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1 Introduction

A common theme in low-dimensional dynamical systems is that the presence of
a simple pattern can force the iterates of a function to exhibit very complicated
behaviour.

A prime example of this is the fact that a single periodic orbit with period
three for a continuous self-map of an interval can force the existence of infinitely
many periodic orbits and an explicit form of ‘chaos’ (see [Šar64] and [LY75]).

For two-dimensional systems the Nielsen-Thurston classification of isotopy
classes of homeomorphisms (see [Thu88]) provides a ‘simplest’ (e.g. minimal
entropy1) model homeomorphism in each isotopy class. Using this classification
several results have been established which show that a small number of periodic
orbits with a particular pattern can force a homeomorphism to have positive
entropy.

One such result is established in [LM91] where it is shown that three periodic
points with non-collinear rotation vectors force a homeomorphism of the two
torus which is isotopic to the identity to have positive entropy.

Using homological rotation vectors (which generalize the notion of rotation
vectors to surfaces other then the torus) in [Pol92] it is shown that 2g+1 periodic
orbits whose rotation vectors do not lie in a hyperplane suffice to force positive
entropy of a homeomorphism isotopic to the identity on a surface of genus g
(notice that in this case homology rotation vectors belong to a real vector space
of dimension 2g). This result was later improved in [Mat97] where it is shown
that g + 1 periodic orbits whose rotation vectors form a non-degenerate g + 1
simplex suffice if g ≥ 2.

In this article we establish that two fixed points can force positive entropy of
a homeomorphism isotopic to the identity on any compact orientable hyperbolic
surface. We do this by using the Nielsen-Thurston classification in a way similar
to [LM91]. The main novelties are the notion of ‘transverse fixed points’ (which
identifies the pattern necessary to force positive entropy, see Definition 1) and
the fact that we are able to deal with the case in which the homeomorphism
is ‘reducible’ in the Nielsen-Thurston classification by showing that one of its
irreducible components must be of pseudo-Anosov type.

1The word ‘entropy’ in this article will always refer to ‘topological entropy’.
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The result is surprising at least in the following two ways:
First, in contrast to the proofs in [Pol92] and [Mat97] our proof is established

with out recourse to any generalization of the notion of rotation vectors to other
surfaces. In particular there are examples to which our theorem applies which
are forced to have positive entropy by a fixed point whose homological rotation
vector is zero.

Second, in contrast to the results of [LM91] for the torus we establish that
on compact orientable hyperbolic surfaces only two fixed points are necessary
to produce entropy instead of three, and this result is independent of the genus
of the hyperbolic surface.

As mentioned above the property required of the two fixed points in order
to produce entropy is a form of ‘transversality’. This property makes sense also
for non-periodic orbits and hence poses the problem of whether an analogous
result is valid if one replaces the two fixed points by non-periodic trajectories.

In the torus case the results of [Fra89] reduce the non-periodic case to the
periodic one by showing that if there are three non-periodic trajectories with
non-collinear rotation vectors then there are also three periodic points with
non-collinear rotation vectors.

In view of this we pose the following question: If a homeomorphism isotopic
to the identity on a compact hyperbolic surface exhibits two transverse non-
periodic orbits, does it necessarily also have two transverse periodic orbits? A
positive answer to this question would imply a mechanism for obtaining periodic
orbits from non-periodic ones and a widely applicable criterion for positive en-
tropy of homeomorphisms isotopic to the identity on a large family of surfaces.
Hence we believe this question merits further investigation.

2 Statement

Let T 2 = R2/Z2 be the two-dimensional torus. And f : T 2 → T 2 be a homeo-
morphism which is isotopic to the identity. Fixing a lift F : R2 → R2 of f the
rotation vector of a point x ∈ T 2 is defined as the following limit if it exists:

lim
n→+∞

Fn(x̃)− x̃
n

where x̃ ∈ R2 is any lift of x.
Rotation vectors exist for any periodic orbit and depend on the lift F in a

well understood way. In particular the property that there exist three points
with non-collinear rotation vectors is independent of the chosen lift F . In this
situation the following theorem from [LM91] guarantees that f has positive
entropy.

Theorem 1 (Llibre-MacKay). Let f : T 2 → T 2 be a homeomorphism isotopic
to the identity with three fixed points which have non-collinear rotation vectors.
Then f has positive entropy.

Now suppose S = D/Γ is a compact orientable hyperbolic surface (here D
is the Poincaré disk with the usual metric and Γ is a cocompact freely acting
group of Möebius transformations) and f : S → S is a homeomorphism which
is isotopic to the identity. We note that all elements of Γ are hyperbolic (i.e.
are translations along some geodesic in D).
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It can be shown (see Lemma 3 below) that there is a unique lift F : D→ D
of f which commutes with all elements of Γ.

A fixed point x ∈ S of f is said to be contractible if there is a lift x̃ of x
which is fixed by F .

For any lift x̃ ∈ D of a non-contractible fixed point x ∈ S there exists a
non-trivial element γ ∈ Γ such that γn(x̃) = Fn(x̃) for all n ∈ Z. It follows that
the limits limn→±∞ Fn(x̃) exist and are distinct in S1.

Definition 1 (Transverse fixed points). Two fixed points x, y ∈ S are said to
be transverse if they are both non-contractible and the following two conditions
hold:

1. There exist lifts x̃, ỹ (of x and y respectively) such that the points limn→±∞ Fn(x̃)
separate the points limn→±∞ Fn(ỹ) in S1.

2. For any lifts x̃, ỹ (of x and y respectively) the four points limn→±∞ Fn(x̃)
and limn→±∞ Fn(ỹ) are distinct.

F−1(x̃)x̃
F (x̃)

limn→+∞ F n(x̃)limn→−∞ F n(x̃)

F−1(ỹ)

ỹ

F (ỹ)

limn→+∞ F n(ỹ)

limn→−∞ F n(ỹ)

Figure 1: Item 1 of Definition 1.

Another way to look at this definition is to observe that there is a unique
closed geodesic freely homotopic to the trajectory of each non-contractible fixed
point under the isotopy. Two fixed points are transverse if the closed geodesics
associated to each are distinct and intersect (item 2 of the definition forbids the
case in which both points are associated to the same self-intersecting geodesic).

The purpose of this article is to prove the following theorem.
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Figure 2: An example and a non-example for Definition 1. Notice that in the
rightmost image item 1 of the definition is satisfied but not item 2.

Theorem 2. Let f : S → S be a homeomorphism isotopic to the identity which
has two transverse fixed points. Then f has positive entropy.

A first remark is that Theorem 2 requires only two fixed points while Theo-
rem 1 requires three.

Part of this discrepancy can be explained by the fact that there is no canon-
ical way of defining a non-contractible fixed point on T 2 since there is always a
lift for which the rotation vector of any particular fixed point is 0.

Correspondingly there is a part of the argument for Theorem 2 which will rely
on the uniqueness of the lift F which commutes with all covering transformations
and the fact that this lift extends to the boundary of the Poincaré disk as the
identity map (Lemma 3). This result has no analog on the two-torus.

Hence Theorem 2 cannot be extended to apply to torus homeomorphisms
and doesn’t yield an improvement over Theorem 1 in that case (in fact there
are examples of homeomorphisms of T 2 with zero entropy and two fixed points
with different rotation vectors).

It’s easy to obtain examples to which Theorem 2 applies. It suffices to
consider for each closed geodesic a homeomorphism supported on a tubular
neighborhood which rotates the given geodesic one full turn along itself. The
composition of two such homeomorphisms for intersecting geodesics will have a
pair of transverse fixed points and hence must have positive entropy.

3 Preliminaries

Let D = {z ∈ C : |z| < 1} be the Poincaré disk endowed with the Poincaré
metric ds2 = 4

(1−|z|2)2 d|z|2, D = {z ∈ C : |z| ≤ 1}, and S1 = {z ∈ C : |z| = 1}.
We will also fix from now on a compact orientable hyperbolic surface S = D/Γ
(where Γ is a cocompact and freely acting group of Möebius tranformations, i.e.
the group of covering transformations).
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Lemma 3 (Canonical lift). Given f : S → S isotopic to the identity there is a
unique lift F : D → D of f which commutes with all covering transformations.
The map F extends continuously to D as the identity on S1.

Proof. First we will establish uniqueness. Assume F and G are two lifts of f
which commute with all covering transformations. Then F ◦ G−1 is a cover-
ing transformation which commutes with all others. However two hyperbolic
Möebius transformations commute if and only if they are translations along the
same geodesic, this would imply that Γ is cyclic which is not the case since Γ is
cocompact.

To prove that there exists a lift F commuting with all covering transforma-
tions take any isotopy {ft : t ∈ [0, 1]} from the identity on S to f and lift it to
an isotopy {Ft : t ∈ [0, 1]} from the identity on D to a lift F = F1 of f . We
claim F commutes with all covering transformations.

To establish this, fix γ ∈ Γ and define for each t ∈ [0, 1] the covering trans-
formation γt = F−1t ◦ γ−1 ◦ Ft ◦ γ, since γt ∈ Γ and t 7→ γt is continuous it
follows that γt is constant because Γ is discrete. Furthermore γ0 is the identity
from which we obtain that γt is the identity for all t and, setting t = 1, that F
commutes with γ.

Finally we must prove that F extends to D as the identity on S1.
We first observe that p 7→ d(p, F (p)) (where d(p, q) denotes the hyperbolic

distance between p, q ∈ D) is continuous and Γ-invariant and therefore bounded
(since Γ is cocompact). Next by Proposition 4.3 of [And05] we obtain that
|p− F (p)| ≤ C(1− |p|2) where C = sup{(1− |F (p)|2)d(p, F (p)) : p ∈ D}. From
this the result follows.

We will now state the results from Nielsen-Thurston theory (see Sections 7.4
and 7.5 of [FM02]) which we will need to prove Theorem 2. We recall that two
homeomorphisms f, g : S → S are said to be homotopic relative to a finite set
P ⊂ S, if there is a homotopy {ft : t ∈ [0, 1]} with f0 = f, f1 = g and such that
for each t the map ft fixes all points in P .

Theorem 4 (Nielsen-Thurston pseudo-Anosov component). If f : S → S is
a homeomorphism fixing all points in a finite set P ⊂ S then there exists a
homeomorphism g : S → S homotopic to f relative to P and a finite family of
simple closed curves α1, . . . , αr : [0, 1]→ S such that:

1. There is a system of tubular neighborhoods Ui of the curves αi, which are
pairwise disjoint, disjoint from P , and such that there union is g invariant.

2. Each component of S \ (P ∪⋃
i Ui) has negative Euler characteristic2.

3. Either some iterate of g equals the identity on each component of S \⋃i Ui

or g has positive entropy.

4. The entropy of g is less than or equal to the entropy of f .

Following [FM02] we call g in the statement above an NT-homeomorphisms
for f relative to P and α1, . . . , αr the reducing curves.

2The fact that the points of P are to be considered as punctures when calculating the Euler
characteristic of a component isn’t stated explicitly in Section 7.5 of [FM02] but is clear from
the examples on the disk given in Section 7.6 of this reference.
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4 Proof of Theorem 2

Let P = {x, y} ⊂ S be the set of two fixed points of f given by hypothesis

and P̃ ⊂ D be the set of lifts of these points. Also fix an NT-homeomorphism
g : S → S and a set of reducing curves α1, . . . , αr for f given by Theorem 4.

We will first establish that all the αi are essential in S. Without loss of
generality we may (by replacing f with an iterate) assume that all reducing
curves are homotopic relative to P to their images under f (correspondingly
each tubular neighborhood Ui given by Theorem 4 is g-invariant).

For the sake of contradiction suppose α : [0, 1] → D is a closed curve pro-
jecting to a homotopically trivial reducing curve for f . It follows that exactly
two lifts x̃, ỹ of x and y respectively are enclosed by α (otherwise there would
be a component of S \ (P ∪⋃

i Ui) with non-negative Euler characteristic). By

assumption F ◦ α is homotopic to γ ◦ α relative to P̃ for some γ ∈ Γ.

Figure 3: Any non-essential reducing curve must be homotopic to the curve
above or its orientation reversed reparametrization relative to P = {x, y}.

Since F is a homeomorphism F (x̃) and F (ỹ) must be enclosed by F ◦ α.

Furthermore, because this curve is homotopic to γ ◦α relative to P̃ one obtains
that γ ◦ α encloses both F (x̃) and F (ỹ). By induction it follows that γn ◦ α
encloses both Fn(x̃) and Fn(ỹ) for all n ∈ Z. This contradicts the fact that
limn→+∞ Fn(x̃) is different from limn→+∞ Fn(ỹ).

Next we will show that the reducing curves do not separate x from y in S.
For this purpose suppose α : R→ D is a lift of some reducing curve. Since all

reducing curves are non-trivial in S it follows that α has two distinct endpoints
on S1. By Lemma 3, F ◦ α has the same endpoints on S1 as α. Because α
projects to a reducing curve it must be homotopic relative to P̃ to a translate
γ◦α for some γ ∈ Γ. Hence the covering transformation γ must fix the endpoints
of α and (since α projects to a simple closed curve) we can choose γ to be the

identity, so that in fact F ◦ α is homotopic relative to P̃ to α. If p ∈ P̃ is on
the left of α then, because F preserves orientation, F (p) is on the left of F ◦ α.
Since F ◦α is homotopic to α with a homotopy which doesn’t pass through F (p)

one obtains that F (p) is to the left of α. Similarly if p ∈ P̃ is on the right of α
then F (p) is also to the right.

It follows from the preceding paragraph that endpoints of α don’t separate
the points limn→±∞ Fn(p) in S1 for any p ∈ P̃ . In particular if x̃ and ỹ are
lifts of x and y which are in different components of D \ α(R) then points
limn→±∞ Fn(x̃) don’t separate the points limn→±∞ Fn(ỹ) in S1. By property
1 of Definition 1 there must exist lifts x̃ and ỹ which are in the same component
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of D \ α(R) for all α projecting to a reducing curve. It follows that x and y are
in the same component of S \⋃i Ui.

x̃

limn→+∞ F n(x̃)limn→−∞ F n(x̃)

ỹ

limn→−∞ F n(ỹ)

limn→+∞ F n(ỹ)

α

F ◦ α

Figure 4: A lift of reducing curve which separates x̃, ỹ ∈ P̃ will separate all their
iterates. In this case x̃ and ỹ do not satisfy item 1 of Definition 1.

Let U be the component of S \⋃i Ui containing x and y. At the beginning of
this proof we established that a simple closed curve in U which is non-essential
in S and which encloses x and y isn’t homotopic relative to P to any of its
f -iterates. This implies, since g is homotopic to f relative to P , that no iterate
of g restricted to U can be the identity. Hence by Theorem 4 we conclude that
g has positive entropy and so does f .
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