Álgebras de Operadores

Fernando Abadie

Centro de Matemática-FC Universidad de la República-Uruguay

Algebras de Banach

Algebras de Banach

Teoría espectral

1932: John von Neumann y la mecánica cuántica.

- 1932: John von Neumann y la mecánica cuántica.
- Oécada de 1930: trabajos de F. Murray y J. von Neumann. Interés: representaciones de grupos y mecánica cuántica.

- 1932: John von Neumann y la mecánica cuántica.
- ② Década de 1930: trabajos de F. Murray y J. von Neumann. Interés: representaciones de grupos y mecánica cuántica.
- Fines de los años 30: Israel Gelfand y las álgebras de Banach.

- 1932: John von Neumann y la mecánica cuántica.
- ② Década de 1930: trabajos de F. Murray y J. von Neumann. Interés: representaciones de grupos y mecánica cuántica.
- Fines de los años 30: Israel Gelfand y las álgebras de Banach.
- 1943: teoremas de Gelfand-Naimark.

- 1932: John von Neumann y la mecánica cuántica.
- ② Década de 1930: trabajos de F. Murray y J. von Neumann. Interés: representaciones de grupos y mecánica cuántica.
- Fines de los años 30: Israel Gelfand y las álgebras de Banach.
- 1943: teoremas de Gelfand-Naimark.
- Desarrollos posteriores.

- 1932: John von Neumann y la mecánica cuántica.
- ② Década de 1930: trabajos de F. Murray y J. von Neumann. Interés: representaciones de grupos y mecánica cuántica.
- Fines de los años 30: Israel Gelfand y las álgebras de Banach.
- 1943: teoremas de Gelfand-Naimark.
- Desarrollos posteriores.

- 1932: John von Neumann y la mecánica cuántica.
- ② Década de 1930: trabajos de F. Murray y J. von Neumann. Interés: representaciones de grupos y mecánica cuántica.
- Fines de los años 30: Israel Gelfand y las álgebras de Banach.
- 1943: teoremas de Gelfand-Naimark.
- Desarrollos posteriores.

Objetivos:

- 1932: John von Neumann y la mecánica cuántica.
- Oécada de 1930: trabajos de F. Murray y J. von Neumann. Interés: representaciones de grupos y mecánica cuántica.
- Fines de los años 30: Israel Gelfand y las álgebras de Banach.
- 1943: teoremas de Gelfand-Naimark.
- Desarrollos posteriores.

Objetivos:

• Hacer una introducción básica a las álgebras de Banach.

- 1932: John von Neumann y la mecánica cuántica.
- ② Década de 1930: trabajos de F. Murray y J. von Neumann. Interés: representaciones de grupos y mecánica cuántica.
- Fines de los años 30: Israel Gelfand y las álgebras de Banach.
- 1943: teoremas de Gelfand-Naimark.
- Desarrollos posteriores.

Objetivos:

- Hacer una introducción básica a las álgebras de Banach.
- Presentar los teoremas de Gelfand-Naimark y la teoría de representaciones para C*-álgebras.

- 1932: John von Neumann y la mecánica cuántica.
- Oécada de 1930: trabajos de F. Murray y J. von Neumann. Interés: representaciones de grupos y mecánica cuántica.
- Fines de los años 30: Israel Gelfand y las álgebras de Banach.
- 4 1943: teoremas de Gelfand-Naimark.
- Desarrollos posteriores.

Objetivos:

- Hacer una introducción básica a las álgebras de Banach.
- Presentar los teoremas de Gelfand-Naimark y la teoría de representaciones para C*-álgebras.
- Presentar y estudiar algunos ejemplos relevantes.

Definición

Un álgebra normada A es un espacio normado sobre $\mathbb C$ que es al mismo tiempo un anillo para el cual la multiplicación es $\mathbb C$ -bilineal y satisface: $\|ab\| \le \|a\| \|b\|$, $\forall a,b \in A$.

Definición

Un álgebra normada A es un espacio normado sobre $\mathbb C$ que es al mismo tiempo un anillo para el cual la multiplicación es $\mathbb C$ -bilineal y satisface: $||ab|| \le ||a|| \, ||b||, \, \forall a,b \in A$.

1 Si A tiene unidad 1 se exige ||1|| = 1

Definición

Un álgebra normada A es un espacio normado sobre $\mathbb C$ que es al mismo tiempo un anillo para el cual la multiplicación es $\mathbb C$ -bilineal y satisface: $||ab|| \le ||a|| \, ||b||$, $\forall a,b \in A$.

- Si A tiene unidad 1 se exige ||1|| = 1
- 2 Si A es completa se dice que A es un álgebra de Banach.

Definición

Un álgebra normada A es un espacio normado sobre $\mathbb C$ que es al mismo tiempo un anillo para el cual la multiplicación es $\mathbb C$ -bilineal y satisface: $||ab|| \le ||a|| \, ||b||, \, \forall a,b \in A$.

- Si A tiene unidad 1 se exige ||1|| = 1
- 2 Si A es completa se dice que A es un álgebra de Banach.
- § Si A tiene una involución * tal que $||a^*|| = ||a|| \ \forall a \in A$, se dice que A es una *-álgebra normada (de Banach si es completa).

Definición

Un álgebra normada A es un espacio normado sobre $\mathbb C$ que es al mismo tiempo un anillo para el cual la multiplicación es $\mathbb C$ -bilineal y satisface: $||ab|| \le ||a|| \, ||b||, \, \forall a,b \in A$.

- Si A tiene unidad 1 se exige ||1|| = 1
- 2 Si A es completa se dice que A es un álgebra de Banach.
- **③** Si A tiene una involución * tal que $||a^*|| = ||a|| ∀a ∈ A$, se dice que A es una *-álgebra normada (de Banach si es completa).
- Una *-álgebra de Banach es una C*-álgebra si satisface la "C*-condición":

$$||a^*a|| = ||a||^2, \ \forall a \in A$$
 (1)

• Si H es un espacio de Hilbert, entonces B(H) es una C^* -álgebra. En particular M_n : es una C^* -álgebra.

- Si H es un espacio de Hilbert, entonces B(H) es una C^* -álgebra. En particular M_n : es una C^* -álgebra.
- ② $\mathcal{K}(H) \triangleleft \mathcal{B}(H)$, C^* -álgebra de los operadores compactos.

- Si H es un espacio de Hilbert, entonces B(H) es una C^* -álgebra. En particular M_n : es una C^* -álgebra.
- **2** $\mathcal{K}(H) \triangleleft \mathcal{B}(H)$, C^* -álgebra de los operadores compactos.

- Si H es un espacio de Hilbert, entonces B(H) es una C^* -álgebra. En particular M_n : es una C^* -álgebra.
- **2** $\mathcal{K}(H) \triangleleft \mathcal{B}(H)$, C^* -álgebra de los operadores compactos.
- 3 B(E): operadores acotados en un espacio de Banach.
- $C_0(X) := \{a :\in C(X) \ y \ |a|^{-1} [\epsilon, \infty) \ es \ compacto, \ \forall \epsilon > 0 \}$ es una C^* -álgebra (conmutativa) con la norma del máximo y la conjugación como involución.

- Si H es un espacio de Hilbert, entonces B(H) es una C^* -álgebra. En particular M_n : es una C^* -álgebra.
- **2** $\mathcal{K}(H) \triangleleft \mathcal{B}(H)$, C^* -álgebra de los operadores compactos.
- 3 B(E): operadores acotados en un espacio de Banach.
- $C_0(X) := \{a :\in C(X) \ y \ |a|^{-1} [\epsilon, \infty) \ es \ compacto, \ \forall \epsilon > 0 \}$ es una C^* -álgebra (conmutativa) con la norma del máximo y la conjugación como involución.
- **5** El álgebra del disco $A(\mathbb{D}) := \operatorname{Hol}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$, con $a^*(z) = \overline{a(\overline{z})}$ y la norma del máximo.

- Si H es un espacio de Hilbert, entonces B(H) es una C^* -álgebra. En particular M_n : es una C^* -álgebra.
- **2** $\mathcal{K}(H) \triangleleft \mathcal{B}(H)$, C^* -álgebra de los operadores compactos.
- **3** B(E): operadores acotados en un espacio de Banach.
- $C_0(X) := \{a :\in C(X) \ y \ |a|^{-1} [\epsilon, \infty) \ es \ compacto, \ \forall \epsilon > 0 \}$ es una C^* -álgebra (conmutativa) con la norma del máximo y la conjugación como involución.
- **5** El álgebra del disco $A(\mathbb{D}) := \operatorname{Hol}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$, con $a^*(z) = \overline{a(\overline{z})}$ y la norma del máximo.
- **o** El álgebra de Wiener: $W := \{a \in C(\mathbb{T}) : \sum_{n \in \mathbb{Z}} |\hat{a}(n)| < \infty\}.$

- Si H es un espacio de Hilbert, entonces B(H) es una C^* -álgebra. En particular M_n : es una C^* -álgebra.
- 3 B(E): operadores acotados en un espacio de Banach.
- $C_0(X) := \{a :\in C(X) \ y \ |a|^{-1} [\epsilon, \infty) \ es \ compacto, \ \forall \epsilon > 0 \}$ es una C^* -álgebra (conmutativa) con la norma del máximo y la conjugación como involución.
- **5** El álgebra del disco $A(\mathbb{D}) := \operatorname{Hol}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$, con $a^*(z) = \overline{a(\overline{z})}$ y la norma del máximo.
- **o** El álgebra de Wiener: $W := \{ a \in C(\mathbb{T}) : \sum_{n \in \mathbb{Z}} |\hat{a}(n)| < \infty \}.$
- **1** Algebras de sucesiones: c_0 , ℓ^{∞}

- Si H es un espacio de Hilbert, entonces B(H) es una C^* -álgebra. En particular M_n : es una C^* -álgebra.
- **2** $\mathcal{K}(H) \triangleleft \mathcal{B}(H)$, C^* -álgebra de los operadores compactos.
- 3 B(E): operadores acotados en un espacio de Banach.
- $C_0(X) := \{a :\in C(X) \ y \ |a|^{-1} [\epsilon, \infty) \ es \ compacto, \ \forall \epsilon > 0 \}$ es una C^* -álgebra (conmutativa) con la norma del máximo y la conjugación como involución.
- **5** El álgebra del disco $A(\mathbb{D}) := \operatorname{Hol}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$, con $a^*(z) = \overline{a(\overline{z})}$ y la norma del máximo.
- **o** El álgebra de Wiener: $W := \{a \in C(\mathbb{T}) : \sum_{n \in \mathbb{Z}} |\hat{a}(n)| < \infty\}.$
- **o** Álgebras de sucesiones: c_0 , ℓ^{∞}
- **3** Álgebras asociadas a grupos: $\ell^1(\mathbb{Z})$, $L^1(G)$, M(G).

Definición

Un homomorfismo $\phi:A\to B$ de (*)-álgebras normadas es un homomorfismo de (*)-álgebras que además es continuo.

Definición

Un homomorfismo $\phi:A\to B$ de (*)-álgebras normadas es un homomorfismo de (*)-álgebras que además es continuo.

Definición

Un homomorfismo $\phi: A \to B$ de (*)-álgebras normadas es un homomorfismo de (*)-álgebras que además es continuo.

Ejemplos

1 Caracteres: $\delta_X : C_0(X) \to \mathbb{C}$ tal que $\delta_X(a) = a(x)$.

Definición

Un homomorfismo $\phi: A \to B$ de (*)-álgebras normadas es un homomorfismo de (*)-álgebras que además es continuo.

- **①** Caracteres: $\delta_X : C_0(X) \to \mathbb{C}$ tal que $\delta_X(a) = a(x)$.
- **②** Transformada de Fourier: $\mathcal{F}: L^1(\mathbb{T}) o c_0(\mathbb{Z})$ tal que

$$\mathcal{F}(a)(n)=\int_{\mathbb{T}}a(z)z^{-n}dz=rac{1}{2\pi}\int_{0}^{2\pi}a(e^{it})e^{-int}dt, orall n\in\mathbb{Z}.$$

Definición

Un homomorfismo $\phi: A \to B$ de (*)-álgebras normadas es un homomorfismo de (*)-álgebras que además es continuo.

Ejemplos

- **①** Caracteres: $\delta_x : C_0(X) \to \mathbb{C}$ tal que $\delta_x(a) = a(x)$.
- **2** Transformada de Fourier: $\mathcal{F}:L^1(\mathbb{T}) o c_0(\mathbb{Z})$ tal que

$$\mathcal{F}(a)(n)=\int_{\mathbb{T}}a(z)z^{-n}dz=rac{1}{2\pi}\int_{0}^{2\pi}a(e^{it})e^{-int}dt, orall n\in\mathbb{Z}.$$

3 Si $\alpha: X \to Y$ es un homeomorfismo, entonces $a \mapsto a \circ \alpha$ es un isomorfismo $C_0(Y) \to C_0(X)$.

Definición

Un homomorfismo $\phi: A \to B$ de (*)-álgebras normadas es un homomorfismo de (*)-álgebras que además es continuo.

- **①** Caracteres: $\delta_x : C_0(X) \to \mathbb{C}$ tal que $\delta_x(a) = a(x)$.
- ② Transformada de Fourier: $\mathcal{F}:L^1(\mathbb{T}) o c_0(\mathbb{Z})$ tal que

$$\mathcal{F}(a)(n)=\int_{\mathbb{T}}a(z)z^{-n}dz=rac{1}{2\pi}\int_{0}^{2\pi}a(e^{it})e^{-int}dt, orall n\in\mathbb{Z}.$$

- **③** Si α : $X \to Y$ es un homeomorfismo, entonces a \mapsto a α es un isomorfismo $C_0(Y) \to C_0(X)$.
- \bullet $\phi: \ell^1(\mathbb{Z}) \stackrel{\cong}{\to} \mathcal{W}$ dada por $(c_n) \mapsto f$, tal que $f(z) = \sum_{n \in \mathbb{Z}} c_n z^n$.

• Productos directos, sumas directas.

- Productos directos, sumas directas.
- Adjunción de la unidad: $A \mapsto \tilde{A} = A \oplus \mathbb{C}$, con:

$$(a,\lambda)(b,\mu) = (ab + \lambda a + \mu b, \lambda \mu)$$
 y

$$\|(a,\lambda)\| = \|a\| + |\lambda|, \quad (a,\lambda)^* = (a^*,\bar{\lambda})$$

- Productos directos, sumas directas.
- Adjunción de la unidad: $A \mapsto \tilde{A} = A \oplus \mathbb{C}$, con:

$$(a,\lambda)(b,\mu) = (ab + \lambda a + \mu b, \lambda \mu)$$
 y

$$\|(a,\lambda)\| = \|a\| + |\lambda|, \quad (a,\lambda)^* = (a^*,\bar{\lambda})$$

- Productos directos, sumas directas.
- Adjunción de la unidad: $A \mapsto \tilde{A} = A \oplus \mathbb{C}$, con:

$$(a, \lambda)(b, \mu) = (ab + \lambda a + \mu b, \lambda \mu)$$
 y

$$||(a,\lambda)|| = ||a|| + |\lambda|, \quad (a,\lambda)^* = (a^*,\bar{\lambda})$$

Si
$$\phi:A o B$$
, entonces $ilde{\phi}: ilde{A} o ilde{B}$ tal que $ilde{\phi}(a,\lambda)=(\phi(a),\lambda)$

- Productos directos, sumas directas.
- Adjunción de la unidad: $A \mapsto \tilde{A} = A \oplus \mathbb{C}$, con:

$$(a,\lambda)(b,\mu) = (ab + \lambda a + \mu b, \lambda \mu) y$$

$$\|(a,\lambda)\| = \|a\| + |\lambda|, \quad (a,\lambda)^* = (a^*,\bar{\lambda})$$

Si
$$\phi:A o B$$
, entonces $ilde{\phi}: ilde{A} o ilde{B}$ tal que $ilde{\phi}(a,\lambda)=(\phi(a),\lambda)$

• Cocientes A/J. La norma es $||a+J|| := \inf\{||a-x|| : x \in J\}$.

- Productos directos, sumas directas.
- Adjunción de la unidad: $A \mapsto \tilde{A} = A \oplus \mathbb{C}$, con:

$$(a,\lambda)(b,\mu) = (ab + \lambda a + \mu b, \lambda \mu) y$$

$$||(a,\lambda)|| = ||a|| + |\lambda|, \quad (a,\lambda)^* = (a^*,\bar{\lambda})$$

Si $\phi:A o B$, entonces $ilde{\phi}: ilde{A} o ilde{B}$ tal que $ilde{\phi}(a,\lambda)=(\phi(a),\lambda)$

• Cocientes A/J. La norma es $||a+J|| := \inf\{||a-x|| : x \in J\}$.

Definición

Un ideal J de A se llama modular si A/J tiene unidad.

- Productos directos, sumas directas.
- Adjunción de la unidad: $A \mapsto \tilde{A} = A \oplus \mathbb{C}$, con:

$$(a,\lambda)(b,\mu) = (ab + \lambda a + \mu b, \lambda \mu) y$$

$$||(a,\lambda)|| = ||a|| + |\lambda|, \quad (a,\lambda)^* = (a^*,\bar{\lambda})$$

Si $\phi:A o B$, entonces $ilde{\phi}: ilde{A} o ilde{B}$ tal que $ilde{\phi}(a,\lambda)=(\phi(a),\lambda)$

• Cocientes A/J. La norma es $||a+J|| := \inf\{||a-x|| : x \in J\}$.

Definición

Un ideal J de A se llama modular si A/J tiene unidad.

• Todo ideal modular maximal es un ideal maximal de A.

Teorema

Si A es un álgebra de Banach con unidad, entonces $Inv(A) := \{a \in A : a \text{ es invertible}\}\$ es abierto en A, y es un grupo topológico con la estructura heredada de A.

Teorema

Si A es un álgebra de Banach con unidad, entonces $Inv(A) := \{a \in A : a \text{ es invertible}\}\$ es abierto en A, y es un grupo topológico con la estructura heredada de A.

Demostración.

Si $a \in B(1,1)$, entonces $a^{-1} = \sum_{n>0} (1-a)^n$:

$$a\sum_{n\geq 0}(1-a)^n=\sum_{n\geq 0}(1-a)^n-(1-a)\sum_{n\geq 0}(1-a)^n=1.$$

Teorema

Si A es un álgebra de Banach con unidad, entonces $Inv(A) := \{a \in A : a \text{ es invertible}\}\$ es abierto en A, y es un grupo topológico con la estructura heredada de A.

Demostración.

Si $a \in B(1,1)$, entonces $a^{-1} = \sum_{n>0} (1-a)^n$:

$$a\sum_{n\geq 0}(1-a)^n=\sum_{n\geq 0}(1-a)^n-(1-a)\sum_{n\geq 0}(1-a)^n=1.$$

Teorema

Si A es un álgebra de Banach con unidad, entonces $Inv(A) := \{a \in A : a \text{ es invertible}\}\$ es abierto en A, y es un grupo topológico con la estructura heredada de A.

Demostración.

Si $a \in B(1,1)$, entonces $a^{-1} = \sum_{n>0} (1-a)^n$:

$$a\sum_{n\geq 0}(1-a)^n=\sum_{n\geq 0}(1-a)^n-(1-a)\sum_{n\geq 0}(1-a)^n=1.$$

Ahora si $a \in Inv(A)$, entonces $B(a, \frac{1}{\|a^{-1}\|}) \subseteq Inv(A)$, y

$$||b^{-1} - a^{-1}|| \le \frac{||a - b|| \, ||a^{-1}||^2}{1 - ||a^{-1}(a - b)||} \to 0 \text{ si } b \to a.$$

Sean A un álgebra de Banach y $a \in A$. El espectro de a en A es:

Sean A un álgebra de Banach y $a \in A$. El espectro de a en A es:

• Si A tiene unidad: $\sigma_A(a) := \{\lambda \in \mathbb{C} : a - \lambda \notin Inv(A)\}.$

Sean A un álgebra de Banach y $a \in A$. El espectro de a en A es:

- Si A tiene unidad: $\sigma_A(a) := \{\lambda \in \mathbb{C} : a \lambda \notin Inv(A)\}.$
- Si A no tiene unidad: $\sigma_A(a) := \sigma_{\tilde{A}}(a)$.

Sean A un álgebra de Banach y $a \in A$. El espectro de a en A es:

- Si A tiene unidad: $\sigma_A(a) := \{\lambda \in \mathbb{C} : a \lambda \notin Inv(A)\}.$
- Si A no tiene unidad: $\sigma_A(a) := \sigma_{\tilde{A}}(a)$.
- El conjunto $\rho(a) := \mathbb{C} \setminus \sigma(a)$ se llama conjunto resolvente de a.

Sean A un álgebra de Banach y $a \in A$. El espectro de a en A es:

- Si A tiene unidad: $\sigma_A(a) := \{\lambda \in \mathbb{C} : a \lambda \notin Inv(A)\}.$
- Si A no tiene unidad: $\sigma_A(a) := \sigma_{\tilde{A}}(a)$.
- El conjunto $\rho(a) := \mathbb{C} \setminus \sigma(a)$ se llama conjunto resolvente de a.

Proposición

Sean A un álgebra de Banach con unidad, y $a \in A$.

Sean A un álgebra de Banach y $a \in A$. El espectro de a en A es:

- Si A tiene unidad: $\sigma_A(a) := \{\lambda \in \mathbb{C} : a \lambda \notin Inv(A)\}.$
- Si A no tiene unidad: $\sigma_A(a) := \sigma_{\tilde{A}}(a)$.
- El conjunto $\rho(a) := \mathbb{C} \setminus \sigma(a)$ se llama conjunto resolvente de a.

Proposición

Sean A un álgebra de Banach con unidad, y $a \in A$.

1 Si ϕ : $A \to B$ es unital, entonces $\sigma_B(\phi(a)) \subseteq \sigma_A(a)$.

Sean A un álgebra de Banach y $a \in A$. El espectro de a en A es:

- Si A tiene unidad: $\sigma_A(a) := \{\lambda \in \mathbb{C} : a \lambda \notin Inv(A)\}.$
- Si A no tiene unidad: $\sigma_A(a) := \sigma_{\tilde{A}}(a)$.
- El conjunto $\rho(a) := \mathbb{C} \setminus \sigma(a)$ se llama conjunto resolvente de a.

Proposición

Sean A un álgebra de Banach con unidad, y $a \in A$.

- **1** Si ϕ : $A \to B$ es unital, entonces $\sigma_B(\phi(a)) \subseteq \sigma_A(a)$.
- ② Si $h: A \to \mathbb{C}$ es un homomorfismo no nulo, entonces $h(a) \in \sigma(a)$.

Sean A un álgebra de Banach y $a \in A$. El espectro de a en A es:

- Si A tiene unidad: $\sigma_A(a) := \{\lambda \in \mathbb{C} : a \lambda \notin Inv(A)\}.$
- Si A no tiene unidad: $\sigma_A(a) := \sigma_{\tilde{A}}(a)$.
- El conjunto $\rho(a) := \mathbb{C} \setminus \sigma(a)$ se llama conjunto resolvente de a.

Proposición

Sean A un álgebra de Banach con unidad, y $a \in A$.

- **1** Si ϕ : $A \to B$ es unital, entonces $\sigma_B(\phi(a)) \subseteq \sigma_A(a)$.
- ② Si h : $A \to \mathbb{C}$ es un homomorfismo no nulo, entonces $h(a) \in \sigma(a)$.
- **3** Si $p \in \mathbb{C}[X]$, entonces $\sigma(p(a)) = p(\sigma(a))$.

La función resolvente $R_a: \mathbb{C} \setminus \sigma(a) \to \operatorname{Inv}(A)$, definida como $R_a(z) = (z-a)^{-1}$, es holomorfa, y lím $_{z\to\infty} R_a(z) = 0$. Además si $|z| > \|a\|$ se tiene: $R_a(z) = \sum_{n=0}^\infty \frac{a^n}{z^{n+1}}$.

La función resolvente $R_a: \mathbb{C} \setminus \sigma(a) \to \operatorname{Inv}(A)$, definida como $R_a(z) = (z-a)^{-1}$, es holomorfa, y lím $_{z\to\infty} R_a(z) = 0$. Además si $|z| > \|a\|$ se tiene: $R_a(z) = \sum_{n=0}^{\infty} \frac{a^n}{z^{n+1}}$.

Teorema (Gelfand)

Sean A un álgebra de Banach y $a \in A$. Entonces $\sigma(a) \subseteq \bar{D}(0, ||a||)$, es compacto y no vacío.

La función resolvente $R_a: \mathbb{C} \setminus \sigma(a) \to \operatorname{Inv}(A)$, definida como $R_a(z) = (z-a)^{-1}$, es holomorfa, y lím $_{z\to\infty} R_a(z) = 0$. Además si $|z| > \|a\|$ se tiene: $R_a(z) = \sum_{n=0}^{\infty} \frac{a^n}{z^{n+1}}$.

Teorema (Gelfand)

Sean A un álgebra de Banach y $a \in A$. Entonces $\sigma(a) \subseteq \bar{D}(0, ||a||)$, es compacto y no vacío.

La función resolvente $R_a: \mathbb{C} \setminus \sigma(a) \to \operatorname{Inv}(A)$, definida como $R_a(z) = (z-a)^{-1}$, es holomorfa, y lím $_{z\to\infty} R_a(z) = 0$. Además si $|z| > \|a\|$ se tiene: $R_a(z) = \sum_{n=0}^{\infty} \frac{a^n}{z^{n+1}}$.

Teorema (Gelfand)

Sean A un álgebra de Banach y $a \in A$. Entonces $\sigma(a) \subseteq \bar{D}(0, ||a||)$, es compacto y no vacío.

Demostración.

1 Es directo que $\sigma(a)$ es compacto y está contenido en $\bar{D}(0, ||a||)$.

La función resolvente $R_a: \mathbb{C} \setminus \sigma(a) \to \operatorname{Inv}(A)$, definida como $R_a(z) = (z-a)^{-1}$, es holomorfa, y lím $_{z\to\infty} R_a(z) = 0$. Además si $|z| > \|a\|$ se tiene: $R_a(z) = \sum_{n=0}^\infty \frac{a^n}{z^{n+1}}$.

Teorema (Gelfand)

Sean A un álgebra de Banach y $a \in A$. Entonces $\sigma(a) \subseteq \bar{D}(0, ||a||)$, es compacto y no vacío.

- **1** Es directo que $\sigma(a)$ es compacto y está contenido en $\bar{D}(0, ||a||)$.
- ② Si fuera $\sigma(a) = \emptyset$, entonces $R_a = 0$ por el teorema de Liouville.

Corolario (Gelfand-Mazur)

Si A es un álgebra normada con división, entonces $A = \mathbb{C} \cdot 1_A$.

Corolario (Gelfand-Mazur)

Si A es un álgebra normada con división, entonces $A = \mathbb{C} \cdot 1_A$.

Definición (radio espectral)

Sean A un álgebra de Banach y $a \in A$. El radio espectral de a es

$$r(a) := \max\{|\lambda| : \lambda \in \sigma(a)\}.$$

Corolario (Gelfand-Mazur)

Si A es un álgebra normada con división, entonces $A = \mathbb{C} \cdot 1_A$.

Definición (radio espectral)

Sean A un álgebra de Banach y $a \in A$. El radio espectral de a es

$$r(a) := \max\{|\lambda| : \lambda \in \sigma(a)\}.$$

Ejemplo

El operador de Volterra $V: C([0,1]) \rightarrow C([0,1])$ tal que

$$V_a(t) = \int_0^t a(s) \, ds$$

es no nulo, pero $r(V_a) = 0$.

Si A es un álgebra de Banach y $a \in A$, entonces

$$r(a) = \inf_{n} \|a^{n}\|^{\frac{1}{n}} = \lim_{n} \|a^{n}\|^{\frac{1}{n}}$$

Si A es un álgebra de Banach y $a \in A$, entonces

$$r(a) = \inf_{n} \|a^{n}\|^{\frac{1}{n}} = \lim_{n} \|a^{n}\|^{\frac{1}{n}}$$

Si A es un álgebra de Banach y $a \in A$, entonces

$$r(a) = \inf_{n} \|a^{n}\|^{\frac{1}{n}} = \lim_{n} \|a^{n}\|^{\frac{1}{n}}$$

•
$$\sigma(a^n) = \sigma(a)^n \Rightarrow r(a^n) = r(a)^n \le ||a^n|| \Rightarrow r(a) \le \inf ||a^n||^{\frac{1}{n}}$$
.

Si A es un álgebra de Banach y $a \in A$, entonces

$$r(a) = \inf_{n} \|a^{n}\|^{\frac{1}{n}} = \lim_{n} \|a^{n}\|^{\frac{1}{n}}$$

- $\sigma(a^n) = \sigma(a)^n \Rightarrow r(a^n) = r(a)^n \le ||a^n|| \Rightarrow r(a) \le \inf ||a^n||^{\frac{1}{n}}$.
- Si $S_a: D(0, \frac{1}{r(a)}) \to A$ tal que $S_a(z) = \begin{cases} R_a(\frac{1}{z}) & \text{si } z \neq 0 \\ 0 & \text{si } z = 0 \end{cases}$, entonces S_a es analítica.

Si A es un álgebra de Banach y $a \in A$, entonces

$$r(a) = \inf_{n} \|a^{n}\|^{\frac{1}{n}} = \lim_{n} \|a^{n}\|^{\frac{1}{n}}$$

- $\sigma(a^n) = \sigma(a)^n \Rightarrow r(a^n) = r(a)^n \le ||a^n|| \Rightarrow r(a) \le \inf ||a^n||^{\frac{1}{n}}$.
- Si $S_a: D(0, \frac{1}{r(a)}) \to A$ tal que $S_a(z) = \begin{cases} R_a(\frac{1}{z}) & \text{si } z \neq 0 \\ 0 & \text{si } z = 0 \end{cases}$, entonces S_a es analítica.
- Entonces $S_a(z) = \sum_{n \geq 0} c_n z^n \ \forall z / \ |z| < \frac{1}{|\lim \sup_n \|c_n\|^{1/n}} \Rightarrow \frac{1}{r(a)} \leq \frac{1}{|\lim \sup_n \|c_n\|^{1/n}}.$

Si A es un álgebra de Banach y $a \in A$, entonces

$$r(a) = \inf_{n} \|a^{n}\|^{\frac{1}{n}} = \lim_{n} \|a^{n}\|^{\frac{1}{n}}$$

Demostración.

- $\sigma(a^n) = \sigma(a)^n \Rightarrow r(a^n) = r(a)^n \le ||a^n|| \Rightarrow r(a) \le \inf ||a^n||^{\frac{1}{n}}$.
- Si $S_a: D(0, \frac{1}{r(a)}) \to A$ tal que $S_a(z) = \begin{cases} R_a(\frac{1}{z}) & \text{si } z \neq 0 \\ 0 & \text{si } z = 0 \end{cases}$, entonces S_a es analítica.
- Entonces $S_a(z) = \sum_{n \geq 0} c_n z^n \ \forall z / \ |z| < \frac{1}{|\lim \sup_n \|c_n\|^{1/n}} \Rightarrow \frac{1}{r(a)} \leq \frac{1}{|\lim \sup_n \|c_n\|^{1/n}}.$
- Pero $c_n = a^{n-1}$, $\forall n$, así que lím $\sup_n \|c_n\|^{1/n} = r(a)$.

4 日 5 4 周 5 4 3 5 4 3 5