- Estados puros y representaciones irreducibles
 - Comparación de funcionales positivas.
 - Estados puros y representaciones irreducibles.
 - Repaso sobre puntos extremales y el teorema de Krein-Milman.
 - Quasi-estados y sus puntos extremales.
 - Representación universal atómica.

Estados puros y representaciones irreducibles

A continuación veremos cómo son los estados de A cuya GNS es una representación irreducible.

Supongamos que $\varphi(a) = \langle \pi(a)\xi, \xi \rangle$, con $\pi: A \to \mathsf{B}(\mathcal{H})$. Si π es reducible, existe $\mathcal{K} \leq \mathcal{H}$, $0 \neq \mathcal{K} \neq \mathcal{H}$, tal que $\pi(a)\mathcal{K} \subseteq \mathcal{K}$ para todo $a \in A$. Sea $\rho := \pi^{(\mathcal{K})}$ la subrepresentación de π correspondiente a \mathcal{K} . Sea $\eta = \mathsf{P}\xi$. Entonces $\psi: A \to \mathbb{C}$ dada por $\psi(a) = \langle \rho(a)\eta, \eta \rangle$ es una funcional positiva, que satisface $\psi \leq \varphi$.

Proposición

 $T \in B(\mathcal{H})_+$ si y sólo si $\langle T\xi, \xi \rangle \geq 0$ para todo $\xi \in \mathcal{H}$ (\mathcal{H} complejo).

Demostración.

(⇒) Como $T = S^*S$ para algún $S \in B(\mathcal{H})_+$, si $\xi \in \mathcal{H}$ se tiene:

$$\langle T\xi, \xi \rangle = \langle S^*S\xi, \xi \rangle = \langle S\xi, S\xi \rangle = \|S\xi\|^2 \ge 0$$

Continuación.

(⇐) Sea $T \in B(\mathcal{H})$ tal que $\langle T\xi, \xi \rangle \geq 0$ para todo $\xi \in \mathcal{H}$. Entonces de la identidad de polarización:

$$\langle T\xi, \eta \rangle = \frac{1}{4} \sum_{j=0}^{3} i^{j} \langle T(\xi + i^{j}\eta), \xi + i^{j}\eta \rangle$$

se deduce que $T=T^*$. Entonces $T=T_+-T_-$, con $T_+,T_-\in \mathsf{B}(\mathcal{H})_+$ tales que $T_+T_-=0=T_-T_+$, y por lo tanto $T_+(\mathcal{H})\perp T_-(\mathcal{H})$: $\langle T_+(\xi),T_-(\eta)\rangle=\langle \xi,T_+T_-(\eta)\rangle=0$. Entonces si $\eta=T_-(\xi)\in T_-(\mathcal{H})$, y teniendo en cuenta que $T_-^3\geq 0$, se tiene:

$$0 \le \langle T\eta, \eta \rangle = \langle T_{+}(\eta) - T_{-}(\eta), T_{-}(\xi) \rangle = \langle T_{+}T_{-}(\xi) - T_{-}^{2}(\xi), T_{-}(\xi) \rangle$$
$$= \langle -T_{-}^{2}(\xi), T_{-}(\xi) \rangle = -\langle T_{-}^{3}(\xi), \xi \rangle = -\|T_{-}^{3/2}\xi\|^{2} \le 0.$$

Entonces $T_{-}^{2}\xi = T_{-}^{1/2}T_{-}^{3/2}(\xi) = 0$, lo que implica

$$||T_{-}(\xi)||^{2} = \langle T_{-}(\xi), T_{-}(\xi) \rangle = \langle T_{-}^{2}(\xi), \xi \rangle = 0,$$

y por lo tanto $T_-(\xi)=0$. Luego $T_-=0$, y por lo tanto $T=T_+\in \mathsf{B}(\mathcal{H})_+$.

Lema

Sean φ y ψ funcionales positivas sobre la C*-álgebra A, con $\psi \leq \varphi$, y sea (\mathcal{H}, π, ξ) la GNS de φ . Entonces existe un único $V \in \mathsf{B}(\mathcal{H})$ tal que:

- (a) $V \in \pi(A)'$.
- (b) $\psi(a) = \langle \pi(a)V\xi, \xi \rangle$ para todo $a \in A$.
- (c) $0 \le V \le Id$.

Demostración.

Si V y W satisfacen (a) y (b), entonces para todos $a, b \in A$ es

$$0 = \psi(b^*a) - \psi(b^*a) = \langle \pi(b^*)(V - W)\pi(a)\xi, \xi \rangle = \langle (V - W)\pi(a)\xi, \pi(b)\xi \rangle,$$

y por lo tanto V=W, pues $\pi(A)\xi$ es denso en \mathcal{H} . Para definir V, consideremos primero $\eta=\pi(a)\xi$, $\zeta=\pi(b)\xi$, para ciertos $a,b\in A$. Entonces

$$|\psi(b^*a)| \leq \psi(b^*b)^{\frac{1}{2}}\psi(a^*a)^{\frac{1}{2}} \leq \langle \pi(b^*b)\xi, \xi \rangle^{\frac{1}{2}} \langle \pi(a^*a)\xi, \xi \rangle^{\frac{1}{2}}$$

= $\|\pi(b)\xi\| \|\pi(a)\xi\| = \|\eta\| \|\zeta\|$

Continuación.

Luego, si también se puede escribir $\eta = \pi(a')\xi$, $\zeta = \pi(b')\xi$:

$$|\psi(b^*a) - \psi(b'^*a')| \le |\psi(b^*(a - a'))| + |\psi((b^* - b'^*)a')|$$

$$\le ||\zeta|| ||\eta - \eta|| + ||\zeta - \zeta|| ||\eta|| = 0.$$

Por lo tanto está definido el mapa $B:\pi(A)\mathcal{H} imes\pi(A)\mathcal{H} o\mathbb{C}$ tal que

$$B(\pi(a)\xi,\pi(b)\xi)=\psi(b^*a),$$

que es sesquilineal y verifica que $|B(\eta,\zeta)| \leq \|\eta\| \|\zeta\|$. Como $\|B\| \leq 1$, B se extiende por continuidad a una forma sesquilineal $B: \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ tal que $\|B\| \leq 1$. Sea $V \in B(\mathcal{H})$ el único operador tal que $B(\eta,\zeta) = \langle V\eta,\zeta \rangle$, $\forall \eta,\zeta \in \mathcal{H}$. Entonces $\|V\| = \|B\| \leq 1$, y como para todo $\eta \in \mathcal{H}$ es

$$\langle V\eta, \eta \rangle = B(\eta, \eta) \ge 0$$
 y $\langle (Id - V)\eta, \eta \rangle = \langle \eta, \eta \rangle - B(\eta, \eta) \ge 0$,

se tiene V, $Id - V \in B(\mathcal{H})_+$. Si $\eta = \pi(a)\xi$, $\zeta = \pi(b)\xi$, entonces $B(\eta, \zeta) = \langle V\pi(a)\xi, \pi(b)\xi \rangle = \psi(b^*a)$. En particular

$$\psi(a) = \lim_{\lambda} \psi(au_{\lambda}) = \lim_{\lambda} \langle V\pi(u_{\lambda})\xi, \pi(a^{*})\xi \rangle$$
$$= \langle V\xi, \pi(a^{*})\xi \rangle = \langle \pi(a)V\xi, \xi \rangle$$

Continuación.

Resta ver que $V \in \pi(A)'$. Sean $c \in A$, $\eta = \pi(a)\xi$ y $\zeta = \pi(b)\xi$. Entonces

$$\langle V\pi(c)\eta,\zeta\rangle = B(\pi(c)\eta,\zeta) = B(\pi(ca)\xi,\pi(b)\xi) = \psi(b^*ca)$$

$$= \psi((c^*b)^*a) = B(\pi(a)\xi,\pi(c^*b)\xi) = B(\pi(a)\xi,\pi(c^*)\pi(b)\xi)$$

$$= \langle V\pi(a)\xi,\pi(c)^*\pi(b)\xi\rangle = \langle V\eta,\pi(c)^*\zeta\rangle = \langle \pi(c)V\eta,\zeta\rangle.$$

Entonces $V\pi(c)=\pi(c)V$, para todo $c\in A$. Luego es $V\in\pi(A)'$.

Definición

Se dice que una funcional positiva $\varphi:A\to\mathbb{C}$ es pura si safisface la propiedad siguiente: si $0\leq\psi\leq\varphi$ entonces existe $\lambda\in[0,1]$ tal que $\psi=\lambda\varphi$. Si además φ es un estado, se dice que φ es un estado puro. Notación: $\mathsf{PS}(A)=\{\varphi:A\to\mathbb{C}:\varphi\ \text{ es un estado puro}\}.$

Teorema

Sea $\varphi: A \to \mathbb{C}$ un estado, y sea (π, \mathcal{H}, ξ) su GNS. Entonces π es irreducible si y sólo si φ es un estado puro.

Demostración.

- (\Rightarrow) Como π es irreducible, aplicando el Lema de Schur tenemos que $\pi(A)'=\mathbb{C} \mathrm{Id}$. Si $0\leq\psi\leq\varphi$, sea $V\in\pi(A)'$ el operador dado por el lema previo para ψ , de modo que $\psi(a)=\langle\pi(a)V\xi,\xi\rangle$ para todo $a\in A$. Entonces debe ser $V=\lambda\mathrm{Id}$, para algún $\lambda\in\mathbb{C}$, y como además $0\leq V\leq \mathrm{Id}$, entonces $0\leq\lambda\leq1$.
- (\Leftarrow) Supongamos ahora que para todo ψ tal que $0 \le \psi \le \varphi$ existe $\lambda \in [0,1]$ tal que $\psi = \lambda \varphi$. Sea $V \in \pi(A)'$ tal que $0 \le V \le \operatorname{Id}$, y sea $\psi_V : A \to \mathbb{C}$ dada por $\psi_V(a) = \langle \pi(a)V\xi, \xi \rangle = \langle \pi(a)\sqrt{V\xi}, \sqrt{V\xi} \rangle$ para todo $a \in A$. Entonces $\psi_V \ge 0$. Además $\psi_V \le \varphi$, porque si $a \in A_+$:

$$\varphi(\mathbf{a}) - \psi_{V}(\mathbf{a}) = \langle \pi(\mathbf{a})(Id - V)\xi, \xi \rangle = \langle \pi(\mathbf{a})(Id - V)^{1/2}\xi, (Id - V)^{1/2}\xi \rangle \ge 0.$$

Luego existe $\lambda \in [0,1]$ tal que $\psi_V = \lambda \varphi$, es decir $\psi_V(a) = \langle \pi(a) \lambda I d \xi, \xi \rangle$ para todo $a \in A$, y por lo tanto $V = \lambda I d$ por la unicidad de V probada en el lema previo. Luego $\pi(A)' = \mathbb{C} I d$. El lema de Schur implica entonces que π es irreducible.

Observación

Si $\varphi \in \mathsf{PS}(A)$ y $0 \le \psi \le \varphi$. Entonces $\psi = \|\psi\|\varphi$. En efecto, como $\varphi \in \mathsf{PS}(A)$, se tiene que $\psi = \lambda \varphi$ para algún $\lambda \in [0,1]$. Entonces $\|\psi\| = |\lambda| \|\varphi\| = |\lambda| = \lambda$. Luego $\psi = \|\psi\|\varphi$.

Ejemplos

- (1) Si A es conmutativa, entonces $PS(A) = \hat{A}$: un estado es una medida de probabilidad, y esta probabilidad es pura si y sólo si su soporte tiene un único punto. Otra manera de verlo es notar que las representaciones irreducibles de A deben ser unidimensionales, lo cual se deduce del Lema de Schur.
- (2) Sean K = K($\ell^2(\mathbb{N})$) $y \ \xi \in \ell^2(\mathbb{N})$ tal que $\|\xi\| = 1$. La funcional w_ξ : K $\to \mathbb{C}$ tal que $w_\xi(a) = \langle a\xi, \xi \rangle$ es un estado puro. Basta usar la unicidad de la GNS y notar que la inclusión ι : K \hookrightarrow B($\ell^2(\mathbb{N})$) es una representación irreducible de K (dados $\eta \neq 0 \neq \zeta \in \ell^2(\mathbb{N})$, se tiene $\frac{1}{\|\eta\|^2}\theta_{\zeta,\eta}(\eta) = \zeta$). Se puede ver que la única representación irreducible de \mathcal{K} es, a menos de equivalencia unitaria, la inclusión K \hookrightarrow B($\ell^2(\mathbb{N})$). Por lo tanto PS(A) = $\{w_\xi : \xi \in \mathcal{H}, \|\xi\| = 1\} \sim S_{\mathcal{H}}(0,1)$.

Repaso sobre el teorema de Krein-Milman.

Sea V un espacio vectorial. Si $x,y \in V$ el segmento de extremos x e y es el conjunto

$$[x,y] := \{x + t(y - x) : t \in [0,1]\}.$$

Indicaremos por $(x,y) := \{x + t(y-x) : t \in (0,1)\}$. Un subconjunto C de V es *convexo* si se tiene $[x,y] \subseteq C$ siempre que $x,y \in C$.

Una combinación convexa de elementos de $X\subseteq V$ es un elemento de la forma

$$t_1x_1+\cdots+t_nx_n$$

con
$$x_1, \ldots, x_n \in X$$
 y $t_1, \ldots, t_n \ge 0$ tales que $\sum_{j=1}^n t_j = 1$.

El conjunto Conv(X) de las combinaciones convexas de elementos de X se llama clpha psula convexa de X, y es el conjunto convexo más chico que contiene a X.

Se dice que un subconjunto E de X es extremal en X si, siempre que $(x,y) \cap E \neq \emptyset$ con $x,y \in X$, entonces $x,y \in E$.

Un punto $p \in C$ es extremal en C si el conjunto $\{p\}$ es extremal en C, es decir, si $p \in (x,y)$ con $x,y \in C$ implica que $p \in C$. El conjunto de puntos extremales de C será denotado ext(C). Es fácil verificar que la relación de ser un subconjunto extremal es transitiva, de donde se deduce que si E es un subconjunto extremal en C, entonces $\text{ext}(E) = E \cap \text{ext}(C)$.

El resultado básico sobre puntos extremales es el siguiente:

Teorema (Krein-Milman)

Sean E un espacio localmente convexo y de Hausdorff, y supongamos que $K \subseteq E$ es un subconjunto compacto y convexo. Entonces $\text{ext}(K) \neq \emptyset$, y $K = \overline{Conv(K)}$.

Es frecuente utilizar el Teorema de Krein-Milman en combinación con el siguiente:

Teorema (Banach-Alaoglu)

Si E^* es el espacio dual de un espacio normado E, entonces $\bar{B}_{E^*}(0,1)$ es w^* -compacto.

Teorema

Sean A una C*-álgebra y QS(A) := $\{\varphi: A \to \mathbb{C}: \varphi \geq 0 \text{ y } \|\varphi\| \leq 1\}$. Entonces QS(A) es convexo y w*-compacto, y ext(QS(A)) = PS(A) \cup $\{0\}$.

Demostración.

Como $\overline{B(0,1)}=\{\varphi\in A^*:\|\varphi\|\leq 1\}$ es convexo y w^* -compacto, y $\{\varphi\geq 0\}$ es claramente convexo, basta mostrar que este último es w^* -cerrado para concluir que QS(A) es w^* -compacto. Ahora, si $(\varphi_i)\subseteq\{\varphi\geq 0\}$ es tal que $\varphi_i\overset{w^*}{\to_i}\varphi$, entonces $\varphi_i(a)\to\varphi(a)$ para todo $a\in A_+$, de modo que $\varphi(a)\geq 0$ porque $\varphi_i(a)\geq 0$ $\forall i$. Luego $\varphi\geq 0$.

Para abreviar pongamos \mathcal{E} en lugar de ext(QS(A)). Veamos primero que $0 \in \mathcal{E}$. Si $0 = (1 - t)\psi + t\varphi$, con $t \in (0, 1)$, $\varphi, \psi \in QS(A)$, entonces

$$0 = \|(1-t)\psi + t\varphi\| = (1-t)\|\psi\| + t\|\varphi\|,$$

lo que implica $\|\varphi\| = \|\psi\| = 0$. Por lo tanto $0 \in \mathcal{E}$.

continuación de la prueba.

Veamos ahora que $PS(A) \cup \{0\} \subseteq \mathcal{E}$. Sea $\varphi \in PS(A)$, y supongamos que $\psi_1, \psi_2 \in QS(A)$ son tales que $\varphi = (1-t)\psi_1 + t\psi_2$, para algún $t \in (0,1)$. Entonces $\varphi \geq (1-t)\psi_1$ y $\varphi \geq t\psi_2$. Luego es $(1-t)\psi_1 = (1-t)\|\psi_1\|\varphi$ y $t\psi_2 = t\|\psi_2\|\varphi$. Es decir $\psi_1 = \|\psi_1\|\varphi$ y $\psi_2 = \|\psi_2\|\varphi$. Por otro lado:

$$1 = \|\varphi\| = \|(1-t)\psi_1 + t\psi_2\| = (1-t)\|\psi_1\| + t\|\psi_2\| \le 1.$$

Entonces $\|\psi_1\| = \|\psi_2\| = 1$, que junto con las igualdades $\psi_1 = \|\psi_1\|\varphi$ y $\psi_2 = \|\psi_2\|\varphi$ anteriormente vistas, implica $\psi_1 = \psi_2 = \varphi$. Entonces $\varphi \in \mathcal{E}$, y esto concluye la prueba de que $\mathsf{PS}(\mathcal{A}) \cup \{0\} \subseteq \mathcal{E}$.

Finalmente, mostremos que $PS(A) \cup \{0\} \supseteq \mathcal{E}$. Sea $\varphi \in \mathcal{E}$, $\varphi \neq 0$, y sea $0 \le \psi \le \varphi$, con $0 \ne \psi \ne \varphi$. Como $\frac{\psi}{\|\psi\|}$, $\frac{\varphi - \psi}{\|\varphi - \psi\|} \in S(A)$, y se tiene $\|\psi\| + \|\varphi - \psi\| = \|\psi + \varphi - \psi\| = \|\varphi\| = 1$, y además

$$\varphi = \psi + (\varphi - \psi) = \|\psi\|_{\|\psi\|} + \|\varphi - \psi\|_{\|\varphi - \psi\|},$$

entonces $\varphi=\frac{\psi}{\|\psi\|}=\frac{\varphi-\psi}{\|\varphi-\psi\|}$, porque $\varphi\in\mathcal{E}$. Entonces $\psi=\|\psi\|\varphi$, y se concluye que $\varphi\in \mathsf{PS}(A)$.

Corolario

Si $\varphi \in QS(A)$, entonces existe una red $(\varphi_i)_{i \in I}$ de combinaciones convexas de estados puros y la funcional nula tal que $\varphi_i \stackrel{w^*}{\to} \varphi$.

Demostración.

Se deduce inmediatamente del teorema de Krein-Milman.

Corolario

Si A es una C*-álgebra con unidad, entonces

- (a) S(A) es convexo y w^* -compacto.
- (b) ext(S(A)) = PS(A).
- (c) $S(A) = \overline{ConvPS(A)}^{w^*}$.

Demostración.

- (a) Si $(\varphi_i)\subseteq S(A)$ es tal que $\varphi_i\overset{w^*}{\to}\varphi$, entonces $\varphi(1)=\lim_i\varphi_i(1)=1$ y $\varphi\geq 0$. Luego $\varphi\in S(A)$. Entonces S(A) es un subconjunto cerrado del espacio w^* -compacto QS(A), y por lo tanto es w^* -compacto. Además S(A) es convexo: si $\varphi=(1-t)\psi_1+t\psi_2$, con $\psi_1,\psi_2\in S(A)$, entonces $\varphi\geq 0$ y $\varphi(1)=1$. Luego $\varphi\in S(A)$.
- (b) S(A) es un subconjunto extremal de QS(A), es decir, si $\varphi \in S(A)$ y $\psi_1, \psi_2 \in QS(A)$ son tales que $\varphi \in (\psi_1, \psi_2)$ entonces $\psi_1, \psi_2 \in S(A)$. En efecto, si $\varphi = (1-t)\psi_1 + t\psi_2$, entonces $\psi_1(1) = 1 = \psi_2(1)$ porque:

$$1 = \varphi(1) = (1 - t)\psi_1(1) + t\psi_2(1) \le 1.$$

Entonces $\psi_1, \psi_2 \in S(A)$. Por lo tanto

$$\operatorname{ext}(\mathsf{S}(A)) = \mathsf{S}(A) \cap \operatorname{ext}(\mathsf{QS}(A)) = \mathsf{S}(A) \cap (\mathsf{PS}(A) \cup \{0\}) = \mathsf{PS}(A).$$

(c) Es consecuencia de las partes anteriores y del teorema de Krein-Milman.

Corolario

Si $P(X) = \{\mu \text{ medidas de probabilidad sobre } X\}$, siendo X un espacio topológico de Hausdorff y compacto. Entonces existe una red $\{\mu_i\}$ de medidas de probabilidad de soporte finito tales que

$$\int_X f \, d\mu_i \to \int_X f \, d\mu$$

para toda $f \in C(X)$.

Demostración.

Basta tomar A = C(X).

Teorema

Si $a \in A_+$, entonces existe $\varphi \in PS(A)$ tal que $\varphi(a) = ||a||$.

Demostración.

Podemos suponer que $a \neq 0$. Consideremos $\varepsilon_a : \mathsf{QS}(A) \to [0, \infty)$ tal que $\varepsilon_a(\psi) = \psi(a)$. Entonces

- $0 \in Im(\varepsilon_a)$, porque $0 \in QS(A)$.
- $Im(\varepsilon_a)$ es convexo, porque QS(A) es convexo.
- $\varepsilon_a(\psi) = \psi(a) \le \|\psi\| \|a\| \le \|a\|$, así que $\operatorname{Im}(\varepsilon_a) \subseteq [0, \|a\|]$.
- Como existe $\psi \in S(A)$ tal que $\psi(a) = ||a||$, entonces $Im(\varepsilon_a) = [0, ||a||]$.

La última propiedad muestra que $F:=\{\psi\in \operatorname{QS}(A): \psi(a)=\|a\|\}\neq\emptyset$. Es claro que F es convexo y w^* -cerrado. Además F es un subconjunto extremal de $\operatorname{QS}(A)$: si $\psi\in F$ y $\psi=(1-t)\psi_1+t\psi_2$ con $\psi_1,\psi_2\in\operatorname{QS}(A)$, entonces

$$||a|| = \psi(a) = (1-t)\psi_1(a) + t\psi_2(a) \le ||a||,$$

de donde $\psi_1(a) = ||a|| = \psi_2(a)$. Luego $\psi_1, \psi_2 \in F$. En consecuencia existe $\varphi \in \text{ext}(\mathsf{QS}(A))$ tal que $\varphi \in F$. Como φ es no nula, entonces $\varphi \in \mathsf{PS}(A)$, y $\varphi(a) = ||a||$ porque $\varphi \in F$.

Definición

Definimos π_u^a la representación universal atómica como π_u^a : $A \to B(\mathcal{H}_u^a)$ dada por $\pi_u^a = \bigoplus_{\varphi \in PS(A)} \pi_{\varphi}$ donde π_{φ} : $A \to B(\mathcal{H}_{\varphi})$ es la GNS de φ .

Teorema

 π_u^a es fiel.

Demostración.

Hay que seguir paso por paso la demostración del Teorema de Gelfand-Naimark, sustituyendo estados por estados puros.