CORRIGENDUM TO ON PLANE POLYNOMIAL AUTOMORPHISMS COMMUTING WITH SIMPLE DERIVATIONS

LUÍS GUSTAVO MENDES AND IVÁN PAN

The present note is a *corrigendum* of our paper [MePa2016]. The main results of that paper (Thms. 1 and 2) remain unchanged, but Proposition 9 and Corollary 12 therein must be replaced by Lemma 1 and Proposition 2 below. Moreover, the new proposition improves the older and readily gives Thm. 2. On the Examples 10 and 11 we may assert, in addition, that $\operatorname{Aut}(D_{-1})$ and $\operatorname{Aut}(\partial_x + (2xy + x^3)\partial_y)$ are both isomorphic to \mathbb{K}^* .

We thank Gabriel Barruci da Silva who pointed a mistake in Proposition 9.

Lemma 1. Let $b(x) \in \mathbb{K}[x]$ be an arbitrary polynomial and let $a \in \mathbb{K}^*$. For any $(c,d) \in \mathbb{K} \times \mathbb{K}^*$ we consider the differential equation

$$\mathcal{E}_{c,d}: P' - aP = b(x+c) - db(x).$$

There exists a unique solution of $\mathcal{E}_{c,d}$ in $\mathbb{K}[x]$ for any pair (c,d). Moreover, if b(x) has degree at least 1 and $Q \in \mathbb{K}[x]$ is a solution of both \mathcal{E}_{c_1,d_1} and \mathcal{E}_{c_2,d_2} , then $c_1 = c_2$ and $d_1 = d_2$.

Proof. If Q_1, Q_2 are solutions of $\mathcal{E}_{c,d}$, then $Q_1 - Q_2$ is solution of P' - aP = 0, hence $Q_1 - Q_2 = 0$. In order to complete the proof of the first assertion we only need to show the existence of solutions stated there. Note that if b = 0 we already know Q = 0 is the only solution of $\mathcal{E}_{c,d}$ for all (c,d). Let us then write $b(x) = \sum_{i=0}^n b_i x^i$, with $n \geq 0$ and $b_n \neq 0$. We look for a solution $P(x) = \sum_{i=0}^m p_i x^i$, where $m \geq 0$ and p_m might be 0. In fact,

$$-ap_m x^m + \sum_{i=1}^m (ip_i - ap_{i-1})x^{i-1} = b(x+c) - db(x).$$

If $b(x+c)-db(x)=\sum_{j=0}^r c_j x^j$ is the null polynomial, then again Q=0 is the unique solution. Otherwise that polynomial has a non-negative degree $r \leq \deg b(x)$, hence m=r and we can choose $p_m=-a^{-1}c_r$. Then the equations $jp_j-ap_{j-1}=c_{j-1},\ j=1,\ldots,m$, can be solved by recurrence proving the required existence. To prove the last assertion we note that if Q is a solution of \mathcal{E}_{c_1,d_1} and \mathcal{E}_{c_2,d_2} , then $b(x+c_1)-b(x+c_2)=(d_1-d_2)b(x)$. Since the polynomial $b(x+c_1)-b(x+c_2)$ is either null or its degree is lower than the degree of b(x) we deduce $d_2=d_1$ and $b(x+c_1)=b(x+c_2)$. The last equality clearly gives $c_1=c_2$ which completes the proof.

Proposition 2. Let $D = \partial_x + (ay + b)\partial_y$ be a Shamsuddin derivation with $a \neq 0$. We have the following assertions:

- i) If $a \in \mathbb{K}^*$, then $\operatorname{Aut}(D) = \mathbb{K} \times \mathbb{K}^*$
- ii) If deg $a \ge 1$, then Aut(D) is isomorphic to a trivial subgroup of \mathbb{K}^* which is different from $\{1\}$ if and only if either b = 0 or there exists a nonzero polynomial solution of the differential equation P' aP = (1 d)b.

Proof. We keep all notations from [MePa2016]. Let $\rho = (f, g) \in \operatorname{Aut}(D)$. First we assert that $f = \sum_{i=0}^{n} f_i y^i = f_0 = x + c$ and $g = \sum_{j=0}^{m} g_j y^j = g_0 + dy$ for suitable $c \in \mathbb{K}, d \in \mathbb{K}^*$ and $g_0 \in \mathbb{K}[x]$. Indeed, n > 0 contradicts $f'_n + naf_n = 0$ in the top equality in [MePa2016, (2)]; hence f = x + c for some $c \in \mathbb{K}$, and then $m \geq 1$ because ρ is an automorphism. Since the Jacobian determinant of ρ belongs to \mathbb{K}^* the assertion follows. Furthermore, from the bottom equality in [MePa2016, (2)] we obtain

$$g_0' + bd = a(x+c)g_0 + b(x+c)$$
 and $a(x) = a(x+c)$; (1)

here a(x+c) (analogously b(x+c)) denotes the polynomial a, thought of as a polynomial function, composed with f=x+c. Since $\rho^{\ell} \in \operatorname{Aut}(D)$ for all $\ell \geq 1$ we deduce that if $\deg a \geq 1$, then c=0, and if $a \in \mathbb{K}^*$, then (1) is equivalent to the unique equality

$$g_0' - ag_0 = b(x+c) - db(x); (2)$$

Now, assume $a \in \mathbb{K}^*$ and define a map $\eta : \mathbb{K} \times \mathbb{K}^* \to \operatorname{Aut}_{\mathbb{K}}(\mathbb{K}[x,y])$ by doing $(c,d) \mapsto (x+c,dy+P_{c,d}(x))$, where $P_{c,d}(x)$ is the unique solution given by Lemma 1. By construction, the image of η is precisely $\operatorname{Aut}(D)$. Since that map is clearly injective, to prove assertion (i) it suffices to show η is a homomorphism. In fact, by composing $\eta(c_1,d_1)$ with $\eta(c_2,d_2)$ we get the element

$$(x + c_1 + c_2, d_1 d_2 y + d_1 P_{c_2, d_2}(x) + P_{c_1, d_1}(x + c_2)) \in Aut(D).$$

Thus the polynomial $g_0 = d_1 P_{c_2,d_2}(x) + P_{c_1,d_1}(x+c_2)$ satisfies the differential equation $\mathcal{E}_{c_1+c_2,d_1d_2}$ from which we deduce $g_0 = P_{c_1+c_2,d_1d_2}$, as required. Next, assume $\deg a \geq 1$ (hence c=0). From $g_0' + bd = ag_0 + b$ it follows g_0 is a solution of the differential equation P' - aP = (1-d)b. Note that if such a solution exists, then it is unique; let us denote P_d such a solution. Then we may define an injective homomorphism $\operatorname{Aut}(D) \to \mathbb{K}^*$, by mapping $(x, dy + P_d) \in \operatorname{Aut}(D)$ to d. Finally, assume $\operatorname{Aut}(D) \neq \{1\}$. Then there exists $d \neq 1$ such that $(x, dy + P_d) \in \operatorname{Aut}(D)$. Hence $P_d = 0$ if and only if b = 0. If $P_d \neq 0$ and $\alpha \in \mathbb{K}^*$, then αP_d is a solution of the differential equation P' - aP = (1-e)b, with $e := 1 - \alpha(1-d)$, so $(x, (1-\alpha(1-d))y + P_{1-\alpha(1-d)}) \in \operatorname{Aut}(D)$ if $\alpha(1-d) \neq 1$, from which the proof follows. \square

References

[MePa2016] L. G. Mendes and I. Pan, On plane polynomial automorphisms commuting with simple derivations, J. of Pure and Appl. Algebra, Vol. 221, N. 4 (2016), pp. 875-882.