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Abstract

O. Boruvka presented in 1926 the first solution of the Minimum Spanning Tree
Problem (MST) which is generally regarded as a cornerstone of Combinatorial Op-
timization. In this paper we present the first English translation of both of his
pioneering works. This is followed by survey of the development related to the MST
problem and by remarks and historical perspective. Out of many available algo-
rithms to solve MST the Boruvka’s algorithm is the basis of the fastest known
algorithms.

1 Introduction

In the contemporary terminology the Minimum Spanning Tree Problem (shortly,
MST Problem) is the following problem:

Given a finite set V' and a real weight function w on pairs of elements of V,
find a tree (V,T') of minimal weight w(7T) = Y (w(z,y) : {z,y} € T).

For example when V' is a subset of a metric space and the weight function
is defined as the distance then a solution T presents the shortest network
connecting all points of V.

Another formulation, which also explains its name, is the following:
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MST PROBLEM:

Given a connected (undirected) graph G = (V, E) with real weights assigned
to its edges. Find a spanning tree (V,T) of G (i.e. T'C F) with the minimal
weight w(T).

This problem can be found implicitly in various contexts early in the 20th
century (see the paper by R.L.Graham and P.Hell [22] for the early history
of the problem, see also a follow up by one of the authors in [40]). However
the problem has been solved only in 1926 by Otakar Boruvka, in [1], [2].
His formulation given in [2] is as clear as any of the above contemporary
formulations:

There are n points given in the plane (in the space) whose mutual distances
are different. The problem is to join them through the net in such a way that

1. any two points are joined to each other either directly or by means of some
other points,

2. the total length of the net would be the smallest.

The MST problem is a cornerstone of Combinatorial Optimization and in a
sense its cradle. The problem is important both in its practical and theoretical
applications. Moreover the recent development put Boruvka’s pioneering work
in a new and very contemporary context. One can even say that out of many
available MST-algorithms the Boruvka’s algorithm is presently the basis of
the fastest known algorithms.

This paper presents the first English translation of both Boruvka’s papers.
(The original papers are written in Czech, the paper [1] has a six pages of
German summary, the paper [2] is entirely in Czech). We tried to preserve as
much of the style of the original articles as possible. This we did not do just
for the purpose of the historical accuracy. It is perhaps interesting to compare
and to think about the origins and about the style of early years. Rarely we
have such a clear and compact possibility.



We aimed for a typotranslation (in the sense of e.g. R.Hamilton [16]). Moreover
we included copies of two pages from [1] to give the reader somehow better
idea about the original.
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Dr. OTAKAR BORUVKA:

O jistém problému minimalnim.
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2. Jest iplnd pro libovolné dva indexy p, p:. Vskutku, ve skuping K’
existuje skupina pro indexy p,, p, Tato bud neobsahuje &lenu [k, k]
a jest tedy obsaZena ve skuping K*, anebo &len [k, k,] obsahuje. V tomto
piipadé viak dle 20 existuji ve skupiné K“ skupiny (pokud nejsou
prézdné) Lym, Loy, @ tedy dle 13 pti vhodném oznaleni indexi py, ps
skupiny (pokud nejsou prazdné) Ly, Ligm (M), Loy Liyg,; tedy die
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Skupina Eisel vzajemn& (dle 29) a od nuly riznych, obsaZenjch
v matici M

je-limensi, budiz [,f,] nejmensi z &isel [f,;]. Mnozstyi &isel [fyp,]
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mensl, Je-li vtsi, poloZme

K=K’ — [mn], (k, k.]

2. Jest uplnd pro libovolné dva indexy py, p,. Vskutku, bud existuje
symbotem fod] ve skupin& K alespofi jedna skupina pro indexy p, p,, jeZ neobsahuje

)V dalsim znadi t s
)V dalSim zaadim pro strutnost gislo 1. Clenu [mn] a jez jest fedy soutasnd skupinou pro indexy p,, p, ve
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This paper is organized as follows:
1. Introduction.

2. O. Boruvka: On a minimal problem (a typotranslation),
Préce mor. piirodovéd. spol. v Brné III, 3(1926), 37-58 ([1]).

3. O. Boruvka: Contribution to the solution of a problem of economic con-
struction of electricity power networks (a typotranslation),
Elektrotechnicky obzor 15 (1926), 153-4 ([2]).

4. Remarks to O. Boruvka: On a minimal problem ([1]).

5. Remarks to O. Boruvka: Contribution to the solution of a problem of eco-
nomic construction of electricity power networks ([2]).

6. Modern version of Bortivka’s article [1].
7. Contemporary formulation of Boruvka’s algorithms.
8. History, remarks and perspectives.

9. Appendix: O. Boruvka - life and work.



In section 3 and 4 we give some remarks which aid in understanding of his-
torical (pre-algorithmic, pre-graph theory age) Boruvka’s text and explain
some particular features. Let us just say at this place that Boruvka’s rigor-
ous “mathematical” paper [1] is at some place lengthy and cumbersome and
as a result it was nicknamed as “unnecessarily complicated” (also in a view
of particularly elegant later algorithms). However in preparing his paper [1]
Boruvka was honoring the style of his time. He was at the very beginning of his
mathematical career and this may help to explain his rather pedantic style (as
he communicated to one of the authors [49]). However, he was both convinced
about the importance of the work and about the essence of the algorithm. This
is documented by his memoirs [3] and, perhaps more importantly, by the fact
that he published simultanously with [1] a short note [2] which is translated in
Section 3. This note is little known (e.g. the list of his collected scientific works
[51] does not refer to it). In this note, written for the Elektrotechnicky obzor
(Electrotechnical News) he published a lucid description of his algorithms by
means of a geometric example with 40 cities.

In the final two sections first we give a formulation of Boruvka’s papers in
contemporary language and then trace the influence of his article and MST
problem through the history. Particularly, we outline the reasons for recent
revival of interest in Boruvka's algorithm.

We end the paper with a brief description of O. Boruvka’s life and work. (Just
briefly: he was not “a Czech engineer” but rather an important and influential
mathematician. He died in 1995 at the age of 96.)



2 Typotranslation of “O jistém problému minimalnim”

We preserve fully the rather old-fashioned style of this paper. The reader
should consult remarks in Section 4 for explanations and comments and then
he/she should compare it with the modern version included in Section 6.

The numbers in brackets < 1 >, < 2 >, etc. which are positioned at the
beginnings of lines refer to our remarks in Section 4.

ON A CERTAIN MINIMAL PROBLEM

OTAKAR BORUVKA

In this article I am presenting a solution of the following problem:

Given a matriz M of numbers rop (o, 6 =1,2,...,n; n > 2), all positive and
pairwise different, with the exception of roq = 0 and rog = 134.

<1>

From that matriz a set of nonzero and pairwise different numbers should be
choosen such that

19 for any p1, ps, mutually different natural numbers < n, it would be possible
to choose a subset of the form

Tplcza TCzc:ga 7"0304, R rcq72cq717 7ﬂcqfpo

20 the sum of its elements would be smaller than the sum of elements of any

other subset of nonzero and pairwise different numbers, satisfying the condition
10,1

<2>

Solution. Let fy be an arbitrary of the numbers «v and let [fy f1] be the smallest
of the numbers [foy0] [Y0 # fo]- The set of numbers [fi71] (71 # fo, f1) is then

! For the sake of brevity I shall use the symbol [a3] instead 745 from now on.



either empty or not. In the first case let us put

F= [fOfl]a

in the second case the smallest of the numbers [fi7] is either greater than
[fof1] or smaller. If it is greater, then let us put

F= [fOfl]a

if it is smaller, then let [f; fo] be the smallest of the numbers [f;7y1]. The set
of numbers [fovs] (72 # fo, f1, f2) is either empty or not. In the first case let
us put

F ={fofl, [fifa],

in the second case the smallest of the numbers [fy7y,] is either greater than
[f1f2] or smaller. If it is greater, then let us put

F=1[fofi], [fifals

if it is smaller, then let [f5f3] be the smallest of the numbers [fo72]. The set
of numbers [f3v3] (73 # fo, f1, fo, f3) is either empty or not. In the first case
let us put

F= [f0f1]a [f1f2], [f?f?)]a

in the second case the smallest of the numbers [f373] is either greater than
[f2f3] or smaller. If it is greater, then let us put

F=[fofil, [fifa], [f2f3];

if it is smaller we shall continue in the same way. Finally we get a set of
numbers

F=[fofr], [fifo)s [fafsls ooy [fo-1fol-

Each of the numbers 1, 2, ..., n either occurs among the indices fy, fi, ..
f4 or not.

")

<3 >

In the first case let us put



in the second case let fél) be one of numbers 1, 2, ..., n, which does not occur
among numbers fy, fi, ..., f,. Let [fél)fl(l)] be the smallest of the numbers
[f(gl)%()l)] (’Y(()l) #* fél)). Considering this number we construct as before a set

Fr= [V AL AL L ).

During the construction of this set we can come accross an element with an
index, which occurs among elements of the set F; in this case if f,g? is the first

index among these indices, we put fg(ll) = f}(ﬁ).

< 4>
Each of the numbers 1, 2, ..., neither occurs among the indices fo, fi, ..., fg;
fél), FO 511) or not. In the first case let us put

S = Fa F17
in the second case let féZ) be one of the numbers 1, 2, ..., n, which does not
occur among the numbers fo, f1, ..., fy; FOogm f. Let [féz)fl(z)] be

the smallest of the numbers [féQ)%()Q)] (fyéz) # féQ)). Considering this number
we construct as before a set

By = [fO RO, U2 120 2 ),

During the construction of this set we can come accross an element with an
index, which occurs among elements of the sets F\, F7; in this case if f,g) is the

first index among these indices, we put fg(g) = f,g).

Each of the numbers 1, 2, ..., neither occurs among the indices fo, fi, ..., fg;
fél), FO 511); f(§2), £ fg) or not. In the first case let us put
3’ = F7 F17 F27

in the second case we shall continue in the same way. Finally we get a sequence
of sets
SEFa F17 F27 ) F;:fl-

Each of the numbers 1, 2, ..., n occurs among the indices of the elements of
these sets at least once.

<5 >



The sequence of sets § contains either just the set F' or more sets. In the first
case let us put
G = F,

in the second case the set F' either does not contain an element the index of
which occurs in some of the remaining sets of the sequence § or it contains at
least one such element. If it does not contain such an element let us put

G = F,

if it does, let j be index of a certain element of the set F' which occurs at the
same time at least in one of the remaining sets of the sequence §; we may
suppose that it occurs at least in the set F.

The sequence of sets § contains either just the sets F), F} or it contains more
sets. In the first case let us put

GEF, Fl;

in the second case the set F), I} either does not contain an element the index
of which occurs in some of the remaining sets of the sequence § or it contains
at least one such element. If it does not contain such an element let us put

G= F, Fl;
if it does, let j; be index of a certain element of the set F, F} which occurs at
the same time at least in one of the remaining sets of the sequence §; obviously

we may suppose that it occurs at least in the set F5. The sequence of sets §
contains either just the sets F) Fy, F, or more sets. In the first case let us put

GEF: Fl; F27

in the second case we shall continue in the same way. Finally we get a set

GEF, Fl; FQ, Ceey Fk*l-

This set contains either all sets of the sequence § or not. In the first case let
us put
B =aG,

<6 >



in the second case there exists a set Fj of the sequence § which does not
contain an element the index of which occurs in the set G.

The sequence of sets § contains either just the sets GG, Fj, or more sets. In the

first case let us put
G1 = Fk;

in the second case the set Fj, either does not contain an element the index of
which occurs in some of the remaining sets of the sequence § or it contains at
least one such element. If it does not contain such an element let us put

G1 = Fk,

if it does, let 7 be index of a certain element of the set F}, which occurs at
the same time at least in one of the remaining sets of the sequence §; we may
suppose that it occurs at least in the set Fj.

The sequence of sets § contains either just the sets G, F}, Fi 11 or more sets.
In the first case let us put
Gy = Fy, Fiy,

in the second case we shall continue in the same way. Finally we get a set

GIEFka Fk+17 T Fkl*l'

<7 >

This sequence of sets G, (G; contains either all sets of the sequence § or not.
In the first case let us put
6= Ga Gla

in the second case we shall continue in the same way. Finally we get a sequence
of sets
6= G, Gl, PN Gl—l-

The sequence & contains all sets of the sequence § and no set of the sequence
® contains an element index of which occurs with an element of another set
of this sequence.

< 8>

Let usput Hy =G, (A= 0, 1, ..., [ —1).



The sequence of sets & contains either just the set G or more sets. In the first

case let us put

<9 >

J =6,

in the second case let:

<10 >

Kk be any of the indices which occurs in elements of the
set H);

a1, 41 be two from the numbers A;

[kay g k0, ] be the smallest of the numbers [kq, k5, when
031 7£ b, [kalﬁlkﬁlal] = 0 when oy = fy;

M; be the matrix of numbers [kq,5,kp,0,] (1,51 = 0,1, 2,
ol —=1); 2

6 =G0, G, ...,GY | be the sequence of sets which
we get from the matrix M, in the same way as we got the
sequence of sets & from the matrix M.

57)5\11) be a sequence of those and only those sets chosen from
the sequence H, Hy, ..., Hq_1), which contains at least
one element with the index which occurs at the same time
in the set G(All) (A =0,1,...,0; —1);

put B = 50, G0,

Then the sequence ®; contains either only one set G or more sets. In the

first case let us put

J= 67617

in the second case let:

Ky, be any of the indices which occurs in elements of the
set H S);

Q9, B2 be two from the numbers \;;

(kaspskpya,] be the smallest of the numbers [kq,k4,] when
gy # [, [kazﬁzkﬁzcm] = 0 when ay = [;

M, be the matrix of numbers [kq,8,k8,q,] (2, F2 = 0,1, 2,
ol = 1)

2 The matrix M, is obviously symmetrical, it does not contain any number from
the set & and its order equals at most to the biggest integer < 3.

10



&, = GO.GP, .. .,Gl(j)_l be the sequence of sets which
we get from the matrix M, in the same way as we got the
sequence of sets & from the matrix M.

53&22) be a sequence of those and only those sets chosen

from the sequence HW), Hfl), e z(lllp which contains
at least one element with the index occuring at the same
time in the set G(AZQ) (A= 0,1, ..., [h—1);

put 72 = 92, G2

Then the sequence ®, contains either only one set G® or more sets. In the
first case let us put

J = 67 617 627

in the second case let:

k), be any of the indices which occurs in elements of the
set H g);

a3, 3 be two from the numbers \s;

(kaspskpsas] e the smallest of the numbers [kq,k4,] when
az # 33, [Kagpskipsas] = 0 when az = 3

M3 be the matrix of numbers [Kq,8,kp505] (@3, 33 = 0,1, 2,
coyly—1);

By = GO, Gf’), ...,Gg’ll be the sequence of sets which
we get from the matrix M3 in the same way as we got the
sequence of sets & from the matrix M.

57)5\33) be a sequence of those and only those sets chosen

from the sequence H®, H® .. z(zzlp which contains
at least one element with the index occuring at the same
time in the set G&? A3= 0,1, ..., [3—1);

put 1 = 9, G0

Then the sequence ®5 contains either only one set G® or more sets. In the
first case let us put

J = 67 617 627 Q537

in the second case we shall continue in the same way. Finally we get a set

J = @, @1, @2, @3, ceey ®u717
which is a solution of the given problem.

11



<11 >

Proof. To prove this result it suffices to proof the following theorems:

1. For arbitrary choice of the initial indices of the sets F,, of the sequence §,
the number [mn] from the matriz M occurs in some set of this sequence if and
only if it is the smallest either of the numbers [mpu](p # m) or of the numbers

[nv](v # n).

I1. In the matriz M there exists at least one set of nonzero and pairwise differ-
ent numbers, fulfilling the condition 1° and such that the sum of its elements
15 not bigger than the sum of elements of any other group of nonzero and
pairwise different numbers, fulfilling the condition 1°.

III. If K’ is one of the sets with these properties, it contains the sequence of
sets G.

IV. If u > 2 and v < (u — 1) and if the set K' contains the sets &, &y, ...,
&,_1, than K' contains the set &,.

V. The set K' does not contain an element which is not contained in the set J.

Indeed, then according to I, the set J is fully determined by the matrix M and
according to III, IV and V it is identical with every set which has properties
of the set K'; therefore the set .J is the solution of the given problem.

1. It follows from the construction that the numbers contained in the set .J
are non zero and pairwise different; their number is n — 1.

2. Let L be a set of nonzero and pairwise different numbers contained in the
matrix M. If and only if the set L contains at least one number from each row
of M, then I say that L is admaissible.

3. It follows from the construction that the set .J is admissible.

12



4. For every choice of the initial indices of the sets F, of the sequence § the
construction of the set J determines a certain order of elements in each set
of this sequence. I call a set F}, of the sequence § ordered if and only if its
elements have this order.

5. For every choice of the initial indices of the sets F, of the sequence § the
construction of the set J determines a certain order of sets F,, in the sequence
§. I call the sequence § ordered if and only if sets F,, have this order.

6. Let
Fy= [fofil, -y [fafesls -

be an ordered set of the sequence § with g(> 2) elements. For a fixed
k(1<k<g—1)andj(1<j<k+1)it follows from the construction that

fif = hbaal > fefes] (A= 0, ..., j—1).

<12 >

Theorem 1. For arbitrary choice of the initial indices of sets F,, of the
sequence §, the number [mn] from the matriz M occurs in some set of this
sequence if and only if it is the smallest either of the numbers [mu|(u # m)
or of the numbers [nv|(v # n).

1. Let [mn] be an element of the set F,. It suffices to consider the case when
the ordered set F}, has the form

[f(]fl]a Ceey [mn], e
It follows from the construction that [mn] is the smallest of the numbers
[my](y # fo, ..., m); so according to 6 it is also the smallest of the numbers

[mp](p # m) also.

2. Let [mn] be the smallest of the numbers [mu]( # m). Let F), be the first
set in the ordered sequence of sets § which contains the element [mp] with the
index m. It suffices to consider the case when the set F}, contains at least two
elements. There are two and only two mutually exclusive cases:

m is not the last index in the ordered set F),

m is the last index in the ordered set F),

In the first case the ordered set F}, has the form

[fofil, -y [mp], .. .;

13



thus according to the just derived result [mp] is the smallest of the numbers
[mu](p # m) and thus it is identical with [mn].

In the second case the ordered set F}, has the form

[f0f1], cey [pm]

and the set of numbers [m~v|(y # fo, ..., m) is either empty or not. If it
is empty, it follows from 6 that the number [pm] is smaller than each of the
numbers [mfy](fx # p,m); thus it is the smallest of the numbers [mpy] and
thus it is identical with the number [mn|. If it is not empty, then it follows
from the construction that the number [mp] is smaller than the smallest of
the numbers [m+y] and according to 6 it is also smaller than the smallest of
the numbers [mf,] ; thus it is the smallest of the numbers [mp] and thus it is
identical with the number [mn].

<13 >

7. The set J is uniquely determined by the matrix M.

This result follows immediately from the construction of the set .J and from
the Theorem I.

<14 >

Theorem II. In the matric M there exists at least one set of nonzero and
pairwise different numbers fulfilling the condition 1° and such that the sum
of its elements is not greater than the sum of elements of any other set of
nonzero and pairwise different numbers, fulfilling the condition 1°.

Indeed, on one hand there is at least one set of nonzero and pairwise different
numbers fulfilling the condition 1° in the matrix M, on the other hand the
number of these sets is finite. ?

<15 >

8. From now on I shall use the symbol K’ for one of the sets with the properties
given by the Theorem II.

3 Tt is, for example, the set of nonzero numbers in an arbitrary row of the matrix

M.

14



<16 >

9. Let L be a set of nonzero and pairwise different numbers of the matrix M.
Let p; and p, be two different indices of the elements of the set L. I say that
the set L is complete for the indices p; and p, if and only if there is at least
one nonempty subset of the set L of the form

[P1(J2], [QQ(]?,], cee [Qk—lpz]-

<17 >

10. The set L is complete for the indices p, and p; if and only if it is complete
for the indices p; and p».

11. The set L fulfills the condition 1° if and only if it is admissible and complete
for any two indices.

<18 >

12. Let L be a set of nonzero and pairwise different numbers of the matrix M,
complete for two indices p; and p,. Each nonempty subset of the set L, which
has at least one element of the form

[plfh], [Q2Q3], Sy [Qk71p2]7

I shall call the group for the indices py, po. If its elements are written exactly
in this order, then I shall call it the ordered group for the indices py, ps.

<19 >

13. The ordered set for the indices py, p2 will be denoted by the symbol L,,,,.
L,, is an empty set if and only if p = ¢. So if [mn] is an element of the set for
the indices py, po, then either

Lyp, = Lypm, [mn], Ly, or Lpp, = Ly, [nMm], Ly,

and the sets Ly, ,, and L,,, or L, , and L,,,, do not contain the element [mn].

< 20 >
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14. Let L be a set of nonzero and pairwise different numbers of the matrix M,
complete for any two indices g,, 0,11 (v = 1, 2, ..., n—1; n > 3).

<21 >

Let p1 = 01, p2 = 0, and p; # py. Then the set L is complete for the indices
P1,P2-

Indeed, let us consider a set of numbers
'2 = LPIQ?’ LQZQ?)’ ftty Lgn—lp27

exactly in this order. Let [p1gs] be the last number of this set which contains
index p;. Then either go = py or qu # po. In the first case let us put

LPIPZ = [pIPZ]v

in the second case there is at least one element with index ¢y in the set £
which follows the element [p;ga]. Let [gag3] be the last number of the set £
which contains index ¢y. Then either g3 = ps or g3 # ps. In the first case let
us put

me = [P1(J2]a [(I2p2],

in the second case there is at least one element with index ¢3 in the set £
which follows the element [g2gs]. Let [g3q4] be the last number of the set £
which contains index g3. Then either g4 = ps or g4 # ps. In the first case let
us put

Lplpz = [pﬂ}z], [QZqi’)]: [Q3p2]7

in the second case we shall proceed in the same way. After finite number of
steps we evidently get an ordered set for indices py, ps contained in the set L.

15. Let L be a set of nonzero and pairwise different numbers of the matrix M.
Let L* be a subset of the set L. I shall use the symbol L — L* for the set of
all numbers contained in the set L but not contained in the set L*.

<22 >

Theorem III. The set K' contains the sequence of sets &.

The theorem evidently holds if M is a matrix of order 2 or 3. So let n > 4. To
get a contradiction, assume that the theorem is not true. Indeed, let [mn] be a
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number of the matrix M which occurs in the sequence & and does not occur in
the set K. It follows from the construction that the set & is identical with the
set §. It follows then from the Theorem I. that [mn] is either the smallest of
the numbers[mpu] (@ # m) or the smallest of the numbers [nv](v # n). Without
loss of generality we may assume that it is the smallest of the numbers [mu].
The set K’ necessarily contains the element [mp| with the index m. According
to the assumption [mp] is not identical with the number [mn]; so it must be
greater.

The set K' is complete for the indices m,n; so there are two and only two
mutually exclusive cases:

Each subset of the set K’ for the indices m, n contains the number [mp).

There is at least one set for the indices m,n in the set K’ which does not
contain the number [mp].

<23 >

In the first case there is a set for the indices m,n within the set K’ which
according to 13 can be written in the form

[mpl, Lyn
and the set L,, for the indices p,n necessarily contains at least one element.
The set K" = K' — [mp], [mn]
<24 >

of nonzero and pairwise different numbers of the matrix M
1. is admissible;

2. is complete for any two indices pq, po. Indeed, either there exist at least one
set for the indices pq, py in the set K’ which does not contain the element [mp]
and thus it is also the set for the indices py, po in the set K" or each set for
the indices p;, ps in the set K’ contains the element [mp|. But in this case, in
a proper notation of the both indices p, pe, within the set K" there evidently
exist sets (if non empty) Ly, m, [mn], Ly, Ly, and thus according to 14 there
exists the set for the indices pq, po.

3. The sum of elements of the set K" is less than the sum of elements of the
set K’ - which is a contradiction.
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In the second case there exists at least one set for the indices m,n in the set
K’ which can be written in the form

mgq], Lgn.

According to the assumption necessarily ¢ # n, and thus [mg| > [mn]. The
set Lg, for the indices ¢, n necessarily contains at least one element. It suffices
to apply the above described reasoning for the set

K" = K'—[mg], [mn].

< 25 >

16. Let L be a set of nonzero and pairwise different numbers of the matrix M.
The set L is not complete for every two indices if and only if it is possible to
split the set L into two nonempty subsets L, L, whose union is L and such
that none of the subsets L, L, contains an element with an index occuring
also in the other subset.

< 26 >

1. Let Ly, Ly be two sets of the above described properties, let [pig5] be an
element of the set Ly, let [g;_,p2] be an element of the set L, and let us assume
that in the set L there exists at least one set for the indices pq, po

Lyp, = [P102)s [0203], - - [qk—1p2)-

Because according to the assumption the set Ly contains no element with the
index py, the element [p;go] is necessarily contained in the set L;. In a similar
way we could show that the set L; also contains all other elements of the set
L, »,, especially the element [g_1p2]. Thus both of the sets L, L, contain an
element with the index p, — which is a contradiction.

2. Let [p1go], [qk—1p2] be two elements of the set L, p; # ps and let us assume
that the set L is not complete for the indices p1, pe. Let us denote £ = [p1¢a].
The set L — £, either does not contain an element the index of which occurs
also in the set £; or it contains at least one such element. In the first case let
us put

Li=%;, Ly=L - £,

in the second case let £5 be the subset of the set L —£; which contains elements
with indices occuring at the same time in the set £;. The set L — £, — £,
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either does not contain an element with index occuring at the same time in
the set £;, £5 or it contains at least one such element. In the first case let us
put

Ll = £1,£2; LQ = L—Ql _»82,

in the second case let £5 be the subset of the set L — £, — £, which contains
elements with indices occuring at the same time in the sets £, £5. The set
L — £, — £5 — £3 either does not contain an element with index occuring at
the same time in the sets £, £5, £3 or it contains at least one such element.
In the first case let us put

LlEsl,SQ,Sg; LZEL—Sl—SQ—Q?,,

in the second case we continue as before. We shall evidently get two sets L,
Ly such that none of them contains an element with index occuring in the
other set. The set Ly evidently contains at least one element. The set L, also
contains at least one element. Indeed, it follows from the construction that
the set L, is complete for any two indices; thus it doesn’t contain the element
[qk—1p2]. Thus the element [gy_1po] is contained in the set L,.

< 27 >

17. Let L be a set of nonzero and pairwise different numbers of the matrix M.
Let Ly, L, be nonempty subsets of the set L whose union is L and such that
none of the subsets L, Ly contains an element with an index occuring also in
the other subset. Let L* be a nonempty subset of the set L, complete for any
two indices. One of the sets L1, L, contains the whole set L*.

This theorem follows immediately from 16.

18. Each set F, (v fixed, < i — 1) of the sequence § is complete for any two
indices pq, po.

It evidently suffices to consider the set F. Let py = fr, po = fr (h,k < g;
h # k).

< 28 >

Then either h <k < gork <h<g.

In the first case
[plchrl]a [fh+1fh+2]a Sy [fkqu]
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is the ordered set for the indices pq, po,

in the second case

[plfhfl]a [fhflfhf2]a Sy [fk+1p2]

is the ordered set for the indices py, ps.

19. Each set G (X fixed, <1 — 1) of the sequence & is complete for any two
indices p1, po.

It evidently suffices to consider the set G. If G = F' then the theorem is true
according to 18.

Solet G=F, Fi, ..., Fy_1 (k> 2). Let us put
FEY=F F, ... F._(k<k).
Proof by induction: Let us assume that each set of the sets F, F(1), ... F(m=1)

(m fixed, < k — 1) is complete for any two indices p1, po. We shall show that
then also the set F(™ is complete for any two indices.

It suffices to consider the case in which the index p; occurs only among the
indices of the elements of the set F(™ 1 the index p, occurs only among the
indices of the elements of the set F,,. It follows from the construction of the
set G that in the set F(™~1) there is an element with the index j,,_; which
occurs also among the indices of the elements of the set Fj,; so it holds that
D1 # Jm-1, D2 7 jm—1. According to the assumption the set F(™ 1 and thus
also the set F(™) are complete for the indices p;, jm_1 and according to 18
the set F), and thus also the set F'™ are complete for the indices jm_ 1, po.
Thus according to 14 the set F(™ is complete for the indices p1, ps.

<29 >

20. Each set Hﬁg) (o fixed, < u—1; A, fixed, <[, —1) is complete for any two
indices pq, ps.

<30 >

It evidently suffices to consider the set H@. If p =0 (H® = H = G) then
according to 19 the theorem is true. So let o > 1.

Proof by induction: Let us assume that each set of the sequence
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H,, Hﬂ), . g:;l) (m fixed, < ;A= 0, 1, ..., [ —1;

M=0,1, ..., =1 1= 0,1, ..., L1 — 1) is complete for any two
indices py, p» and we shall show that then also the set H™ is complete for
any two indices.

If the set H™ would not be complete for any two indices then according to
16 it would be possible to split it into two nonempty subsets Lq, L, whose
union is L and such that none of the subsets L, L, contains an element with
an index occuring also in the other subset. It follows from the construction
that H™ = §m G thus one of the sets L;, L, would contain at least
one element of the set ﬁ(m), thus it would contain at least one element of a
certain set of the sequence H)(\:j) and thus according to 17 it would contain
the whole set; thus according to the construction it would contain at least one
element of the set G(™ and thus according to 19 and according to 17 it would
contain the whole set; thus according to the construction it would contain at
least one element of each of the remaining sets of the sequence $™ and thus
according to 17 it would contain this whole sequence of sets; thus the other of
these sets Ly, L, would be empty — which is a contradiction.

21. The set J fulfills the condition 1°.

This theorem follows immediately from 3, 20 and 11.

22. It follows from the construction that the sequence of sets H §i’ (o is fixed,
<wu—-1;A = 0,1, ..., [, — 1) contains exactly all numbers which are
contained in the sequence &, ®,, ..., &, and nothing else.

23. For u > 2 it follows from the construction that no set of the sequence of
sets H)(\i) (oisfixed, <u—2; A, = 0, 1, ..., [,—1) contains an element with
an index occuring in another set of the same sequence.

<31 >

24. Let u > 2; v < u — 1. If the set K’ contains sets &, ®, ...,®,_; then
according to 22 it contains the sequence of sets ng); thus it has the form
_ v— -1 -1 v—

K'=HCY, g™ a7 M

3 g ey

25. It follows immediately from 23 and 16 that the set M~V is not empty.

26. For each set of the sequence Hg:ll) there is at least one element in the set
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M®@=1 which contains exactly one index occurring among the indices of the
elements of this set.

Indeed, otherwise it would follow immediately from 23 and 16 that the set K’
is not complete for any two indices.

27. Let Ngjll) be the set of all those elements of the set M~ whose exactly

one index occurs among the indices of the elements of the set Hg:ll) (Av—1
fixed).

(v-1)

From now on I use the symbol M for the set of pairwise different numbers
occurring in the set NV NTD ngvf_ll_)l and thus also in the set

M-,
28. According to 26 the set MY contains at least one element.

29. Let [mn] be an element of the set MYV Let ky, ks be arbitrary two indices
which occur as indices m,n in the same two different sets of the sequence
H)(\Z:II). Let [k1ky] # [mn]. The number [k;ks| is not an element of the set K'.

<32 >

Without loss of generality we can assume that the indices m, k; occur among
the indices of elements of the set H®~ 1, the indices n, ks occur among the
indices of elements of the set H\" ). Let us assume that on the contrary [k;ks]

is an element of the set K'. The set

K” = K, — [kle]

1. is admissible.

2. is complete for any two indices p1, p». Indeed, there is a set for the indices
p1,p2 in the set K'. This set either does not contain the element [kiks] and
thus it is contained in the set K" or it contains the element [kk5]. But in this
case according to 20 in the set K" there exist sets (if non empty) Lg,m, Lnk,
and thus according to 13 in a proper notation of the indices p;, py there are
sets (if non empty) Ly, ks Lkym, [Mmn], Luky, Liyp,; thus according to 14 there
exists the set for the indices p1, po in the set K”.

3. The sum of elements of the set K" is less than the sum of elements of the
set K’ — which is a contradiction.
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30. The set M~V is contained in the matrix M, . Indeed, if we assume the

contrary, we will get a contradiction. Let [mn] be an element of the set MY,
without loss of generality we can assume that the index m occurs among the
indices of elements of the set H*~"), the index n occurs among the indices of
elements of the set va_l). For the sake of simplicity let [k;ks] be the smallest
of the numbers [k1k3] (K1, (K2, respectively) is any of the indices occuring in
elements of the set H(®~1) (Hl(v_l), respectively)) and let us assume that the

number [mn] is not contained in the matrix M,; thus [mn] > [kik,].

The set K" = K' — [mn], [k1ks] of nonzero and pairwise different numbers of
the matrix M (according to 29)

1. is admissible.

2. is complete for any two indices py, p2. Indeed, either there is at least one set
for indices pq, py in the set K’ which does not contain the element [mn] and
thus it is also the set for the indices pi, p, in the set K" or each set for the
indices pp,py in the set K’ contains the element [mn]. But in this case there
exist according to 20 sets (if non empty) Lyuk,, Lk,n in the set K and thus
according to 13 in a suitable notation for the indices py, ps in the set K" there
exist sets (if non empty) Ly m, Limk,, [k1k2], Liyn, Lnp,; thus according to 14
there is the set for the indices pq, ps in the set K”.

3. The sum of elements of the set K" is less than the sum of elements of the
set K’ — which is a contradiction.

Theorem IV. Let u > 2,v < u — 1. If the set K' contains the sequence
B, &y, ..., &,_y, than K' contains the set &,.

Indeed, if the set K’ contains the sequence &, &, ..., &, ;, than according
to 24, 27, 28, 30 it contains the nonempty set of numbers MY which is

contained in the matrix M,,.

The set MY of nonzero and pairwise different numbers contained in the
matrix M,

1. is admissible for the matrix M, according to 26.

2. is complete for any two indices. Indeed, otherwise it would be possible
(according to 16) to split it into two nonempty subsets whose union is the
whole set and none of the subsets contains an element with an index occuring
also in the other subset. It would follow immediately from 23 and 16 that the
set K’ is not complete for any two indices — which is a contradiction.
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3. Obviously the sum of elements of the set MOV s not greater than the
sum of elements of any other set contained in the matrix M, and fulfilling two
preceeding conditions.

Thus the set Mivil) is the set of numbers of the matrix M, which have the

same properties as the set of numbers K’ of the matrix M. Thus by the
Theorem III it contains the set &,.

31. The set K’ contains the set J.

This theorem follows immediately from the Theorems III and IV.

Theorem V. The set K' does not contain an element which is not contained
n the set J.

Indeed, according to 21, the set J fulfills the condition 1°. Thus the sum of
its elements cannot be less than the sum of elements of the set K.

32. The set J is the solution of the given problem.

This theorem follows immediately from 7, 31 and the Theorem V.

Note: If the numbers [f] of the matrix M fulfill special conditions, we can
interpret them as distances among n points; with regard to the solution de-
scribed above the following problem can be solved:

Let n [> 2] points be given in the plane (generally in the r-dimensional space)
whose mutual distances are different. The problem is to join them by a net
such that

1% every two points are joined either directly or through some other points,

20 the length of the whole net is minimum.
< 33 >

In the following picture one can see the solution of this problem for a special

case. 4

4 Tt is explained in my paper ”A contribution to the solution of a problem of
economic construction of power-network” in Elektrotechnicky obzor 15, 1926 how
(based on the result of this paper) one can find the solution effectively.
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< 34 >

\ o> °”"1<L v
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3 Typotranslation of “Prispévek k reSeni otazky ekonomické stavby

elektrovodnich siti”

A CONTRIBUTION TO THE SOLUTION OF A PROBLEM
OF ECONOMIC CONSTRUCTION OF POWER-NETWORKS

DR. OTAKAR BORUVKA

In my paper On a certain minimal
problem 1 proved a general theorem,
which, ias a special case, solves the
following problem:

There are n points given in the
plane (in the space) whose mutual
distances are all different. We wish
to join them by a net such that

1. any two points are joined either
directly or by means of some other
points,

26

2. the total length of the net would
be the shortest possible.

It is evident that a solution of this
problem could have some
importance in electricity power
network designs; hence I present
the solution briefly using an
example. The reader with a deeper
interest in the subject is referred to
the above quoted paper.



I shall give the solution of the
problem in case of 40 points given
in Fig. 1.

I shall join each of these strokes
with the nearest stroke in the
shortest possible way. Thus, for
example, stroke 1 with stroke 2,
(stroke 2 with stroke 1)

o o0 o ) ] D’O—z
¢ s 8 ° o 2
[} 0 o o
4
o 3, ° 7, o
2 6 ©
o © 50 o o
10
- ° ) ~[4,
° oo Yo o o
Fig. 1 Fig. 3

I shall join each of the given points
with the nearest neighbour. Thus,
for example, point 1 with point 2,
point 2 with point 3, point 3 with
point 4 (point 4 with point 3), point
5 with point 2, point 6 with point 5,
point 7 with point 6, point 8 with
point 9 (point 9 with point 8), etc. I
shall obtain a sequence of polygonal
strokes 1, 2, ..., 13 (Fig. 2).

stroke 3 with stroke 4, (stroke 4
with stroke 3), etc. I shall obtain a
sequence of polygonal strokes 1, 2,

, 4 (Fig. 3). I shall join each of
these strokes in the shortest way
with the nearest stroke. Thus stroke
1 with stroke 3, stroke 2 with stroke
3 (stroke 3 with stroke 1), stroke 4
with stroke 1. I shall finally obtain
a single polygonal stroke (Fig. 4),
which solves the given problem.

3o g, /w

73

"

8
Fig. 2 Fig. 4
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4 Remarks to O. Boruvka “O jistém problému minim&lnim” [1]

For the sake of historical accuracy we did not try to modernize the original
text. Instead we tried to keep as close to the original as possible. Here are
some of very few linguistic transpositions which were necessary and which we
want to mention explicitly:

The Boruvka’s term “fadek” or “fada” (= Czech for “row”, “sequence”) is

used thorough the text. For better understanding we are translating this as
a) row (in a matrix context)

b) sequence

¢) set (when only membership is used)

Another frequently used word is “grupa” (= group). This we translate as set,
sequence, collection.

We note that the word set (in the Czech equivalents “mnozina” or old-fashioned
“mnozstvi”) is never used in the whole Boruvka’s paper.

Here are some critical and explanatory remarks to the text. These refer to the
numbering < i > in the text.

< 1 > In the present interpretation of MST problem we see that the number
rop Of the matrix M denote the weight of edge [a, ] of complete graph K,
(with vertices 1,2, ...,n). Indices «, 3 correspond to vertices of K. Thus the
word “index” in most cases refers to a vertex of a graph. Boruvka assumes
from the very beginning that all the weights are distinct. This assumption is
not justified. Boruvka as an analyst was aware of perturbation argument [4]
and today this is an assumption which is even easier to satisfy by any tie-
breaking procedure (for example we list all weights and in the case that two
weights are equal the first weight on our list is bigger).

< 2 > A remark is needed at the very beginning: Although the Boruvka’s
motivation was geometric (as clearly documented by [2]) his paper is written
in algebraic language. There are no notions of neighborhood, connectivity,
tree, graph. We can also read the paper [1] as a witness (and an apotheosis)
of the effectivity of graph-theory language (which was mostly developed after
1926 and which was then not yet related to optimization problems).

< 3 > The set F' corresponds to a simple path fofi, fifs, -, fy—1fy where
each f;f;11 is the edge of the smallest weight incident with f;.
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< 4 > Similarly as in the above remark < 3 > the set F} corresponds to a
simple path from the vertex f{! to the vertex féll) (with the same properties

as the set F'). This path F} can be attached to the path F' at the vertex F,E})
< 5 > The set § corresponds to ¢ simple paths F, F,---, F;_;. Some of them,
or all, can have common vertices. Thus § corresponds to a forest. Boruvka
now explicitly and elaborately describes the components G, G4, ---,G;_; of

this forest.

< 6 > If G contains all sets of the sequence § then G corresponds to the
spanning tree of K,,.

< 7 > l.e. (G; is the second component of the forest formed by the paths
FaFla"'aﬂ—l-

< 8 > This completes the description of the first step in Boruvka’s algorithm:
® is the forest which we get by joining each vertex to its nearest neighbour.

How difficult is to formalize this step without using the word “tree”!
< 9 > Thus J is the desired solution.

< 10 > This completes the description of the second step (contraction) in
Boruvka’s algorithm.

< 11 > J is the (uniquely determined) final tree. This is the end of Boruvka’s
algorithm. The brevity of the description of sets &, &,, - - - indicates that the
author was well aware of contraction- and recursive-part of algorithm.

Now Boruvka proves the correctness of the algorithm.

< 12 > What follows are introductory remarks and definitions.

Further remarks, definitions and propositions accompanying the text are num-
bered by 7, 8, ..., 25. As always we preserve the author’s style.

Boruvka proceeds by stating and proving Theorems I. — V. (stated at the
beginning of the proof).

< 13 > This ends the proof of Theorem I. It follows a remark.
< 14 > Proof of Theorem II.
< 15 > End of proof of Theorem II. It follows a chain of remarks 8. - 15.

< 16 > L.e. K' is any solution of the MST problem.
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< 17 > Today we would simply say that L connects p; and ps, or that p; and
py belong to the same component of L.

< 18 > Le. L is connected and spanning iff 1°.
< 19 > The set of indices p;ps is of course a path from p; to ps.

< 20 > What is meant here is that any path L,,,, containing [m,n] can be
written in this way.

< 21 > This should mean: If pairs p; = q1¢2, ¢2q3, - -, ¢n_1p2 are in the same
component of L then also p; and p, are in the same component.

< 22 > End of remarks and definitions. Now the key part of the proof.
< 23 > Recall: complete means connected.

< 24 > Read: K" = (K' — [mp]) U [mp].

As everywhere we preserve all the author’s types.

< 25 > This ends Proof of Theorem III.

Twice we have here the exchange axiom in a rudimental form. No bases and
circuits are mentioned yet the key formula is displayed. What follows is a
sequence of remarks and definitions.

< 26 > l.e. any not connected graph has at least 2 components. What follows
is proof divided in 2 steps.

< 27 > End of proof of 16.
< 28 > F is the first group defined at the beginning of the algorithm.
< 29 > So G; are connected subgraphs of &.

< 30 > So all the sets created in the algorithm are connected (this seems to
be the crucial difficulty in Boruvka’s writing: he tries to control connectivity
at each step).

< 31 > Of course the recursive nature of Bortuvka’s algorithm could not be well
understood (in 1926). What follows is discussion of another minimal spanning
tree denoted by K'.

< 32 > This is anticipating the statement of Theorem IV.
< 33 > The example given here is the same as one analyzed in [2]. However

the example given here is in the correct position while in [2] it is reversed.
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< 34 > What follows is a 6 pages of German summary. This is the translation
of the beginning of the article up to statements I. - V. (which follow our
remark < 11 >. We included here copies of the first and the last page of this
translation.

O JISTEM PROBLEMU MINIMALNIM. 53

Uber ein Minimalproblem.

In dieser Arbeit 1ose ich folgendes Problem:

Es moge cine Matrix der bis auf die Bedingungen raq =0,
fuff = Tje pusitiven und von einander verschiedenen Zahlen re (e, § =
1,2, ... n; n=2) gegeben sein.

Aus dieser ist eine Gruppe von einander und von Null verschie-
dener Zahlen auszuwahlen, so dass

19 in ihr zu zwei willkirlich gewahlten natirlichen Zahlen py, p, (< n)
eine Teilgruppe von der Gestalt

rD\C:, Teacn. Tescw r&u-’l Ca-l, r‘q 102
existiere,

2° die Summe ihrer Glieder kleiner sei als die Summe der Glieder
irgendeiner anderen, der Bedingung 1° gentigenden Gruppe von ein-
ander und von Null verschiedenen Zahlen.*)

Losung, Es sei f, eine der Zahlen « und [f)f,] die Kleinste der
Zahlen [f,7,] [y, = 1,]. Dann ist die Menge der Zahlen [f,7,] (7, & for 1))
entweder leer, oder sic ist es nicht. Im ersten Falle setzen wir

F=[if),
im zweiten ist die kleinste der Zahlen [f,,] entweder grosser als [R.f,),
oder Kleiner. Ist sie grosser, so setzen wir
F = [fh),
ist sie Kleiner, betrachten wir dic Kleinste der Zahlen [f,7,]; diese sei
[f,f,]. Dann ist die Menge der Zahlen [f,7,] (3371, fy, ) entweder leer,
oder sie ist es nicht. Im ersten Falle setzen wir
F = (6h], (LE]
im zweiten ist die kleinste der Zahlen [f,,] entweder grosser als [hf.],
oder kleiner. Ist sie grosser, so setzen wir
F = [4), (4]

T +) Der Einfachheit halber bezeichne ich die Zahl 1y mit (of)

58 Dr. OTAKAR BORDVKA:

im zwelten seiz x;, einer der Indices der Zahlen der Gruppe HQ;
a, f, 2wei der Zahlen 4,; N
[k Keye) die. Ideinste der Zalen [reyg) flr ay=-f,,

0 fir &y 3= ,;
M, Matrix der Zahlen (ky,g, kg o] (03, B, =0, 1,...L,—1);
© =GO, GP, ... G2, die durch dasselbe Ver-

fahren wie die Reihe & aus der Matrix M, hergestellte
Reihe von Gruppen aus der Matrix M,;
D die Reihe derjenigen der Gruppen H®, H®, . . . H® |
dic wenigstens eine Zahl mit cinem in den Indices der
Zahlen der Gruppe G (4, =0, 1, . . . ls) vor-
ly
kommenden Index enthalten;
9 = o, G,
HY = 99, 6.
Die Reihe von Gruppen ®, enthilt dann entweder gerade nur die
Gruppe G, oder mehrere Gruppen. Im ersten Falle setzen wir
1=6, 06, 6, ¢,
im zweiten Falle setzen wir das Verfahren in derselben Weise fort,
Wir gelangen endlich zu einer Gruppe von Zahlen
J=6,6,0,0,... 6.

die das vorgelegte Problem 1st.
.

Der Beweis wird durch folgende Satze erbracht:

L Eine Zahl (mn) aus der Matrix M erschein( bei beliebiger Wahl
der Anfangsindices der Gruppen Fe der Reihe § in einer dieser
Gruppen dann und nur dann, wenn sie entweder die kleinste
der Zahlen [mu] (u==m) oder der Zahlen [nv] (v n) ist.

. Es ist moglich aus der Matrix M wenigstens eine der Bedin-
gung 1° geniigende Gruppe von einander und von Null ver-

schiedener Zahlen auszuwahlen, so dass die Summe ihrer
Glieder nicht grosser ist, als die Summe der Glieder irgend-
einer anderen, der Bedingung 1° genligenden Gruppe von ein-
ander und von Null verschiedener Zahlen,
It Ist K' eine solche Gruppe von Zahlen, so enthilt sie die Gruppe ©,
IV. Ist u=2 und v=Zu—1 und enthali die Gruppe K’ die Gruppen
®, Gy, . . ®,_y, so enthalt sie auch die Gruppe &,
V. Die Gruppe K’ enthilt keine Zahl, die in der Gruppe J nicht
enthalten ist.

Brno, Janner 1926.
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5 Remarks to “Prispévek k reSeni problému ekonomické kon-
strukce elektrovodnich siti”

This is a strikingly different paper written in a nearly contemporary style.
Example given (40 cities) is derived from the original motivation of Boruvka’s
research and it is the same example given at the end of [1]: the electrification of
South-Moravia district in the early twentieth century. (South-Moravia is one
of the developed and culture parts of Europe. It is and has been for centuries
fully industrialized and yet a wine growing rich and beautiful country.)

In [51], p. 52 Boruvka clarifies how he got hold of the “minimal problem”. The
problem was communicated to him by a friend Jindfich Saxel - an employee of
Zapadomoravské elektrarny (West -Moravian Powerplants). (Saxel as a Jew
was executed in Brno by Nazis.) During the war when Czech universities were
closed the company Zapadomoravské elektrarny offered a job to Boruvka([51],
p.83).

As well as in the translation of the first paper we tried to keep the view of
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the original article. A careful reader can observe that the last figure (Fig.4) is
reversed. This was noted already by Bortuvka in 1926 as seen by a copy which
he mailed to prof. Bydzovsky, see the following Figure).
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6 Modern version of Bortivka’s article and algorithm

We now include a modern summary of Bortuvka’s article [1]:

Boruvka begins his proof by joining each vertex (= index) to its nearest neigh-
bour. By an elaborate discussion of cases in the resulting graph-forest he gets
a sequence & of paths F), Fi,---, F;_; which cover all vertices.

From this set (by an elaborate discussion) he creates the tree components.
These are denoted G, G4, -+, G_1.

If there is only one component he gets the desired spanning tree denoted by
J.

If there are more components he performs reduction of the matrix M to a
smaller matrix M; and he explicitly remarks that the order of M; is < 3.

Having established first step Boruvka proceeds faster and by iterating the both
steps he constructs sets

67617"'7611,—1

which together form the desired set J.
(Thus u denotes the number of iterations.)

Then he presents 4 statements which together establish that J is the desired
solution:

Theorem I. claims that path covered & contains an edge [mn] if it is shortest
edge for either m or n.

Theorem II. claims that minimal solution exists.
Theorem III. claims that any minimal solution K’ contains &.

Theorem IV. claims that if a minimal solution K’ contains &, &q,---, &, ;
then K’ contains &, as well.

(and consequently K’ contains J)

Theorem V. claims that a minimal solution K’ does not contain any edge not
in J.

Theorem I. follows from the construction (after remarks and definitions 1. -
6. which preceed the proof).
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It is remarked in 7. that the solution set J is uniquely determined.
Theorem II. is quickly proved by a finiteness argument.

We know by now that Theorem III. (and its iterated version Theorem IV.) is
the key result.

Boruvka insert remarks 8. — 15. before proving Theorem III.

Thus in 8. he states that he will denote by K’ any solution to the MST problem
and in 9. he defines a connected set L (which he calls complete). In 12. he
defines path (and ordered path) joining two vertices (which he calls group)
and establishes basic properties.

After this he proves Theorem III. He proceeds by contradiction. Let [mn]
occurs in & (i. e. forest after the first iteration) and does not belong to K’
(a minimal tree). The key argument is short and is contained between our
remarks < 21 > and < 24 > : Without loss of generality let [mn] be the
shortest edge incident with m (by Theorem I). Thus K’ contains a longer
edge [mp]. Bortuvka distinguishes two cases:

1) Every path in K’ from m to n contains the edge [mp];
2) There exists a path in K’ from m to n not containing edge [mp).

In the case 1) he considers the set K" = K' — [mp]U[mn| and proves that K"
is a spanning tree of shorter length.

In the case 2) there exists a path in K’ from m to n which avoids [mp] and
thus it starts with [m, ¢]. But then K" = K’ —[mg|U[mn] is a shorter minimal
spanning tree again. This proves Theorem III.

Now Boruvka continues for 4 more pages to introduce elaborate constructions
to handle Theorem IV. This is (in his case) necessary as he does not refer to
any topology and the recursive nature of the procedure was in 1926 of course
not fully understood.

Theorem V. is then very short one as J is shortest solution:

“32. Set, J solves the given problem.”
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7 Bortvka’s algorithm and proof in the present terminology

Problem (MST)

Let G = (V, E) be undirected connected graph with n vertices and m edges.
For each edge e let w(e) be a real weight of the edge e and let us assume that

w(e) # w(e') for e # €.

Find a spanning tree 7' = (V| E') of the graph G such that the total weight
w(T') is minimum.

Solution (Boruvka’s algorithm):

1. Initially all edges of GG are uncolored and let each vertex of G' be trivial blue
tree.

2. Repeat the following coloring step until there is only one blue tree.

3. COLORING STEP (Boruvka): For every blue tree T', select the minimum-
weight uncolored edge incident to T'. Color all selected edges blue.

Proof of correctness of Boruvka’s algorithm:

It is easy to see that at the end of Bortivka’s algorithm the blue colored edges
create a spanning tree (in each step the distinct edge-weights guarantee to get
a blue forest containing all vertices).

Now we show that the blue spanning tree obtained by Boruvka’s algorithm is
the minimum spanning tree and that is the only minimum spanning tree of
the given graph G.

Indeed, let T' be a minimum spanning tree of G and let 7™ be the blue spanning
tree obtained by Boruvka’s algorithm. We show that 7' = T™:

Assume T # T* and let e* be the first blue colored edge of 7™ which does not
belong to T'. Let P be the path in T joining the vertices of e*. It is clear that
at the time when the edge e* gets blue color at least one of the edges, say e,
of P is uncolored. By the algorithm w(e) > w(e*). However then T'— e 4 e* is
a spanning tree with smaller weight, a contradiction. Thus T'= T™.

Another description of Boruvka’s algorithm
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1. COLORING: For each vertex v of the given graph G we color blue the
minimum-weight edge incident to v.

2. CONTRACTION: We replace each blue tree by a single vertex. In this
procedure we eliminate loops (i. e. edges with both ends in the same blue
tree) and all the parallel edges (i. e. edges between the same pairs of blue
trees) with the exception of the lowest weight edge.

3. We apply the algorithm recursively to find the blue spanning tree 7" of the
contracted graph.

The minimum spanning tree 7" is formed by the contracted blue edges together
with the edges of T".

See [45], [42], [46], [12], [22] and most of the modern textbooks (such as [38],
[50], [36] ) for various descriptions of Boruvka’s algorithm.

8 History, remarks and perspectives

The MST problem was isolated and attacked in the fifties with the vigor and
confidence of then newly developing fields: theory of algorithms and computer
science. The contributions were numerous and illustrious. Among others: K.
Culik, G. Dantzig, E. W. Dijkstra, A. Kotzig, J. B. Kruskal, H. W. Kuhn, H.
Loberman, A. Weinberger, R. Kalaba, R. C. Prim, E. W. Solomon (see the ref-
erences: it is only fitting and fortunate that the recently published Boruvka’s
memorial volume [49] contains a reminiscence of these early days written by
J. B. Kruskal [35]). These pioneering works made the MST problem popular
and the further development only contributed to it. The paper of R. L. Gra-
ham and P. Hell [22] described accurately the development until 1985, and
our paper [40] contains a historical follow up. Let us list some of the main fea-
tures that indicate the role and importance of this problem in contemporary
discrete mathematics along the following key words:

Complexity and Classes of Algorithms, Optimization, Relevance, Axiomatiza-
tion.

COMPLEXITY AND CLASSES OF ALGORITHMS

MST problem may be efficiently solved for large sets by several algorithms.
These algorithms were studied even before the right complexity measures and
problems were isolated. And MST became one of the craddles of structural
complexity (see the work of Edmonds in seventies, [17]). Very early attempts
were made to classify the various algorithms according to their basic underly-
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ing idea (see e. g. [12] and [45]). Basically, all known algorithms make use of
various combinations of the following two (dual) properties of trees:

(CUT RULE) The optimal solution 7" to MST problem contains an edge with
minimal weight in every cut.

(CIRCUIT RULE) The edge of a circuit C' whose weight is larger than the
weights of the remaining edges of C' cannot belong to the optimal solution 7'.

There is a variety of algorithms which solve MST problem efficiently. Among
those the prominent role is played by Kruskal’s greedy algorithm [34]. Greedy
algorithm is perhaps the most thoroughly studied and used heuristic in Com-
binatorial Optimization. The greedy algorithm is easy to state:

GREEDY ALGORITHM

Sort the edges of our graph by increasing weights and then the desired set T’
is defined recursively as follows: the next edge is added to 7' iff together with
T it does not form a circuit.

OPTIMIZATION

Let us remark that MST problem has a polynomial solution regardless of
the weight function w (e. g. also for negative weights). However in the most
common model (unit cost and deterministic) the complexity is still not known.

RELEVANCE

Problems analogous to the MST problem were also solved efficiently, particu-
larly the directed version of the problem (i. e. minimal branching from a given
root, see [17], [42]).

MST problems also appears as a subroutine to heuristic and approximate
algorithms to other combinatorial optimization problems (such as Traveling
Salesman Problem).

AXIOMATIZATION

The class of problems solvable by Greedy Algorithm were identified with the
class of matroids (no such a similar characterization seems to be known for
other MST algorithms), greedoids [31], and more recently with “jump sys-
tems”.

While the greedy algorithm is esthetically pleasing and perhaps easiest to for-
mulate it is NOT the fastest known algorithm (if only for the fact we need
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to sort the edges according to their weights that leads to a nonlinear nlogn
lower bound). These complexity considerations revived the interest in alter-
native procedures and in other algorithms for solving MST problem. It seems
that this also revived the interest in the history of MST problem. And it ap-
peared that the pre-computer age history of the problem is as illustrious as the
modern development. Particularly it appeared that the standard procedure
known as Prim’s algorithm [41] was discovered and formulated very clearly
and concisely by the prominent number theoretician Vojtéch Jarnik in 1930
[23]. (Jarnik and Kossler [24] were also the first to formulate the Euclidean
Steiner Tree Problem, see [32] for the history of Jarnik’s contribution to Com-
binatorial Optimization.) Consequently also the work of Otakar Boruvka was
reexamined.

Boruvka formulated in [1] and [2] the first efficient solution of MST problem
as early as 1926. His contribution was not entirely unrecognized (as opposed
to Jarnik’s work) and both standard early references [34] and [41] mention
Boruvka’s paper. However this reference was later dismissed as the Boruvka
algorithm was regarded as “unnecessarily complicated”. Well, perhaps a few
words of explanation are in order here.

While not so easy to formulate as the greedy algorithm the Boruvka algorithm
is easy to formulate as well (see Section 6).

One should stress that a concise description was not available in twenties (not
only in the pre-computer age but also in the “pre-graph theory” age). One
has to see that the operation “contraction” became appreciated much later
(in the context of planar graphs and theory of matroids) but even the term
“tree” is not mentioned in Boruvka’s paper. The later seems to be the main
difficulty of [1]. Instead of saying that the selected edges (in Step 1. of the
algorithm) form connected components which are (obviously) trees, Boruvka
elaborately constructs this tree: first he finds a maximal path P containing a
given point then starts with a new vertex and finds a maximal path P’ which
either is disjoint with P or terminates in a vertex of P and so on. Then he
combines these paths to tree-components. As a result of this the Step 2. has
to be tediously described and thus the description of the algorithm takes full
5 pages of [1]!

Boruvka’s approach is a brute force approach par excellence. Not knowing
any related literature and feeling that the problem is “new” he arrived to the
key exchange property at 3 different places in his article which is in the heart
of all “greedy”-type algorithms for MST. He arrived there without referring
neither to cycle space and (what is now) algebraic topology (as Whitney in his
pioneering work in [48]) nor to purely algebraic setting (generalizing Steinitz
theorem) as Van der Waerden in [47].
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He was just solving a concrete “engineering problem” and in a strike of young
genius he isolated the key property of contemporary combinational optimiza-
tion.

The difficulties of the paper one should regard as technical difficulties. More-
over there is an evidence that Boruvka had a simple description in mind as
he published a follow up article in an electrotechnical journal [2] where he
illustrated his method by an example (of points in the plane together with
their distance as weights).

Although each of the iterations of Boruvka algorithm is more involved than
the simpler rule in greedy algorithm, we need only log n of these iterations:
in each step we select at least n/2 edges and thus the number of vertices of
contracted graph is at most half of the size of the original graph. It is easy to
implement the algorithm so that its complexity will be bounded by C'mlogn
(where m is the number of edges and C' is a constant).

The following is another view: although we start with many (i. e. n) compo-
nents (as many as there are blueberries in a forest; “boruvka” is the Czech
word for a “blueberry”) the number of components is halved each time and
thus we are quickly done.

The “simplicity” and effectiveness of Boruvka algorithm was recognized much
later and basically during the last 10 years. Contradicting to all the earlier
evidence, presently it seems that Bortvka algorithm is the best algorithm
available. This is based on experimental evidence as well as its “parallel”
character and its theoretical analysis. Let us be more specific here and let us
outline the recent development. It is a spectacular development as it is related
to some of the key problems and advances of the modern theory of algorithms.

Given a connected undirected graph G' = (V, E) we denote as usual n = |V| the
number of its vertices and m = |E| the number of its edges. As G is connected
it isn—1 < m and we can identify m with the size of the input of the graph G.
To concentrate on the combinatorial structure of the algorithms we consider
the computational model unit - cost RAM with the additional restriction that
the only operation allowed as the size of the weighted graph, too. This seems
to be the most natural model for solving MST problem. However, one should
bear in mind that the detailed complexity analysis is model - dependent as
was also shown for MST e. g. in [18]. The above mentioned algorithms are very
efficient, for example the naive implementation of Greedy Algorithm is of order
mn (and it s easy to turn Boruvka Algorithm into an mlogn deterministic
algorithm). However, this also indicates that for MST problem we can hope
for very fast algorithms. Here is a summary of the results in this direction.

Yao [46] was the first to implement Boruvka Algorithm and obtained bound
m loglogn. This was further improved by Fredman and Tarjan [19] and finally

39



by Gabow, Galil, Spencer and Tarjan [20] and [21] to the bound m log 3(m, n)
where (3(m,n) is a very slowly growing function defined as follows:

B(m,n) = min{i;loglog - - -log(n) < m/n}

Until recently this has been the best known deterministic algorithm for MST
problem. This algorithm also involved an important new data structure Fi-
bonacci Heaps that found its way to standard textbooks of Theoretical Com-
puter Science.

But one can hope for even more. For example Tarjan [44] showed that one
can implement the Greedy Algorithm for graphs with presorted edge-weights
so that its complexity is ma(m,n) where a(m,n) is the functional inverse to
the Ackerman function. This function grows much slower than (already very
slow) function .

Very recently Bernard Chazelle succeeded to make a significant breakthrough:
He devised a (presently rather complicated) deterministic algorithm for MST
problem whose worst case complexity is bounded by Kma(n) for a suitable
constant K. (His work seem to cast the problems related to the function «
in a new light.) The description of Chazelle algorithm is beyond scope of this
article, see B. Chazelle papers [6], [7].

However fast (and “almost” linear) the Chazelle algorithms is still not linear
and the following seems to be the most important problem in this area:

PROBLEM:

Does there exist a linear deterministic algorithm which solves MST Problem?
More precisely, does there exist a deterministic algorithm and a constant C'
such that for a given weighted connected graph G' with m edges the algorithm
finds a minimum spanning tree of G in at most C'm steps?

One should note that many combinatorial problems can be solved by a linear
deterministic algorithm (e.g. shortest path problem or finding of a planar
drawing of a graph; see [45]). A bit surprising this is still open for perhaps the
oldest problem of Combinatorial Optimization - the MST Problem. However
the problem has been intensively studied. The key role has been played by the
following subproblem of MST:

MST VERIFICATION PROBLEM

Given a weighted graph G = (V, E) and its spanning tree T, decide whether
T is minimal.

40



Building on the early work of Tarjan [44] and an algorithm of Komlds [30] it
has been showed by Dixon, Rauch and Tarjan [15] that the MST Verification
problem can be solved by a linear deterministic algoritm. Recently a simpler
procedure has been found by King [25]. King observed that the Komlds algo-
rithm is simple and linear for balanced (full branched) trees. In order to apply
this she transformed every tree to a full branching tree of at most double size
with “preservation” of weights. This transformation is achieved by applying
the Boruvka algorithm to a tree itself, indeed King calls the tree produced
in this way Boruvka Tree. (Boruvka tree of a tree (V,T) has all the vertices
as leaves and internal vertices correspond to components which appear during
Boruvka algorithm, the edges represent which components produce in the next
step a new component.)

This is not the end of story, perhaps rather beginning of the new interesting
period. The combination of the previously obtained methods yields unexpected
results. So recently Boruvka Algorithm has been combined with the linear
verification algorithm to obtain the first linear randomized algorithm for MST
problem, see Klein, Tarjan [29] and Karger, Klein, Trajan [27]. Also an optional
randomized parallel algorithm has been recently found by Cole, Klein and
Tarjan [10].

In all these results the Boruvka Algorithm plays the key role. Indeed, in order
to simplify their complicated parallel algorithm and its analysis Cole, Klein
and Tarjan [10] call each iteration of Boruvka Algorithm (i.e. each iteration
of edge selection and subsequent contraction) Boruvka Step. This seems to be
standard by now.

The Combinatorial Optimization has gone a long way in its relatively short
history. But it is a bit surprising how persistent are the classical motivation
and algorithms. However for a (positive) solution of some of the key problems
(such as the linearity of MST problem) perhaps some new combinatorial trics
are needed.
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9 Appendix: Life and work of Otakar Boruvka (a brief outline)

Otakar Boruvka

born 10. 5. 1899, Uhersky Ostroh (Austro-Hungary, later Czechoslovakia, now
Czech Republic).

1910-1916 gymnasium (high school) Uherské Hradisté
1916-1917 military school Hranice and Mdodling
1918-1922 study at Czech Technical University, Brno
192021 assistant of Institute of Physics
192022 study of Masaryk University, Brno
1921-34 assistant at Masaryk University
1923 RNDr.
1926-27 Paris
1928 docent
1929-30 Paris (Rockefeller foundation)
1930-31 Hamburg (supported by Rockefeller founda-
tion)
1934 professor at Masaryk University (since 1946
full professor)
1953 corresponding member of Czechoslovak Academy

42



(ordinary member since 1965)

1956 DrSe.

1959 State Prize of Czechoslovakia

1965 founder and Editor—in—Chief of the Journal
Archivum Mathematicum

1969 Dr.h.c., Bratislava

1994 Dr.h.c., Brno

1995 died in Brno (22.7.)

Let us add at the end a few informal remarks related to [1], [2]. These are works
of young mathematician, his opus No. 6, the second outside the local university
journal. Boruvka was well read and well informed. The mathematical library
in Brno was well stocked ([51], p. 42). One of his teacher was Matyas Lerch,
perhaps the first modern Czech mathematician who obtained the prestigeous
Grand Prix de Academie de Paris in 1900, published over 230 papers and
was in contact with leading mathematicians of its time (and who attended
old gymnasium in Rakovnik, a dear place to a subset of the authors of this
article). Lerch selected Boruvka as his assistant in 1921. After a sudden death
of Lerch in 1922, Bortivka became an assistant to Eduard Cech (of Stone-
Cech compactification and one of the founders of topology and differential
geometry). Cech directed his interest to differential geometry and arranged
his stay with Elie Cartan in Paris who profoundly influenced Boruvka future
mathematics. [1], [2] are the only articles by Boruvka devoted to combinatorial
optimization. However he was well aware of the importance of this work and
in fact already during his first stay in Paris in the spring 1927 he lectured
about these results in a seminar of J. L. Coolidge. He remarks that “despite
of (and perhaps because of) this very unconventional topic, the lecture was
received very well with an active discussion” ([51], p. 59).
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