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1 Variance reduction techniques

In the following exercises, when not specified confidence level is 1−α = 0.95
and sample size n = 106. Present your results in a table with values obtained
and the corresponding error of estimation for each method used, computed
as

ε =
1.96s√
n
.

where s = σ̂.
1. We want to estimate by simulation:

µ =

∫ 1

0

1

2
√
x+ x2

dx =

∫ 1

0

1

2
√
x

1√
1 + x

dx.

In all cases provide the 95% error of estimation.
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(a) Estimate µ using uniform random variables, by the sample mean method.

(b) Estimate µ using random variables with density f(x) = 1/(2
√
x) for

0 ≤ x ≤ 1.

(c) Use antithetic variables.

(d) Use control variates, with g(x) = 1− x. First find the optimal c∗ with a
small sample (103) and then run your algorithm with this estimation.

2. We want to compute the integral by simulation:

µ =

∫ 1

0

(1− x)e−x
2

dx

In all cases provide the 95% error of estimation.

(a) Estimate µ using the acceptance-rejection method on the square [0, 1]2.

(b) Estimate µ using uniform random variables, by the sample mean method.

(c) Estimate µ using random variables with density f(x) = 2(1 − x) in
0 ≤ x ≤ 1.

(d) Use antithetic variables.

(e) Use control variates, with g(x) = 1− x. First find the optimal c∗ with a
small sample (103) and then run your algorithm with this estimation.

The general purpose of the following exercises is to estimate using different
methods of variance reduction the following quantities

µ1 = 4

∫ 1

0

√
1− x2dx = π,

µ2 =

∫ 1

0

√
− log xdx =

1

2

√
π,

µ3 = P(Z > 4), where Z ∼ N (0, 1)

µ4 = E(eZ − 5)+, where Z ∼ N (0, 1)

3. Compute µ1 with the following methods:

(a) Acceptance rejection on the square [0, 1]2.

(b) Sample mean method.



(c) Use antithetic variables.

(d) Use control variates, with g(x) = 1− x. First find the optimal c∗ with a
small sample (103) and then run your algorithm with this estimation.

(e) Use the stratified method, i.e. using, for µ =
∫ 1

0
h(x)dx the formula

µ̂ =
1

n

n∑
j=1

h

(
Uj + j − 1

n

)
.

You can combine with antithetic variates (In this case it is no direct to obtain
an error estimate).

(f) Do you know a deterministic method to compute this integral? For in-
stance, compute a Riemann sum, or use the trapezoidal rule:

µ̂ =
1

2n
(f(0) + f(1)) +

1

n

n−1∑
j=1

f(j/n).

4. Compute µ2 with the following methods:

(a) Can you use acceptance rejection method with uniform variables?

(b) Use the sample mean method.

(c) Use antithetic variables.

(d) Use control variates, with g(x) = − log x, taking into account that∫ 1

0
− log(x)dx = 1. First find the optimal c∗ with a small sample (103)

and then run your algorithm with this estimation.

5. Compute µ3 with the following methods:

(a) First use crude MC. As the probability is very small, a large n is necessary.

(b) Check if the antithetic variates method improves the situation.

(c) Use the importance sampling method, based in the following idenantity.

P(Z > 4) =

∫ ∞
4

1√
2π
e−x

2/2dx =

∫ ∞
4

1√
2π
e−x

2/2 e
−(x−4)2/2

e−(x−4)2/2
dx

=

∫ ∞
4

e−4x+8 e
−(x−4)2/2
√

2π
dx = Ee−4X+81{X>4}.

where X ∼ N (4, 1).



6. Compute µ4 with the following methods:

(a) First use crude MC.

(b) Use antithetic variates.

(c) Now we use control variates in the following way. Check the following
identity:

E(eZ −K)+ = E(eZ)−K + E(K − eZ)+.

(here x+ = max(0, x), and you can use that x = x+ − (−x)+). Then,
computing EeZ = e1/2, we find the price of the put option, given by

P (K) = E(K − eZ)+.

You can use also antithetic variates in this situation.

(d) Importance sampling can be implemented in the following way. Check
the following identity:

E(eZ−K)+ =

∫
R

(ex−K)+
1√
2π
e−x

2/2dx = e1/2
∫
R

(1−Ke−x)+ 1√
2π
e−(x−1)

2/2dx.

that is known as put-call duality.

P (K) = e1/2E(1−Ke−X)+.

where X ∼ N (1, 1). You can use also antithetic variates in this situation.

2 Stochastic Integrals

7. Wiener integral (a) Use Itô’s formula to prove that∫ T

0

eW (t)−t/2dt = eW (T )−T/2 − 1.

(b) Use the Euler scheme to simulate the integral

I =

∫ 1

0

eW (t)−t/2dW (t).

Plot a histogram and estimate the expectation and the variance of I.



(c) Consider the random variable

J = eW (1)−1/2 − 1.

Plot a histogram, compute the expectation and variance of J .

(d) Plot the two histograms in the same figure and comment the results.

8. We consider the stochastic integral

I =

∫ 1

0

etdW (t).

(a) Compute µ = E(I) and σ2 = var(I).

(b) Simulate values of I using the Euler scheme for stochastic integrals and
estimate approximately µ and σ2.

(c) Plot in the same figure a histogram of the sample for I with the corre-
sponding normal density.

9. Itô isometry. We check the isometry property in an example using sim-
ulation. Consider the process {h(t) = eW (t) : 0 ≤ t ≤ 1}. The property
states

E

(∫ 1

0

eW (t)dW (t)

)2

=

∫ 1

0

E[(eW (t))2]dt =

∫ T

0

E(e2W (t))dt.

(a) First, using that E(eN (µ,σ2)) = eµ+σ
2/2, compute

∫ 1

0
E(e2W (s))ds.

(b) Compute by simulation

E

(∫ 1

0

eW (s)dW (s)

)2

, 0 ≤ t ≤ 1,

with the corresponding error, and check that the numbers coincide.

10. We want to check numerically that∫ 1

0

W (t)dW (t) =
1

2
(W (1)2 − 1).

Write then a code to compute a Brownian trajectory, compute both the
integral and the result. Repeat the previous experiment a reasonable number
of times, and plot the results in an (x, y) plot.



11. Hermite polynomial of degree three. (a) Write a code to simulate the
integral

I =

∫ 1

0

(W (t)2 − t)dW (t).

Plot a histogram and compute the expectation and the variance of I.

(b) Consider the random variable

J =
1

3
W (1)3 −W (1).

Plot a histogram, compute the expectation and variance of J .

(c) Use Itô formula with the function1 H3(t, x) = 1
3
x3 − tx to prove that in

fact I = J .

12. Hermite polynomial of degree four. Use Itô’s formula to prove that

H4(t,W (t)) = 12

∫ t

0

H3(s,W (s))dW (s)

Conclude that EH4(t,W (t)) = 0.

13. Brownian Bridge. (a) Let {W (t) : 0 ≤ t ≤ 1} be a Brownian motion.
Prove that the process

R(t) = (1− t)
∫ t

0

1

1− r
dW (r), 0 ≤ t ≤ 1,

is a Brownian bridge.

(b) We are interested in the random variable

A =

∫ 1

0

R(t)dt.

Prove that E(A) = 0, and device a simulation scheme using the representa-
tion of part (a) to estimate var(A) (True value 1/12).

14. The Ornstein-Uhlenbeck process and its maximum. Let X = {X(t) : 0 ≤
t ≤ 1} be an OU process with parameters a = 1, b = 0, σ = 1. departing
from X0 ∼ N (0, 1). Compute by simulation a confidence interval of

µ = E

(
max
0≤t≤1

X(t)

)
.

13H3(t, x) is the Hermite polynomial of degree 3.



3 Stochastic differential equations

15. The CIR process is the solution to the SDE given by

dX(t) = a(b−X(t))dt+ σ
√
X(t)dW (t).

Define the parameters

α =
2ab

σ2
, (shape paramater),

β =
2a

σ2
, (rate parameter).

It is known that the asymptotic distribution of the CIR process is a Gamma
distribution, with density

f(x) =
βα

Γ(α)
xα−1e−βx, x ≥ 0.

(a) Consider x0 = α/β, and the parameters

a = b = 1, σ = 0.5.

Use the Euler scheme to simulate trajectories of the CIR process

(b) Simulate 100 trajectories and consider the final values. Plot a histogram
of this values and compare it in the same plot with the Gamma density with
the corresponding parameters.

16. Geometric Brownian motion. A look-back option pays the maximum of
the observed price of the stock. Its price is given by

L(K) = e−rTE( max
0≤t≤T

S(t)−K)+,

where S(t) = S0 exp(σW (t) + (r − σ2/2)t) is a geometric Brownian motion.
Provide a simulation code using the Euler scheme for the SDE

dS(t) = S(t)[rdt+ σdW (t)],

to compute prices of look-back options for S0 = 100, r = 0.01, σ = 0.2,
T = 1.



17. Consider the Stochastic differential equation

dX(t) =
1

|X(t)|
dt+ dW (t), x0 = 1.

(a) Write a code to simulate a trajectory in an interval [0, 1]

(b) Define
M = max

0≤t≤1
X(t).

and use your code to estimate E(M) and var(M).

(c) Plot a histogram with a sample of variables with the same distribution
as M .
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