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ON THE CONSTRUCTION OF ALMOST UNIFORMLY 
CONVERGENT RANDOM VARIABLES WITH GIVEN WEAKLY 

CONVERGENT IMAGE LAWS' 

BY MICHAEL J. WICHURA 

University of Chicago 
1. Introduction. Let S be an arbitrary metric space, with distance function d, and 

let Y' be its Borel a-algebra. Denote by Y(S) the class of all probability distributions 
on (S, 9). A net (Py)y of probabilities P e (S) is said to converge weakly to a 
probability P eG (S) if P(f) = lim Pf(f) for each real-valued bounded continuous 
function f on S; here P(f) = ffdP, PY(f) = ffdPY. Let gs(S) denote the sub- 
class of CA(S) consisting of those probabilities P for which there exists a separable 
subset of S in f of P-probability one. gS(S) includes the so-called tight probabilities 
i.e. probabilities P such that sup {P(K): Kcompact} = 1 ([5] page 29). The chief 
result of this paper is stated in the following. 

THEOREM 1. Let (S, d) be a metric space and let (Py)yEr be a net of probabilities 
PY G i7(S) converging weakly to a probability P E gs(S). Then there exists a probability 
space (Q, ., ji) and A-9- measurable, S-valuedfunctions X and X/(y E F) defined on Q 
such that the distributions uX - ' of X and luXy - 1 of Xy are respectively P and Py(y E F) 
and such that Xy converges to Xalmost uniformly. 

One sometimes ([1], [8]) has occasion to consider the weak convergence of 
probability distributions Py which are defined only on certain sub-c-algebras of 9, 
and it is therefore of interest to know that the requirement in Theorem 1 that the 
PY belong to 3d(S) can be weakened. To make this precise, let us say that a net 
(Py)yEr of probabilities Py defined on sub-c-algebras -4y of " converges weakly to a 
probability P E ̂ (S) if limy PY(f) = Pff) = limy PY(f) for each real-valued bounded 
continuous functionf on S; here Py and Py denote respectively the upper and lower 
probabilities associated with PY: 

PY(f) = inf {Py(g): f < g, Py(g) defined} 

PY(f) sup { Py(g): f?> g, P,(g) defined} 

(for equivalent formulations of this definition see Theorem 1 of [8]). It is clear that 
this definition of weak convergence reduces to the usual one if all the -4y equal Y. 
Let Y' denote the sub-c-algebra of S9 generated by the open balls of S. We then 
have the following extension of Theorem 1: 

THEOREM 2. Let S, 9, and Yo be defined as above and let (Py)yer be a net of 
probabilities Py, defined on a-algebras 4y containing g'o and contained in 9, which 
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converges weakly to a probability Pe Ys(S). Then there exists a probability space 
(Q, X, ji) and S-valued variables X and Xy(y eF) defined on Q such that: 

(1) X is . -J9 measurable, Xy is M -.y measurable (yeF) 

(2) =x- - P, uX,-1 = PY(yeFr) 

(3) Xy -X almost uniformly. 

We remark that it is consistent with all the usual axioms of set theory to assume 
that YS(S) = Y(S) (see [2] page 252). In this sense, the requirement in Theorems 1 
and 2 that PG Y,(S) can be replaced by the trivial one that P Y g(S). 

In the construction used to validate Theorems 1 and 2, Q0 is the product space 
Sx HlyerSy, where each Sy is a copy of S, M is a a-algebra which contains the 
product F-algebra sl = 9 x Hlyerdy, 1u is the prolongation to (Q, X) of a mixture 
of product probabilities on (Q, d), and X and Xy are the canonical projections of 
LI onto S and Sy(y e F). When F is countable and S separable, one has - =a. 
Other constructions have been used to validate special cases of Theorem 1. Working 
with sequences (for which almost uniform convergence is equivalent to almost sure 
convergence by Egoroff's theorem) instead of nets, Skorokhod ([7], Theorem 
3.1.1) has proved Theorem 1 for S separable and complete; in his construction 
Q = [0, 1], the unit interval, 4 is the a-algebra of its Borel sets, and p is Lebesgue 
measure. Again working with sequences, Dudley ([3], Theorem 3) has proved 
Theorem 1 for S separable; in his construction, Q is a countable product of copies 
of S x [0, 1], a is the product a-algebra on Q2, and p is a mixture of product 
probabilities on (Q, X). For applications and other constructions of almost surely 
convergent processes which are of interest in the theory of weak convergence, see 
the survey paper by Pyke [6]. 

2. Proof for F countable and S finite. The simplicity of our construction is 
obscured in the general case by several technical considerations; in order to illus- 
trate the general idea we will in this section prove Theorem 1 under the assump- 
tions that F is countable and S is finite. To this end, let (Sy, fy) be a copy of 
(S, S9) for each y, and let (Q, A)=(S x Hlyr Sy, Y x flyrJS"y) be the product of 
the measurable spaces (S, f) and (SY, Vy)(yeF). Let the canonical coordinate 
mappings X and Xy(y E F) be defined on Q by 

(4) X( (s, (so)oe r) ) = S, Xy( (s, (SO)o e r)) = sy(y F). 

The required measurability properties clearly hold. 
Let k: y -- k(y) be any function from F to {0, 1, 2, .., o} such that 

(5) limy e r k(y) = oo 

(k(y) should be thought of as a measure of the largeness of y and later will be 
further specified). For I < k < oo, set 

(6) Uk = nyy:k(y)>k{XY = X}. 
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Observe that each Uk E X since F is countable and that Xy -+ X uniformly over 
each Uk in view of (5). 

Let Qy(y e F) be any family of probabilities on (S, f). It later will be further 
specified. Letting 3, denote the probability giving mass one to the point s E S, let 

(7) Pi=s = bs x Hly er Mj,s,y 

(1 ? j < oo, s eS) denote the product probability ([4] page 166) on (Q, X) whose 
components are respectively: bs defined on (S, f), and 

Pj,s,y = QY if 0 ? k(y) <j, 

= bs if j < k(y) < oo, 

defined on (Sy. Y.). Clearly Pui,X = bs Pi'sXY-I = pjsy; moreover, since F 
is countable, Mj s(Uk) = 1 for j1? k. Next, define probabilities ,j(1 < j < oo) on 
(Q, X) by 

(8) Hj = s E s P{S}',s. 

Clearly 1 X-1 = p 

tj Xy- = Qy if 0 ? k(y) <j 

=P if j<k(y)< oo, 

and puj(Uk) = I ifj? k. 

Finally, let (wk)1 k<0, be any sequence of numbers Wk satisfying 

(9) Wk _ 0 Z Ek Wk = 1 Z Ej<k Wk< 1(1 k < oo) and put 

(10) Clk = El <j_ k Wi(O < k _ o). 

Note w0 = 0, w,, = 1. Define the probability p on (Ql, X) by 

(I1) p = Ejwjpj. 
Clearly iX- 1 = p 

( 12) 1elXY - )k(y) P + (I -t)k(y))Qy and 

(13) /(Uk) >? k(l < k < oo). 

Since limk-o Ck = 1, (13) implies that Xy -+ X almost uniformly with respect 
to p. To comp 1-te the proof in this special setting it suffices, in view of (12), to 
show that the weak convergence of Py to P implies the existence of k(y)'s satisfying 
(5) and probabilities Qy satisfying 

(14) Py = 0k(y) P + -(l Wk(y))QY 

for all y CF. Now if k(y) = oo, there exists a Qy satisfying (14) if and only if 

(1 5) P1. = P, 
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and then any Q, will do. On the other hand, if 0 < k(y) < oo, we see, after setting 

(16) qk=s,y = Py{s} +(w)k!(l -ck))(Py{s} P{S}) 

(17) Mk.y= min E S qk,s,y 

that there exists a probability Qy satisfying (14) if any only if Ink(y),y? 0 and 
Es E s qk(y),s,y = 1, and then one must take 

(18) Qy = EseSqk(y),s,y6s. 

We note that Es Es qk,s,y = 1 for all k(O < k < oo) and that mo0y > 0. Thus it suffices 
to show that (5) is satisfied and (15) holds for k(y) = oo if we put 

(19) k(y) =sup {j _ 0: mj, > 0}. 

Now since Py -+ P, we have 

(20) Py{s} -+ P{s} 

for each se S(Ifs1 being a continuous bounded function on the discrete space S). 
Hence limy e r qk sy = P{s} for each se S, 1 ? k < oo; this, together with the fact 
that qk,s,y > 0 if P{s} = 0, implies that qk,,,y is ultimately nonnegative for each 
k (1 ? k < oo). Thus since S is finite, there exists for each k an index ykeIT such 
that mk,y _ 0 for all y _ y(k). Since mk,y ? 0 implies k(y) ? k, (5) is satisfied. 
Next, if k(y) = oo, we have (recall Zs s qk,s,y = 1) 

(21) 0 ? Py{s}?( + k/(1- k) )(Py{s}-P{S}) < 1 

for each s e S and arbitrarily large k; since Wk/(l - Wk) -+ oc, it follows that 
Py{s} = P{s} for each seS, i.e., that (15) holds. This completes the proof of 
Theorem 1 for F countable and S finite. 

3. Proof of Theorenm 2 in the general case. Let P, Py(y eF), ?, Y'0, and 
e y(y-F) be as in Theorem 2. Let W(P) = {C e : P(boundary of C) = 0} be the 

class of P-continuity sets. We recall ([5] page 50) that W(P) is an algebra and that 
for each s e S, the open ball 

(22) {t: d(t, s) < r} E W(P) 
for all but at most countably many values of r. The following lemma shows that 
the analogue of (20) holds for sets Ce-(P) (confer T1.1 of [8]): 

LEMMA 1. In the present context, C e(P) implies 

limy e rPy(C) = P(C) = limy e r PY(C). 

PROOF. Let F be a closed subset of S. Since the continuous bounded functions 
fn:s - max ((1 - nd(s, F)), 0) decrease to the indicator function of F, the weak 
convergence of Py to P implies that lim supy PY(F) _ lim supy PY(fn) = P(fn) I P(F). 
The dual relation for open sets is seen to hold by taking complements; thus for 
any C S/' we have 

(23) P(C) ? lim infy PY(C) ? lim supy PY(C) < P(C), 
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where C (resp. C) denotes the interior (resp. closure) of C. When Ce%'(P), the 
extreme members of (23) are equal. 0 

We shall need a sequence of "finite approximations" to S. For this, choose and 
fix any two numerical sequences (Ak)l I k < and (8k)1 <k< . such that 

(24) Ak > , limk, Ak = O 

(25) Ek > ?, Ek Sk < 00- 

Letting d(C) = sup {d(y, z): y, z e C} denote the diameter of a subset C of S, we 
then have 

LEMMA 2. In the present context, there exist positive integers nk(l _ k < oo) and 
disjoint subsets Cm. . ., mk(O < mj nj, 1 j ? k) of S such that 

(26) Cm1,... mk- 1 = EO<mkk<nk CmI, * -,,nk _1,1k 

(27) maxO<j<nj, 1 <j<kmax1 _mk_nk d(Cml, * ,mk) Ak 

(28) ZO<mj_nj,l 1j<kP(Cml nmk- l,O) -k 

(29) CMl, * * *, mk 
c- (P) n7 Y?(O _ mj _ nj, 1 _ j < k). 

PROOF. Let E be a separable subset of S such that P(E) = 1 and let {sn, n _ 1 } be 
a countable dense subset of E. In view of (22), there exists for each n ? 1 an open ball 
in S, call it En, centered at Sn with radius greater than 'A1 but less than A1, such that 
En6 W(P). Since the union of these balls covers E and hence has P-probability 
one, there exists a positive integer n1 such that P(Un n, En) ? 1 -81. Setting 
CmI = EmI -E<m<m Cm(1 ? m1 ? n1), CO = S-Un<nlEn = S-E 1m?nm?nCm1Iweget 

S=EOZmi?niCmi, max,?<m?ni d(Cml) < A1, P(CO) 81C, CO, C ** ,Cn,1 e(P)nft0 
The proof is completed by induction on k. 0 

Let Hk(1 ? k < oo) be the finite partition of S whose members are the Cml,... mk, 
and put Ho = {S}. Choose and fix numbers Wk satisfying (9) and define okk by (10). 
For 0 < k < oo, CeHik, and y eF, set (confer (16), (17), and (19) ) 

qk,C,y = Py(C) + (Py(C) - P(C) )(k/(l - ) 

(30) mk,y = minEenk qk,E,y 

k(y)=sup {j 0: m., _ 0}. 

In view of (29) and Lemma 1, the convergence of Py to P implies (see the argument 
following (20)) that 

(31) limy E r k(y) = oo 

For y such that 0 < k(y) < oo, put (confer (18) ) 

(32) Qy = EC E nk(y) qk(y),C,y Py( I C), 

where Py( C) denotes the probability on (S, sly) obtained from Py by conditioning 
on the occurrence of the event C. It is easy to see that Qy is itself a probability on 
(Sya,sy) and that (confer (14)) 

(33) (-)k(y) (ZC e rk(y) Py(| C)P(C)) +(1 - 
Ok(y))Qy = Py 
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Now for each yeF, let Sy be a copy of S, and let (Q,)-(Sx fl, rSY, 
y X fly e FS1y) be the product of the measurable spaces (S, 9) and (SY, .y)(y E F). 
Let Ck,S denote the element of Hk containing s E S, and let (confer (7)) 

(34) Vj'S = bs X fly vj,s,y 
be the product probability on (Q, d) whose components are respectively: b 
defined on (S, 9), and 

VJ,S,Y = QY if 0 ? k(y) <i, 
= PYO Ck(y)s) if j < k(y) < oo, 

= bs if k(y) = oo, 
defined on (SY, sy). For each j, the mapping s -+ vj,s(A) is a random variable on 
(S, S9) whenever A E a? is a cylinder set with a finite-dimensional base (since for each 
y eF, each of the finitely many C in Hk(y) belongs to ), and hence ([4] page 74) 
this mapping is a random variable for each A E d/. Thus ([4] page 76) we may define 
a probability Vj on (Q,4) by the formula (confer (8)) vj = fsvj sP(ds). Finally 
(confer (11) ), define the probability v on (Q, d) by 

(35) v = <-< < wj vj. 
Once again, let the coordinate mappings X and Xy(y e F) be defined on Q by (4). 

We have 

LEMMA 3. In the present context, 

(36) X is sl'-9' measurable, Xy is ' -.4y measurable (y eF) 

(37) vX-' = P 

(38) vX,- I = PY(ye F). 

PROOF. Relations (36) and (37) follow directly from the definitions. For (38), 
observe that 

vX ' (= k(y)(ECenk(,) Py( I C)P(C))+(1 -Ok(y))Qy if 0 < k(y) < 00, 

= P restricted to a?y if k(y) = ci. 

In view of (33), (38) holds when 0 < k(y) < oo. It remains to show that (38) holds 
when k(y) = oo; the argument here is similar to, but more complicated than, that at 
(21). Put 

(39) Dk = EO0mj?nj,1?j<kEl?mk<nk CmI, ,mk(k _ 1); D = liminfkDk 
and observe that (28) and (25) imply 

(40) P(D) = 1. 

Let Wk be the sub-algebra of Y? made up of sums of members of Hk and put 
W = Uk tWk; since (in view of (26) ) 
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W itself is a sub-algebra of SO. Let u<K>nD (resp. synD,fnD) be the trace on 
D ([4] page 19) of C<@> (resp. .?y, f), and let YD denote the Borel c-algebra of D. 
In view of (24), (27), and (39), each open subset of D is a union, necessarily count- 
able, of sets of the form CnD with C Ec ; it follows that YD C cr<KrD> = C<KC>nD. 
Since Dk belongs to t7k, we have D E c<W>, and since ([5] page 5) YD = fnD, we 
have 

(42) De ryrDcrD= /DCCU<W>. 

In view of (41) and the additivity of P and Py, the condition k(y) = oo implies (see 
(30) and (21)) that for each Ce -W the inequalities 0 < Py(C) + (Py(C) - P(C)) 
(wk/(l - Wk)) ? 1 hold for arbitrarily large values of k; since limk, O k/(l - wk) = 00 

it follows that Py and P coincide over W, hence over o<W>, and hence, in view of 
(42), over . r)D. But then, in view of (40), we have PY(J) = P(D) = 1, so that P 
and Py coincide over .y This completes the proof of the lemma. ] 

Now put A,, = 0 and set (confer (6) and (24)) 

(43) Uk= nY :k(y)>k{d(Xy, X) ?k(y)} 

The Uk need not belong to ./ in general, although they will if F is countable and S 
is separable (so that d(Xy, X) is d1-measurable (confer [5] page 6)). For any subset 
QO of Q, let v*(Qf) = inf {v(A): Q. a A e .} denote the outer probability of QO 
under v. 

LEMMA 4. In the present context, 

(44) XY-* X uniformly over each Uk 

(45) Iimk, V *(Uk)= I 

PROOF. We get (44) from (24), (31), and (43). For (45) put Ek = infm,kDm(1 < 
k < oo), where Dm is defined by (39). Suppose that UkcA Ed/. Then there exists 
([4] page 81) a countable subset 1A of f such that A depends only on X and the X, 
with y er [A; it follows that 

ny e rA; k(y) > k {d(Xy, X) < Ak(y)} C A 

(the set on the left need not belong to d/). Thus for j < k we have (confer (34) and 
(27)) 

vj(A) = fs vj,s(A n {X = s})P(ds) 

> _V__S(nY6rA;k(y)?k{d(XY,S) ? Ak}(y)P(ds) 

= P(Ek). 

By (35), v(A) > Zj<kWjVj(A) >? OkP(Ek); it follows that v*(Uk) > O)kP(Ek). But (28) 
implies P(Ek) _ 1 -LmEkEm; (45) now follows from (9) and (25). 

We note that the Uk increase with k. In view of Lemmas 3 and 4, to complete the 
proof of Theorem 2 it suffices to establish 
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LEMMA 5. Let (Q, .4,v) be any probability space and let (Uk)k> 1 be an increasing 
sequence of subsets of Q of outer probabilities v*(Uk). Let X be the a-algebra 
generated by sl and the Uk(l < k < oo). Then v may be prolonged to a probability It 
on (Q, .) such that 

(46) JU(Uk) = V*(Uk) 

for each k. 
PROOF. Put Bk = Uk- Uk- (1 ? k < oo), put Boo = (supkUk)c, and choose 

Bk*E sl such that v(Bk *) = v*(Bk)(1 < k ? oo). According to [4] page 43, % 
coincides with the class of sets of the form EkAkBk, where Ak eC -; moreover the 
formula 

(47) I(Yk Ak Bk) = Ek fAkfk dv 
defines a probability ju on (Q, 9), whose restriction to (Q, ) is v, provided that 
each fk is a nonnegative, d-measurable random variable vanishing off of 
Bk*(l < k ? oo) and that Ekfk = 1. 

Let fk be the indicator function of Bk* U <kBj *( <k ? oo) and define [t by 
(47). Then 

(48) ,u(Uk) = hi(Zj_kBj) = YjkJffjdv = v(UjikBj*). 

Since U j kBj* is an dW-measurable set containing Uk, we have 

(49) v(Uj <k Bj*) > v*(Uk). 

On the other hand, suppose UkcA E X, so that Bjc A for j < k. Then each Bj*, 
and hence also U .<kB*, is contained in A up to a v-equivalence. It follows that 
v(A) ? v(Ui<kBi*) and that 

(50) V*(Uk) > V(Uj_kBj*) 

Together (48), (49), and (50) imply (46). E] 
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