- Repaso
 - Cono positivo de una C*-álgebra

Unidades aproximadas

- Ideales y cocientes
 - Ideales en C*-álgebras conmutativas.

Cono positivo de una C*-álgebra

Definición

Sean A una C*-álgebra y $a \in A$. Se dice que a es positivo $(a \in A_+)$ si a es autoadjunto y $\sigma(a) \subseteq [0, \infty)$.

Teorema

Sea $a \in A$ un elemento positivo. Entonces existe un único $b \in A_+$ tal que $b^2 = a$.

Teorema

 A_+ es un cono cerrado en A.

Definición

Sean $a, b \in A$. Se dice que $a \le b$ (o $b \ge a$) si $b - a \in A_+$. Esta relación es un orden parcial en A. En general este orden se considera sólo sobre A_{sa} .

Proposición

Sea $a \in A_{sa}$. Entonces existen únicos $a_+, a_- \in A_+$ tales que $a = a_+ - a_-$ y $a_+ a_- = 0 = a_- a_+$ (notar que $aa_- = -a_-^2 = a_- a_+$, $aa_+ = a_+^2 = a_+ a_-$).

Teorema

Si $a \in A$ entonces $a^*a \in A_+$.

Teorema

Sea A una C*-álgebra. Entonces

- (a) $A_+ = \{a^*a : a \in A\}.$
- (b) Si $a, b, c \in A$ y $a \le b$. Entonces $c^*ac \le c^*bc$.
- (c) Si $0 \le a \le b$, entonces $||a|| \le ||b||$.
- (d) $Si \ 1 \in A \ y \ 0 \le a \le b \ con \ a \in Inv(A)$, entonces $b \in Inv(A) \ y \ 0 < b^{-1} < a^{-1}$.

Demostración.

- (a) Ya lo vimos.
- (b) Como $a \le b$, existe $d \in A$ tal que $b a = d^*d \in A_+$. Entonces $c^*bc c^*ac = c^*(b a)c = c^*d^*dc = (dc)^*dc \in A_+$.
- (c) Podemos suponer que $1 \in A$. Entonces $\|b\| b \in A_{sa}$ y $\sigma(\|b\| b) = \|b\| \sigma(b) \subseteq [0, \|b\|]$. Luego $\|b\| b \in A_+$ y por lo tanto $b \le \|b\|$. Entonces se tiene que $a \le b \le \|b\|$, de manera que $\sigma(a) \subseteq [0, \|b\|]$. Sigue de esto que $\|a\| = r(a) \le \|b\|$, y por lo tanto $\|a\| \le \|b\|$.

(d) Si $a \in Inv(A) \cap A_+$, entonces $a^{-1} \in A_+$ porque es autoadjunto y $\sigma(a^{-1}) = \{\frac{1}{\lambda} : \lambda \in \sigma(a)\}$. Como $a \leq b$ se tiene

$$1 = a^{-\frac{1}{2}}aa^{-\frac{1}{2}} \le a^{-\frac{1}{2}}ba^{-\frac{1}{2}}.$$

Entonces $1 \le a^{-\frac{1}{2}}ba^{-\frac{1}{2}}$. Luego $a^{-\frac{1}{2}}ba^{-\frac{1}{2}} \in Inv(A)$, y $b \in Inv(A)$. Por otro lado, si $1 \le c$, se tiene

$$c^{-1} = c^{-\frac{1}{2}} 1 c^{-\frac{1}{2}} \le c^{-\frac{1}{2}} c c^{-\frac{1}{2}} = 1,$$

así que $c^{-1} \le 1$. Entonces $(a^{-\frac{1}{2}}ba^{-\frac{1}{2}})^{-1} \le 1$, es decir $a^{\frac{1}{2}}b^{-1}a^{\frac{1}{2}} \le 1$. Luego $a^{-\frac{1}{2}}a^{\frac{1}{2}}b^{-1}a^{\frac{1}{2}}a^{-\frac{1}{2}} \le a^{-\frac{1}{2}}1a^{-\frac{1}{2}}$, y por lo tanto $b^{-1} \le a^{-1}$.

Unidades aproximadas

Definición

Sea A un álgebra de Banach. Se dice que una red $(u_{\lambda})_{\lambda \in \lambda} \subseteq A$ es una unidad aproximada para A si $\lim_{\lambda} u_{\lambda} a = a = \lim_{\lambda} au_{\lambda}$, para todo $a \in A$ (en general se pide también que $(u_{\lambda})_{\lambda \in \Lambda}$ esté acotado).

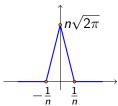
Definición

Si A es una C^* -álgebra, se dice que una red $(u_{\lambda})_{{\lambda}\in\Lambda}$ es una unidad aproximada para A si:

- (a) $u_{\lambda} \in A_{+} \ y \|u_{\lambda}\| \leq 1$, para todo $\lambda \in \Lambda$.
- (b) Si $\lambda \leq \lambda'$, entonces $u_{\lambda} \leq u_{\lambda'}$.
- (c) $\lim_{\lambda} u_{\lambda} a = a = \lim_{\lambda} a u_{\lambda}, \forall a \in A.$

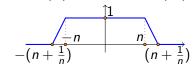
Ejemplos

(1) Sea $A = L_1(\mathbb{R})$ con $||a||_1 = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |a(t)| dt$. Sea u_n dada por:



Entonces $||u_n||_1 = 1$ y $(u_n)_{n \ge 1}$ es una unidad aproximada para la *-álgebra de Banach $L^1(\mathbb{R})$.

(2) En $C_0(\mathbb{R})$, consideremos (u_n) dada por:



Entonces $||u_n|| - 1$, $u_n \ge 0$ Entonces $||u_n|| = 1$, $u_n \ge 0$, y

- (3) Sea K el espacio de operadores compactos sobre un espacio de Hilbert \mathcal{H} . Consideremos $\mathcal{F}:=\{F\leq \mathcal{H}: \dim F<\infty\}$ con el orden natural. Definimos $u_F:=$ proyección ortogonal de \mathcal{H} sobre F. Veamos que $(u_F)_{F\in\mathcal{F}}$ es una unidad aproximada para K.
 - (a) $u_F = u_F^*, u_F \in K_+$. Además $||u_F|| = 1$ si $F \neq 0$.
 - (b) Si $F_1 \leq F_2$ entonces $u_{F_2} u_{F_1} = u_{F_2 \oplus F_1} \in \mathsf{K}_+ \ (F_2 \oplus F_1 := F_2 \cap F_1^\perp)$
 - (c) Se tiene $\lim_{E} u_{F}(\xi) = \xi$ para todo $\xi \in \mathcal{H}$. Supongamos que $a \in K$. Entonces $a(\overline{B}(0,1))$ es totalmente acotado. Dado $\varepsilon > 0$ tomemos una ε -red $\{\eta_{1},\ldots,\eta_{n}\}$ en $a(\overline{B}(0,1))$, y sea $F_{\varepsilon} := span\{\eta_{1},\ldots,\eta_{n}\}$. Entonces $u_{F}(\eta_{j}) = \eta_{j}$ si $F \supseteq F_{\varepsilon}$ y $j = 1,\ldots,n$. Dado $\xi \in \overline{B}(0,1)$, sea η_{j} tal que $\|a(\xi) \eta_{j}\| < \varepsilon$. Entonces si $F \supseteq F_{\varepsilon}$:

$$||(u_F a - a)\xi|| = ||u_F a(\xi) - a(\xi)|| \le ||u_F a(\xi) - \eta_j|| + ||\eta_j - a(\xi)||$$

$$\le ||u_F|||a(\xi) - \eta_j|| + ||\eta_j - a(\xi)|| < 2\varepsilon,$$

de donde $||u_Fa-a|| < \varepsilon$ para todo $F \ge F_\varepsilon$. Luego $u_Fa \to a$ en K, y también $u_Fa^* \to a^*$ en K. Entonces $(u_Fa^*)^* \to (a^*)^*$, es decir $au_F \to a$. Nótese que la demostración anterior prueba que la *-álgebra F de los operadores de rango finito es densa en K.

(4) Sea $b \in A_+$, $b \neq 0$, y sea $C^*(b)$ la C^* -álgebra generada por b en A. Si $f:[0,\infty) \to [0,1)$ está dada por $f(t) = \frac{t}{1+t}$, definamos $b_n := f(nb)$. Entonces (b_n) es una unidad aproximada para $C^*(b)$. Para verlo basta mostrar que $\|bb_n - b\| \to_n 0$, porque b es un generador. Ahora: $bb_n - b = g_n(b)$, donde $g_n(t) = tf(nt) - t$, o sea $g_n(t) = t\frac{nt}{1+nt} - t = t(-\frac{1}{1+nt}) = -\frac{t}{1+nt}$. Entonces

$$\|bb_n - b\| = \|g_n(b)\| = r(g_n(b)) = \max_{t \in \sigma(b)} \frac{t}{1 + nt} = \frac{r(b)}{1 + nr(b)} \to_n 0.$$

Teorema

Toda C^* -álgebra A posee una unidad aproximada. Más precisamente, sean $\Lambda=B(0,1)\cap A_+$, y B una *-subálgebra densa en A tal que

- (1) $b(1+b)^{-1} \in B \ \forall b \in B \cap A_+$.
- (2) $b(1-b)^{-1} \in B \ \forall b \cap B \cap \Lambda$.

Sea $(u_{\lambda})_{\lambda \in B \cap \Lambda}$ tal que $u_{\lambda} = \lambda$ para todo $\lambda \in B \cap \Lambda$.

Entonces $(u_{\lambda})_{\lambda \in B \cap \Lambda}$ es una unidad aproximada para A.

<u>Demostración.</u> Sea $f:[0,\infty) \to [0,1)$ dada por $f(t) = \frac{t}{1+t}$. La función f es una biyección con inversa $g:[0,1) \to [0,\infty)$ dada por $g(s) = \frac{s}{1-s}$. Es claro que $f(A_+) \subseteq \Lambda$, y $g(\Lambda) \subseteq A_+$, y como f y g son inversas entre sí, se deduce que $f(A_+) = \Lambda$, y $g(\Lambda) = A_+$. Por (1) y (2) es $f(B \cap A_+) \subseteq B \cap \Lambda$ y $g(B \cap \Lambda) \subseteq B \cap A_+$; luego $f(B \cap A_+) = B \cap \Lambda$ y $g(B \cap \Lambda) = B \cap A_+$.

Afirmación 1: El mapa $B \cap A_+ \setminus \{0\} \to B \cap \Lambda \setminus \{0\}$ tal que $a \mapsto f(a)$ es una biyección con inversa $B \cap \Lambda \setminus \{0\} \to B \cap A_+ \setminus \{0\}$ tal que $a \mapsto g(a)$, y tanto f como g preservan el orden.

Veamos que f preserva el orden.

- Si $a \ge 0$ entonces $1 + a \in Inv(\tilde{A})$ es invertible, pues $1 \le 1 + a$.
- Si $a_1 \leq a_2$, entonces $1 + a_1 \leq 1 + a_2$ en \ddot{A} , de donde $(1 + a_1)^{-1} \geq (1 + a_2)^{-1}$, y entonces $(1 + a_1)^{-1} 1 \geq (1 + a_2)^{-1} 1$, y por lo tanto $1 (1 + a_2)^{-1} \geq 1 (1 + a_1)^{-1}$.
- Luego $((1+a_2)-1)(1+a_2)^{-1} \ge ((1+a_1)-1)(1+a_1)^{-1}$, de modo que $a_2(1+a_2)^{-1} \ge a_1(1+a_1)^{-1}$. Es decir que $f(a_2) \ge f(a_1)$.

De manera análoga se ve que g preserva el orden. Como g es la inversa de f, la afirmación queda probada.

Como $B \cap A_+ \setminus \{0\}$ es un conjunto dirigido, se deduce que $B \cap \Lambda \setminus \{0\}$ también lo es. Concretamente, dados $b_1, b_2 \in B \cap \Lambda \setminus \{0\}$, sea $d := f(g(b_1) + g(b_2))$. Entonces $d \in B \cap \Lambda \setminus \{0\}$, y $d \ge b_1$, $d \ge b_2$.

Afirmación 2: $(u_{\lambda})_{\lambda \in \Lambda \cap B}$ es una unidad aproximada para A.

Es claro por construcción que $(u_{\lambda})_{\lambda\in\Lambda\cap B}$ satisface las propiedades (a) y (b) que definen las unidades aproximadas. Para ver que también satisface la propiedad (c), notar que basta probar que $u_{\lambda}a \to a \ \forall a \in A_+$, pues esto implica también que $au_{\lambda} \to a \ \forall a \in A_+$, y además A está generada linealmente por A_+ .

Por otro lado, como $\overline{B}=A$, se tiene $\overline{B\cap A_+}=A_+$, y por lo tanto basta probar que $u_\lambda b\to b$ para todo $b\in B\cap A_+$. Ahora, dado $b\in B\cap A_+$, sean $C^*(b)$ y (b_n) como en el Ejemplo (4), es decir que $b_n=f(nb)\in B\cap \Lambda$. Dado $\varepsilon>0$, sea n_ε tal que $\|bb_n-b\|<\varepsilon\ \forall n\geq n_\varepsilon$, y supongamos que $\lambda\in B\cap \Lambda$ es tal que $\lambda\geq b_{n_\varepsilon}$. Entonces:

$$||b - bu_{\lambda}||^{2} = ||b(1 - u_{\lambda})||^{2} = ||b(1 - u_{\lambda})^{\frac{1}{2}}(1 - u_{\lambda})^{\frac{1}{2}}||^{2} \le ||b(1 - u_{\lambda})^{\frac{1}{2}}||^{2},$$

porque $\sigma((1-u_{\lambda})^{\frac{1}{2}})\subseteq [0,1]$. Entonces

$$||b-bu_{\lambda}||^{2} \leq ||b((1-u_{\lambda})^{\frac{1}{2}})(b(1-u_{\lambda})^{\frac{1}{2}})^{*}|| = ||b(1-u_{\lambda})b||.$$

Como $b_{n_{arepsilon}} \leq u_{\lambda}$ se tiene $1-u_{\lambda} \leq 1-b_{n_{arepsilon}}$, y por lo tanto

$$a(1-u_{\lambda})a^* \leq a(1-b_{n_{\varepsilon}})a^*$$
, para todo $a \in A$.

En particular $b(1-u_{\lambda})b \leq b(1-b_{n_{\varepsilon}})b$. Entonces

$$||b(1-u_{\lambda})b|| \leq ||b(1-b_{n_{\varepsilon}})b|| \leq ||b|| ||b-b_{n_{\varepsilon}}b|| \leq ||b||\varepsilon.$$

Luego lím $_{\lambda}$ $bu_{\lambda}=b$, y la demostración está completa.

Proposición

Si A es una C*-álgebra separable, existe $(u_n)_{n\geq 1}$ tal que (u_n) es una unidad aproximada para A.

Demostración.

Sean $\{a_n\}_{n\geq 1}$ denso en A y $(v_\lambda)_{\lambda\in\Lambda}$ una unidad aproximada para A. Sea $\lambda_1\in\Lambda$ tal que $\|a_1v_{\lambda_1}-a_1\|<1$. Construidos $\lambda_1,\ldots,\lambda_n$, sea $\lambda_{n+1}\geq\lambda_1,\ldots,\lambda_n$ tal que $\|a_jv_{\lambda_{n+1}}-a_j\|<\frac{1}{n+1}$ para todo $j=1,\ldots,n+1$. Entonces, tomando $u_n:=v_{\lambda_n}$, la sucesión $(u_n)_{n\geq 1}$ es una unidad aproximada para A.

Ideales y cocientes

Proposición

Si I es un *-ideal denso en A, entonces A tiene una unidad aproximada contenida en I.

Demostrac<u>ión.</u>

Se verifica directamente que I un *-ideal en \tilde{A} . Luego $x(1+x)^{-1} \in I$ para todo $x \in I \cap A_+$, y $x(1-x)^{-1} \in I$ para todo $x \in I \cap A_+$ tal que $\|x\| < 1$, y entonces el resultado sigue del teorema anterior.

Proposición

Si L es un ideal izquierdo en una C^* -álgebra A (no necesariamente cerrado), entonces L contiene una red $(u_{\lambda}) \subseteq L$, creciente y contenida en $\Lambda = A_+ \cap B(0,1)$, tal que lím $_{\lambda}$ au $_{\lambda} = a$ para todo $a \in L$.

Demostración. Es claro que $L \cap L^*$ es una *-subálgebra de A, densa en la C^* -álgebra $C := \overline{L \cap L^*}$. Se verifica directamente que L y L^* son ideales izquierdo y derecho respectivamente en \tilde{A} , de modo que si $b \in L \cap L^* \cap C_+$ entonces $b(1+b)^{-1} \in L \cap L^*$, y si $b \in L \cap L^* \cap C_+$ y $\|b\| < 1$, entonces $b(1-b)^{-1} \in L \cap L^*$ (ver la demostración de la proposición anterior). Por lo tanto existe una unidad aproximada (u_λ) de C contenida en $L \cap L^*$. Ahora si $a \in L$ se tiene:

$$||au_{\lambda} - a||^{2} = ||(au_{\lambda} - a)^{*}(au_{\lambda} - a)|| = ||u_{\lambda}a^{*}au_{\lambda} - u_{\lambda}a^{*}a - a^{*}au_{\lambda} + a^{*}a||$$

$$\leq ||u_{\lambda}|| ||a^{*}au_{\lambda} - a^{*}a|| + ||a^{*}au_{\lambda} - a^{*}a|| \leq 2||a^{*}au_{\lambda} - a^{*}a|| \to_{\lambda} 0,$$

porque (u_{λ}) es una unidad aproximada y $a^*a \in L \cap L^*$.

Teorema (Segal, 1949)

Sea J un ideal bilateral cerrado en la C^* -álgebra A. Entonces $J=J^*$.

Demostración. Sea $(u_{\lambda}) \subseteq J$ como en la Proposición previa, y sea $a \in J$. Entonces $\lim_{\lambda} au_{\lambda} = a$. Tomando el adjunto tenemos que $\lim_{\lambda} u_{\lambda}a^* = a^*$. Como $u_{\lambda}a^* \in J$ porque $u_{\lambda} \in J$, y como J es cerrado, se concluye que $a^* \in J$.

Lema

Sean L un ideal izquierdo cerrado en A, y (u_{λ}) una red como en la Proposición anterior. Entonces para todo $a \in A$ se tiene

$$d(a,L)=\inf\{\|a-x\|:\ x\in L\}=\lim_{\lambda}\|a-au_{\lambda}\|.$$

Demostración.

Es claro que $\alpha=\inf\{\|a-x\|: x\in L\}\leq \underline{\lim}\|a-au_{\lambda}\|$, pues $au_{\lambda}\in L$, $\forall \lambda$. Dado $\varepsilon>0$ sea $x\in L$ tal que $\|a-x\|<\alpha+\frac{\varepsilon}{2}$, y sea λ_0 tal que $\|x-xu_{\lambda}\|<\frac{\varepsilon}{2}$ para todo $\lambda\geq\lambda_0$. Como $\|u_{\lambda}\|<1$ y $u_{\lambda}\geq0$, se tiene $\sigma(u_{\lambda})\subseteq[0,1]$ y $\sigma(1-u_{\lambda})\subseteq[0,1]$. Luego $\|1-u_{\lambda}\|\leq1$. Entonces

$$||a - au_{\lambda}|| = ||a - x + x - xu_{\lambda} + xu_{\lambda} - au_{\lambda}||$$

$$\leq \|(a-x)-(a-x)u_{\lambda}\| + \|x-xu_{\lambda}\| \leq \|a-x\|\|1-u_{\lambda}\| + \frac{\varepsilon}{2}.$$

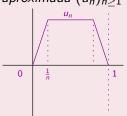
Por lo tanto $||a - au_{\lambda}|| < \alpha + \varepsilon$ para todo $\lambda \ge \lambda_0$, y entonces

$$\alpha \leq \underline{\mathsf{lim}} \| \mathbf{a} - \mathbf{a} \mathbf{u}_{\lambda} \| \leq \overline{\mathsf{lim}} \| \mathbf{a} - \mathbf{a} \mathbf{u}_{\lambda} \| \leq \alpha + \varepsilon,$$

para todo $\varepsilon > 0$. En consecuencia $\alpha = \lim |a - au_{\lambda}|$.

Ejemplo

Sean A = C[0,1] y $L = C_0(0,1)$. Entonces $L \triangleleft A$. Consideremos la unidad aproximada $(u_n)_{n\geq 1}$ del ideal L dada por:



Si $a \in A$, se tiene

$$\lim_{n} au_{n}(t) = \begin{cases} 0 & \text{si } t = 0, 1 \\ a(t) & \text{si } t \in (0, 1). \end{cases}$$

Entonces $||a - au_{\lambda}||$ converge pero au_{λ} no.

Corolario

- (a) Si $I \triangleleft J \triangleleft A$, con I, J cerrados, entonces $I \triangleleft A$.
- (b) Si $I, J \triangleleft A$ cerrados, entonces $I \cap J = \overline{IJ}$ (es posible probar que, de hecho, es $IJ = \overline{IJ}$).

Demostración.

(a) Sean $a \in A$, $x \in I$, y sea (u_{λ}) una unidad aproximada de J. Entonces

$$ax = \lim_{\lambda} u_{\lambda}(ax) = \lim_{\lambda} (u_{\lambda}a)x \in I,$$

porque $u_{\lambda}a \in J$ y $x \in I$. Como I es cerrado, se tiene que $ax \in I$.

(b) Claramente $IJ \subset I \cap J$. Como $I \cap J$ es cerrado se tiene $\overline{IJ} \subset I \cap J$. Sean ahora $x \in I \cap J$, y (u_{λ}) una unidad aproximada de $I \cap J$. Entonces

$$x=\lim_{\lambda}xu_{\lambda}\in\overline{IJ},$$

porque $x \in I$ y $u_{\lambda} \in J$. Entonces $I \cap J \subseteq \overline{IJ}$.

Teorema (Segal, 1949)

Si $I \triangleleft A$, cerrado. Entonces $\frac{A}{I}$ es una C^* -álgebra (con la norma cociente).

Demostración.

Ya sabemos que $\frac{A}{I}$ es una *-álgebra de Banach. Sólo falta mostrar que $\|a+I\|^2 = \|(a+I)^*(a+I)\|$ para todo $a \in A$. De hecho es suficiente probar que $\|a+I\|^2 \le \|(a+I)^*(a+I)\|$, porque la otra desigualdad es inmediata $(\|(a+I)^*(a+I)\| \le \|(a+I)^*\| \|a+I\| = \|a+I\|^2)$. Sea (u_λ) una unidad aproximada para I. Vimos que $\|a+I\|^2 = \lim_{n \to \infty} \|a-au_\lambda\|^2$. Ahora:

$$||a - au_{\lambda}||^{2} = ||(a - au_{\lambda})^{*}(a - au_{\lambda})|| = ||(1 - u_{\lambda})a^{*}a(1 - u_{\lambda})||$$

$$\leq ||1 - u_{\lambda}|| ||a^{*}a - a^{*}au_{\lambda}|| \leq ||a^{*}a - a^{*}au_{\lambda}||.$$

Entonces:

$$\|a+I\|^2 = \lim_{\lambda} \|a-au_{\lambda}\|^2 \leq \lim_{\lambda} \|a^*a-a^*au_{\lambda}\| = \|a^*a+I\| = \|(a+I)^*(a+I)\|.$$

Teorema

Sea $\phi:A\to B$ un homomorfismo entre las C^* -álgebras A y B. Entonces $\phi(A)$ es cerrado en B, y por lo tanto es una C^* -álgebra. Además existe un único homomorfismo $\widetilde{\phi}:\frac{A}{\ker\phi}\to B$ tal que el siguiente diagrama conmuta:

El mapa ϕ es un homomorfismo isométrico de C^* -álgebras.

Demostración.

La existencia, unicidad e inyectividad del mapa $\widetilde{\phi}$ sigue del resultado análogo para álgebras. Además, como ker ϕ es un ideal cerrado de A, se tiene que $\frac{A}{\ker \phi}$ es una C^* -álgebra. Entonces $\widetilde{\phi}$ es isométrico, pues es inyectivo. Luego $\widetilde{\phi}\left(\frac{A}{\ker \phi}\right) = \widetilde{\phi} \circ \pi(A) = \phi(A)$ es cerrado en B.

Proposición

Sean A una C^* -álgebra, $I \triangleleft A$ (cerrado) y B una C^* -subálgebra de A. Entonces B+I es cerrado en A (y por lo tanto C^* -álgebra). Además

$$\frac{B}{B\cap I}\cong \frac{B+I}{I}.$$

Demostración.

Sea $\phi: B \to A/I$ dado por la conmutatividad del diagrama que sigue:

 $B \xrightarrow{\text{inc}} A \\ \downarrow^{\pi} \\ \downarrow^{\pi} \\ \frac{A}{A}$

Como π es un homomorfismo, $\pi(B)$ debe ser cerrado, y por lo tanto $B+I=\pi^{-1}(\pi(B))$ también es cerrado. Por otro lado, ker $\phi=B\cap I$, y por lo tanto

$$\frac{B}{B \cap I} \cong \phi(B) = \pi(B) = \frac{\pi^{-1}(\pi(B))}{I} = \frac{B+I}{I}.$$

Sea $A=C_0(X)$, donde X es un espacio de Hausdorff localmente compacto. Sean τ la topología de X, e indiquemos por $\mathcal{I}(A)=\{I:\ I\lhd A\}$ el reticulado de ideales de A. Si $V\in \tau$, podemos identificar la C^* -álgebra $C_0(V)$ con el ideal $I_V:=\{a\in A:\ a(x)=0\ \text{si}\ x\notin V\}$. Recíprocamente, si $I\lhd A$, entonces el conjunto $V^I:=\{x\in X:\ \exists a\in I:a(x)\neq 0\}$ es obviamente abierto.

Teorema

Los mapas $\mathcal{I}(A) \longrightarrow \tau$ y $\tau \longrightarrow \mathcal{I}(A)$ son mutuamente inversos, y $I \longmapsto V^I$ $V \longmapsto I_V$ son isomorfismos de reticulados.

<u>Demostración.</u> Supongamos que U y V son elementos de τ , con $V \setminus U \neq \emptyset$. Si $x \in V \setminus U$, entonces existe $a \in A$ tal que a(x) = 1, a(y) = 0 si $y \notin V$. Entonces $a \in I_V \setminus I_U$, lo que muestra que el mapa $V \mapsto I_V$ es inyectivo. También preserva el orden, pues si $U \subseteq V$, entonces claramente $I_U \subseteq I_V$.

Supongamos que $I \lhd A$, y sea $J := I_{V^I} \cong C_0(V^I)$. Si $a \in I$ y $x \notin V^I$, entonces a(x) = 0, y por lo tanto $a \in I_{V^I}$. Ahora, I visto dentro de $C_0(V^I)$ es una subálgebra autoadjunta, cerrada y que no se anula en V^I . Sean $x,y \in V^I$, y sea $a \in I$ tal que $a(x) \neq 0$. Según el lema de Urysohn existe $b \in A$ tal que b(x) = 1, b(y) = 0. Pero entonces $c = ab \in I$, $c(x) \neq 0 = c(y)$, y por lo tanto I separa puntos de V^I . Entonces $I = I_{V^I}$ por el teorema de Stone-Weierstrass. Por lo tanto el mapa $V \mapsto I_V$ es una biyección que preserva el orden, y cuyo inverso es $I \mapsto V^I$, que claramente preserva el orden también. Finalmente, obsérvese que si $V \in \tau$, entonces

$$\frac{C_0(X)}{C_0(V)}\cong C_0(X\backslash V).$$

En efecto, basta notar que la restricción $\phi: C_0(X) \to C_0(X \setminus V)$, dada por $a \mapsto a_{|_{X \setminus V}}$, ϕ es un homomorfismo sobreyectivo cuyo núcleo es $C_0(V)$. Luego podemos pensar los cerrados de X como los cocientes de $C_0(X)$.