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1. Introduction to Stochastic integrals

With the purpose of constructing a large class of stochastic processes, we
consider stochastic differential equations (SDE) driven by a Brownian motion.
Given then two functions:

b : R→ R, σ : R→ R,

a driving Brownian motion {W (t) : 0 ≤ t ≤ T} and an independent random
variable X0 (the initial condition) our purpose is to construct a process X =
{X(t) : 0 ≤ t ≤ T} such that, for t ∈ [0, T ], the following equation is satisfied:

X(t) = X0 +

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dW (s).

Comments

The differential notation for an SDE is

dX(t) = b(X(t))dt+ σ(X(t))dW (t), X(0) = X0.

*Notas preparadas por E. Mordecki para el curso de Simulación en procesos estocásticos
2017.
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The integral ∫ t

0

b(X(s))ds

is a usual Riemann integral, as we expect X(s) to be a continuous function

As for fixed ω the trajectories of W are not smooth, we must define pre-
cisely the integral ∫ t

0

σ(X(s))dW (s)

The three main properties to define the stochastic integral are:

(A) If X is independent from W∫ b

a

XdW (s) = X

∫ b

a

dW (s),

(B) The integral of the function 1[a,b) is the increment of the process:∫ T

0

1[a,b)dW (s) =

∫ b

a

dW (s) = W (b)−W (a).

(C) Linearity: ∫ T

0

(f + g)dW (s) =

∫ T

0

fdW (s) +

∫ T

0

gdW (s).

2. Stochastic integration

Consider the class of processes

H = {h = (h(s))0≤t≤T }

that satisfy (A) and (B):

(A) h(t),W (t+ h)−W (t) are independent, ∀0 ≤ t ≤ t+ h ≤ T ,

(B)
∫ T

0
E(h(t)2)dt <∞.

Example: If E[f(W (t))2] ≤ K, then h(t) = f(W (t)) ∈ H: In fact,

f(W (t)),W (t+ h)−W (t) are independent,

and ∫ T

0

E(f(W (t))2)dt < KT.
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Step processes

The stochastic integral is first defined for a subclass of step processes in H:
A step processes h is of the form

h(t) =

n−1∑
k=0

hk1[tk,tk+1)(t),

where 0 = t0 < t1 < · · · < tn = T is a partition of [0, T ], and

(A) hk,W (tk + h)−W (tk) are independent for 1 ≤ k ≤ n, h > 0.

(B) E(h2
k) <∞.

For a step process h ∈ H we define the stochastic integral applying properties
(A), (B) and (C):∫ T

0

h(t)dW (t) =

∫ T

0

n−1∑
k=0

hk1[tk,tk+1)(t)dW (t)

(C)
=

n−1∑
k=0

∫ T

0

hk1[tk,tk+1)(t)dW (t)

(A)
=

n−1∑
k=0

hk

∫ T

0

1[tk,tk+1)(t)dW (t)

(B)
=

n−1∑
k=0

hk[W (tk+1)−W (tk)].

Notation:

I(h)
nt.
=

∫ T

0

h(t)dW (t).

Properties

The stochastic integral defined for step processes is a random variable that
has the following properties

(P1) E
∫ T

0
h(t)dW (t) = 0

(P2) Itô isometry:

E

(∫ T

0

h(t)dW (t)

)2

=

∫ T

0

E(h(t)2)dt.
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Proof of (P1):

We compute the expectation:

E

(∫ T

0

h(t)dW (t)

)
= E

(
n−1∑
k=0

hk[W (tk+1)−W (tk)]

)

=

n−1∑
k=0

E (hk[W (tk+1)−W (tk)])

(A)
=

n−1∑
k=0

E(hk)E[W (tk+1)−W (tk)] = 0,

because W (tk+1)−W (tk) ∼ N(0, tk+1 − tk).

Proof of (P2):

We first compute the square:(∫ T

0

h(t)dW (t)

)2

=

(
n−1∑
k=0

hk[W (tk+1)−W (tk)]

)2

=

n−1∑
k=0

h2
k[W (tk+1)−W (tk)]2

+ 2
∑

0≤j<k≤n−1

hjhk[W (tj+1)−W (tj)][W (tk+1)−W (tk)]

We have, by independence, as tj < tj+1 ≤ tk:

E (hjhk[W (tj+1)−W (tj)][W (tk+1)−W (tk)])

= E (hjhk[W (tj+1)−W (tj)])E[W (tk+1)−W (tk)] = 0.

Furthermore, also by independence:

E
(
h2
k[W (tk+1)−W (tk)]2

)
= E(h2

k)E[W (tk+1)−W (tk)]2

= E(h2
k)(tk+1 − tk) =

∫ tk+1

tk

E(h(s)2)ds.

Summarizing,

E

(∫ T

0

h(t)dW (t)

)2

=

n−1∑
k=0

E (hk[W (tk+1)−W (tk)])
2

=

n−1∑
k=0

∫ tk+1

tk

E(h(s)2)ds =

∫ T

0

E(h(s)2)ds,
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concluding the proof of (P2). This property is an isometry, because it can be
stated as:

‖I(h)‖2L2(Ω) = ‖h‖2L2(Ω×[0,T ]),

where

‖I(h)‖2L2(Ω) = E(I(h)2), ‖h‖2L2(Ω×[0,T ]) =

∫ T

0

E(h(s)2)ds,

This makes possible to extend the integral to the whole set H by approximation:

Given h ∈ H we find a sequence of steps processes (hn) such that

‖hn − h‖2L2(Ω×[0,T ]) → 0, (`→∞).

We define
I(h) = ĺım I(hn) as n→∞.

It is necessary to prove that I(hn) is a Cauchy sequence in L2(Ω) to prove that
the limit exists.

Comments

I(h) =
∫ T

0
h(t)dW (t), is a random variable.

For 0 ≤ t ≤ T we define

I(h, t) =

∫ T

0

1[0,t)h(t)dW (t)
nt.
=

∫ t

0

h(s)dW (s),

to obtain a stochastic process.

Covariance of two stochastic integrals

Proposition 1. Consider two process h and g in the class H. Then

E

(∫ T

0

g(t)dW (t)

∫ T

0

h(t)dW (t)

)
=

∫ T

0

E(g(t)h(t))dt.

The proof is based on the polarization identity:

ab =
1

4
[(a+ b)2 − (a− b)2].

Demostración. Observe that

I(h+ g) = I(h) + I(g),

E(I(f)2) =
∫ T

0
E(f(t)2)dt.
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Then

4E(I(g)I(h)) = E(I(h+ g)2 − I(h− g)2)

=

∫ T

0

E((h+ g)2 − (h− g)2)dt

= 4

∫ T

0

E(hg)dt.

3. Simulation of stochastic integrals: Euler sche-
me

The definition of a stochastic integral suggest a way to simulate an appro-
ximation of the solution. Given a process h, we choose n and we define a mesh
tnk = kT/n, k = 0, . . . , n.

n−1∑
k=0

h(tni )[W (tni+1)−W (tni )].

It is very important to estimate the integrand in tni and to take the increment
of W in [tni , t

n
i+1] to have the independence. Otherwise a wrong result is obtained.

Example: Wiener integrals

Suppose that h(t) is a deterministic continuous function. Then, the appro-
ximating processes are also deterministic:

hn =

n−1∑
k=0

h(tni )1[tni ,t
n
i+1).

So, we must find the limit of

In =

∫ T

0

hndW (t) =
n−1∑
k=0

h(tni )[W (tni+1)−W (tni )].

As In is a sum of independent normal variables, it is normal. Furthermore
(applying the properties or computing directly), we obtain that

E(In) = 0, var(In) =

n−1∑
k=0

h(tni )2(tni+1 − tni )→
∫ T

0

h(t)2dt.

We conclude that ∫ T

0

h(t)dW (t) ∼ N

(
0,

∫ T

0

h(t)2dt

)
.
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Simulation of a Wiener integral

Consider f(t) =
√
t over [0, 1]. According to our results:∫ 1

0

√
tdW (t) ∼ N

(
0,

∫ 1

0

(
√
t)2dt

)
= N

(
0,

∫ 1

0

tdt

)
= N (0, 1/2) .

We check this result by simulation, writing the following code:
# Wiener integral of sqrt(t)

n<-1e3 # discretization to simulate W

m<-1e3 # nr of variates

steps<-seq(0,1-1/n,1/n)

integral<-rep(0,m)

for(i in 1:m){
integral[i]<-sum(sqrt(steps)*rnorm(n,0,sqrt(1/n)))

}
>mean(integral) # Theoretical mean is 0

[1] 0.02194685

>var(integral) # Theoretical variance is 1/2

[1] 0.527872

We now plot our results and compare with the theoretical density N(0, 1/2):
>hist(integral,freq=FALSE)

>curve(dnorm(x,mean=0,sd=sqrt(1/2)),add=TRUE)

Histogram of integral
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Comparison of distributions

To perform a statistical comparison of our results, we compare the distribu-
tions:

plot(ecdf(integral),type="l")

curve(pnorm(x,0,sqrt(1/2)), add=TRUE, col=‘‘red")
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To assess whether the empirical distribution (black) is not far from the theore-
tical (red) a Kolmogorov-Smirnov test should be performed.

>ks.test(integral,"pnorm",0,sqrt(1/2))

The result is

One-sample Kolmogorov-Smirnov test

data: integral

D = 0.025065, p-value = 0.5562

alternative hypothesis: two-sided

Here we reject when our statistic D is such that

√
mD > k0 = 1,36,

and this is true if and only if

p− value < 0,05.

Simulation of a stochastic integral

Suppose h(t) = f(W (t)) = W (t)2. The R code is

# Stochastic integral of f(W(t))

n<-1e3 # for the grid of BM

t<-1

f<-function(x) x^2

m<-1e4 # generate m samples of the integral

integral<-rep(0,m)

for(i in 1:m){
increments<-rnorm(n,0,sqrt(t/n))

bm<-c(0,cumsum(increments[1:(n-1)]))

integral[i]<-sum(f(bm)*increments)

}
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Remember
n−1∑
k=0

f(W (tni ))[W (tni+1)−W (tni )].

We obtain the results:
>mean(integral)

[1] 0.00691243

>var(integral)

[1] 1.007898

We compute the theoretical variance with the isometry property. First, if
Z ∼ N(0, 1):

E(W (t)4) = E(
√
tZ)4 = t2E(Z4) = 3t2.

Then

E

(∫ 1

0

W (t)2dW (t)

)2

=

∫ 1

0

E(W (t)4)dt

=

∫ 1

0

3t2 = 1.

Theoretical example

Consider h(t) = W (t). It is not difficult to verify that h ∈ H. We want to
integrate ∫ T

0

W (t)dW (t).

To define the approximating process, denote tni = Ti/n. The approximating
processes are defined by

hn =

n−1∑
k=0

W (tni )1[tni ,t
n
i+1).

So, we must find the limit of∫ T

0

hndW (t) =

n−1∑
k=0

W (tni )[W (tni+1)−W (tni )].

We have

W (tni )[W (tni+1)−W (tni )] = W (tni+1)W (tni )−W (tni )2.

= −1

2
[W (tni+1)−W (tni )]2 +

1

2
[W (tni+1)2 −W (tni )2]
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When we sum, the second term is telescopic:

n−1∑
k=0

W (tni )[W (tni+1)−W (tni )] = W (tni+1)W (tni )−W (tni )2.

= −1

2

n−1∑
k=0

[W (tni+1)−W (tni )]2 +
1

2
W (T )2.

We have seen that
n−1∑
k=0

[W (tni+1)−W (tni )]2 → T,

We then conclude that∫ T

0

W (t)dW (t) =
1

2

(
W 2(T )− T

)
.

Observe, that if x(t) is a differentiable function,∫ T

0

x(t)dx(t) =
1

2
x2(T ).

The extra term T is a characteristic of the stochastic integral, discovered by
Kiyoshi Itô in the decade of 1940-1950.

4. Itô Formula

Theorem 1. Let {W (t) : t ≥ 0} be a Brownian motion, and consider a smooth1

function f = f(t, x) : [0,∞)×R→ R. Then

f(t,W (t))− f(0,W (0)) =

∫ t

0

∂f

∂x
(s,W (s))dW (s)

+

∫ t

0

(
∂f

∂t
(s,W (s)) +

1

2

∂2f

∂x2
(s,W (s)

)
ds.

If f(t, x) = f(x) (i.e. the function does not depend on time) the formula
takes the simpler form

f(W (t))− f(W (0)) =

∫ t

0

f ′(W (s))dW (s) +
1

2

∫ t

0

f ′′(W (s))ds.

1By smooth we mean f(t) differentiable in t and twice differentiable in x.
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On the proof of Itô formula.

We explain more in detail the proof for f(t, x) = f(x) (i.e. the function does
not depend on time). The key moment is the Taylor expansion:

f(W (t+ h))− f(W (h)) = f ′(W (t))[W (t+ h)−W (t)]

+
1

2
f ′′(W (t))[W (t+ h)−W (t)]2 + o([W (t+ h)−W (t)]2).

Then, due to the property of the quadratic variation, when h is small

[W (t+ h)−W (t)]2 ∼ h. (1)

giving the second integral in the formula.

Example

If f(t, x) = x2, then

∂f

∂t
= 0,

∂f

∂x
= 2x,

∂2f

∂x2
= 2,

and Itô formula gives

W (t)2 = 2

∫ t

0

W (s)W (s) +

∫ t

0

ds = 2

∫ t

0

W (s)W (s) + t,

If t = 1: ∫ 1

0

W (s)W (s) =
1

2
(W (1)2 − 1),

our previous result.

Example: Geometric Brownian motion

If f(t, x) = S0e
σx+µt, then

S(t) = f(t,W (t)) = S0e
σW (t)+µt,

is the Geometric Brownian motion. To apply Itô Formula, we compute:

∂f

∂t
= µf,

∂f

∂x
= σf,

∂2f

∂x2
= σ2f.

and

f(t,W (t))− f(0,W (0) =

∫ t

0

(
µ+

1

2
σ2

)
f(s,W (s))ds

+

∫ t

0

σf(s,W (s))dW (s).
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As f(t,W (t)) = S(t), we obtain

S(t)− S(0) =

∫ t

0

(
µ+

1

2
σ2

)
S(s)ds+

∫ t

0

σS(s)dW (s).

This same expression, in differential form, is

dS(t) = rS(t)dt+ σS(t)dW (t), S(0) = S0. (2)

where we used that µ = r − σ2/2. So, as the the two assets in Black-Scholes
model satisfy the equations{

dB(t) = B(t)(rdt), B(0) = B0,

dS(t) = S(t)(rdt+ σdW (t)), S(0) = S0.

The second is a modification of the first + noise.
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