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1. Introduction to Stochastic integrals

With the purpose of constructing a large class of stochastic processes, we
consider stochastic differential equations (SDE) driven by a Brownian motion.
Given then two functions:

b:R—R, oc:R—R,

a driving Brownian motion {W(¢): 0 < ¢ < T} and an independent random
variable X (the initial condition) our purpose is to construct a process X =
{X(t): 0 <t < T} such that, for ¢t € [0, 7], the following equation is satisfied:

X(t):X0+/O b(X(s))ds+/O o (X ())dW (s).

Comments
» The differential notation for an SDE is

dX (t) = b(X (£))dt + o(X (£))dW (t), X(0) = Xo.

*Notas preparadas por E. Mordecki para el curso de Simulacién en procesos estocasticos
2017.



= The integral
t
/ b(X (s))ds
0

is a usual Riemann integral, as we expect X (s) to be a continuous function

= As for fixed w the trajectories of W are not smooth, we must define pre-
cisely the integral

/ o (X (5))dW (s)

0

The three main properties to define the stochastic integral are:

(A) If X is independent from W
b b
/ XdW(s) = X/ dW (s),
(B) The integral of the function 1,4 is the increment of the process:
T b
/ Lia.gy AW (s) = / AW (s) = W (b) — W (a).
0 a
(C) Linearity:
T T T
/ (f+g)dW(s) = / fdW (s) +/ gdW (s).
0 0 0

2. Stochastic integration
Consider the class of processes
H ={h = (h(s))o<t<r}

that satisfy (A) and (B):

(A) h(t), W(t+ h) — W(t) are independent, VO <t <t+h < T,

(B) Jil E(h(t)?)dt < oo
Example: If E[f(W(¢))?] < K, then h(t) = f(W(t)) € H: In fact,

FOW(t)), W(t+ h) — W(t) are independent,

and

/T E(f(W(t))*)dt < KT.
0



Step processes

The stochastic integral is first defined for a subclass of step processes in H:
A step processes h is of the form

n—1
h(t) = Z hkl[tk,tk+1)(t)>
k=0

where 0 =ty < t; < --- < t, =T is a partition of [0, T], and
(A) hy, W(ty + h) — W(tx) are independent for 1 < k <n, h > 0.
(B) E(h?) < cc.

For a step process h € H we define the stochastic integral applying properties
(A), (B) and (C):

T Tn—1
/O h(t)dW (t) = /O D bl e, (AW (2)

k=0

©) n—1 .7

= Z/ hkl[tk,tk+1)(t)dW(t)
k=00

A g

= Z hk/(; l[tk,thrl)(t)dW(t)

DN bW (tr) — Wt

Notation:

Properties

The stochastic integral defined for step processes is a random variable that
has the following properties

(P1) E [; h(t)dW (t) =0

(P2) It6 isometry:



Proof of (P1):

We compute the expectation:

because W (tgy1) — W(tr) ~ N(0, trr1 — tg).

Proof of (P2):

We first compute the square:
T 2 o1 2
( / h(t)dW@)) - (Z Bl (1) — W(tm)
k=0

n—1

=Y hW (thsr) = W ()]
k=0
2 D hhiW () = WEDIW () — W (t)]
0<j<k<n—1
We have, by independence, as t; < tj41 < t:
E (hjhi[W(t541) = W)W (trr1) — W (Ek)])
= E (hjhi[W(tj41) = W(t;)])) EIW (thy1) = W(te)] = 0.
Furthermore, also by independence:
E (h{[W (tip1) = W (tx)]?) = E(hp)E[W (ty11) — W (ts))?
Bt —t) = [ B(h(:))ds

Summarizing,

2

E (/0 h(t)dW(t)) = nf: E (hi[W (trs1) — W (t)))?

k=0
n—1 tht1 T
= E(h(s)?)ds = E(h(s)?)ds,
>, /
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concluding the proof of (P2). This property is an isometry, because it can be
stated as:

(172 0y = IRlE2x (0.1

where

T
1(R)72(0) = BUI(R)?), Hh||%2(§z><[0,T]):/O E(h(s)*)ds,

This makes possible to extend the integral to the whole set H by approximation:

= Given h € H we find a sequence of steps processes (h;,) such that
1A = Bll72 (0 go,77) = 05 (€= o0).
= We define
I(h) =lim I(h,) asn — co.

It is necessary to prove that I(h,) is a Cauchy sequence in L?(Q) to prove that
the limit exists.

Comments
w I(h) = fOT h(t)dW (t), is a random variable.

s For 0 <t <T we define

t

T
I(h,t) = /O L. h(t)dW (1) = / h(s)dW (s),

0

to obtain a stochastic process.

Covariance of two stochastic integrals

Proposition 1. Consider two process h and g in the class H. Then

E( /0 (AW (1) /0 h(t)dW(t)) _ /0 E(g()h(t))dt.

The proof is based on the polarization identity:
1 2 2
ab = 1[(a+b) — (a—b)“].
Demostracion. Observe that
= I(h+g) = I(h) + I(g),

= E(I()?) = [} E(f()?)dt.



Then
AE(I(9)I(h)) = E(I(h+g)* — I(h —g)?)

- / CE((h+ 9 — (h— gt
0

:4/0 E(hg)dt.

O

3. Simulation of stochastic integrals: Euler sche-
me
The definition of a stochastic integral suggest a way to simulate an appro-

ximation of the solution. Given a process h, we choose n and we define a mesh
ty =kT/n, k=0,...,n.

i
L

h(E) W (i) = W(E)]-
0

E
I

It is very important to estimate the integrand in ¢7* and to take the increment
of Win [t}, 7, ,] to have the independence. Otherwise a wrong result is obtained.
Example: Wiener integrals

Suppose that h(t) is a deterministic continuous function. Then, the appro-
ximating processes are also deterministic:

n-1
hy = Z h(t7) L en, )
k=0
So, we must find the limit of
T n—1
L= [ W = 3 ME)W ) - W),
k=0

As I, is a sum of independent normal variables, it is normal. Furthermore
(applying the properties or computing directly), we obtain that

n—1 T
E(L,) =0, var(L) =S h(t")2(th, —t7) %/ h(t)2dt.
k=0 0

T T
/ h(t)dW (t) ~ N <0,/ h(t)%lt) .
0 0

We conclude that



Simulation of a Wiener integral

Consider f(t) = v/t over [0, 1]. According to our results:

/O1 VEdW (t) ~ N (0, /01(\/2)2dt>

:N<0,/Oltdt) =N(0,1/2).

We check this result by simulation, writing the following code:
# Wiener integral of sqrt(t)
n<-1e3 # discretization to simulate W
m<-le3 # nr of variates
steps<-seq(0,1-1/n,1/n)
integral<-rep(0,m)
for(i in 1:m){
integral[i]<-sum(sqrt(steps)*rnorm(n,0,sqrt(1/n)))
}
>mean(integral) # Theoretical mean is O
[1] 0.02194685
>var(integral) # Theoretical variance is 1/2
[1] 0.527872
We now plot our results and compare with the theoretical density N(0,1/2):
>hist(integral,freq=FALSE)
>curve (dnorm(x,mean=0, sd=sqrt (1/2)) ,add=TRUE)

Histogram of ntegral

i

yyyyyyyyy

Comparison of distributions

To perform a statistical comparison of our results, we compare the distribu-
tions:

plot(ecdf (integral) ,type="1")

curve (pnorm(x,0,sqrt(1/2)), add=TRUE, col=‘‘red")



seq(0. 1, length = m)

sort(ntegral)

To assess whether the empirical distribution (black) is not far from the theore-
tical (red) a Kolmogorov-Smirnov test should be performed.
>ks.test(integral, "pnorm",0,sqrt(1/2))

The result is

One-sample Kolmogorov-Smirnov test
data: integral
D = 0.025065, p-value = 0.5562
alternative hypothesis: two-sided

Here we reject when our statistic D is such that
vmD > ky = 1,36,
and this is true if and only if

p — value < 0,05.

Simulation of a stochastic integral
Suppose h(t) = f(W(t)) = W(t)2. The R code is

# Stochastic integral of f(W(t))

n<-1e3 # for the grid of BM

t<-1

f<-function(x) x"2

m<-le4 # generate m samples of the integral

integral<-rep(0,m)

for(i in 1:m){
increments<-rnorm(n,0,sqrt(t/n))
bm<-c (0, cumsum(increments[1: (n-1)]1))
integral [i]<-sum(f (bm) *increments)

}



Remember .
D FW AW () — W(E))-
k=0

We obtain the results:

>mean (integral)

[1] 0.00691243

>var (integral)

[1] 1.007898

We compute the theoretical variance with the isometry property. First, if
Z ~N(0,1):

E(W(t)Y) = E(Vt2)* = ?E(Z*) = 3t2.

E (/01 W(t)de(t)>

Then

/1 E(W (t))dt
0

1
/ 3t2 = 1.
0

Consider h(t) = W (t). It is not difficult to verify that h € H. We want to
integrate

2

Theoretical example

T
/ W (t)dW (8).
0

To define the approximating process, denote ¢! = Ti/n. The approximating
processes are defined by

n—1
hn = Z W(tzl)l[t?7t?+1)
k=0

So, we must find the limit of

T n—1
Ahmwm:memwwm—Ww»

We have

W(EDIW (1) = W] = W ()W () — W)™
1

= W) = W + S (E0)* — W)



When we sum, the second term is telescopic:

;i W(EW (8741) = W] = WL OW () = W ().
L :Z;[Wmn W+ w2,
We have seen that
S[W(tm ~ W) =T,
We then conclude that -
/0 ' W(t)dW (t) = % (WT)-T).

Observe, that if 2:(t) is a differentiable function,

T 1
/ 2(t)da(t) = L22(T).
0 2
The extra term T is a characteristic of the stochastic integral, discovered by
Kiyoshi Ité in the decade of 1940-1950.
4. It6 Formula

Theorem 1. Let {W(t): t > 0} be a Brownian motion, and consider a smoot}ﬂ
function f = f(t,x): [0,00) x R = R. Then

fof

0 8£E
t a 82

v [ (Zowien+ 12 6wis) as

f& W) = f(0,W(0) = (s, W (s))dW (s)

If f(t,z) = f(x) (i.e. the function does not depend on time) the formula
takes the simpler form

FOVO) = 10V O) = [ POV + 5 [ Fovi)as

1By smooth we mean f(t) differentiable in ¢ and twice differentiable in x.
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On the proof of 1t6 formula.

We explain more in detail the proof for f(¢,z) = f(x) (i.e. the function does
not depend on time). The key moment is the Taylor expansion:

FW(t+h) = f(W(h) = [ (W@)[W(t+h) = W(t)]
+ %f”(W(t))[W(t +h) = W) +o([W(t+h) = W(H)]?).
Then, due to the property of the quadratic variation, when & is small
(W (t+h) — W) ~ h. (1)

giving the second integral in the formula.

Example
If f(t,x) = 22, then

of _
ot

0% f
2.’E7 @ = 2,

of _

0 -
" Ox

and It6 formula gives

W(t)? :2/0 W(s)W(s)Jr/O ds:2/0 W (s)W(s) + 1,
Ift=1: .
| wewe) = 5orar -y
0

our previous result.

Example: Geometric Brownian motion
If f(t,2) = Spe?® T+t then
S(1) = F(LW (1)) = Se”™ O 4,
is the Geometric Brownian motion. To apply Itd6 Formula, we compute:

0 7] 0?
S=pt, L=op Th=oy

wf, 922

+/0 o (s, W (5))dWV (s).
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As f(t,W(t)) = S(t), we obtain

t t
S(t)—S(0) = / <ﬂ + ;0’2> S(s)ds +/ oS (s)dW (s).
0 0
This same expression, in differential form, is
dS(t) =rS(t)dt + oS(t)dW (t), S(0)=Sp. (2)

where we used that yu = r — 0%/2. So, as the the two assets in Black-Scholes
model satisfy the equations

dB(t) = B(t)(rdt), B(0) = By,
dS(t) = S(t)(rdt + odW (1)), S(0) = So.

The second is a modification of the first + noise.
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