Examen de Cálculo II

Ejercicio 1. Sea la función $f: \mathbb{R}^3 \to \mathbb{R}$ dada por f(x, y, z) = x + y + 2z, y el conjunto S de los puntos de \mathbb{R}^3 que verifican las condiciones

$$\begin{cases} 3x^2 + y^2 = 12, \\ x + y + z = 2 \end{cases}$$

- (a) Determinar los puntos críticos de f condicionados a S
- (b) Demostrar que S es un conjunto compacto.
- (c) Estudiar extremos absolutos de f en S

Ejercicio 2. Sean a, b dos números reales positivos, y consideramos el conjunto

$$D = \left\{ (x, y) \in \mathbb{R}^2 \colon \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}$$

Sea $(r_n)_{n\in\mathbb{N}}$ una sucesión inyectiva de números reales tales que su imagen $\{r_n\} = \mathbb{Q} \cap (0,1]$. Para cada n natural, E_n es la elipse de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} = r_n$, y sea $E = \bigcup_{n\in\mathbb{N}} E_n$ la unión de todas las elipses.

- (a) Probar que $\overline{E} = D$.
- (b) Demostrar que si $n \neq m$ los conjuntos E_n y E_m son disjuntos, y en consecuencia, que dado $p \in E$, existe un único n(p) tal que $p \in E_{n(p)}$.
- (c) Sea t_p la recta tangente a la elipse $E_{n(p)}$ en un punto $p \in E$. Se define $f: E \cap \{x > 0\} \to \mathbb{R}$ como la distancia desde el origen hasta la intersección de t_p con el eje Ox, es decir $f(p) = ||t_p \cap Ox||$. Probar que existe una única función $g: D \cap \{x > 0\} \to \mathbb{R}$ que es continua, y tal que coincide con f en $E \cap \{x > 0\}$

Ejercicio 3. Dada una curva $c: [0,1] \to \mathbb{R}$, definimos su longitud mediante

$$L(c) = \int_0^1 ||c'(t)|| dt.$$

- (a) Demostrar que si $c''(t) = 0 \ \forall t \in [0,1]$ entonces L(c) = ||c(1) c(0)||.
- (b) Decimos que $f: \mathbb{R}^3 \to \mathbb{R}^3$ es una isometría local si el diferencial $d_p f$ es una isometría para cada $p \in \mathbb{R}^3$, es decir, si $||d_p f(v)|| = ||v||$ para todo p y todo v en \mathbb{R}^3 . Demostrar que si f es una isometria local, entonces ||f(x) f(y)|| = ||x y||, para todo x, y de \mathbb{R}^3 .
- (c) Probar que si $f: \mathbb{R}^3 \to \mathbb{R}^3$ es una isometría, es decir, si ||f(x) f(y)|| = ||x y||, para todo x, y de \mathbb{R}^3 , y además f(0) = 0, entonces f es una transformación lineal.
- (d) Concluir que si f es una isometría local, existen un punto $p \in \mathbb{R}^3$ y una tranformación lineal $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ tales que f(x) = p + T(x).