
EXPLANATION FOR THE PLURAL FILES

MARIANA PEREIRA

1. Computations

We present how we used the computer algebra system Singular::Plural [15]
to construct simple ur,s(sl3)-modules. This should be read as complement to either
[16] or [17], where the details of the theory can be found. The system Singu-

lar::Plural allows us to do computations on algebras given by generators and
rewriting relations of a particular form, allowing Gröbner basis computations to
be done. For details on these algebras, we refer the reader to [2] and [12].

Let B′ be the subalgebra of Ur,s(sl3) generated by {f1, f2, ω
′

1, ω
′

2}. Adding the el-
ement F21 = f2f1−sf1f2 to the generating set, B

′ is generated by {f1, F21, f2, ω
′

1, ω
′

2}
subject to the relations

(1) F21f1 = rf1F21 and f2F21 = rF21f2,
(2) f2f1 = sf1f2 + F21,
(3) ω′

1F21 = s−1F21ω
′

1 and ω′

2F21 = rF21ω
′

2,
(4) (a) ω′

1f1 = rs−1f1ω
′

1,
(b) ω′

2f1 = sf1ω
′

2,
(c) ω′

1f2 = r−1f2ω
′

1,
(d) ω′

2f2 = rs−1f2ω
′

2, and
(5) ω′

1ω
′

2 = w′

2ω
′

1.

Therefore B′ is generated by {x1 = f1, x2 = F21, x3 = f2, x4 = ω′

1, x5 = ω′

2}, sub-
ject to relations {xjxi = Cijxixj + Dij, 1 ≤ i < j ≤ 5} where the coefficients Cij

and polynomials Dij are given by the relations above; that is Dij = 0 if (i, j) 6=
(1, 3) and

(1) C12 = r and C23 = r,
(2) C13 = s and D13 = F21,
(3) C24 = s−1 and C25 = r,
(4) (a) C14 = rs−1,

(b) C15 = s,
(c) C34 = r−1,
(d) C35 = rs−1, and

(5) C45 = 1.
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From this presentation it follows that B′ is of the form required by Singu-

lar::Plural [15]. Let I be the two-sided ideal of B′ generated by the set
{

(ω′

1)
ℓ − 1, (ω′

2)
ℓ − 1, f ℓ

1 , F
ℓ
21, f ℓ

2

}

,

we have that Hr,s = (b′)coop = B′/I.
For ℓ, y and z positive integers with gcd(y − z, ℓ) = 1, we define the ring B. We

write the code in terms of parameters l, y and z; the values of these parameters
can be fixed in a preamble.

ring B = (0,Q), (F(1), F(21), F(2), W(1), W(2)), Dp;

minpoly = rootofUnity(l);

The underlying coefficient field has characteristic 0 and it contains Q, which is
a primitive ℓth root of unity and is generated by the elements F(1), F(21),

F(2), L(1), L(2) (which correspond to f1, F21, f2, ω
′

1 and ω′

2 respectively). The
monomial ordering Dp is the degree lexicographical order. We write the numbers
Cij and Dij that define the relations in B′; these are given with upper-triangular
matrices C and D, and only the non-zero elements need to be given.

matrix C[5][5];

matrix D[5][5];

C[1,2] = Q^y; C[1,3] = Q^z; C[1,4] = Q^(y-z); C[1,5] = Q^z;

C[2,3] = Q^y; C[2,4] = Q^(-z); C[2,5] = Q^y;

C[3,4] = Q^(-y); C[3,5] = Q^(y-z);

C[4,5] = 1;

D[1,3] = F(21);

The command ncalgebra(C,D) creates the G-algebra with the relations given by
C and D, and sets it as the base ring. I then give the generators of the ideal I.

ncalgebra(C,D);

option(redSB); option(redTail);

ideal I = F(1)^l, F(2)^l, W(1)^l - 1 , W(2)^l - 1, (F(21))^l;

qring B = twostd(I);

The last command sets the base ring to be the quotient of the previous ring by the
ideal I. We now have b

′ as the base ring. Next we describe how we generate the
simple ur,s(sl3)-modules. Combining the definition of the r

β action, together with
the coproduct formulas in H = (b′)coop we have that for all x ∈ H and g ∈ G(H),

(1.1) fi
r

βx = −xSop(fi) + β(ω′

i)fix(ω′

i)
−1 = −xfi(ω

′

i)
−1 + β(ω′

i)fix(ω′

i)
−1

and

ω′

i
r

βg = β(ω′

i)w
′

ig(ω′

i)
−1 = β(ω′

i)g.

The second equation shows that if g ∈ G(H), then H r

βg is generated by
{

(fk
1 F

t
21f

m
2 ) r

βg : 0 ≤ k, t, m < ℓ
}

.
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Using Equation (1.1) recursevely, we define the procedure Beta so that if 0 ≤
k, t, m < ℓ, h ∈ H and β : H → K is an algebra map given by β(f1) = θa

and β(f2) = θb, then Beta(a,b,k,t,m,h) gives (fk
1 F

t
21f

m
2 ) r

βh. Fix a group-like
element g = (ω′

1)
c(ω′

2)
d ∈ H . In what follows we will construct a basis and compute

the dimensions for the module H r

βg. Let

Fℓ = {fk
1 F

t
21f

m
2 : 0 ≤ k, t, m < ℓ}

(so that H r

βg = K{f r

βg : f ∈ Fℓ}). The basic idea is to consider the linear map
Tβ : KFℓ → H given by Tβ(f) = f r

βg, and construct the matrix M representing
Tβ in the basis Fℓ and {fh : f ∈ Fℓ, h ∈ G(H)} of KFℓ and H respectively. Then
dim(H r

βg) = rank(M), and the non-zero columns of the column-reduced Gauss
normal form of M give the coefficients for the elements of a basis of H r

βg. The
problem with this method is that since dim(H) = ℓ5 and dim(KFℓ) = ℓ3, the size
of M is ℓ5 × ℓ3 and computing the Gauss normal form of these matrices is an
expensive calculation even for small values of ℓ such as ℓ = 5. However, by some
reordering of Fℓ and of the PBW basis of H , M is block diagonal. We proceed to
show how this is done.

For a monomial h = fα1

1 F
α2

21 fα3

2 (ω′

1)
α5(ω′

2)
α6 let deg1(h) = α1+α2 and deg2(h) =

α2 + α3. Note that Equation (1.1) implies that h r

βx is a linear combination of
monomials m with degi(m) = degi(h) + degi(x). For all 0 ≤ u, v < 2ℓ, let

D(u,v) = {h ∈ Fℓ : deg1(h) = u and deg2(h) = v}

and
R(u,v) = {f(ω′

1)
−u(ω′

2)
−vg : f ∈ D(u,v)}.

Then for all h ∈ D(u,v), h r

βg ∈ KR(u,v). The possible pairs (u, v) are such that
0 ≤ u, v ≤ 2(ℓ − 1) and since |v − u| is the maximum power of F21 that can be a
factor of a monomial in D(u,v), we must have |v − u| ≤ ℓ− 1; that is u− (ℓ− 1) ≤
v ≤ u + ℓ − 1. Another way of describing the sets D(u,v) and R(u,v) is as follows.

D(u,v) = {fu−i
1 F

i
21f

v−i
2 , ∀i ∈ N : 0 ≤ u − i, i, v − i ≤ ℓ − 1}

= {fu−i
1 F

i
21f

v−i
2 , ∀i ∈ N : nu,v ≤ i ≤ mu,v}

where nu,v = max(0, ℓ − 1 − u, ℓ − 1 − v) and mu,v = min(ℓ − 1, u, v). Since
(ω′

i)
−1 = (ω′

i)
ℓ−1, if g = (ω′

1)
c(ω′

2)
d we also have

R(u,v) = {f(ω′

1)
(ℓ−1)u+c(ω′

2)
(ℓ−1)v+d : f ∈ D(u,v)}.

Remark 1.2. It is clear that Fℓ =
⋃

D(u,v), the union disjoint, and that H r

βg =
⊕KR(u,v). Therefore a basis for H r

βg is a disjoint union of the bases for KD(u,v)
r

βg
for all possible pairs (u, v), and dim(H r

βg) =
∑

(u,v) dim(KD(u,v)
r

βg).

We define the procedure Submod, where the output of Submod(a,b,c,d,u,v) is
a list L, where the first component of the list is a basis for D(u,v)

r

βg and the second
component is dim(D(u,v)

r

βg) (for β given by a and b and g = (ω′

1)
c)(ω′

2)
d).
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proc Submod(int a, int b, int c, int d, int u, int v)

{ list L;

ideal D;

ideal R;

list e = u-(l-1),v-(l-1),0; int n= Max(e);

list f = u,v, l-1; int m= Min(f);

int a = (z-y)*c+ y*d; int b= -z*c+(z-y)*d;

for(int i= n; i<= m; i++)

{

D[i+1-n] = Beta(a, b , u-i, i, v-i , W(1)^c * W(2)^d);

R[i+1-n] = F(1)^(u-i)* F(21)^i* F(2)^(v-i)*

W(1)^(((l-1)*u+c) mod l)* W(2)^(((l-1)*v+d) mod l);}

matrix M = coeffs(D,R);

matrix N = gauss_col(M);

matrix K[1][m-n+1] = R;

matrix S = K*N;

L[1] = compress(S);

L[2] = mat_rk(N);

return(L);}

The procedure Totalbasis(a,b, c,d) returns dim(H r

βg) and a basis for H r

βg,
and is defined using Remark 1.2.

proc Totalbasis(int a, int b, int c , int d)

{ list T; matrix A; int t; t = 0;

for(int u = 0; u<=2*(l-1); u++)

{ list e = 0, u-(l-1);

list f = u+(l-1), 2*(l-1);

for(int v = Max(e); v <= Min(f); v++)

{ list M = Submod(c,d, u,v);

A = compress(concat(A, M[1]));

t = t + M[2];

}

}

T[1] = A; T[2] = t; return(T);

}

Example 1.3. For ℓ = 5, y = 1 and z = 4, for g = (ω′

1)
4(ω′

2)
2 and β(ω′

1) = θ4 and

β(ω′

2) = 1, we construct the module H r

βg as follows. To give Singular:Plural

the values of ℓ, y and z, we write at the beginning of the code

ring r0 = 0,x,dp;

int l = 1;

int y = 4;

int z = 1;
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Then the command

Totalbasis(4,0,4,2);

returns

// [1]:

// _[1,1]=W(1)^4*W(2)^2

// _[1,2]=F(1)*W(1)^3*W(2)^2

// _[1,3]=(-Q^3-Q^2-2*Q-1)*F(1)*F(2)*W(1)^3*W(2)+F(21)*W(1)^3*W(2)

// [2]:

// 3

which tells us that dim(H r

β ((ω′

1)
4(ω′

2)
2)) = 3. A basis for H r

βg is {1 r

βg, f1
r

βg, F21
r

βg}
since

Beta(4,0,0,0,0,W(1)^4*W(2)^2);

Beta(4,0,1,0,0,W(1)^4*W(2)^2)/(-Q^3-Q^2-2*Q-1);

Beta(4,0,0,1,0,W(1)^4*W(2)^2)/(-Q^3-Q^2-2*Q-1);

returns

// W(1)^4*W(2)^2

// F(1)*W(1)^3*W(2)^2

// (-Q^3-Q^2-2*Q-1)*F(1)*F(2)*W(1)^3*W(2)+F(21)*W(1)^3*W(2)
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