<, f(x, , ... , where t < t1

< . . < 1" < u and f is a measurable function on E". It follows from (5.2) that in
this case P Z = n"(,rp) where q> is given by (0.13). Both conditions (i) and (ii) are
satisfied (the second one follows from (0.14)).

0.7. Now let m be a conservative element of M'. Then by Theorem 3.2,
m(E") = 0 and (0.6) holds with

n.(9,) = ml( m-a.e. (0.19)

The following two lemmas establish relations between the a-algebra 'M and 6?..

LEMMA 0.1. If F is a bounded fir-measurable function, then there exists a
.-measurable function YF such that, for each countable everywhere dense set A,

YF = lim F(x,). (0.20)rj-00
rEA

For each F E 1 m and each p E', t E R
PPYFn"(q,) = PLYFq>(x,)f`(x,) '. (0.21)

PROOF. Let Z and qD be as in (0.13). By 5.4.B and (5.2), we have for s < t,
'P E i,

PLF(xs),P(x,)Z = PFF(x,)qi(x,)gq(x,)f`(x,)-' = m[FT,_,(,pq)]. (0.22)

Analogously

PLF(x,)tp(xr)Z = m(F4q ) (0.23)
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Since F E B,, the terms on the right side of (0.22) and (0.23) coincide. This
implies the relation

Pm{F(xs))J>tF(x,) a.s.Pmon (/ >t). (0.24)

Hence, for each u, (F(x,)10>,,, Y>,, Pm) is a martingale on (-oo, u) and the
existence of YF follows from the theorem on convergence of a bounded martingale.
By (0.19) and (3.8)

f m(dx)F(x)nx(q)Tw1(x) = f m(dx)nX(ro)1(x)F(x) = m(Fp) = m(FT,-rp).

Therefore, by (0.4)

PPF(xr)n,(9,) = f m(dx)F(x)nx(9p)fr(x) = m(FT,-,q,)

=
Letting r -* - no, we get (0.21), first, for q,t E W and then, using 0.5.B, for all
9)E %.

LEMMA 0.2. Every bounded function Y E coincides P4-a.e. with YF for some
F E JAM.

PROOF. We choose a function F E J such that Pm{Y1xo} = F(xo) a.s. P. For
all t > 0, ¢ E , we have

rm(FT,4,) = PPF(xo)4,(x,)ft(xt)-t = PL{YtP(x,)f'(x,)-t }. (0.25)

Since Yla<t E Y<, and 9,Y = Y a.s. Pm, it follows from 5.5.A and 5.4.B that the
right side of (0.25) does not depend on t. Hence F E 3m.

Now, by 5.4.B, PPF(xo)Vxo)Z for all 4, E 'i, Z E Y>o. Hence
P4( Y19;. o) = F(xo) a.s. Pm and, by (0.24)

P,f { YI i>,) = Pm { F(xo)I >t } = F(x,) a.s. Pm.

.Letting t -* - oo, we see that Y = P,f { Y I 'Q } = YF a.s. Pf.
0.8. Suppose that cp is given by formula (0.13). It follows from (0.21) and 5.4.B

that

PPYn"(() = PLY1a<t<pZ (0.26)

for Y = YF. By Lemma 0.2, (0.26) holds for all Y E . Formula (0.26) coincides
with (0.14) and we establish (0.8) and 0.4.B in the same way as in Subsection 0.6.
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