Lista 3 de ejercicios

- 1. Sea A una C^* -álgebra. Si $a \in A$, se define $|a| := \sqrt{a^*a}$.
 - a) Sea $a \in A_{sa}$. Probar que $|a| = a_+ + a_-$.
 - b) Sean $a, b \in A_{sa}$ tales que ab = ba y $a \le b$. Probar que, si $f : \mathbb{R} \to \mathbb{R}$ es una función continua y creciente, se tiene que $f(a) \le f(b)$.
 - c) Mostrar que es posible $0 \le a \le b$ pero $a^2 \not\le b^2$ (buscar en $A = M_2(\mathbb{C})$).
 - d) Sean $a, b \in A^+$. Probar que $||a|| \le ||a+b||$.
- 2. Sean A una C^* -álgebra con unidad, $A_{\rm nor}$ el conjunto de elementos normales de A, y \mathscr{F} el espacio de funciones continuas de \mathbb{C} en \mathbb{C} con la topología de la convergencia uniforme sobre subconjuntos compactos de \mathbb{C} . Probar que la función $\langle , \rangle : \mathscr{F} \times A_{\rm nor} \to A_{\rm nor}$ dada por $\langle f, a \rangle = f(a)$ es continua.
- 3. Sea A una C^* -álgebra con unidad. Probar que:
 - a) Si $a, b \in A^+$ se tiene que $\sigma(ab) \subset \{x \in \mathbb{R} : x \ge 0\}$.
 - b) Si $a \in \text{Inv}(A)$ existe un único unitario $u \in A$ tal que a = u|a|. Dar un ejemplo de un elemento de una C^* -álgebra que no pueda escribirse como el producto de un unitario por un operador positivo.
 - c) Si $a \in \text{Inv}(A)$, probar que a es unitario si y sólo si $||a|| = ||a^{-1}|| = 1$.
- 4. Sean A y B C*-álgebras y $\phi: A \to B$ un *-homomorfismo sobreyectivo.
 - a) Probar que si $b \in B_{sa}$ existe $a \in A_{sa}$ tal que $\phi(a) = b$.
 - b) Probar que si $b \in B^+$ existe $a \in A^+$ tal que $\phi(a) = b$.
 - c) Si además A y B tienen unidad, probar o dar un contraejemplo: si $b \in B_{\text{sa}}$ es invertible existe $a \in A_{\text{sa}}$, invertible, tal que $\phi(a) = b$.
- 5. Sea \mathcal{H} un espacio de Hilbert separable, y sea $\mathsf{K}(\mathcal{H}) := \{T \in \mathsf{B}(\mathcal{H}) : T \text{ es compacto}\}$. Probar que si $I \neq 0$ es un ideal (cerrado o no) de $\mathsf{B}(\mathcal{H})$, entonces I contiene a todos los operadores de rango 1. Deducir que: $\mathsf{K}(\mathcal{H})$ es el único ideal cerrado no trivial de $\mathsf{B}(\mathcal{H})$, y por lo tanto esencial en $\mathsf{B}(\mathcal{H})$, y deducir que $\mathsf{K}(\mathcal{H})$ es simple
- 6. Sea X un espacio de Hausdorff localmente compacto, Se considera la C*-álgebra $A := C(X, M_2)$, donde $||a|| := \sup_{x \in X} ||a(x)||_{M_2}$. Hallar todos los ideales cerrados y las C*-subálgebras hereditarias de A.

- 7. Sean $*: \mathsf{B}(\mathcal{H}) \to \mathsf{B}(\mathcal{H})$ la adjunción y, fijado $T \in \mathsf{B}(\mathcal{H})$, sea $L_T : \mathsf{B}(\mathcal{H}) \to \mathsf{B}(\mathcal{H})$ tal que $L_T(S) := TS$.
 - a) * no es SOT continua (considerar el shift unilateral), pero sí lo es restringida a $\mathsf{B}(\mathcal{H})_{\mathrm{nor}}$.
 - b) * es WOT continua.
 - c) L_T es WOT y SOT continua.
 - d) La multiplicación $\mathsf{B}(\mathcal{H}) \times \mathsf{B}(\mathcal{H}) \to \mathsf{B}(\mathcal{H})$ no es WOT ni SOT continua.
- 8. Sean E un espacio normado, E^{**} su bidual, y $\phi: E \to \mathsf{B}(\mathcal{H})$ un operador acotado, donde H es un espacio de Hilbert. Probar que existe un único operador acotado $\tilde{\phi}: E^{**} \to \mathsf{B}(\mathcal{H})$ tal que $\tilde{\phi}$ es $(w^* WOT)$ -continuo y $\phi = \tilde{\phi}J$, donde $J: E \to E^{**}$ es el mapa canónico: $J_x(\psi) = \psi(x), \ \forall x \in E, \ \psi \in E^*$ (sugerencia: para cada $\Lambda \in E^{**}$ considerar el mapa $\mathcal{H} \times \mathcal{H} \to \mathbb{C}$ dado por $(\xi, \eta) \mapsto \phi^{**}(\Lambda)|_{w_{\xi,\eta}}$, donde $w_{\xi,\eta}: \mathsf{B}(\mathcal{H}) \to \mathbb{C}$ está dado por $w_{\xi,\eta}(T) = \langle T\xi, \eta \rangle$).

Para la aprobación del curso entregar al menos los Ejercicios 4 y 8 Fecha límite: lunes 25 de mayo.