(5)
$$\|\widehat{a}\|_{\infty} = r(a) = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}}$$
.

Demostración. Probaremos las primeras cuatro afirmaciones a continuación. La quinta será un corolario de la Proposición 1.3.16.

- (1) Si $h_i \stackrel{w^*}{\to} h$ entonces $h_i(a) \to h(a)$. Luego es $\widehat{a}(h_i) \to \widehat{a}(h)$, o sea que \widehat{a} es continua. Además $\|\widehat{a}\|_{\infty} = \sup_{h \in \widehat{A}} |\widehat{a}(h)| = \sup_{h \in \widehat{A}} |h(a)| \le \sup_{h \in \widehat{A}} \|h\| \|a\| \le \|a\|$. Entonces $\|\widehat{a}\|_{\infty} \le \|a\|$.
- (2) Si \widehat{A} es compacto no hay nada que probar. Si \widehat{A} no es compacto, entonces $\widehat{a} \in C_0(\widehat{A})$ porque $\lim_{\substack{h \to 0 \\ h \to 0}} \widehat{a}(h) = \lim_{\substack{h \to 0 \\ h \to 0}} h(a) = 0$.
- (3) $\widehat{ab}(h) = h(ab) = h(a)h(b) = \widehat{a}(h)\widehat{b}(h) = \widehat{a}\widehat{b}(h)$ para todo h, entonces $\widehat{ab} = \widehat{a}\widehat{b}$. La linealidad se prueba igual. Si $A \ni 1$ entonces $\widehat{1}(h) = h(1) = 1$ para todo h; entonces $\widehat{1}$ es la unidad de $C(\widehat{A})$.
- (4) $a \in \ker(\mathcal{G})$ si y sólo si $\widehat{a}(h) = 0$ para todo $h \in \widehat{A}$ si y sólo si h(a) = 0 para todo $h \in \widehat{A}$ si y sólo si $a \in \bigcap_{h \in \widehat{A}} \ker(h) = \bigcap \{M : M \text{ ideal maximal regular de } A\} = \operatorname{rad}(A)$.
- (5) Es un corolario de la Proposición 1.3.16.

Supóngase que $\varphi:A\to B$ es un homomorfismo de álgebras de Banach conmutativas. Entonces, por definición, φ es un operador acotado. Su operador dual $\varphi':B'\to A'$, dado por $\varphi'(f)=f\circ\varphi$, también es un operador acotado, que además es continuo si se consideran sobre B' y A' las topologías $w^*\colon$ si $f_i\to f$ en (B',w^*) , es decir $f_i(b)\to f(b)$ $\forall b\in B$, entonces $\varphi'(f_i)|_a=f_i(\varphi(a))\to_i f(\varphi(a))=\varphi'(f)|_a$, $\forall a\in A$, de modo que $\varphi'(f_i)\to\varphi'(f)$ en la topología w^* de A'. Se tiene además que si $h\in B'$ es un homomorfismo de álgebras, entonces $\varphi'(h)=h\circ\varphi$ también lo es, puesto que la composición de homomorfismos es un homomorfismo. Sin embargo, es posible que $\varphi'(h)=0$ aún cuando $h\neq 0$. Por ejemplo, si $\varphi:C([0,1])\to\mathbb{C}^2$ está dada como $\varphi(a)=(a(0),0),$ y $h:\mathbb{C}^2\to\mathbb{C}$ es tal que h(a,b)=b, entonces $\varphi'(h)=0$. En otras palabras: no necesariamente se tiene que $\varphi'(\widehat{B})\subseteq\widehat{A}$. Evidentemente para que $\varphi'(\widehat{B})\subseteq\widehat{A}$ es necesario y suficiente que se cumpla la condición siguiente:

$$h_B|_{\varphi(A)} \neq 0, \ \forall h_B \in \widehat{B}.$$
 (1.1)

Suponiendo que se cumple dicha condición (1.1), φ' induce, por restricción a \widehat{B} y correstricción a \widehat{A} , un mapa continuo $\widehat{\varphi}$ entre los espectros: $\widehat{\varphi}: \widehat{B} \to \widehat{A}$, $\widehat{\varphi}(h_B) = h_B \circ \varphi$.

La condición (1.1) se cumple, por ejemplo, siempre que A y B tengan unidad y φ sea unital, pues en este caso $h_B(\varphi(1)) = h_B(1) = 1$, $\forall h_B \in \widehat{B}$.

Supóngase que $\varphi: A \to B$ y $\psi: B \to C$ son homomorfismos de álgebras de Banach que satisfacen ambos la condición (1.1). Entonces el homomorfismo $\psi \varphi: A \to C$ también la cumple. En efecto, si $h_C \in \widehat{C}$, entonces $\psi'(h_C) \in \widehat{B}$, y por lo tanto $\psi'(h_C)|_{\varphi(A)} \neq 0$, es decir, $h_C|_{\psi\varphi(A)} \neq 0$.

Entonces tenemos el mapa $\widehat{\psi\varphi}:\widehat{C}\to\widehat{A}$, que evidentemente coincide con $\widehat{\varphi\psi}$. En otras palabras, tenemos un functor (contravariante) de la categoría de álgebras de Banach conmutativas y los homomorfismos de álgebras de Banach que satisfacen la condición (1.1) en la categoría de espacios topológicos de Hausdorff localmente compactos y funciones continuas. En particular, restringiéndose a las álgebras con unidad, tenemos un functor entre las categorías de álgebras de Banach conmutativas con unidad y sus homomorfismos unitales en la categoría de espacios de Hausdorff compactos y funciones continuas.

Otro caso en el que $\varphi:A\to B$ evidentemente cumple la condición (1.1) es cuando φ es un isomorfismo. En este caso de la discusión anterior y del Ejemplo 1.3.13 se deduce el siguiente resultado:

Proposición 1.3.18. Si A y B son álgebras de Banach conmutativas isomorfas, entonces sus espectros \widehat{A} y \widehat{B} son homeomorfos. En particular, si X e Y son espacios de Hausdorff localmente compactos, entonces X e Y son homeomorfos si y sólo si $C_0(X)$ y $C_0(Y)$ son álgebras de Banach isomorfas.

Sean X un espacio topológico de Hausdorff localmente compacto y B un álgebra de Banach. Supongamos que $\varphi: B \to C_0(X)$ es un homomorfismo de álgebras. Para cada $x \in X$, sea $\varphi_x: B \to \mathbb{C}$ tal que $\varphi_x(b) = \varphi(b)(x)$. Entonces φ_x es homomorfismo y por lo tanto $\|\varphi_x\| \le 1$. Entonces $|\varphi(b)(x)| = |\varphi_x(b)| \le \|b\|$ para todo $x \in X$ y para todo $x \in B$. Entonces $\|\varphi(b)\|_{\infty} \le \|b\|$ para todo $x \in B$, por lo cual $\|\varphi\| \le 1$. De este hecho, combinado con 1.3.18, se deduce el siguiente corolario.

Corolario 1.3.19. Si X e Y son espacios de Hausdorff localmente compactos tales que existe un isomorfismo de álgebras entre $C_0(X)$ y $C_0(Y)$ entonces el isomorfismo es isométrico, y los espacios X e Y son homeomorfos.

Ejemplos 1.3.20.

- $(1) \ \widetilde{C_0(\mathbb{R})} = C(S^1).$
- $(2) \ \widetilde{C_0(\mathbb{R}^2)} = C(S^2).$

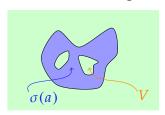
APLICACIONES

Proposición 1.3.21. Sean A un álgebra de Banach conmutativa con unidad $y \ a \in A$, tal que A está generada por a y por la unidad de A, es decir: $A = \{p(a) : p(X) \in \mathbb{C}[X]\}$. Entonces la evaluación $\operatorname{ev}_a : \widehat{A} \to \sigma(a)$, dada por $\operatorname{ev}_a(h) = h(a)$, es un homeomorfismo.

Demostración. Ya sabemos que $\operatorname{Im}(\widehat{a}) = \{h(a) : h \in \widehat{A}\} = \sigma(a)$, de manera que el mapa en cuestión es sobreyectivo. Sólo hay que ver que $h \mapsto h(a)$ es inyectivo. Supongamos que $h_1, h_2 \in \widehat{A}$ son tales que $h_1(a) = h_2(a)$. Entonces $h_1(p(a)) = p(h_1(a)) = p(h_2(a)) = h_2(p(a))$, $\forall p \in \mathbb{C}[X]$. Por lo tanto los homomorfismos continuos h_1 y h_2 coinciden sobre una subálgebra densa de A, y en consecuencia son iguales. □

Proposición 1.3.22. En las mismas hipótesis de la proposición anterior se tiene que $\mathbb{C} \setminus \sigma(a)$ es conexo.

Demostración. Supongamos que $\mathbb{C} \setminus \sigma(a)$ no es conexo, es decir que tiene alguna componente conexa acotada, digamos V, como en la figura. Sea $v \in V$, y tomemos $p \in \mathbb{C}[X]$. Observar que:



- \widehat{a} es la identidad sobre $\sigma(a)$ vía la identificación de \widehat{A} con $\sigma(a)$ dada por $h \mapsto h(a)$ de acuerdo a la Proposición 1.3.21.
- $\partial V \subseteq \partial \sigma(a) \subseteq \sigma(a)$.
- $|p(v)| \le ||p||_{\partial V} \le ||p||_{\sigma(a)}$ (aplicando el principio del módulo máximo a p, que es holomorfa).

Entonces $|p(v)| \leq ||p||_{\infty} = ||\widehat{p(a)}||_{\infty} \leq ||p(a)||$. Luego el mapa $\{q(a): q \in \mathbb{C}[X]\} \to \mathbb{C}$ tal que $q(a) \mapsto q(v)$ es un homomorfismo de álgebras continuo. Por lo tanto se extiende a $h \in \widehat{A}$. Entonces

$$v = \widehat{a}(h) = h(a) \in \sigma(a),$$

y esto es absurdo porque $v \in V$. La contradicción obtenida implica que $\mathbb{C} \setminus \sigma(a)$ es conexo. \square

Ejemplo 1.3.23 (El álgebra del disco). Sea $a: \bar{\mathbb{D}} \to \mathbb{C}$, la inclusión. Entonces $a \in A(\mathbb{D})$. Notar que si p es un polinomio entonces $p(z) = p(a)|_z$ para todo $z \in \bar{\mathbb{D}}$. Afirmamos que a genera a $A(\mathbb{D})$ como álgebra de Banach. En efecto, fijemos $b \in A(\mathbb{D})$, y sea A la subálgebra de Banach unital de $A(\mathbb{D})$ generada por a.

- (1) Para $r \in (0,1)$ sea $b_r : \bar{D}(0,\frac{1}{r}) \to \mathbb{C}$ dado por $b_r(z) = b(rz)$. Entonces $b_r|_{\bar{\mathbb{D}}} \in A(\mathbb{D})$ y $\lim_{r \to 1} b_r|_{\bar{\mathbb{D}}} = b$ porque b es uniformemente continua en $\bar{\mathbb{D}}$.
- (2) Por otro lado, si $c \in \text{Hol}(\bar{D}(0,s))$ para algún s > 1, entonces $c(z) = \sum_{n=0}^{\infty} c_n z^n$, uniformemente en $\bar{\mathbb{D}}$. Entonces $c = \lim_{n \to \infty} c_{(n)}$ donde $c_{(n)} = \sum_{k=0}^{n} c_k a^k$. Luego $c \in A$.

Como cada b_r está en las hipótesis de (2), se tiene que $b_r \in A$, y por lo tanto su límite, b, también está en A. En conclusión a es un generador de $A(\mathbb{D})$.

Nótese que, como ||a||=1, entonces $\sigma(a)\subseteq \bar{\mathbb{D}}$. Por otro lado, cada $z\in \bar{\mathbb{D}}$ define un elemento $h_z\in \widehat{A(\mathbb{D})}$, definido como $h_z(b):=b(z)$. Por la Proposición 1.3.21, sabemos que $\widehat{A(\mathbb{D})}\cong \sigma(a)$ a través $h\mapsto h(a)$. Como la restricción de este mapa a $\{h_z:z\in \bar{\mathbb{D}}\}$ tiene imagen $\bar{\mathbb{D}}$, concluimos primero que $\sigma(a)=\bar{\mathbb{D}}$, y luego que $\widehat{A(\mathbb{D})}=\{h_z:z\in \bar{\mathbb{D}}\}\cong \bar{\mathbb{D}}$.

Proposición 1.3.24. Sean A un álgebra de Banach con unidad y a un elemento invertible de A. Si a y a^{-1} generan A como álgebra de Banach, es decir, $A = \{p(a, a^{-1}) : p \in \mathbb{C}[x, y]\}$, entonces la evaluación $\operatorname{ev}_a : \widehat{A} \to \sigma(a)$, dada por $\operatorname{ev}_a(h) = h(a)$, es un homeomorfismo.

Demostración. Como en 1.3.21, sabemos que ev_a es continuo y sobreyectivo. Si $h_1, h_2 \in \hat{A}$ son tales que $h_1(a) = h_2(a)$, entonces también se tiene que $h_1(a^{-1}) = h_1(a)^{-1} = h_2(a)^{-1} = h_2(a^{-1})$, y por lo tanto $h_1(p(a,a^{-1})) = p(h_1(a),h_1(a)^{-1}) = p(h_2(a),h_2(a)^{-1}) = h_2(p(a,a^{-1}))$. Se concluye que los mapas continuos h_1 y h_2 coinciden en un conjunto denso en A, y por lo tanto son iguales. □

1.3.1. Perspectiva categórica

Consideremos las siguientes categorías:

 \mathcal{B}_c : álgebras de Banach conmutativas y sus homomorfismos que satisfacen (1.1).

 \mathscr{T}'_{lch} : espacios topológicos de Hausdorff localmente compactos y funciones continuas.

 \mathscr{C}_c^* : C*-álgebras conmutativas y sus homomorfismos que satisfacen (1.1).

Ya hemos visto que tenemos un functor $\hat{}: \mathcal{B}_c \to \mathcal{T}'_{lch'}$ que a un elemento $A \in \mathcal{B}_c$ asigna su espectro \hat{A} , y que a un morfismo $\varphi: A \to B$ asigna la función continua $\hat{\varphi}: \hat{B} \to \hat{A}$, obtenida por restricción del mapa dual $\varphi': B' \to A'$. Restringiendo dicho functor a la subcategoría plena \mathcal{C}_c^* de \mathcal{B}_c , obtenemos un functor $\hat{}: \mathcal{C}_c^* \to \mathcal{T}'_{lch}$.

Por otro lado, también tenemos un mapa que relaciona las categorías \mathscr{T}'_{lch} y \mathscr{C}^*_c al nivel de los objetos:

$$\mathsf{Ob}(\mathscr{T}'_{lch}) \ni X \mapsto C_0(X) \in \mathscr{C}^*_c$$
.

Si esta asignación correspondiera a un functor al nivel de los objetos, parecería natural completarlo al nivel de los morfismos de la siguiente manera: si $f: X \to Y$ es una función continua, entonces es posible asignar a cada elemento $b \in C_0(Y)$ la función $f_*(b): X \to \mathbb{C}$ tal que $f_*(b) = b \circ f$; pero ocurre que, si bien $f_*(b)$ es continua, ella no necesariamente pertenece a $C_0(X)$, como desearíamos. Para verlo, basta considerar un espacio no compacto X y cualquier elemento $b \in C_0(Y)$ que no se anule en algún punto $y_0 \in Y$, y tomar $f: X \to Y$ tal que $f(x) = y_0$, $\forall x \in X$. Entonces f es continua, y $f_*(b)(x) = b \circ f(x) = b(y_0) \neq 0$; entonces $f_*(b) \notin C_0(X)$. El problema no es difícil de identificar: todo el espacio X, que no es compacto, va a través de Y sobre un conjunto compacto, $\{y_0\}$. La solución es simple: basta restringir los morfismos considerados a aquellas funciones continuas que son p r o p i a s:

Definición 1.3.25. Una función continua $f: X \to Y$ entre los espacios de Hausdorff localmente compactos X e Y es propia si $f^{-1}(K)$ es compacto en X siempre que K sea compacto en Y.

Es claro que la composición de funciones propias es también una función propia, y también que toda función continua definida en un espacio compacto también es propia.

Proposición 1.3.26. Sean X e Y espacios de Hausdorff localmente compactos, $x_0 \in X$, $y_0 \in Y$, $y \in X$ and $X \to Y$ una función continua Y propia tal que X and X and X are X and X are X and X are X and X are X are X are X are X and X are X are X and X are X are X are X are X and X are X are X and X are X are X are X are X are X and X are X are X and X are X are X and X are X are X are X and X are X are X and X are X are X are X and X are X are X are X and X are X are X are X are X and X are X are X and X are X are X and X are X are X are X and X are X are X and X are X are X are X and X are X and X are X are X and X are X are X and X are X are X are X are X and X are X and X are X and X are X are X and X are X are X and X are X and X are X are X and X are X are X and X are X and X are X are X and X are X are X and X are X and X are X are X are X and X are X are X and X are X and X are X are X and X are X and X are X and X are X and X are X are X and X

Demostración. En primer lugar obsérvese que la definición de β es correcta, pues $\alpha(x) \in Y \setminus \{y_0\}$ si $x \neq x_0$. Supongamos ahora que K es un subconjunto compacto de $Y \setminus \{y_0\}$, y por lo tanto también de Y. Entonces $\alpha^{-1}(K)$ es compacto en X, porque α es una función propia. Como hemos supuesto que la única preimagen de y_0 por α es x_0 , entonces $x_0 \notin \alpha^{-1}(K)$, de donde $\alpha^{-1}(K) = \beta^{-1}(K)$ es un subconjunto compacto de $X \setminus x_0$. Es decir, β es propia. □

En lugar de considerar la categoría \mathcal{T}'_{lch} consideraremos.

 \mathcal{T}_{lch} : espacios topológicos de Hausdorff localmente compactos y funciones continuas propias.

Proposición 1.3.27. Las correspondencias $X \mapsto C_0(X)$ y $(X \xrightarrow{f} Y) \longmapsto (C_0(Y) \xrightarrow{f_*} C_0(X))$ constituyen un functor contravariante $C_0 : \mathscr{T}_{lch} \to \mathscr{C}_c^*$.

Demostración. Una vez que mostremos que el homomorfismo $f_*: C_0(Y) \to C_0(X)$ satisface la condición (1.1), el resto de las verificaciones son de rutina y las dejamos a cargo del lector. Ahora, dado $x \in X$, por el Lema de Urysohn existe $b \in C_0(Y)$ tal que b(f(x)) = 1. Por lo tanto $f_*(b)(x) \neq 0$. □

Después de la corrección hecha en relación a los morfismos entre los espacios topológicos considerados, los problemas podrían persistir: ¿el functor $\hat{}$: $\mathcal{B}_c \to \mathcal{T}'_{lch}$ podrá co-restringirse a \mathcal{T}_{lch} ?

Proposición 1.3.28. Sean A y B álgebras de Banach, y $\phi:A\to B$ un homomorfismo que satisface (1.1).

- 1. Si $\phi': B' \to A'$ es el mapa dual de ϕ , entonces $\phi'(\widehat{B}) \subseteq \widehat{A}$.
- 2. El mapa $\widehat{\phi}:\widehat{B}\to\widehat{A}$ es una función propia.
- 3. Si ϕ es sobreyectivo, entonces $\widehat{\phi}$ es inyectivo.

Demostración. Como fue señalado en oportunidad de introducir la condición (1.1), esta es equivalente a $\phi'(\widehat{B}) \subseteq \widehat{A}$. En cuanto a la segunda afirmación, basta tener en cuenta la parte anterior y aplicar la Proposición 1.3.26 a la restricción-correstricción de ϕ' a $\widehat{B} \cup \{0\}$ y $\widehat{A} \cup \{0\}$. La última parte es consecuencia de que el mapa dual de un operador sobreyectivo siempre es inyectivo. □

Corolario 1.3.29. Las correspondencias $A \mapsto \widehat{A}$ y $(A \xrightarrow{\widehat{\phi}} B) \mapsto (\widehat{B} \xrightarrow{\phi} \widehat{A})$ constituyen un functor contravariante $\widehat{}: \mathscr{B}_c \to \mathscr{T}_{lch}$.

Las cosas lucen más simples cuando uno se restringe a álgebras de Banach con unidad y homomorfismos unitales por un lado, y a espacios compactos y funciones continuas por otro. En efecto, el espacio de Gelfand de un álgebra de Banach unital es siempre compacto, y si $\phi:A\to B$ es un homomorfismo unital, entonces el mapa transpuesto ϕ' lleva \widehat{B} dentro de \widehat{A} , pues $h_B(\phi(1))=h_B(1)=1\neq 0$, $\forall h_B\in \widehat{B}$, y como ϕ' es (w^*-w^*) -continuo, su restricción $\widehat{\phi}$ a \widehat{B} es continua. Por lo tanto pasar al espectro es un functor contravariante de la categoría \mathscr{B}_c^1 de álgebras de Banach conmutativas con unidad y los homomorfismos unitales en la categoría \mathscr{T}_{ch} de los espacios topológicos de Hausdorff compactos y las funciones continuas. Recíprocamente, la imagen del functor C_0 restringido a \mathscr{T}_{ch} está contenida en $\mathscr{C}_c^{*,1}$, la subcategoría plena de \mathscr{B}_c^1 cuyos objetos son C^* -álgebras.

Componiendo C_0 y $\widehat{\ }$ se obtienen functores $\widehat{\ } \circ C_0 : \mathscr{T}_{lch} \to \mathscr{T}_{lch}$ y $C_0 \circ \widehat{\ } : \mathscr{B}_c \to \mathscr{C}_c^*$.

Proposición 1.3.30. El functor $\widehat{\ } \circ C_0 : \mathscr{T}_{lch} \to \mathscr{T}_{lch}$ es isomorfo al functor identidad.

Demostración. Para cada $X \in Ob(\mathcal{T}_{lch})$ consideremos el homeomorfismo $\delta_X : Id(X) = X \to C_0(X)$ dado por $\delta_X(x) := \delta_X$, donde $\delta_X(a) = a(x)$, $∀a \in C_0(X)$. Si $\alpha : X \to Y$ es un morfismo en \mathcal{T}_{lch} , entonces el diagrama siguiente conmuta:

$$X \xrightarrow{\alpha} Y,$$

$$\delta_X \downarrow \cong \qquad \cong \downarrow \delta_Y$$

$$C_0(X) \xrightarrow{\widehat{(\alpha_*)}} C_0(Y)$$

En efecto, si $x \in X$ y $b \in C_0(Y)$:

$$\widehat{(\alpha_*)} \circ \delta_X(x)|_b = \widehat{(\alpha_*)} \circ \delta_x|_b = \delta_x \circ \alpha_*|_b = \delta_x(b \circ \alpha) = b(\alpha(x)) = \delta_Y(\alpha(x))|_b = \delta_Y \circ \alpha(x)|_b,$$
y por lo tanto $\widehat{(\alpha_*)} \circ \delta_X = \delta_Y \circ \alpha.$

El teorema de Gelfand-Naimark para C^* -álgebras conmutativas, que veremos en el próximo capítulo, implica que la restricción del functor C_0 $\widehat{}$ a \mathscr{C}^*_c es isomorfo al functor identidad $Id:\mathscr{C}^*_c\to\mathscr{C}^*_c$ a través de la transformada de Gelfand. Este hecho, junto con el que acabamos de probar en 1.3.30, muestran que las categorías \mathscr{C}^*_c y \mathscr{T}_{lch} son duales.

1.4. Álgebras de funciones

Definición 1.4.1. Sean X un espacio de Hausdorff localmente compacto y $A \subseteq C_0(X)$ un álgebra de Banach (la norma de A no es necesariamente la $\| \|_{\infty}$). Se dice que A es un álgebra de funciones sobre X si:

- (i) A separa puntos de X, es decir si $x_1, x_2 \in X$ son tales que $a(x_1) = a(x_2)$ para todo $a \in A$ entonces $x_1 = x_2$.
- (ii) $A(x) \neq 0$, es decir, para todo $x \in X$ existe $a \in A$ tal que $a(x) \neq 0$ (se dice entonces que A no se anula en X).

Observación 1.4.2. De acuerdo al Corolario 1.3.2, la inclusión natural $A \stackrel{\iota}{\hookrightarrow} C_0(X)$ es un homomorfismo de álgebras, y por lo tanto $\|\iota(a)\|_{\infty} \leq \|a\|$ para todo $a \in A$. Luego es $\|\cdot\|_{\infty} \leq \|\cdot\|$.

Proposición 1.4.3. Si B es un álgebra de Banach conmutativa y $A := \overline{\mathcal{G}(B)}^{\|\cdot\|_{\infty}} \subseteq C_0(\widehat{B})$, entonces A es un álgebra de funciones sobre \widehat{B} .

Demostración. En primer lugar A separa puntos de \widehat{B} : dados $h_1, h_2 \in \widehat{B}$, entonces $\widehat{b}(h_1) = \widehat{b}(h_2)$ para todo $b \in B$ si y sólo si $h_1(b) = h_2(b)$ para todo $b \in B$, es decir, si y sólo si $h_1 = h_2$. En segundo lugar A no se anula en \widehat{B} : si $h \in \widehat{B}$, entonces por definición es $h \neq 0$, de donde existe $b \in B$ tal que $h(b) \neq 0$; luego es $\widehat{b}(h) \neq 0$. □

Proposición 1.4.4. Sea A un álgebra de funciones sobre X. Para cada $x \in X$ sea $\delta_x \in \hat{A}$ tal que $\delta_x(a) = a(x)$. Entonces el mapa $\delta : X \to \widehat{A}$ tal que $x \mapsto \delta_x$ es un homeomorfismo entre X y un subconjunto cerrado de \widehat{A} .

Demostración. Efectivamente $\delta_x \in \widehat{A}$ porque $A(x) \neq 0$. El mapa δ es inyectivo: si $\delta_x = \delta_{x'}$ entonces a(x) = a(x') para todo $a \in A$, lo que implica que x = x' porque A separa puntos. Si $x_i \to x$ en X y $a \in A$ entonces $\delta_{x_i}(a) = a(x_i) \to a(x) = \delta_x(a)$ porque a es continua; por lo tanto $\delta_{x_i} \xrightarrow{\omega^*} \delta_x$, lo que muestra que δ es continua.

Supongamos que $\eta \in \widehat{A}$ es tal que existe una red $(x_i) \subset X : \delta_{x_i} \xrightarrow{\omega^*} \eta$. Sea X_∞ la compactificación de X con un punto. Entonces existen alguna subred (y_j) de (x_i) y un punto (único) $y \in X_\infty$ tal que $y_j \to y$. Por otro lado hay una inclusión natural $A \hookrightarrow \{b \in C(X_\infty) : b(\infty) = 0\}$. Teniendo en cuenta esta inclusión: $a(y) = \lim_j a(y_j) = \eta(a)$. Entonces $\eta = \delta_y$. Como $\eta \in \widehat{A}$ no se anula en todo A, entonces $y \neq \infty$. Luego es $y \in X$. Esto muestra que $\delta(X)$ es cerrado en \widehat{A} . Además se tiene que $x_i \to y$: basta ver que toda subred de (x_i) tiene una subred convergente a y, para lo cual es suficiente probar que toda subred convergente de (x_i) tiene límite y. Ahora, si (z_j) es una subred convergente de (x_i) , entonces para todo $a \in A$ es $\delta_y(a) = \eta(a) = \lim_j \delta_{z_j}(a) = \delta_{\lim_j z_j}(a)$. Entonces $y = \lim_j z_j$. Esto prueba que δ^{-1} es continua.

Ejemplo 1.4.5 (El álgebra del disco). Considérese el álgebra

$$A = \left\{ a \in C(S^1) : a \text{ admite una extensión continua y holomorfa en } \mathbb{D} \right\} \subseteq C(S^1).$$

Entonces $(A, \| \|_{\infty})$ es un álgebra de funciones sobre S^1 . Como la inclusión $a: S^1 \hookrightarrow \mathbb{C}$ pertenece a A es claro que A separa puntos y no se anula sobre S^1 . Para ver que A es de Banach, basta mostrar que A es cerrada en $C(S^1)$ con $\| \|_{\infty}$. Ahora, supongamos que $(b_n) \subset A$ converge a $b \in C(S^1)$. Si \tilde{b}_n es una extensión holomorfa 1 de b_n a \mathbb{D} , entonces (\tilde{b}_n) es de Cauchy en $C(\mathbb{D})$ por el teorema del módulo máximo; sea c su límite. Como el límite uniforme de funciones holomorfas es holomorfo, tenemos que c es holomorfa en \mathbb{D} . Como además $c|_{S^1} = b$ resulta que $b \in A$, y además que $\tilde{b} = c$. Entonces la imagen del mapa $\delta: S^1 \to \widehat{A}$ incluye a S^1 como subconjunto cerrado de \widehat{A} por la proposición anterior. Sin embargo $\widehat{A} \neq S^1$ vía esta inclusión: por ejemplo el mapa $a \mapsto \widetilde{a}(0)$ es un homomorfismo no nulo $(\widetilde{1} = 1)$. De hecho A es claramente isomorfa al álgebra del disco $A(\mathbb{D})$, y por lo tanto $\widehat{A} \cong \bar{\mathbb{D}}$.

¹Observar que, como consecuencia del principio del módulo máximo, dicha extensión es única. De hecho, si $a \in A$ entonces su extensión está dada por: $\tilde{a}(z) = \frac{1}{2\pi i} \int_{S^1} \frac{a(w)}{w-z} dw$, $\forall z \in \mathbb{D}$.

Ejemplo 1.4.6. Teorema de Wiener

"Si $a: S^1 \to \mathbb{C}$ continua tiene serie de Fourier absolutamente convergente y no se anula, entonces $\frac{1}{a}$ también tiene serie de Fourier absolutamente convergente". Recordemos que el álgebra de Wiener es

$$\mathcal{W}(S^1) = \left\{ a: S^1 \to \mathbb{C}: \ a(z) = \sum_{n \in \mathbb{Z}} a_n z^n, \ \text{con} \ \sum_n |a_n| < \infty \right\},\,$$

con la norma $||a|| = \sum_{n \in \mathbb{Z}} |a_n|$. $\mathcal{W}(S^1)$ es un álgebra de funciones sobre S^1 y $\mathcal{W}(S^1) \cong l^1(\mathbb{Z})$. De acuerdo a la Proposición 1.4.4, el mapa $\delta : S^1 \to \widehat{\mathcal{W}(S^1)}$, dado por $z \mapsto \delta_z$, es un homeomorfismo sobre un subconjunto cerrado de $\widehat{\mathcal{W}(S^1)}$.

Para cada $k \in \mathbb{Z}$, sea $e_k : S^1 \to \mathbb{C}$ dado por $e_k(z) = z^k$. Entonces $e_k = e_1^k \in \mathcal{W}(S^1)$, para todo $k \in \mathbb{Z}$ y $\mathcal{W}(S^1) = \overline{\operatorname{span}}\{e_k : k \in \mathbb{Z}\}$. Entonces $\mathcal{W}(S^1)$ está generado por e_1 y $e_{-1} = e_1^{-1}$ como álgebra de Banach. Por lo tanto la Proposición 1.3.24 implica que el mapa evaluación $\operatorname{ev}_{e_1} : \widehat{\mathcal{W}(S^1)} \to \sigma(e_1)$ es un homeomorfismo. Por otra parte:

- 1. $\sigma(e_k) \subseteq \overline{D(0, ||e_k||)} = \overline{\mathbb{D}}$.
- 2. $e_{-1} = e_1^{-1}$. Entonces $\sigma(e_{-1}) = \sigma(e_1)^{-1}$, lo que implica que $\sigma(e_1) \subset \bar{\mathbb{D}} \cap (\mathbb{C} \setminus \mathbb{D}) = S^1$. Entonces $\sigma(e_1) \subseteq S^1$ y como es obvio que $S^1 \subseteq \sigma(e_1)$, entonces $\sigma(e_1) = S^1$. Por lo tanto el diagrama siguiente conmuta:

$$S^1 \xrightarrow{id} S^1 = \sigma(e_1),$$
 pues $z = \delta_z(e_1)$

$$W(S^1)$$

Esto muestra que δ es un homeomorfismo; en particular $\widehat{W(S^1)} = \delta(S^1)$.

Finalmente si $a \in \mathcal{W}(S^1)$ es tal que $a(z) \neq 0$ para todo $z \in S^1$, entonces

$$\sigma(a)=\{h(a):\ h\in\widehat{\mathcal{W}(S^1)}\}=\{a(z):\ z\in S^1\}\not\ni 0.$$

Entonces $a \in \text{Inv}(\mathcal{W}(S^1))$, es decir $\frac{1}{a} \in \mathcal{W}(S^1)$.

Notar que, como $\ell^1(\mathbb{Z}) \cong W(S^1)$, entonces $\widehat{\ell^1(\mathbb{Z})} = S^1$, es decir, el espectro de $\ell^1(\mathbb{Z})$ se identifica con S^1 , el *grupo dual de* \mathbb{Z} . Esto es parte de un hecho más general.