EXPLANATION FOR THE PLURAL FILES

MARIANA PEREIRA

1. COMPUTATIONS

We present how we used the computer algebra system SINGULAR::PLURAL [15]
to construct simple u,. 4(sl3)-modules. This should be read as complement to either
[16] or [17], where the details of the theory can be found. The system SINGU-
LAR::PLURAL allows us to do computations on algebras given by generators and
rewriting relations of a particular form, allowing Grobner basis computations to
be done. For details on these algebras, we refer the reader to [2] and [12].

Let B’ be the subalgebra of U, 4(sl3) generated by { f1, fa, w}, ws}. Adding the el-

ement Fo1 = fo f1—sf1fe to the generating set, B’ is generated by { f1, Fa1, fo, Wi, wh}
subject to the relations

(1) Forfr = 71T and foTFo; = rTFay fo,
(2) fafi = sfifa + For,
(3) Wigjzl = 8713:21(,01 and wéffgl = Tffglwé,
(4) (a) wifi =rs~ " frwl,
(b) wéfl = Sflwéa
(c) wifo=r1""fowl,
(d) whfo =7s~" fowh, and
(5) wiwh = whw?.
Therefore B’ is generated by {z1 = f1, 1o = Fo1, w3 = fo, x4 = W, T5 = wh}, sub-
ject to relations {z;x; = Cjjx;x; + D;j, 1 <i < j <5} where the coefficients Cj;
and polynomials D;; are given by the relations above; that is D;; = 0 if (i,7) #
(1,3) and
(1) 012 =T and 023 =7,
(2) 013 = S and D13 = 3721,
(3) Coy = st and Cys =1,
(4)

(a) Chy =rs™ 1,

(b) 015 =S,

(C) Cay = Tﬁl,

(d) Cs5 =7rs!, and
(5) Cy5 =1
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From this presentation it follows that B’ is of the form required by SINGU-
LAR::PLURAL [15]. Let I be the two-sided ideal of B’ generated by the set

{(wi)e -1, (wé)e -1, ff? 37517 fQZ}a

we have that H, ; = (b')*°® = B'/I.

For ¢, y and z positive integers with ged(y — z,¢) = 1, we define the ring B. We
write the code in terms of parameters 1, y and z; the values of these parameters
can be fixed in a preamble.

ring B = (0,Q), (F(1), F(21), F(2), W(1), W(2)), Dp;
minpoly = rootofUnity(1);

The underlying coefficient field has characteristic 0 and it contains Q, which is
a primitive /th root of unity and is generated by the elements F(1), F(21),
F(2), L(1), L(2) (which correspond to fi,Fa1, f2,w) and w) respectively). The
monomial ordering Dp is the degree lexicographical order. We write the numbers
C;; and D;; that define the relations in B’; these are given with upper-triangular
matrices C and D, and only the non-zero elements need to be given.

matrix C[5][5];
matrix D[5] [5];
cl1,2] = Q7y; C[1,3]

Q°z; C[1,4] = Q" (y-z); C[1,5] = Q"z;
Q- (-z); C[2,5] = Q7y;

c[2,3] = Q7y; C[2,4] =

C[3,4] = Q~(-y); C[3,5] = Q" (y-2);
cl4,5] = 1;

D[1,3] = F(21);

The command ncalgebra(C,D) creates the G-algebra with the relations given by
C and D, and sets it as the base ring. I then give the generators of the ideal I.
ncalgebra(C,D);
option(redSB); option(redTail);
ideal I = F(1)"1, F(2)"1, wW(1)"L -1, W(2)"1 - 1, (F(21))"1;
qring B = twostd(I);

The last command sets the base ring to be the quotient of the previous ring by the
ideal I. We now have b’ as the base ring. Next we describe how we generate the
simple u, (sl3)-modules. Combining the definition of the 4 action, together with
the coproduct formulas in H = (b")°°° we have that for all z € H and g € G(H),

(L1)  fepr = —2SP(fi) + (W) fiz(w) ™" = —2fi(w) ™" + B(w)) fiw(w)) ™
and

wWiesg = Blwwig(w) ™ = Bw))g.
The second equation shows that if g € G(H), then Hegg is generated by

{(fFF5 fesg : 0<k, t, m<(}.
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Using Equation (1.1) recursevely, we define the procedure Beta so that if 0 <
k,t,m < ¢, h € Hand § : H — K is an algebra map given by £(f;) = 6°
and ((fy) = 6, then Beta(a,b,k,t,m,h) gives (fFFh, fi")esh. Fix a group-like
element g = (w])¢(w))? € H. In what follows we will construct a basis and compute
the dimensions for the module Hegg. Let

Fo={frFl fm.0<k, t,m</(}

(so that Hegg = K{ fegg : f € F;}). The basic idea is to consider the linear map
T : KF, — H given by Ts(f) = fesg, and construct the matrix M representing
Tj in the basis F, and {fh: f € F,,h € G(H)} of KF, and H respectively. Then
dim(Hegg) = rank(M), and the non-zero columns of the column-reduced Gauss
normal form of M give the coefficients for the elements of a basis of Hegg. The
problem with this method is that since dim(H) = ¢°> and dim(KF,) = ¢3, the size
of M is £° x £3 and computing the Gauss normal form of these matrices is an
expensive calculation even for small values of ¢ such as ¢ = 5. However, by some
reordering of ¥, and of the PBW basis of H, M is block diagonal. We proceed to
show how this is done.

For a monomial h = f{" F57 f5% (w])*® (wh)* let deg, (h) = a1+ a9 and deg,(h) =
a9 + a3. Note that Equation (1 1) implies that hesz is a linear combination of
monomials m with deg;(m) = deg;(h) + deg;(x). For all 0 < u,v < 2, let

Dy = {h € F;: deg,(h) = v and degy(h) = v}

and

Ruw) = {f(w)™(wsy) g f € D)}
Then for all h € D(y,), hegg € KR (u,0)- The possible pairs (u,v) are such that
0 <wu,v <2(f—1) and since |v — u| is the maximum power of Fy; that can be a
factor of a monomial in Dy, ., we must have [v —u| < ¢ —1; that isu— (£ —1) <
v <u+{—1. Another way of describing the sets D(, ) and Ry, ) is as follows.

Duww = {17 Fufy \VieN: 0<u—i,i,v—i<{—1}
= {707 Vi €Nt ny, i <y}
where n,, = max(0,{ —1—u,{ —1—wv) and m,, = min(¢ — 1,u,v). Since

(W)~ ! = (w;)ffl if g = (w))¢(w))? we also have
= {fw) oWy D f € Dy}

Remark 1.2. [t is clear that ¥, = UD(M the union disjoint, and that Hegg =
®KR (). Therefore a basis for Hegg is a disjoint union of the bases for KD, .)e9
for all possible pairs (u,v), and dim(Hezg) = Z(W}) dim(KDy,v)059)-

We define the procedure Submod, where the output of Submod(a,b,c,d,u,v) is
a list L, where the first component of the list is a basis for D, .)s3g and the second
component is dim(D,,ye59) (for 8 given by a and b and g = (w})%)(wh)?).
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proc Submod(int a, int b, int ¢, int d, int u, int v)
{ 1list L;
ideal D;
ideal R;
list e = u-(1-1),v-(1-1),0; int n= Max(e);
list £ = u,v, 1-1; int m= Min(f);
int a = (z-y)*c+ y*d; int b= -z*c+(z-y)*d;
for(int i= n; i<= m; i++)
{
D[i+1-n] = Beta(a, b , u-i, i, v-i , W{1)"c * W(2)"d);

Rli+1-n] = F(1) " (u-1)* F(21) "ix F(2)"(v-1i)*
W(1) " (((Q-1)*u+c) mod 1)* W(2)"(((1-1)*v+d) mod 1);}
matrix M = coeffs(D,R);

matrix N = gauss_col(M);

matrix K[1] [m-n+1] = R;

matrix S = Kx*N;

L[1] = compress(S);

L[2] = mat_rk(N);

return(L) ;}
The procedure Totalbasis(a,b, ¢,d) returns dim(Hezg) and a basis for Hegg,
and is defined using Remark 1.2.

proc Totalbasis(int a, int b, int ¢ , int d)
{ list T; matrix A; int t; t = 0;
for(int u = 0; u<=2*x(1-1); u++)
{ list e = 0, u-(1-1);
list £ = u+(1-1), 2*x(1-1);
for(int v = Max(e); v <= Min(f); v++)
{ list M = Submod(c,d, u,v);

A = compress(concat(A, M[1]));
t =t + M[2];
}
}
T[1] = A; T[2] = t; return(T);

3

Example 1.3. For{ =5,y =1 and z = 4, for g = (w})*(w})? and B(w)) = 6* and
B(wh) =1, we construct the module Hezg as follows. To give SINGULAR:PLURAL
the values of £, y and z, we write at the beginning of the code

ring r0 = 0,x,dp;
int 1 = 1;
int y = 4;
int z = 1;
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Then the command
Totalbasis(4,0,4,2);
returns
// [1]:
// _[1,11=Ww(1) " 4w (2) "2
/7 _[1,2]=F(1)*W(1)"3*W(2) "2
/7 _[1,3]1=(-Q73-Q72-2%Q-1) *F (1) *F (2) *W (1) "3*W(2) +F (21) *W (1) "3*W(2)
// [2]:
// 3
which tells us that dim(Heg ((w))*(w})?)) = 3. A basis for Hezg is {19, f1059, Fa1039
since

Beta(4,0,0,0,0,W(1) " 4%W(2)"2);

Beta(4,0,1,0,0,W(1)~4*W(2)"2)/(-Q"3-Q"2-2%Q-1) ;

Beta(4,0,0,1,0,W(1)~4xW(2)"2)/(-Q"3-Q"2-2%Q-1) ;
returns

// W(1)~4xW(2) "2
// F(L)*W(1)"3xW(2) "2
// (-Q73-Q°2-2*Q-1)*F (1) *F (2) *W(1) "3*W(2)+F (21) *W (1) ~3*W(2)
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