- Repaso y complementos
 - Álgebras de funciones
 - Functorialidad, I

- Repaso y complementos
 - Álgebras de funciones
 - Functorialidad, I

2 C*-álgebras

Proposición

Sean A un álgebra de Banach conmutativa con unidad y $a \in A$ tal que A está generada por 1 y a, es decir: $A = \{p(a) : p \in \mathbb{C}[X]\}$. Entonces:

Proposición

Sean A un álgebra de Banach conmutativa con unidad y $a \in A$ tal que A está generada por 1 y a, es decir: $A = \{p(a) : p \in \mathbb{C}[X]\}$. Entonces:

• $ev_a: \widehat{A} \to \sigma(a)$ dada $ev_a(h) = h(a)$ es un homeomorfismo.

Proposición

Sean A un álgebra de Banach conmutativa con unidad y $a \in A$ tal que A está generada por 1 y a, es decir: $A = \{p(a) : p \in \mathbb{C}[X]\}$. Entonces:

- $ev_a: \widehat{A} \to \sigma(a)$ dada $ev_a(h) = h(a)$ es un homeomorfismo.
- **2** $\mathbb{C} \setminus \sigma(a)$ es conexo.

Proposición

Sean A un álgebra de Banach conmutativa con unidad y $a \in A$ tal que A está generada por 1 y a, es decir: $A = \{p(a) : p \in \mathbb{C}[X]\}$. Entonces:

- $ev_a: \widehat{A} \to \sigma(a)$ dada $ev_a(h) = h(a)$ es un homeomorfismo.
- **2** $\mathbb{C} \setminus \sigma(a)$ es conexo.

Ejemplo (El álgebra del disco)

La inclusión $a: \overline{\mathbb{D}} \to \mathbb{C}$ genera a $A(\mathbb{D})$, y $\sigma(a) = \overline{\mathbb{D}}$, de donde $\widehat{A(\mathbb{D})} = \overline{\mathbb{D}}$.

Proposición

Sean A un álgebra de Banach conmutativa con unidad y $a \in A$ tal que A está generada por 1 y a, es decir: $A = \{p(a) : p \in \mathbb{C}[X]\}$. Entonces:

- $ev_a: \widehat{A} \to \sigma(a)$ dada $ev_a(h) = h(a)$ es un homeomorfismo.
- **2** $\mathbb{C} \setminus \sigma(a)$ es conexo.

Ejemplo (El álgebra del disco)

La inclusión $a: \overline{\mathbb{D}} \to \mathbb{C}$ genera a $A(\mathbb{D})$, y $\sigma(a) = \overline{\mathbb{D}}$, de donde $\widehat{A(\mathbb{D})} = \overline{\mathbb{D}}$.

Proposición

Sean A un álgebra de Banach con unidad y a un elemento invertible de A. Si a y a^{-1} generan A como álgebra de Banach, es decir,

 $A = \overline{\{p(a, a^{-1}) : p \in \mathbb{C}[x, y]\}}$, entonces la evaluación $ev_a : \widehat{A} \to \sigma(a)$, dada por $ev_a(h) = h(a)$, es un homeomorfismo.

Definición

Sean X un espacio de Hausdorff localmente compacto y $A \subseteq C_0(X)$ un álgebra de Banach (la norma de A no es necesariamente la $\| \|_{\infty}$).

Definición

Sean X un espacio de Hausdorff localmente compacto y $A \subseteq C_0(X)$ un álgebra de Banach (la norma de A no es necesariamente la $\| \|_{\infty}$).

Definición

Sean X un espacio de Hausdorff localmente compacto y $A\subseteq C_0(X)$ un álgebra de Banach (la norma de A no es necesariamente la $\|\ \|_{\infty}$). Se dice que A es un álgebra de funciones sobre X si:

Definición

Sean X un espacio de Hausdorff localmente compacto y $A\subseteq C_0(X)$ un álgebra de Banach (la norma de A no es necesariamente la $\|\ \|_{\infty}$). Se dice que A es un álgebra de funciones sobre X si:

(i) A separa puntos de X, es decir si $x_1, x_2 \in X$ son tales que $a(x_1) = a(x_2)$ para todo $a \in A$ entonces $x_1 = x_2$.

Definición

Sean X un espacio de Hausdorff localmente compacto y $A\subseteq C_0(X)$ un álgebra de Banach (la norma de A no es necesariamente la $\|\ \|_{\infty}$). Se dice que A es un álgebra de funciones sobre X si:

- (i) A separa puntos de X, es decir si $x_1, x_2 \in X$ son tales que $a(x_1) = a(x_2)$ para todo $a \in A$ entonces $x_1 = x_2$.
- (ii) $A(x) \neq 0$, es decir, para todo $x \in X$ existe $a \in A$ tal que $a(x) \neq 0$ (se dice entonces que A no se anula en X).

Definición

Sean X un espacio de Hausdorff localmente compacto y $A\subseteq C_0(X)$ un álgebra de Banach (la norma de A no es necesariamente la $\|\ \|_{\infty}$). Se dice que A es un álgebra de funciones sobre X si:

- (i) A separa puntos de X, es decir si $x_1, x_2 \in X$ son tales que $a(x_1) = a(x_2)$ para todo $a \in A$ entonces $x_1 = x_2$.
- (ii) $A(x) \neq 0$, es decir, para todo $x \in X$ existe $a \in A$ tal que $a(x) \neq 0$ (se dice entonces que A no se anula en X).

Observación

La inclusión natural $A \overset{\iota}{\hookrightarrow} C_0(X)$ es un homomorfismo de álgebras, y por lo tanto $\|\iota(a)\|_{\infty} \leq \|a\|$ para todo $a \in A$, ya que cada homomorfismo complejo de un álgebra de Banach es contractivo. Luego es $\|\cdot\|_{\infty} \leq \|\cdot\|$.

Si B es un álgebra de Banach conmutativa y $A:=\overline{\mathcal{G}(B)}^{\|\cdot\|_{\infty}}\subseteq C_0(\widehat{B})$, entonces A es un álgebra de funciones sobre \widehat{B} .

Si B es un álgebra de Banach conmutativa y $A := \overline{\mathcal{G}(B)}^{\| \cdot \|_{\infty}} \subseteq C_0(\widehat{B})$, entonces A es un álgebra de funciones sobre \widehat{B} .

Proposición

Sea A un álgebra de funciones sobre X. Para cada $x \in X$ sea $\delta_x \in \widehat{A}$ tal que $\delta_x(a) = a(x)$. Entonces el mapa $\delta : X \to \widehat{A}$ tal que $x \mapsto \delta_x$ es un homeomorfismo entre X y un subconjunto cerrado de \widehat{A} .

Si B es un álgebra de Banach conmutativa y $A := \overline{\mathcal{G}(B)}^{\| \cdot \|_{\infty}} \subseteq C_0(\widehat{B})$, entonces A es un álgebra de funciones sobre \widehat{B} .

Proposición

Sea A un álgebra de funciones sobre X. Para cada $x \in X$ sea $\delta_x \in \widehat{A}$ tal que $\delta_x(a) = a(x)$. Entonces el mapa $\delta : X \to \widehat{A}$ tal que $x \mapsto \delta_x$ es un homeomorfismo entre X y un subconjunto cerrado de \widehat{A} .

Si B es un álgebra de Banach conmutativa y $A := \overline{\mathcal{G}(B)}^{\| \cdot \|_{\infty}} \subseteq C_0(\widehat{B})$, entonces A es un álgebra de funciones sobre \widehat{B} .

Proposición

Sea A un álgebra de funciones sobre X. Para cada $x \in X$ sea $\delta_x \in \widehat{A}$ tal que $\delta_x(a) = a(x)$. Entonces el mapa $\delta : X \to \widehat{A}$ tal que $x \mapsto \delta_x$ es un homeomorfismo entre X y un subconjunto cerrado de \widehat{A} .

Demostración.

Si B es un álgebra de Banach conmutativa y $A := \overline{\mathcal{G}(B)}^{\| \cdot \|_{\infty}} \subseteq C_0(\widehat{B})$, entonces A es un álgebra de funciones sobre \widehat{B} .

Proposición

Sea A un álgebra de funciones sobre X. Para cada $x \in X$ sea $\delta_x \in \widehat{A}$ tal que $\delta_x(a) = a(x)$. Entonces el mapa $\delta : X \to \widehat{A}$ tal que $x \mapsto \delta_x$ es un homeomorfismo entre X y un subconjunto cerrado de \widehat{A} .

Demostración.

1 $\delta_x \in \widehat{A}$ porque $A(x) \neq 0$, y δ es inyectivo porque A separa puntos.

Si B es un álgebra de Banach conmutativa y $A := \overline{\mathcal{G}(B)}^{\| \cdot \|_{\infty}} \subseteq C_0(\widehat{B})$, entonces A es un álgebra de funciones sobre \widehat{B} .

Proposición

Sea A un álgebra de funciones sobre X. Para cada $x \in X$ sea $\delta_x \in \widehat{A}$ tal que $\delta_x(a) = a(x)$. Entonces el mapa $\delta : X \to \widehat{A}$ tal que $x \mapsto \delta_x$ es un homeomorfismo entre X y un subconjunto cerrado de \widehat{A} .

Demostración.

- **1** $\delta_x \in \widehat{A}$ porque $A(x) \neq 0$, y δ es inyectivo porque A separa puntos.
- ② Es fácil ver que δ es continua, y que $\delta(X)$ es cerrado en \widehat{A} .

Si B es un álgebra de Banach conmutativa y $A := \overline{\mathcal{G}(B)}^{\| \cdot \|_{\infty}} \subseteq C_0(\widehat{B})$, entonces A es un álgebra de funciones sobre \widehat{B} .

Proposición

Sea A un álgebra de funciones sobre X. Para cada $x \in X$ sea $\delta_x \in \widehat{A}$ tal que $\delta_x(a) = a(x)$. Entonces el mapa $\delta : X \to \widehat{A}$ tal que $x \mapsto \delta_x$ es un homeomorfismo entre X y un subconjunto cerrado de \widehat{A} .

Demostración.

- **1** $\delta_x \in \widehat{A}$ porque $A(x) \neq 0$, y δ es inyectivo porque A separa puntos.
- **2** Es fácil ver que δ es continua, y que $\delta(X)$ es cerrado en \widehat{A} .
- ① La extensión $\delta_{\infty}: X_{\infty} \to \widehat{A} \cup \{0\}$ de δ a las compactificaciones de X y \widehat{A} (dada por $\delta_{\infty}(\infty) = 0$) es continua y biyectiva, así que $\delta^{-1} = \delta_{\infty}^{-1}|_{\delta(X)}$ es continua.

El mapa $A(\mathbb{D}) \to C(S^1)$ tal que $b \mapsto b|_{S^1}$ es un isomorfismo isométrico sobre su imagen, A, que es un álgebra de funciones sobre S^1 . En este caso $\delta: S^1 \to \bar{\mathbb{D}} = \widehat{A(\mathbb{D})}$ es la inclusión canónica, que no es sobreyectivo.

El mapa $A(\mathbb{D}) \to C(S^1)$ tal que $b \mapsto b|_{S^1}$ es un isomorfismo isométrico sobre su imagen, A, que es un álgebra de funciones sobre S^1 . En este caso $\delta: S^1 \to \bar{\mathbb{D}} = \widehat{A(\mathbb{D})}$ es la inclusión canónica, que no es sobreyectivo.

Es
$$\mathcal{W}(S^1) = \left\{ a \in C(S^1) : a(z) = \sum_{n \in \mathbb{Z}} a_n z^n, \; \mathit{con} \; \|a\| := \sum_n |a_n| < \infty \right\}.$$

El mapa $A(\mathbb{D}) \to C(S^1)$ tal que $b \mapsto b|_{S^1}$ es un isomorfismo isométrico sobre su imagen, A, que es un álgebra de funciones sobre S^1 . En este caso $\delta: S^1 \to \bar{\mathbb{D}} = \widehat{A(\mathbb{D})}$ es la inclusión canónica, que no es sobreyectivo.

Es
$$\mathcal{W}(S^1) = \left\{ a \in C(S^1) : a(z) = \sum_{n \in \mathbb{Z}} a_n z^n, \; \mathit{con} \; \|a\| := \sum_n |a_n| < \infty \right\}.$$

El mapa $A(\mathbb{D}) \to C(S^1)$ tal que $b \mapsto b|_{S^1}$ es un isomorfismo isométrico sobre su imagen, A, que es un álgebra de funciones sobre S^1 . En este caso $\delta: S^1 \to \bar{\mathbb{D}} = \widehat{A(\mathbb{D})}$ es la inclusión canónica, que no es sobreyectivo.

Ejemplo (El álgebra de Wiener)

Es
$$\mathcal{W}(S^1)=\left\{a\in C(S^1): a(z)=\sum_{n\in\mathbb{Z}}a_nz^n,\; \mathit{con}\; \|a\|:=\sum_n|a_n|<\infty\right\}.$$

• Es un álgebra de funciones sobre S^1 y $\mathcal{W}(S^1) \cong I^1(\mathbb{Z})$.

El mapa $A(\mathbb{D}) \to C(S^1)$ tal que $b \mapsto b|_{S^1}$ es un isomorfismo isométrico sobre su imagen, A, que es un álgebra de funciones sobre S^1 . En este caso $\delta: S^1 \to \bar{\mathbb{D}} = \widehat{A(\mathbb{D})}$ es la inclusión canónica, que no es sobreyectivo.

Es
$$\mathcal{W}(S^1) = \left\{a \in C(S^1) : a(z) = \sum_{n \in \mathbb{Z}} a_n z^n, \; \mathit{con} \; \|a\| := \sum_n |a_n| < \infty \right\}.$$

- Es un álgebra de funciones sobre S^1 y $\mathcal{W}(S^1) \cong I^1(\mathbb{Z})$.
- Si $e_k(z) = z^k$, entonces $e_k = e_1^k \in \mathcal{W}(S^1)$ y $\sigma(e_k) = \sigma(e_1)^k \ \forall k \in \mathbb{Z}$. Entonces $\mathcal{W}(S^1)$ está generado por e_1 y e_1^{-1} como álgebra de Banach

El mapa $A(\mathbb{D}) \to C(S^1)$ tal que $b \mapsto b|_{S^1}$ es un isomorfismo isométrico sobre su imagen, A, que es un álgebra de funciones sobre S^1 . En este caso $\delta: S^1 \to \bar{\mathbb{D}} = \widehat{A(\mathbb{D})}$ es la inclusión canónica, que no es sobreyectivo.

Es
$$\mathcal{W}(S^1) = \left\{a \in C(S^1) : a(z) = \sum_{n \in \mathbb{Z}} a_n z^n, \; \mathit{con} \; \|a\| := \sum_n |a_n| < \infty \right\}.$$

- Es un álgebra de funciones sobre S^1 y $\mathcal{W}(S^1) \cong I^1(\mathbb{Z})$.
- Si $e_k(z) = z^k$, entonces $e_k = e_1^k \in \mathcal{W}(S^1)$ y $\sigma(e_k) = \sigma(e_1)^k \ \forall k \in \mathbb{Z}$. Entonces $\mathcal{W}(S^1)$ está generado por e_1 y e_1^{-1} como álgebra de Banach
- Como $\sigma(e_k) = \sigma(e_1)^k \subseteq \bar{\mathbb{D}}$ y $\sigma(e_1) \supseteq S^1$, entonces $\sigma(e_1) = S^1$.

El mapa $A(\mathbb{D}) \to C(S^1)$ tal que $b \mapsto b|_{S^1}$ es un isomorfismo isométrico sobre su imagen, A, que es un álgebra de funciones sobre S^1 . En este caso $\delta: S^1 \to \bar{\mathbb{D}} = \widehat{A(\mathbb{D})}$ es la inclusión canónica, que no es sobreyectivo.

Es
$$\mathcal{W}(S^1) = \left\{ a \in C(S^1) : a(z) = \sum_{n \in \mathbb{Z}} a_n z^n, \; \mathit{con} \; \|a\| := \sum_n |a_n| < \infty
ight\}.$$

- Es un álgebra de funciones sobre S^1 y $\mathcal{W}(S^1) \cong I^1(\mathbb{Z})$.
- Si $e_k(z) = z^k$, entonces $e_k = e_1^k \in \mathcal{W}(S^1)$ y $\sigma(e_k) = \sigma(e_1)^k \ \forall k \in \mathbb{Z}$. Entonces $\mathcal{W}(S^1)$ está generado por e_1 y e_1^{-1} como álgebra de Banach
- Como $\sigma(e_k) = \sigma(e_1)^k \subseteq \bar{\mathbb{D}}$ y $\sigma(e_1) \supseteq S^1$, entonces $\sigma(e_1) = S^1$.
- El mapa $\delta: S^1 \to \widehat{\mathcal{W}}(S^1)$, dado por $z \mapsto \delta_z$, es un homeomorfismo sobre un subconjunto cerrado de $\widehat{\mathcal{W}}(S^1)$,

El mapa $A(\mathbb{D}) \to C(S^1)$ tal que $b \mapsto b|_{S^1}$ es un isomorfismo isométrico sobre su imagen, A, que es un álgebra de funciones sobre S^1 . En este caso $\delta: S^1 \to \bar{\mathbb{D}} = \widehat{A(\mathbb{D})}$ es la inclusión canónica, que no es sobreyectivo.

Es
$$\mathcal{W}(S^1) = \left\{a \in C(S^1) : a(z) = \sum_{n \in \mathbb{Z}} a_n z^n, \; \mathit{con} \; \|a\| := \sum_n |a_n| < \infty \right\}.$$

- Es un álgebra de funciones sobre S^1 y $\mathcal{W}(S^1) \cong I^1(\mathbb{Z})$.
- Si $e_k(z) = z^k$, entonces $e_k = e_1^k \in \mathcal{W}(S^1)$ y $\sigma(e_k) = \sigma(e_1)^k \ \forall k \in \mathbb{Z}$. Entonces $\mathcal{W}(S^1)$ está generado por e_1 y e_1^{-1} como álgebra de Banach
- Como $\sigma(e_k) = \sigma(e_1)^k \subseteq \bar{\mathbb{D}}$ y $\sigma(e_1) \supseteq S^1$, entonces $\sigma(e_1) = S^1$.
- El mapa $\delta: S^1 \to \widehat{\mathcal{W}}(S^1)$, dado por $z \mapsto \delta_z$, es un homeomorfismo sobre un subconjunto cerrado de $\widehat{\mathcal{W}}(S^1)$,

El mapa $A(\mathbb{D}) \to C(S^1)$ tal que $b \mapsto b|_{S^1}$ es un isomorfismo isométrico sobre su imagen, A, que es un álgebra de funciones sobre S^1 . En este caso $\delta: S^1 \to \bar{\mathbb{D}} = \widehat{A(\mathbb{D})}$ es la inclusión canónica, que no es sobreyectivo.

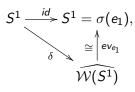
Es
$$\mathcal{W}(S^1) = \left\{ a \in C(S^1) : a(z) = \sum_{n \in \mathbb{Z}} a_n z^n, \; \mathit{con} \; \|a\| := \sum_n |a_n| < \infty
ight\}.$$

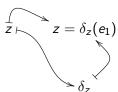
- Es un álgebra de funciones sobre S^1 y $\mathcal{W}(S^1) \cong I^1(\mathbb{Z})$.
- Si $e_k(z) = z^k$, entonces $e_k = e_1^k \in \mathcal{W}(S^1)$ y $\sigma(e_k) = \sigma(e_1)^k \ \forall k \in \mathbb{Z}$. Entonces $\mathcal{W}(S^1)$ está generado por e_1 y e_1^{-1} como álgebra de Banach
- Como $\sigma(e_k) = \sigma(e_1)^k \subseteq \bar{\mathbb{D}}$ y $\sigma(e_1) \supseteq S^1$, entonces $\sigma(e_1) = S^1$.
- El mapa $\delta: S^1 \to \mathcal{W}(S^1)$, dado por $z \mapsto \delta_z$, es un homeomorfismo sobre un subconjunto cerrado de $\widehat{\mathcal{W}(S^1)}$, y el mapa $\widehat{\mathcal{W}(S^1)} \to \sigma(e_1) = S^1$ tal que $h \mapsto h(e_1)$ es un homeomorfismo.

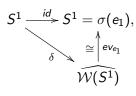
El mapa $A(\mathbb{D}) \to C(S^1)$ tal que $b \mapsto b|_{S^1}$ es un isomorfismo isométrico sobre su imagen, A, que es un álgebra de funciones sobre S^1 . En este caso $\delta: S^1 \to \bar{\mathbb{D}} = \widehat{A(\mathbb{D})}$ es la inclusión canónica, que no es sobreyectivo.

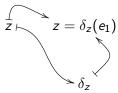
Es
$$\mathcal{W}(S^1) = \left\{a \in C(S^1) : a(z) = \sum_{n \in \mathbb{Z}} a_n z^n, \; \mathit{con} \; \|a\| := \sum_n |a_n| < \infty \right\}.$$

- Es un álgebra de funciones sobre S^1 y $\mathcal{W}(S^1) \cong I^1(\mathbb{Z})$.
- Si $e_k(z) = z^k$, entonces $e_k = e_1^k \in \mathcal{W}(S^1)$ y $\sigma(e_k) = \sigma(e_1)^k \ \forall k \in \mathbb{Z}$. Entonces $\mathcal{W}(S^1)$ está generado por e_1 y e_1^{-1} como álgebra de Banach
- Como $\sigma(e_k) = \sigma(e_1)^k \subseteq \bar{\mathbb{D}}$ y $\sigma(e_1) \supseteq S^1$, entonces $\sigma(e_1) = S^1$.
- El mapa $\delta: S^1 \to \widehat{\mathcal{W}}(S^1)$, dado por $z \mapsto \delta_z$, es un homeomorfismo sobre un subconjunto cerrado de $\widehat{\mathcal{W}}(S^1)$, y el mapa $\widehat{\mathcal{W}}(S^1) \to \sigma(e_1) = S^1$ tal que $h \mapsto h(e_1)$ es un homeomorfismo.
- Entonces $\widehat{\mathcal{W}(S^1)} \stackrel{\delta}{\cong} S^1$ porque δ es un homeomorfismo:

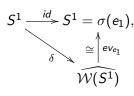


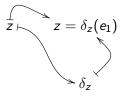






Esto muestra que δ es un homeomorfismo; en particular $\widehat{\mathcal{W}(S^1)} = \delta(S^1)$.

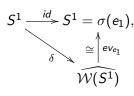


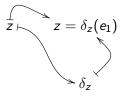


Esto muestra que δ es un homeomorfismo; en particular $\widehat{\mathcal{W}}(\widehat{S^1}) = \delta(S^1)$.

Proposición (Teorema de Wiener)

Si a : $S^1 \to \mathbb{C}$ continua tiene serie de Fourier absolutamente convergente y no se anula, entonces $\frac{1}{a}$ también tiene serie de Fourier absolutamente convergente.

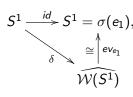


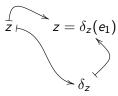


Esto muestra que δ es un homeomorfismo; en particular $\widehat{\mathcal{W}}(\widehat{S^1}) = \delta(S^1)$.

Proposición (Teorema de Wiener)

Si a : $S^1 \to \mathbb{C}$ continua tiene serie de Fourier absolutamente convergente y no se anula, entonces $\frac{1}{a}$ también tiene serie de Fourier absolutamente convergente.



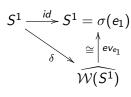


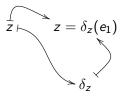
Esto muestra que δ es un homeomorfismo; en particular $\widehat{\mathcal{W}(S^1)} = \delta(S^1)$.

Proposición (Teorema de Wiener)

Si a : $S^1 \to \mathbb{C}$ continua tiene serie de Fourier absolutamente convergente y no se anula, entonces $\frac{1}{a}$ también tiene serie de Fourier absolutamente convergente.

Demostración.



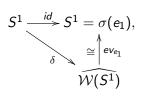


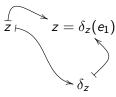
Esto muestra que δ es un homeomorfismo; en particular $\widehat{\mathcal{W}(S^1)} = \delta(S^1)$.

Proposición (Teorema de Wiener)

Si a : $S^1 \to \mathbb{C}$ continua tiene serie de Fourier absolutamente convergente y no se anula, entonces $\frac{1}{a}$ también tiene serie de Fourier absolutamente convergente.

Demostración.





Esto muestra que δ es un homeomorfismo; en particular $\widehat{\mathcal{W}}(\widehat{S^1}) = \delta(S^1)$.

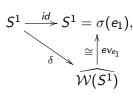
Proposición (Teorema de Wiener)

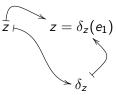
Si a : $S^1 \to \mathbb{C}$ continua tiene serie de Fourier absolutamente convergente y no se anula, entonces $\frac{1}{a}$ también tiene serie de Fourier absolutamente convergente.

Demostración.

Si $a \in \mathcal{W}(S^1)$ es tal que $a(z) \neq 0$ para todo $z \in S^1$, entonces

$$\sigma(a) = \{h(a): h \in \widehat{\mathcal{W}(S^1)}\} = \{a(z): z \in S^1\} \not\ni 0.$$





Esto muestra que δ es un homeomorfismo; en particular $\widehat{\mathcal{W}}(S^{\widehat{1}}) = \delta(S^1)$.

Proposición (Teorema de Wiener)

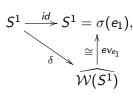
Si a : $S^1 \to \mathbb{C}$ continua tiene serie de Fourier absolutamente convergente y no se anula, entonces $\frac{1}{a}$ también tiene serie de Fourier absolutamente convergente.

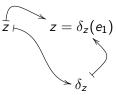
Demostración.

Si $a \in \mathcal{W}(S^1)$ es tal que $a(z) \neq 0$ para todo $z \in S^1$, entonces

$$\sigma(a) = \{h(a): h \in \widehat{\mathcal{W}(S^1)}\} = \{a(z): z \in S^1\} \not\ni 0.$$

Luego $a \in Inv(\mathcal{W}(S^1))$, es decir $\frac{1}{a} \in \mathcal{W}(S^1)$.





Esto muestra que δ es un homeomorfismo; en particular $\widehat{\mathcal{W}}(S^{\widehat{1}}) = \delta(S^1)$.

Proposición (Teorema de Wiener)

Si a : $S^1 \to \mathbb{C}$ continua tiene serie de Fourier absolutamente convergente y no se anula, entonces $\frac{1}{a}$ también tiene serie de Fourier absolutamente convergente.

Demostración.

Si $a \in \mathcal{W}(S^1)$ es tal que $a(z) \neq 0$ para todo $z \in S^1$, entonces

$$\sigma(a) = \{h(a): h \in \widehat{\mathcal{W}(S^1)}\} = \{a(z): z \in S^1\} \not\ni 0.$$

Luego $a \in Inv(\mathcal{W}(S^1))$, es decir $\frac{1}{a} \in \mathcal{W}(S^1)$.

① Si $A \stackrel{\phi}{\to} B$ entre álgebras de Banach conmutativas, para $h_B \in \widehat{B}$ sea $\widehat{\phi}(h_b) := h_b \circ \phi$. No siempre es cierto que $\widehat{\phi}(h_b) \in \widehat{A}$ (aunque sí lo es si $A \lor B$ tienen unidad).

- Si $A \xrightarrow{\phi} B$ entre álgebras de Banach conmutativas, para $h_B \in \widehat{B}$ sea $\widehat{\phi}(h_b) := h_b \circ \phi$. No siempre es cierto que $\widehat{\phi}(h_b) \in \widehat{A}$ (aunque sí lo es si A y B tienen unidad).
- ② Si X e Y son compactos de Hff y $f: X \to Y$ es continua, entonces $f_*: C(Y) \to C(X)$ tal que $f_*(b) := b \circ f$ es un hm. Esto no necesariamente es cierto si X no es compacto; para que sea cierto es preciso que f se $propia: f^{-1}(K)$ es compacto si K es compacto.

- Si $A \stackrel{\phi}{\to} B$ entre álgebras de Banach conmutativas, para $h_B \in \widehat{B}$ sea $\widehat{\phi}(h_b) := h_b \circ \phi$. No siempre es cierto que $\widehat{\phi}(h_b) \in \widehat{A}$ (aunque sí lo es si A y B tienen unidad).
- ② Si X e Y son compactos de Hff y $f: X \to Y$ es continua, entonces $f_*: C(Y) \to C(X)$ tal que $f_*(b) := b \circ f$ es un hm. Esto no necesariamente es cierto si X no es compacto; para que sea cierto es preciso que f se propia: $f^{-1}(K)$ es compacto si K es compacto.
- ③ Si \mathscr{A}_1 es la categoría de álgebras de Banach conmutativas con unidad y \mathscr{C}_1^* es la categoría de álgebras de C*-álgebras conmutativas con unidad, entonces tenemos un functor (que se factoriza como composición de dos functores): $C \circ : \mathscr{A}_1 \to \mathscr{C}_1^*$, dado por

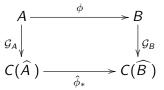
$$(A \stackrel{\phi}{\to} B) \mapsto (C(\widehat{A}) \stackrel{\widehat{\phi}_*}{\to} C(\widehat{B})).$$

- Si $A \stackrel{\phi}{\to} B$ entre álgebras de Banach conmutativas, para $h_B \in \widehat{B}$ sea $\hat{\phi}(h_b) := h_b \circ \phi$. No siempre es cierto que $\hat{\phi}(h_b) \in \widehat{A}$ (aunque sí lo es si A y B tienen unidad).
- ② Si X e Y son compactos de Hff y $f: X \to Y$ es continua, entonces $f_*: C(Y) \to C(X)$ tal que $f_*(b) := b \circ f$ es un hm. Esto no necesariamente es cierto si X no es compacto; para que sea cierto es preciso que f se propia: $f^{-1}(K)$ es compacto si K es compacto.
- **③** Si \mathscr{A}_1 es la categoría de álgebras de Banach conmutativas con unidad y \mathscr{C}_1^* es la categoría de álgebras de C*-álgebras conmutativas con unidad, entonces tenemos un functor (que se factoriza como composición de dos functores): $C \circ : \mathscr{A}_1 \to \mathscr{C}_1^*$, dado por

$$(A \xrightarrow{\phi} B) \mapsto (C(\widehat{A}) \xrightarrow{\widehat{\phi}_*} C(\widehat{B})).$$

① La transformada de Gelfand es una transformación natural $\mathcal{G}: Id \to C \circ \hat{\ }$, o sea:

Para cada homomorfismo $A \stackrel{\phi}{\to} B$ en \mathscr{A}_1 , el siguiente diagrama es conmutativo:



Definición

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

1 $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.

Definición

- lacktriangledown $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.

Definición

- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- § Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.

Definición

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- **3** Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- \bullet $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- **③** Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- \bullet $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Teorema

Sean A una C*-álgebra y $x \in \mathcal{N}(A)$. Entonces ||x|| = r(x).

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- **3** Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- **4** $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Teorema

Sean A una C*-álgebra y $x \in \mathcal{N}(A)$. Entonces ||x|| = r(x).

Demostración.

Si
$$a \in A_{sa}$$
 se tiene $||a||^2 = ||a^*a|| = ||a^2||$,

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- **③** Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Teorema

Sean A una C*-álgebra y $x \in \mathcal{N}(A)$. Entonces ||x|| = r(x).

Demostración.

Si
$$a \in A_{sa}$$
 se tiene $||a||^2 = ||a^*a|| = ||a^2||$,

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- **③** Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- \bullet $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Teorema

Sean A una C*-álgebra y $x \in \mathcal{N}(A)$. Entonces ||x|| = r(x).

Demostración.

Si $a \in A_{sa}$ se tiene $||a||^2 = ||a^*a|| = ||a^2||$, y entonces $||a||^{2^n} = ||a^{2^n}|| \ \forall n \ge 0$ porque $a^{2^j} \in A_{sa} \ \forall i$.

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- **③** Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- **4** $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Teorema

Sean A una C*-álgebra y $x \in \mathcal{N}(A)$. Entonces ||x|| = r(x).

Demostración.

Si $a \in A_{sa}$ se tiene $||a||^2 = ||a^*a|| = ||a^2||$, y entonces $||a||^{2^n} = ||a^{2^n}|| \ \forall n \ge 0$ porque $a^{2^j} \in A_{sa} \ \forall j$. Entonces $||a|| = ||a^{2^n}||^{\frac{1}{2^n}} \to r(a)$.

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- **3** Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- \bullet $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Teorema

Sean A una C*-álgebra y $x \in \mathcal{N}(A)$. Entonces ||x|| = r(x).

Demostración.

Si $a \in A_{sa}$ se tiene $||a||^2 = ||a^*a|| = ||a^2||$, y entonces $||a||^{2^n} = ||a^{2^n}|| \ \forall n \ge 0$ porque $a^{2^j} \in A_{sa} \ \forall j$. Entonces $||a|| = ||a^{2^n}||^{\frac{1}{2^n}} \to r(a)$. Si $x \in \mathcal{N}(A)$:

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- § Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- \bullet $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Teorema

Sean A una C*-álgebra y $x \in \mathcal{N}(A)$. Entonces ||x|| = r(x).

Demostración.

Si $a \in A_{sa}$ se tiene $||a||^2 = ||a^*a|| = ||a^2||$, y entonces $||a||^{2^n} = ||a^{2^n}|| \ \forall n \ge 0$ porque $a^{2^j} \in A_{sa} \ \forall j$. Entonces $||a|| = ||a^{2^n}||^{\frac{1}{2^n}} \to r(a)$. Si $x \in \mathcal{N}(A)$: $||x||^2 = ||x^*x||$

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- **3** Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- \bullet $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Teorema

Sean A una C*-álgebra y $x \in \mathcal{N}(A)$. Entonces ||x|| = r(x).

Demostración.

Si $a \in A_{sa}$ se tiene $||a||^2 = ||a^*a|| = ||a^2||$, y entonces $||a||^{2^n} = ||a^{2^n}|| \ \forall n \ge 0$ porque $a^{2^j} \in A_{sa} \ \forall j$. Entonces $||a|| = ||a^{2^n}||^{\frac{1}{2^n}} \to r(a)$. Si $x \in \mathcal{N}(A)$: $||x||^2 = ||x^*x|| = |\text{Im}_n||(x^*x)^n||^{\frac{1}{n}}$

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- **3** Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- \bullet $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Teorema

Sean A una C*-álgebra y $x \in \mathcal{N}(A)$. Entonces ||x|| = r(x).

Demostración.

Si $a \in A_{sa}$ se tiene $||a||^2 = ||a^*a|| = ||a^2||$, y entonces $||a||^{2^n} = ||a^{2^n}|| \ \forall n \ge 0$ porque $a^{2^j} \in A_{sa} \ \forall j$. Entonces $||a|| = ||a^{2^n}||^{\frac{1}{2^n}} \to r(a)$. Si $x \in \mathcal{N}(A)$: $||x||^2 = ||x^*x|| = |\text{Im}_n||(x^*x)^n||^{\frac{1}{n}} = |\text{Im}_n||(x^*)^nx^n||^{\frac{1}{n}}$

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- **3** Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- \bullet $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Teorema

Sean A una C*-álgebra y $x \in \mathcal{N}(A)$. Entonces ||x|| = r(x).

Demostración.

Si $a \in A_{sa}$ se tiene $||a||^2 = ||a^*a|| = ||a^2||$, y entonces $||a||^{2^n} = ||a^{2^n}|| \ \forall n \ge 0$ porque $a^{2^j} \in A_{sa} \ \forall j$. Entonces $||a|| = ||a^{2^n}||^{\frac{1}{2^n}} \to r(a)$. Si $x \in \mathcal{N}(A)$: $||x||^2 = ||x^*x|| = |\text{Im}_n||(x^*x)^n||^{\frac{1}{n}} = |\text{Iim}_n||(x^*)^n x^n||^{\frac{1}{n}} = |\text{Iim}_n|(x^n||^{\frac{1}{n}})^2$

Definición

Sea A una C*-álgebra (o sea que $||x||^2 = ||x^*x|| \ \forall x \in A$).

- **1** $a \in A$ es autoadjunto si $a^* = a$. Se pone $a \in A_{sa}$.
- **2** $p \in A$ es una proyección si $p^*p = p$. Se pone $p \in \mathcal{P}(A)$.
- **3** Si $A \ni 1$ y $u \in A$, se dice que u es unitario si $u^*u = 1 = uu^*$. Se pone $u \in \mathcal{U}(A)$.
- \bullet $x \in A$ es normal si $xx^* = x^*x$. Se pone $x \in \mathcal{N}(A)$.

Teorema

Sean A una C*-álgebra y $x \in \mathcal{N}(A)$. Entonces ||x|| = r(x).

Demostración.

Si $a \in A_{sa}$ se tiene $||a||^2 = ||a^*a|| = ||a^2||$, y entonces $||a||^{2^n} = ||a^{2^n}|| \ \forall n \ge 0$ porque $a^{2^j} \in A_{sa} \ \forall j$. Entonces $||a|| = ||a^{2^n}||^{\frac{1}{2^n}} \to r(a)$. Si $x \in \mathcal{N}(A)$: $||x||^2 = ||x^*x|| = |\text{Im}_n||(x^*x)^n||^{\frac{1}{n}} = |\text{Iim}_n||(x^*)^n x^n||^{\frac{1}{n}} = |\text{Iim}_n|(||x^n||^{\frac{1}{n}})^2 = r(x)^2$.

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Demostración.

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Demostración.

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Demostración. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto:

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Demostración. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $||a||_1^2 = ||a^*a||_1 = r(a^*a)$

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

<u>Demostración</u>. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $||a||_1^2 = ||a^*a||_1 = r(a^*a) = ||a^*a||_2 = ||a||_2^2$.

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

<u>Demostración</u>. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $||a||_1^2 = ||a^*a||_1 = r(a^*a) = ||a^*a||_2 = ||a||_2^2$.

Lema

Si A es una C^* -álgebra y $a \in A$, entonces

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

<u>Demostración</u>. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $||a||_1^2 = ||a^*a||_1 = r(a^*a) = ||a^*a||_2 = ||a||_2^2$.

Lema

Si A es una C^* -álgebra y $a \in A$, entonces

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

<u>Demostración</u>. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $||a||_1^2 = ||a^*a||_1 = r(a^*a) = ||a^*a||_2 = ||a||_2^2.$

Lema

Si A es una C^* -álgebra y $a \in A$, entonces

$$||a|| = \sup\{||ax|| : ||x|| \le 1\} = \sup\{||xa|| : ||x|| \le 1\} = \sup\{||xay|| : ||x||, ||y|| \le 1\}$$

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Demostración. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $\|a\|_1^2 = \|a^*a\|_1 = r(a^*a) = \|a^*a\|_2 = \|a\|_2^2$.

Lema

Si A es una C^* -álgebra y $a \in A$, entonces

$$||a|| = \sup\{||ax|| : ||x|| \le 1\} = \sup\{||xa|| : ||x|| \le 1\} = \sup\{||xay|| : ||x||, ||y|| \le 1\}$$

Demostración.

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Demostración. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $||a||_1^2 = ||a^*a||_1 = r(a^*a) = ||a^*a||_2 = ||a||_2^2$.

Lema

Si A es una C^* -álgebra y $a \in A$, entonces

$$||a|| = \sup\{||ax|| : ||x|| \le 1\} = \sup\{||xa|| : ||x|| \le 1\} = \sup\{||xay|| : ||x||, ||y|| \le 1\}$$

Demostración. Como $||ax|| \le ||a|| ||x||$,

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

<u>Demostración</u>. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $\|a\|_1^2 = \|a^*a\|_1 = r(a^*a) = \|a^*a\|_2 = \|a\|_2^2$.

Lema

Si A es una C^* -álgebra y $a \in A$, entonces

$$||a|| = \sup\{||ax|| : ||x|| \le 1\} = \sup\{||xa|| : ||x|| \le 1\} = \sup\{||xay|| : ||x||, ||y|| \le 1\}$$

<u>Demostración.</u> Como $||ax|| \le ||a|| ||x||$, es sup $\{||ax|| : ||x|| \le 1\} \le ||a||$.

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Demostración. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $||a||_1^2 = ||a^*a||_1 = r(a^*a) = ||a^*a||_2 = ||a||_2^2$.

Lema

Si A es una C^* -álgebra y $a \in A$, entonces

$$||a|| = \sup\{||ax|| : ||x|| \le 1\} = \sup\{||xa|| : ||x|| \le 1\} = \sup\{||xay|| : ||x||, ||y|| \le 1\}$$

<u>Demostración</u>. Como $||ax|| \le ||a|| ||x||$, es sup $\{||ax|| : ||x|| \le 1\} \le ||a||$.

Recíprocamente, si $a \neq 0$ y $x = \frac{a^*}{\|a\|}$:

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

<u>Demostración</u>. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $||a||_1^2 = ||a^*a||_1 = r(a^*a) = ||a^*a||_2 = ||a||_2^2$.

Lema

Si A es una C^* -álgebra y $a \in A$, entonces

$$||a|| = \sup\{||ax|| : ||x|| \le 1\} = \sup\{||xa|| : ||x|| \le 1\} = \sup\{||xay|| : ||x||, ||y|| \le 1\}$$

<u>Demostración</u>. Como $||ax|| \le ||a|| ||x||$, es $\sup_{x \in \mathbb{R}} \{ ||ax|| : ||x|| \le 1 \} \le ||a||$.

Recíprocamente, si
$$a \neq 0$$
 y $x = \frac{a^*}{\|a\|}$: $\|ax\| = \left\|a\frac{a^*}{\|a\|}\right\| = \frac{\|a\|^2}{\|a\|} = \|a\|$.

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Demostración. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $||a||_1^2 = ||a^*a||_1 = r(a^*a) = ||a^*a||_2 = ||a||_2^2$.

Lema

Si A es una C^* -álgebra y $a \in A$, entonces

$$||a|| = \sup\{||ax|| : ||x|| \le 1\} = \sup\{||xa|| : ||x|| \le 1\} = \sup\{||xay|| : ||x||, ||y|| \le 1\}$$

<u>Demostración</u>. Como $||ax|| \le ||a|| ||x||$, es $\sup_{x \in \mathbb{R}} \{ ||ax|| : ||x|| \le 1 \} \le ||a||$.

Recíprocamente, si
$$a \neq 0$$
 y $x = \frac{a^*}{\|a\|}$: $\|ax\| = \left\|a\frac{a^*}{\|a\|}\right\| = \frac{\|a\|^2}{\|a\|} = \|a\|$.

Luego es $||a|| = \sup \{||ax|| : ||x|| \le 1\}.$

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Demostración. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $||a||_1^2 = ||a^*a||_1 = r(a^*a) = ||a^*a||_2 = ||a||_2^2$.

Lema

Si A es una C^* -álgebra y $a \in A$, entonces

$$||a|| = \sup\{||ax|| : ||x|| \le 1\} = \sup\{||xa|| : ||x|| \le 1\} = \sup\{||xay|| : ||x||, ||y|| \le 1\}$$

<u>Demostración</u>. Como $||ax|| \le ||a|| ||x||$, es $\sup_{x \in \mathbb{R}} \{ ||ax|| : ||x|| \le 1 \} \le ||a||$.

Recíprocamente, si
$$a \neq 0$$
 y $x = \frac{a^*}{\|a\|}$: $\|ax\| = \left\|a\frac{a^*}{\|a\|}\right\| = \frac{\|a\|^2}{\|a\|} = \|a\|$.

Luego es $||a|| = \sup \{||ax|| : ||x|| \le 1\}$. Ídem con las otras igualdades.

Sean A una *-álgebra sobre \mathbb{C} , $y \parallel \parallel_1 y \parallel \parallel_2$ normas sobre A tales que $(A, \parallel \parallel_1)$, $(A, \parallel \parallel_2)$ son C^* -álgebras. Entonces $\parallel \parallel_1 = \parallel \parallel_2$.

Demostración. Sea $a \in A$. Entonces a^*a es autoadjunto, y por lo tanto: $||a||_1^2 = ||a^*a||_1 = r(a^*a) = ||a^*a||_2 = ||a||_2^2.$

Lema

Si A es una C^* -álgebra y $a \in A$, entonces

$$||a|| = \sup\{||ax|| : ||x|| \le 1\} = \sup\{||xa|| : ||x|| \le 1\} = \sup\{||xay|| : ||x||, ||y|| \le 1\}$$

<u>Demostración</u>. Como $||ax|| \le ||a|| ||x||$, es $\sup_{x \in A} \{ ||ax|| : ||x|| \le 1 \} \le ||a||$.

Recíprocamente, si $a \neq 0$ y $x = \frac{a^*}{\|a\|}$: $\|ax\| = \|a\frac{a^*}{\|a\|}\| = \frac{\|a\|^2}{\|a\|} = \|a\|$.

Luego es $||a|| = \sup \{||ax|| : ||x|| \le 1\}$. Ídem con las otras igualdades.

Corolario

 $L:A \to B(A)$ tal que $L_a(x):=ax$ es un homomorfismo isométrico de álgebras de Banach (L se llama representación regular izquierda de A).

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a + \lambda\| = \|a\| + |\lambda|$.

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a + \lambda\| = \|a\| + |\lambda|$.

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

Demostración.

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

Demostración.

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

Demostración. El teorema anterior asegura la unicidad.

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

$$|a + \lambda| := ||L_a + \lambda Id|| = \sup\{||(a + \lambda)x|| : x \in A, ||x|| \le 1\}$$

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

<u>Demostración</u>. El teorema anterior asegura la unicidad. Si A tiene unidad, entonces $\widetilde{A} \cong A \oplus \mathbb{C}$ a través de $(a + \lambda) \mapsto (a + \lambda, \lambda)$. Si A no tiene unidad definimos:

$$|a + \lambda| := ||L_a + \lambda Id|| = \sup\{||(a + \lambda)x|| : x \in A, ||x|| \le 1\}$$

Dado $\epsilon > 0$, sea $x \in A$ tal que $||x|| \le 1$ y $|a + \lambda|^2 - \epsilon \le ||(a + \lambda)x||^2$.

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

$$|a + \lambda| := ||L_a + \lambda Id|| = \sup\{||(a + \lambda)x|| : x \in A, ||x|| \le 1\}$$

Dado
$$\epsilon > 0$$
, sea $x \in A$ tal que $||x|| \le 1$ y $|a + \lambda|^2 - \epsilon \le ||(a + \lambda)x||^2$. Es $|a + \lambda|^2 - \epsilon \le ||x^*(a + \lambda)^*(a + \lambda)x||$

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

$$|a + \lambda| := ||L_a + \lambda Id|| = \sup\{||(a + \lambda)x|| : x \in A, ||x|| \le 1\}$$

Dado
$$\epsilon > 0$$
, sea $x \in A$ tal que $||x|| \le 1$ y $|a + \lambda|^2 - \epsilon \le ||(a + \lambda)x||^2$. Es $|a + \lambda|^2 - \epsilon \le ||x^*(a + \lambda)^*(a + \lambda)x|| \le ||(a + \lambda)^*(a + \lambda)x||$

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

$$|a + \lambda| := ||L_a + \lambda Id|| = \sup\{||(a + \lambda)x|| : x \in A, ||x|| \le 1\}$$

Dado
$$\epsilon > 0$$
, sea $x \in A$ tal que $||x|| \le 1$ y $|a + \lambda|^2 - \epsilon \le ||(a + \lambda)x||^2$. Es $|a + \lambda|^2 - \epsilon \le ||x^*(a + \lambda)^*(a + \lambda)x|| \le ||(a + \lambda)^*(a + \lambda)x|| \le |(a + \lambda)^*(a + \lambda)|$.

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

<u>Demostración</u>. El teorema anterior asegura la unicidad. Si A tiene unidad, entonces $\widetilde{A} \cong A \oplus \mathbb{C}$ a través de $(a + \lambda) \mapsto (a + \lambda, \lambda)$. Si A no tiene unidad definimos:

$$|a + \lambda| := ||L_a + \lambda Id|| = \sup\{||(a + \lambda)x|| : x \in A, ||x|| \le 1\}$$

Dado $\epsilon > 0$, sea $x \in A$ tal que $\|x\| \le 1$ y $|a+\lambda|^2 - \epsilon \le \|(a+\lambda)x\|^2$. Es $|a+\lambda|^2 - \epsilon \le \|x^*(a+\lambda)^*(a+\lambda)x\| \le \|(a+\lambda)^*(a+\lambda)x\| \le |(a+\lambda)^*(a+\lambda)|$. Luego $(\widetilde{A}, |\cdot|)$ es una C^* -álgebra (es completa: A y $\widetilde{A}/A \cong \mathbb{C}$ lo son).

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a+\lambda\|=\|a\|+|\lambda|$.

<u>Demostración</u>. El teorema anterior asegura la unicidad. Si A tiene unidad, entonces $\widetilde{A} \cong A \oplus \mathbb{C}$ a través de $(a + \lambda) \mapsto (a + \lambda, \lambda)$. Si A no tiene unidad definimos:

$$|a + \lambda| := ||L_a + \lambda Id|| = \sup\{||(a + \lambda)x|| : x \in A, ||x|| \le 1\}$$

Dado $\epsilon > 0$, sea $x \in A$ tal que $\|x\| \le 1$ y $|a + \lambda|^2 - \epsilon \le \|(a + \lambda)x\|^2$. Es $|a + \lambda|^2 - \epsilon \le \|x^*(a + \lambda)^*(a + \lambda)x\| \le \|(a + \lambda)^*(a + \lambda)x\| \le |(a + \lambda)^*(a + \lambda)|$. Luego $(\widetilde{A}, |\ |)$ es una C^* -álgebra (es completa: A y $\widetilde{A}/A \cong \mathbb{C}$ lo son). Además $|a + \lambda| \le \|a\| + |\lambda| = \|a + \lambda\|_1$,

Si A es una C^* -álgebra, su norma se extiende (de forma única) a una C^* -norma en \widetilde{A} , y esta es equivalente a la norma $\|a + \lambda\| = \|a\| + |\lambda|$.

<u>Demostración</u>. El teorema anterior asegura la unicidad. Si A tiene unidad, entonces $\widetilde{A} \cong A \oplus \mathbb{C}$ a través de $(a + \lambda) \mapsto (a + \lambda, \lambda)$. Si A no tiene unidad definimos:

$$|a + \lambda| := ||L_a + \lambda Id|| = \sup\{||(a + \lambda)x|| : x \in A, ||x|| \le 1\}$$

Dado $\epsilon > 0$, sea $x \in A$ tal que $\|x\| \le 1$ y $|a+\lambda|^2 - \epsilon \le \|(a+\lambda)x\|^2$. Es $|a+\lambda|^2 - \epsilon \le \|x^*(a+\lambda)^*(a+\lambda)x\| \le \|(a+\lambda)^*(a+\lambda)x\| \le \|(a+\lambda)^*(a+\lambda)\|$. Luego $(\widetilde{A}, | |)$ es una C^* -álgebra (es completa: A y $\widetilde{A}/A \cong \mathbb{C}$ lo son). Además $|a+\lambda| \le \|a\| + |\lambda| = \|a+\lambda\|_1$, así que $Id: (\widetilde{A}, \| \|_1) \to (\widetilde{A}, | |)$ es continua y biyectiva, y por lo tanto $\| \|_1$ y | | son equivalentes por el teorema de Banach.

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi: A \to B$ es un *-homomorfismo, entonces $\|\phi\| \le 1$.

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi: A \to B$ es un *-homomorfismo, entonces $\|\phi\| \le 1$.

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

Demostración.

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

Demostración.

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

$$\|\phi(a)\|^2 = \|\phi(a)^*\phi(a)\|$$

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

$$\|\phi(a)\|^2 = \|\phi(a)^*\phi(a)\| = \|\phi(a^*a)\|$$

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

$$\|\phi(a)\|^2 = \|\phi(a)^*\phi(a)\| = \|\phi(a^*a)\| = r(\phi(a^*a))$$

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

$$\|\phi(a)\|^2 = \|\phi(a)^*\phi(a)\| = \|\phi(a^*a)\| = r(\phi(a^*a))$$

 $\leq r(a^*a)$

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

$$\|\phi(a)\|^2 = \|\phi(a)^*\phi(a)\| = \|\phi(a^*a)\| = r(\phi(a^*a))$$

$$\leq r(a^*a) \leq \|a^*a\|$$

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

$$\|\phi(a)\|^2 = \|\phi(a)^*\phi(a)\| = \|\phi(a^*a)\| = r(\phi(a^*a))$$

$$\leq r(a^*a) \leq \|a^*a\| \leq \|a^*\| \|a\|$$

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi: A \to B$ es un *-homomorfismo, entonces $\|\phi\| \le 1$.

$$\|\phi(a)\|^2 = \|\phi(a)^*\phi(a)\| = \|\phi(a^*a)\| = r(\phi(a^*a))$$

$$\leq r(a^*a) \leq \|a^*a\| \leq \|a^*\| \|a\| = \|a\|^2.$$

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

<u>Demostración.</u> Se puede suponer que A y B tienen unidad y además que $\phi(1)=1$ (si no tienen unidad pasar a $\widetilde{\phi}:\widetilde{A}\to\widetilde{B}$). Ahora, si $a\in A$:

$$\|\phi(a)\|^2 = \|\phi(a)^*\phi(a)\| = \|\phi(a^*a)\| = r(\phi(a^*a))$$

$$\leq r(a^*a) \leq \|a^*a\| \leq \|a^*\| \|a\| = \|a\|^2.$$

Entonces $\|\phi(a)\| \le \|a\|$, y por lo tanto $\|\phi\| \le 1$.

Si A es una *-álgebra de Banach, B es una C*-álgebra, y $\phi:A\to B$ es un *-homomorfismo, entonces $\|\phi\|\leq 1$.

<u>Demostración.</u> Se puede suponer que A y B tienen unidad y además que $\phi(1)=1$ (si no tienen unidad pasar a $\widetilde{\phi}:\widetilde{A}\to\widetilde{B}$). Ahora, si $a\in A$:

$$\|\phi(a)\|^2 = \|\phi(a)^*\phi(a)\| = \|\phi(a^*a)\| = r(\phi(a^*a))$$

$$\leq r(a^*a) \leq \|a^*a\| \leq \|a^*\| \|a\| = \|a\|^2.$$

Entonces $\|\phi(a)\| \le \|a\|$, y por lo tanto $\|\phi\| \le 1$.