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Abstract. We describe and analyze a randomized homotopy algorithm for the

Hermitian eigenvalue problem. Given an n × n Hermitian matrix A the algo-

rithm returns, almost surely, a pair (λ, v) which approximates, in a very strong

sense, an eigenpair of A. We prove that the expected cost of this algorithm,

where the expectation is both over the random choices of the algorithm and

a probability distribution on the input matrix A, is O(n6), that is, cubic on

the input size. Our result relies on a cost assumption for some pseudo-random

number generators whose rationale is argued by us.
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1 Introduction

Numerical linear algebra is, arguably, the best developed part of numerical analysis.
This is not surprising since all numerical computations ultimately reduce to linear
algebra and this character of linear algebra has directed substantial efforts towards
its study. The above notwithstanding there are a few problems where the gap
between algorithmic practice and theoretical understanding is still large. Notably
among them is the eigenvalue problem.

∗Partially funded by a GRF grant from the Research Grants Council of the Hong Kong SAR
(project number CityU 100810).



In a nutshell, we have come up with algorithms for which either the complexity
is well understood but appear to be numerically unstable in practice or they exhibit
a stable behavior but defy a complexity analysis. The best known example of the
former is the procedure consisting in computing the characteristic polynomial χA
of the n × n input matrix A and then approximating the zeros λ1, . . . , λn of χA.
Both ingredients are known to have low complexity but the whole procedure often
fails to work due to numerical instability. Today’s algorithm of choice for eigenvalue
computations (and a perfect example of the latter) is the QR iteration with implicit
shifts. The lights and shadows of this procedure are described by Jim Demmel [11,
p. 139] as follows:

It is interesting that after more than 30 years of dependable service, convergence

failures of this algorithm have quite recently been observed, analyzed, and

patched [. . . ]. But there is still no global convergence proof, even though the

current algorithm is considered quite reliable.

Demmel then continues with the following words, unambiguosly stating the agenda:

So the problem of devising an algorithm that is numerically stable and globally

(and quickly!) convergent remains open.

One might believe that in the special case of symmetric (or Hermitian) matrices
the pleasant properties of these matrices would help to carry out this agenda. And
indeed, already in 1980, a book by Beresford Parlett [19] displayed a toolbox of
procedures for the symmetric eigenvalue problem. Nonetheless, twenty eight years
later, Percy Deift collected a list of open problems in random matrix theory [10] the
twelfth of which reads as follows:

how long does it take on average to diagonalize a random symmetric n × n

matrix M?

After which, Deift added

For definitiveness, let us assume that M is chosen from GOE and that we use

the standard QR eigenvalue algorithm. The fundamental question then takes

the following more concrete form: given ε > 0, how many QR steps does it take

on average to compute the eigenvalues of a GOE random matrix to order ε?

Here GOE refers to the Gaussian orthogonal ensemble, a class of random real sym-
metric matrices that naturally extends (to the symmetric situation) the class of
Gaussian matrices. An in-depth empirical study on the behavior of the QR and
Toda’s algorithms for computing eigenvalues was recently carried out by Pfrang,
Deift and Menon in [20].

In spite of the lack of a complete understanding of the QR algorithm on sym-
metric matrices, one may argue that Demmel’s agenda has satisfactory solutions in
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this case. For algorithms with a O(n3) running time exist which are shown to be
numerically stable (see [11, Chapter 5]).

The purpose of this paper is to provide a different answer in the Hermitian case,
by designing and analyzing a homotopy method. We do not expect our algorithm to
be competitive with state-of-the-art practice but rather to provide a form of analysis
that has not been performed for the eigenvalue problem.

Homotopy methods have been used for decades and we are not the first to pro-
pose their use for eigenvalue problems (see, e.g., [15]). But previous works on this
usage did not provide any form of complexity analysis. Actually, the impetus on
complexity analysis for homotopy methods comes from a different problem namely,
that of approximating zeros of complex polynomial systems, a task that Steve Smale
listed as the 17th in his list of 18 problems for the mathematicians of the 21st cen-
tury [24]. A major development for this problem, carried out by Carlos Beltrán
and Luis Miguel Pardo [3, 4], introduced the idea of drawing the initial data for
the homotopy from a random distribution and then averaging both with respect to
these random choices (this is the usual notion of cost for Las Vegas type random-
ized algorithms) and with respect to the input data (the standard average analysis
of algorithms). The bound on the cost thus obtained is polynomially bounded on
the size of the input system. Our analysis rests on these ideas and closely follows
their subsequent development in [7]. The way has been paved in [2] where a geo-
metric framework, and the main properties of the condition number, for eigenvalue
computations were established. Loosely speaking our main result is the following.

Main Theorem. We describe a randomized algorithm which, given an n × n
Hermitian matrix A, returns a pair (λ, v) which is a good approximation of an
eigenpair of A. The average cost of this algorithm (over the random choices made
by the algorithm and assuming A drawn from a GUE(n) distribution) is bounded
by O(n6). A simple modification of the algorithm computes approximate eigenpairs
for all the eigenpairs of A with an average cost of O(n7).

In this statement the word cost refers to number of arithmetic operations. A
couple of other notions (what is a good approximation, what is the GUE(n) distri-
bution) will be properly defined in the next section. Once this is done, we will close
that section by providing a formal statement of our main result (see Theorem 4), and
comparing this result with the current algorithmic solutions for the same problem.

Proofs are given in Section 3.
Our algorithm relies on the existence of pseudo-random number generators for

a certain family of densities. Since random number generation is not our main
concern, we stopped short from analyzing algorithms doing this task. Instead, we
assumed these algorithms at hand along with a bound on their complexity. A brief
description of a common tecnique in the subject with a rationale for the complexity
assumption are given in §2.8.

Remark 1 (i) We do not carry out any accuracy analysis in this paper. That is,
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we assume all computations are performed with infinite precision. We finish
this introduction, however, with two observations regarding finite precision.
Firstly, the fact that homotopy methods are widely used in practice and are
considered to be numerically stable. This is to be expected since the core
of the method is to follow a curve by a sequence of points which are near
the curve. Since only approximations are involved, the use of finite-precision
arithmetic should not harm. Secondly, for the problem of approximating zeros
of complex polynomial systems mentioned above, the numerical stability of
linear homotopies has been shown in [5]. A similar analysis can be carried out
in our context.

(ii) The complexity bound O(n6) looks (and is) outrageous when compared with
the O(n3) mentioned above. Yet, on closer examination, it turns out that
such comparison is between birds of different feather. We deal with this issue
in §2.9.

Acknowledgments. We are grateful to Mike Shub —who raised our awareness on
the gaps in the theoretical understanding of eigenvalue computations— to Carlos
Andradas and Teresa Krick for useful discussions on algebraic geometry, and to
Luc Devroye, Gabriel Illanes, and Gabor Lugosi, for the same on random number
generation. We want to express our gratitute to Laurent Mertz, through whom we
became aware of [16] and [18]. Finally, we are thankful to the anonymous referees
for the enlightening feedback in their reports.

2 Preliminaries, Basic Ideas, and Main Result

2.1 Canonical Metric Structures

LetHn be the set of n×n Hermitian matrices. That is, the set of matrices H ∈ Cn×n
such that the conjugate transpose H∗ of H, coincides with H. This is a real linear
subspace of Cn×n with dimension n2.

The space Hn is endowed with the restriction of the real part of the Frobenius
Hermitian product 〈 , 〉F on Cn×n given by

〈A,B〉F := trace (B∗A) =

n∑
i,j=1

aij bij ,

where A = (aij) and B = (aij). The Frobenius norm ‖ ‖F on Cn×n (and its
restriction on Hn) is the norm induced by 〈 , 〉F .

On the real vector space Hn×R we introduce the canonical inner product struc-
ture and its associated norm structure.

Abusing notation, let us denote by the symbol dS the associated Riemannian
distance on the unit spheres of both Hn and Hn × R. This Riemannian distance
—the angular distance— amounts to the angle between the arguments.
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The space Cn is equipped with the canonical Hermitian inner product 〈 , 〉.
Let P(Cn) be the projective space associated to Cn. This projective space is a

smooth manifold which carries a natural Riemannian metric, namely, the real part
of the Fubini-Study metric on P(Cn). The Fubini-Study metric is the Hermitian
structure on P(Cn) given in the following way: for x ∈ Cn,

〈w,w′〉x :=
〈w,w′〉
‖x‖2

,

for all w, w′ in the Hermitian complement x⊥ of x in Cn. We denote by dP the
associated Riemannian distance.

The space Hn ×R× P(Cn) is endowed with the Riemannian product structure.
Besides the induced Riemannian distance, we consider on this space the product of
the angle distances on Hn×R and P(Cn). We denote this product distance by dS×P.

Remark 2 A reasonable assumption is that the nature of our problem is invariant
under the scaling of the matrix and its eigenvalues. In this way, one may consider the
real projective space, or the real sphere, associated to the vector space Hn ×R (see
[2]). Here, for the sake of simplicity in the exposition, we carry out our computations
on the affine vector space Hn × R, however the reader must keep in mind that all
quantities involved will be invariant under scaling and therefore the main distance
is the angular distance dS.

2.2 The Varieties V, W, Σ′ and Σ

Motivated by [2], we define the solution variety for the Hermitian eigenpair problem
as

V := {(A, λ, v) ∈ Hn × R× P(Cn) : (λId−A)v = 0} .

Proposition 1 The solution variety V is a smooth submanifold of Hn×R×P(Cn),
of the same dimension as Hn.

Proof. See §3.5. �

This set inherits the Riemannian structure of the ambient space.

Associated to V there is a natural projection, namely, the canonical projection
on the first component π : V → Hn. Its derivative Dπ at (A, λ, v) is a linear operator
between spaces of equal dimension.

The subvariety W of well-posed triples is the subset of triples (A, λ, v) ∈ V
for which Dπ(A, λ, v) is an isomorphism. In particular, when (A, λ, v) ∈ W, the
projection π has a branch of its inverse (locally defined) taking A ∈ Hn to (A, λ, v) ∈
V. This branch of π−1 is called the solution map, and is the map that eigenpair
algorithms attempt to compute.
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Given (A, λ, v) ∈ Hn×R×P(Cn), let Aλ,v be the linear operator on the Hermitian
complement v⊥ of v given by

Aλ,v := Πv⊥(λId−A)|v⊥ ,

where Πv⊥ : Cn → v⊥ is the orthogonal projection. Then, one can prove that the
set of well-posed triples is given by

W = {(A, λ, v) ∈ V : Aλ,v is invertible}, (1)

(see Lemma 2.7 in [2]).
Let Σ′ := V \ W be the variety of ill-posed problems, and Σ = π(Σ′) ⊂ Hn be

the discriminant variety, i.e., the subset of ill-posed inputs.

Remark 3 From (1) it is clear that the subset Σ′ is the set of triples (A, λ, v) ∈ V
such that λ is an eigenvalue of A of algebraic multiplicity at least 2. It follows
that Σ is the set of matrices A ∈ Hn with multiple eigenvalues. In particular, when
A ∈ Hn\Σ then, π−1(A) is the set of triples (A, λ1, v1), . . . , (A, λn, vn), where (λi, vi)
are the n-eigenpairs of A.

Proposition 2 The discriminant variety Σ ⊂ Hn is a real algebraic variety, and for
all n ≥ 2 we have dim Σ = n2 − 3.

Proof. See §3.4. �

2.3 Unitary invariance

Let U(n) be the group of n×n unitary matrices. The group U(n) naturally acts on
P(Cn). In addition, U(n) acts on Hn by conjugation (i.e., U ·A := UAU−1), and on
Hn×R by U · (A, λ) := (UAU−1, λ). These actions define an action on the product
space Hn × R× P(Cn), namely,

U · (A, λ, v) := (UAU−1, λ, Uv). (2)

Remark 4 The varieties V, W, Σ′, and Σ, are invariant under the action of U(n)
(see [2] for details).

2.4 Condition of a triple

We define the condition number of (A, λ, v) ∈ W as

µ(A, λ, v) := max
{

1, ‖A‖F
∥∥Aλ,v−1∥∥} ,

where ‖ ‖ is the operator norm. This condition number fusions two condition num-
bers measuring, respectively, first-order variations for eigenvalues and eigenvectors
(see Section 3 in [2] for details). It admits the following characterization.
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Lemma 1 (Lemma 3.12 in [2]) Let A ∈ Hn \Σ, and let (λ1, v1), . . . , (λn, vn) be
its eigenpairs. Then

µ(A, λ1, v1) = max

1,
‖A‖F

min
i=2,...,n

|λi − λ1|

 . �

Remark 5 The condition number µ is invariant under the action of the unitary
group U(n), i.e., µ(UAU−1, λ, Uv) = µ(A, λ, v) for all U ∈ U(n). Also, it is
clear from Lemma 1, µ is scale invariant on the first two components. That is,
µ(sA, sλ, v) = µ(A, λ, v) for all nonzero real s.

The following is an easy consequence of the proof of Proposition 3.14(ii) in [2].

Corollary 1 Let Γ : [0, 1]→ V, Γ(t) = (At, λt, vt) be a smooth curve such that At
lies in the unit sphere of Hn, for all t. Then

∥∥ d
dtΓ(t)

∥∥ ≤ 2µ(Γ(t))
∥∥ d
dtAt

∥∥. �

Remark 6 Since the property of Aλ,v being invertible is open on Hn ×R× P(Cn),
the condition number µ can be naturally extended to an open neighborhood of W
in Hn×R×P(Cn). We will denote this extension also by µ. In addition, when Aλ,v
is non-invertible we will let µ(A, λ, v) :=∞.

Proposition 3 Given ε > 0, there exists Cε > 0 such that, if (A, λ, v), (A′, λ′, v′)
are arbitrary triples such that

dS×P((A, λ, v), (A′, λ′, v′)) ≤ Cε
µ(A, λ, v)

then
µ(A, λ, v)

1 + ε
≤ µ(A′, λ′, v′) ≤ (1 + ε)µ(A, λ, v).

One may choose Cε =
arctan

(
ε√

2+ς(1+ε)

)
(1+ε) where ς := (1 +

√
5)2
√

2. �

This proposition, is essentially, Proposition 3.22 in [2], where it was shown only
for pairs of triples in the solution variety. The extension to arbitrary triples is not
problematic and may, at most, change the values of the constants.

2.5 Newton’s method and approximate eigenpairs

Following [2], for a nonzero matrix A ∈ Hn, we define the Newton map associated
to A,

NA : R× (Cn \ {0})→ R× (Cn \ {0}),

7



by NA(λ, v) = (λ− λ̇, v − v̇) where

v̇ = Aλ,v
−1 Πv⊥(λ Id−A)v, λ̇ =

〈(λId−A)(v − v̇), v〉
〈v, v〉

.

This map is defined for every (λ, v) ∈ R × (Cn \ {0}) such that
Aλ,v := Πv⊥(λId−A)|v⊥ is invertible. Indeed, in this case, and since A ∈ Hn, it
is easily seen that 〈(λId− A)v̇, v〉 ∈ R, and therefore that λ̇ ∈ R as well. This map
has been introduced in [2] as the Newton operator associated to the evaluation map
(λ, v) 7→ (λId−A)v for a fixed A. See Section 4 of [2] for more details.

Definition 1 Given (A, λ, v) ∈ W we say that (ν, w) ∈ R × (Cn \ {0}) is an ap-
proximate eigenpair of A with associated eigenpair (λ, v) when for all k ≥ 1 the kth
iterate of the Newton map at (ν, w) is well defined and satisfies

dS×P
(
(A,Nk

A(ν, w)), (A, λ, v)
)
≤
(

1

2

)2k−1
dS×P

(
(A, ν,w), (A, λ, v)

)
.

Remark 7 Note that, if NA(ν, w) = (ν ′, w′) then NsA(sν, βw) = (sν ′, βw′), for
every s ∈ R\{0} and β ∈ C\{0}. Hence, the notion of approximate eigenpair scales
correctly; cf. Remark 2.

Remark 8 The notion of approximate solution as a point where Newton’s method
converges to a true solution immediately and quadratically fast was introduced
by Steve Smale [23]. It allows to elegantly talk about polynomial time without
dependencies on pre-established accuracies. In addition, these approximate solutions
are “good approximations” (as mentioned in the statement of the Main Theorem)
in a very strong sense. The distance to the exact solution dramatically decreases
with a single iteration of Newton’s method.

The following theorem is a special case of Theorem 2 in [2]. It estimates, in
terms of the condition of an eigenpair, the radius of a ball of approximate eigenpairs
associated to it.

Theorem 1 There is a universal constant c0 > 0 with the following property. Let
A ∈ Hn be nonzero and let (λ, v), (λ0, v0) ∈ R× (Cn \ {0}). If (λ, v) is a well-posed
eigenpair of A and

dS×P((A, λ, v), (A, λ0, v0)) <
c0

µ(A, λ, v)

then (λ0, v0) is an approximate eigenpair of A with associated eigenpair (λ, v). One
may choose c0 = 0.0739. �

Remark 9 We note that NA(ν, w) can be computed from the matrix A and the
pair (ν, w) in O(n3) operations, since the cost of this computation is dominated by
that of inverting a matrix.
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2.6 Gaussian Measure on Hn

We next introduce a natural probability measure on Hn which is invariant under the
action of U(n). This measure is the so called Gaussian Unitary Ensemble, (GUE(n)),
and has a density ρHn : Hn → R given by

ρHn(H) :=
1

2n/2
1

πn2/2
exp

(
−
‖H‖2F

2

)
,

(see [13, 17]). An equivalent description of GUE(n), based on random variables, will
be useful to us. We give it here.

We say that the complex random variable Z = X +
√
−1Y has distribution

NC(0, 1) when the real part X and the imaginary part Y are independent and
identically distributed (i.i.d.) drawn from N (0, 1/2), i.e., they are Gaussian centered
random variables with variance 1/2.

(We will write v ∼ NC(0,1n) to indicate that the vector v ∈ Cn is random with
i.i.d. coordinates drawn from NC(0, 1).)

If Z ∼ NC(0, 1) then its density pZ : C → R with respect to the Lebesgue
measure is given by

pZ(z) :=
1

π
e−|z|

2
.

Thus, it is clear from the definition of ρHn that the Gaussian Unitary Ensemble
corresponds to the distribution law of a random matrix onHn whose diagonal entries
are independent N (0, 1) and those above (or below) the diagonal are independent
NC(0, 1).

A classical result in random matrix theory exhibits the joint density of the eigen-
values of a GUE(n) matrix (cf. [17, §6.2]).

Theorem 2 Let H ∈ GUE(n). Then, the joint density ζn of the (non ordered)
eigenvalues of H is given by

ζn(λ1, . . . , λn) =
1

Zn

∏
i<j

(λi − λj)2 exp

(
−

n∑
k=1

λ2k
2

)
,

where

Zn = (2π)n/2
n∏
j=1

j!. �

In the sequel we will use the notation

∆n(λ1, . . . , λn) :=
∏
i<j

(λi − λj).

We will also denote by Wn the distribution on Rn with the density in Theorem 2.
The following is an immediate consequence of this theorem.
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Corollary 2 Let f : Hn → R be a measurable function such that there exist
g : Rn → R satisfying f(H) = g(λ1, . . . , λn) where λ1, . . . , λn are the eigenvalues of
H. Then

E
H∼GUE(n)

f(H) = E
x∼Wn

g(x).

Here Eη∼L ϕ(η) stands for the expected value of the real-valued function ϕ at η
drawn from the distribution L. �

The following lemma shows that some known properties of the Gaussian distri-
bution are shared by the Gaussian Unitary Ensemble.

Lemma 2 (i) Let G and R be independent GUE(n) random matrices. Then, for
t ∈ [0, 1],

Ht = (1− t)G+ tR

has distribution ((1− t)2 + t2)1/2H where H is GUE(n).

(ii) If H is GUE(n) then ‖H‖2F has the distribution of a χ2
n2 random variable.

Proof. (i) Write G = (gij) and R = (rij). Then, the (i, j)-entry of Ht is
given by (1 − t)gij + trij . Since linear combination of Gaussians is Gaussian, the
proof follows by computing the variance of each entry.

(ii) If H = (hij) with hij = aij +
√
−1 bij . Then

‖H‖2F = 2
∑
i<j≤n

(
a2ij + b2ij

)
+
∑
i≤n

a2ii =
∑
i<j≤n

(
(
√

2aij)
2 + (

√
2bij)

2
)

+
∑
i≤n

a2ii

which shows the statement since {
√

2aij ,
√

2bij , aii} are n2 independent random
variables with distribution N (0, 1). �

Crucial in our development is the following bound on average condition for
GUE(n) matrices. We will prove it in §3.3.

Theorem 3 Let Q be a random matrix drawn from GUE(n), and let
(λ1, v1), . . . , (λn, vn) be its random eigenpairs. Then,

E
Q∼GUE(n)

n∑
k=1

µ2(Q,λk, vk)

‖Q‖2F
≤ n(n− 1).

Remark 10 From the joint density of the eigenvalues of a GUE(n) it is clear that,
with probability one, matrices have all its eigenvalues different. Therefore the ex-
pected value in Theorem 3 is well-defined.
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2.7 The eigenpair continuation algorithm

Suppose that we are given an input matrix A ∈ Hn and an initial triple (M,λ, v)
in the solution variety V ⊆ Hn × R× (Cn \ {0}) such that A and M are R-linearly
independent. Let α := dS(M,A) ∈ (0, π) denote the angle between the rays R+A
and R+M . Consider the line segment [M,A] in Hn with endpoints M and A.

We parameterize this segment by writing

[M,A] = {Qτ ∈ Hn | τ ∈ [0, 1]}

with Qτ being the only point in [M,A] such that dS(M,Qτ ) = τα (see Figure 1).

0 M

A

Qτ

α

τα

Figure 1: The family Qτ , τ ∈ [0, 1].

If the line segment [M,A] does not intersect the discriminant variety Σ, then
starting at the eigenpair (λ, v) of M , the map [0, 1]→ Hn, τ 7→ Qτ , can be uniquely
extended to a continuous map

[0, 1]→ V, τ 7→ (Qτ , λτ , vτ ), (3)

such that (λ0, v0) = (λ, v). We call this map the lifting of [M,A] with origin
(M,λ, v). We shall also call τ 7→ (Qτ , λτ , vτ ) the solution path in V correspond-
ing to the input matrix A and initial triple (M,λ, v). Central to our algorithm is
the trivial fact that the pair (λ1, v1), corresponding to τ = 1, is an eigenpair of A.

In order to find an approximation of the eigenpair (λ1, v1) of A we may start
with the eigenpair (λ, v) = (λ0, v0) of M = Q0 and numerically follow the path
(Qτ , λτ , vτ ) by subdividing the interval [0, 1] into subintervals with extremities at
0 = τ0 < τ1 < · · · < τK = 1 and by successively computing approximations (νi, wi)
of (λτi , vτi) by Newton’s method. We want to do so ensuring that for all i, (νi, wi)
is an approximate eigenpair of Qτi+1 . Figure 2 attempts to convey the general idea.
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(λ0, v0)

(λ1, v1)

M = Q0 A = Q1Qτi

(λτi , vτi)

(νi, wi)

Qτi+1

(λτi+1 , vτi+1)

(wi+1, νi+1)

R× Cn

Figure 2: The continuation of the solution path.

The following algorithm gives a precise description of how this is done. The
letter ξ denotes a constant, namely ξ = 0.008535284254.

Algorithm 1 EC

Input: M,A ∈ Hn and (λ, v) ∈ R× Cn

Preconditions: (M − λ Id)v = 0, M 6∈ RA, v 6= 0

α := dS(M,A), r := ‖A‖F, s := ‖M‖F
τ := 0, Q := M, (ν, w) := (λ, v)

repeat

∆τ := ξ
αµ2(Q,ν,w)

τ := min{1, τ + ∆τ}
t := s

r sinα cot(τα)−r cosα+s
Q := tA+ (1− t)M
(ν, w) := NQ(ν, w)

until τ = 1

return (ν, w)

Output: (ν, w) ∈ R× Cn

Postconditions: The algorithm halts if the lifting of [M,A] at (λ, v)
does not cut Σ′. In this case, (ν, w) is an approximate eigenpair of A.
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The following result estimates the number of iterations performed by algo-
rithm EC.

Proposition 4 Suppose that [M,A] does not intersect the discriminant variety Σ.
Then the algorithm EC stops after at most K := K(A,M, λ) steps with

K ≤ 822 dS(M,A)

∫ 1

0
µ2(Qτ , λτ , vτ ) dτ.

The returned pair (ν, w) is an approximate eigenpair of A with associated eigenpair
(λ1, v1). Furthermore, the bound above is optimal up to a constant: we have

K ≥ 383 dS(M,A)

∫ 1

0
µ2(Qτ , λτ , vτ ) dτ.

Proof. See §3.1. �

2.8 Randomization and a Las Vegas procedure

Our algorithm for computing eigenpairs is a randomized Las Vegas algorithm, as
are the main procedures in [4, 7]. This means that we assume we have at hand a
routine returning a random vector from a given distribution. In both [4] and [7] this
distribution was a multivariate standard Gaussian (that is, in both cases and with
input n ∈ N, the routine returned a vector v ∼ N (0,1n)). Our setting demands
to draw vectors from a different distribution and because of this, a few words on
random number generation are in order. We will be brief, noting that a wealth of
information on random number generators can be found in [12, 14].

Random number generators are standard in scientific computing and many pro-
gramming languages offer implementations for the most common distributions. The
basic routine draws a number from a uniform distribution in a set of k elements. To
draw from other distributions one relies on this one as well as reasonable approxi-
mations in the case of continuous distributions. Thus, for instance, elements from
the uniform distribution on the interval (0, 1) may be drawn by chosing an element
in { 1k , . . . ,

k−1
k } with k large enough. And elements from the standard Gaussian

N (0, 1) by first drawing u ∈ (0, 1) from the uniform distribution and then return
x = Φ−1(u) where Φ is the cumulative distribution function of the Gaussian.

The results in [4, 7] assumed a routine drawing real numbers from N (0, 1) and
disregarded the actual implementation of this routine along with the fact that such
implementation can only compute approximations of the theoretical generator. Such
assumption is coherent with the overall assumption of infinite precision in these
papers. Furthermore, they assumed that the cost of drawing from N (0, 1) was
O(1). A rationale for this assumption on cost (none was offered in [4, 7]) could be
the following. Given a number u ∈ (0, 1) we may draw x from N (0, 1) by computing
Φ−1(u) (note though, that other ways of doing so, such as the Box-Müller transform,
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are possible). This is done up to a prespecified precision by performing a finite
number of arithmetic operations and evaluations ϕ(y) for various values of y ∈ R
(here ϕ is the density of N (0, 1)). Assuming these evaluations are done in constant
time as well, the overall time for computing Φ−1(u) (i.e., for drawing x from N (0, 1))
is independent of the input size of whichever execution is calling for the random draw.
Hence, with respect to this input size, this time is O(1). Of course, this implies that
the cost of producing a v from N (0,1n) is O(n).

The densities ρ we will draw real numbers from are a combination of polynomial
and exponential functions (their exact shape is described below). They are evaluated
at a point x ∈ R by a sequence of arithmetic operations and calls to the exponential
function and —in contrast with the picture above for the drawing of points from
N (0, 1)— for the various densities we will have to draw from, the cost of such an
evaluation (i.e., the number of operations and calls to the exponential) depends on
n. In line with the rationale above, we will make the following assumption.

Randomization assumption: Let Ξρ(n) denote the evaluation cost for a density ρ.
Then we can draw a real number from ρ with cost O(Ξρ(n)).

We can now proceed to describe our randomization routine.
For k = 1, . . . , n− 1, let

R(k)
n (x1, . . . , xk) :=

∫ ∞
−∞
· · ·
∫ ∞
−∞

ζn(x1, . . . , xk, xk+1, . . . , xn) dxk+1 . . . dxn,

where ζn is given in Theorem 2. Also, let R
(n)
n := ζn. Then, for k = 1, . . . , n, the

function R
(k)
n is a joint density function on Rk.

These densities are easily computable, because of the following well-known result
(see, e.g., [17, §6.2]).

Lemma 3 For k = 1, . . . , n,

R(k)
n (x1, . . . , xk) = det (Kn(xi, xj))1≤i,j≤k ,

where Kn is the reproducing kernel given by

Kn(x, y) :=
1√
2π

n∑
j=1

Hj(x)Hj(y)

j!
· exp

(
−(x2 + y2)

4

)
.

Here Hj(x) := (−1)j exp(x2/2) dj

dxj
exp(−x2/2), is the jth Hermite’s polynomial.

�

Our randomization routine is the following.
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Algorithm 2 random triple

Input: n ∈ N

draw λ1 ∈ R from the density R
(1)
n (∗)

from k = 2, . . . , n:

draw λk from the density
R

(k)
n (λ1,...,λk−1,∗)

R
(k−1)
n (λ1,...,λk−1)

draw U ∈ U(n) from the uniform distribution

let v := Ue1
let M := U diag(λ1, . . . , λn)U∗; λ := λ1

Output: (M,λ, v) ∈ Hn × R× Cn

Postconditions: M ∼ GUE(n) and (M − λ Id)v = 0

The first property we want to show about algorithm random triple is its correct-
ness.

Proposition 5 The output (M,λ, v) of random triple satisfies (M − λ Id)v = 0.
Furthermore, the matrix M follows the GUE(n) distribution, the (conditional to
be an eigenpair of M) probability distribution of (λ, v) ∈ R× P(Cn) is the discrete
uniform on the n eigenpairs and we have, for all function F : Hn×R× P(Cn)→ R,
that

E
(M,λ,v)∼random triple

F (M,λ, v) = E
M∼GUE(n)

1

n

n∑
i=1

F (M,λi, vi)

where (λ1, v1), . . . , (λn, vn) are the n eigenpairs of M .

Proof. By construction, the distribution of M is invariant under the action
of the unitary group. Hence, the probability density of M is a function of its
eigenvalues λ1, . . . , λn. Let ρ(λ1, . . . , λn) denote the joint probability density of
(λ1, . . . , λn) ∈ Rn generated in random triple. Then, by Theorem 2, it is enough to
prove that ρ(x1, . . . , xn) coincides with ζn(x1, . . . , xn) for all (x1, . . . , xn) ∈ Rn.

Again by construction, one has that ρ(x1, . . . , xn) is the product

ρλ1(x1) ρλ2|λ1=x1(x2) · · · ρλn|(λ1,...,λn−1)=(x1,...,xn−1)(xn),

where ρλ1(x1) is the probability density that λ1 takes the value x1, and where
ρλk|(λ1,...,λk−1)=(x1,...,xk−1)(xk) is the conditional probability density of λk at xk given

that the random vector (λ1, . . . , λk−1) in Rk−1 takes the value (x1, . . . , xk−1). That
is,

ρλ1(x1) = R(1)
n (x1); ρλk|(λ1,...,λk−1)=(x1,...,xk−1)(xk) =

R
(k)
n (x1, . . . , xk−1, xk)

R
(k−1)
n (x1, . . . , xk−1)

.
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Hence,

ρ(x1, . . . , xn) = R(1)
n (x1)

R
(2)
n (x1, x2)

R
(1)
n (x1)

· · · R
(n)
n (x1, . . . , xn−1, xn)

R
(n−1)
n (x1, . . . , xn−1)

= R(n)
n (x1, . . . , xn) = ζn(x1, . . . , xn),

the last equality by the definition of R
(n)
n . �

The second property we want to show of random triple is a bound on its cost.

Proposition 6 Under the randomization assumption, the cost of random triple with
input n is O(n4).

Proof. The densities we want to draw from are of the form

ρk(x) :=
R

(k)
n (λ1, . . . , λk−1, x)

R
(k−1)
n (λ1, . . . , λk−1)

where the numbers λ1, . . . , λk−1 have been previously computed and are therefore
given. To evaluate these quotients at a given x ∈ R we will rely on the explicit

expression for the functions R
(j)
n given in Lemma 3.

Let k > 1. We first note that the quantities Kn(λi, λj) for i, j ≤ k − 1 have
already been computed when dealing with ρ` when ` < k. We still need to compute
the values Kn(λi, x).

Now, for x ∈ R the cost of computing Hj(x) is O(j). We can compute all
of them, for j = 1, . . . , n, with cost O(n2). With these quantities at hand, each
Kn(λi, x) is computed with cost O(n) and, again, the k − 1 of them are obtained
with cost O(kn). With O(k3) further operations to compute a determinant we

obtain R
(k)
n (λ1, . . . , λk−1, x). The denominator R

(k−1)
n (λ1, . . . , λk−1) is computed

with a similar cost.
All in all, ρk(x) is computed with cost O(nk2) (it is immediate to check that

this holds for k = 1 as well). It follows that the total cost of the n drawings (from
ρ1, . . . , ρn) is

n∑
k=1

O(nk2) = O(n4).

Finally, we note that the cost of drawing U and compute M is dominated by that
of these drawings (and, actually, this step is not necessary; see Remark 13 below)
which finishes the proof. �

Remark 11 (i) Two recent papers related with the need of the randomization
assumption are [18] and [16]. In the former, an algorithm is presented and
it is claimed it performs precisely what we assume. Unfortunately, though,
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there are no proofs arguing for this claim, which is sustained only by numerical
experiments. The latter presents a different procedure to draw a triple as in
random triple, also with cost O(n4). It is based on Dyson Brownian Motion.
Unfortunately, again, there are no proofs in this paper either.

(ii) Because exp(
−(λ2i+x2)

4 ) = exp(
−λ2i
4 ) exp(−x

2

4 ) it is immediate to check that the

densities ρk(x) are of the form Pλ1,...,λk(x) exp(−x
2

4 ) where Pλ1,...,λk(x) is a poly-
nomial of degree 2n in x whose coefficients depend on the tuple (λ1, . . . , λk).
These densities are therefore, in a sense, close to Gaussian densities.

The following code puts together the randomization and path-following routines.

Algorithm 3 Eigenpairs

Input: A ∈ Hn

(M,λ, v) := random triple(n)

(ν, w) := EC(A,M, λ, v)

Output: (ν, w) ∈ R× Cn

Postconditions: The algorithm halts if [M,A] ∩ Σ = ∅. In this case,
the pair (ν, w) is an approximate eigenpair of A.

Remark 12 The fact that the codimension of Σ in Hn is 3 (shown in Proposition 2)
ensures that, almost surely, the segment [M,A] does not intersect Σ and therefore,
that Algorithm Eigenpairs halts.

Given a matrix A ∈ Hn the cost of algorithm Eigenpairs with input A depends
on the triple (M,λ, v) which is random. We therefore consider the randomized cost
of this algorithm on input A. Because of Proposition 5, the expected number of
iterations of algorithm EC with input A is given by

Num Iter(A) := E
M∼GUE(n)

1

n

n∑
i=1

K(A,M, λi, vi).

Since we are interested on the average complexity of Eigenpairs we will further take
the expectation of Num Iter(A) when A is drawn from GUE(n). We therefore obtain

Num Iter(n) := E
A∼GUE(n)

E
M∼GUE(n)

1

n

n∑
i=1

K(A,D, λi, vi).
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Multiplying this expression by the cost O(n3) of each iteration (and adding an O(n4)
term for the execution of random triple(n)) we obtain the average cost Cost(n) of
Eigenpairs.

Theorem 4 Algorithm Eigenpairs returns (almost surely) an approximate eigenpair
of its input A ∈ Hn. Under the randomization assumption, its average cost satisfies

Cost(n) = O(n6).

A simple modification of Eigenpairs that follows all the eigenpairs of M returns all
the eigenpairs of A with average cost O(n7).

Proof. See §3.2. �

Remark 13 We note here that, in practice, we do not need to draw U from the
uniform distribution in U(n) and then return M := U diag(λ1, . . . , λn)U∗ in ran-
dom triple. It is enough to return (M0, λ1, e1) where M0 := diag(λ1, . . . , λn). In
doing so, because of unitary invariance, we obtain the same value of Cost(n).

2.9 A brief comparison with current results

It will be useful to begin noting that the word approximation —say ζ̃, of a solution
ζ of a problem with datum A— is used in the literature with at least three different
meanings (cf. [8, §O.2 and §15.2]):

Backward approximation. The element ζ̃ is the solution of a datum Ã close to A.
In floating-point computations, this is usually understood as a multiple of the
machine epsilon.

Forward approximation. The quantity ‖ζ̃ − ζ‖ (or some component-wise version
of it) is small. Again, this is usually understood as a multiple of the machine
epsilon.

Approximation à la Smale. An appropriate version of Newton’s iteration, starting
at ζ̃, converges immediately, quadratically fast, to ζ.

Without deepening into technical details, what is relevant to our discussion is
that we listed these notions in an order that shows the more demanding last. In-
deed, to compare the first two, one notes that for a backward approximation, the
forward error is obtained, generally speaking, multiplying the backward error by the
condition number of the data at hand (in its usual meaning as the largest possible
magnification of the function value for small perturbations of the argument). Hence,
for poorly conditioned data, good backward approximations can lead to large for-
ward errors (i.e., they do not correspond to forward approximations). Also, it is
clear that an approximation à la Smale is stronger than a forward approximation.
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To obtain the latter with an error ε it is enough to perform O(log | log ε|) Newton’s
steps.

The O(n3) algorithms mentioned in the introduction are stable in the sense that
they produce eigenpairs which are backward approximations of true eigenpairs. But
for poorly conditioned matrices will not produce forward approximations of such
pairs. These algorithms are called direct (as opposed to iterative) and consequently
their complexity bound O(n3) is considered a worst-case bound. But Demmel [11,
p. 139] warns

Note that “direct” methods must still iterate, since finding eigenvalues is math-

ematically equivalent to finding zeros of polynomials, for which no noniterative

methods can exist. We call a method direct if experience shows that it (nearly)

never fails to converge in a fixed number of iterations.

That is, if we want to ensure that a forward approximation of a given quality (say,
forward error is at most ε) is returned for a poorly conditioned input, such algorithms
will have to iterate and the number of iterations will depend on the condition of
the input and on ε. If, in addition, we want to compute an approximation à la
Smale —what we do in this paper—, then a supplementary computational effort is
expected and there will be no dependence in ε in the associated cost.

Assuming an O(n3) cost for each iteration, the fact that we no longer perform
“a fixed number of iterations” entails an increase in the computation cost which, as
pointed above, will depend on the condition of the input. And since this condition
is infinity in the worst case (for ill-posed data), it is common to consider average
complexity bounds that eliminate condition numbers from them.

The absence of this kind of analysis for the direct methods mentioned in the
introduction, as well as the fact that they do not compute the same kind of approx-
imation, makes their comparison with our results inappropriate: we are comparing
apples and oranges.

Once said that, we believe that in practice these methods will certainly out-
perform the algorithm described in this paper in the sense that for most inputs
(those reasonably well conditioned) they return a good forward approximation
within a very satisfying time bound. But of course, the pursuit of the contrary
—outperforming the current practical algorithms— was never the goal of this pa-
per.

3 Proofs

3.1 Proof of Proposition 4

We associate with the solution path (3) in V the following curve in S(Hn)×R×Cn:

[0, 1]→ V, τ 7→ (Pτ , λτ , vτ ) :=
( Qτ
‖Qτ‖F

,
λτ
‖Qτ‖F

, vτ

)
, (4)
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where S(Hn) := {Q ∈ Hn | ‖Q‖F = 1}. Recall that α = dS(M,A). The meaning
of the parameterization by τ is that ατ is the parameterization of τ 7→ Pτ by arc

length, which means that
∥∥∥dPτdτ ∥∥∥ = α.

Let now [0, 1]→ [0, 1], τ 7→ t(τ), be any smooth bijective map such that dt/dτ >
0. Then we have ∥∥∥∥dPτ(t)dt

∥∥∥∥ =

∥∥∥∥dPτdτ
∥∥∥∥ dτdt = α

dτ

dt
,

and hence, by variable transformation,

α

∫ 1

0
µ2(Pτ , λτ , vτ ) dτ =

∫ 1

0
µ2
(
Pτ(t), λτ(t), vτ(t)

)∥∥∥∥dPτ(t)dt

∥∥∥∥ dt. (5)

In fact, for the probabilistic analysis later on, it will be essential to consider a
different parameterization of [M,A].

Proposition 7 For all τ ∈ [0, 1] we have Qτ = tA + (1 − t)M , where t = t(τ) is
given by

t(τ) =
‖M‖F

‖A‖F sinα cot(τα)− ‖A‖F cosα+ ‖M‖F
.

Proof. We use some elementary geometry. For this, we introduce Cartesian
coordinates (x, y) in the plane spanned by A and M (see Figure 1) and assume
that M has the coordinates (s, 0) and A has the coordinates (r cosα, r sinα) so that
r = ‖A‖F and s = ‖M‖F .

Then, the lines determining Qτ have the equations

x = y
cos(τα)

sin(τα)
and x = y

r cosα− s
r sinα

+ s,

from which it follows that the coordinate y of Qτ is

y =
rs sinα sin(τα)

r sinα cos(τα)− r cosα sin(τα) + s sin(τα)
.

Since t(τ) = y
r sinα , we conclude that

t(τ) =
s

r sinα cot(τα)− r cosα+ s
. �

Proof of Proposition 4. Set ε := 0.1 and hence Cε ≈ 0.0087. Furthermore,
let ξ := Cε(1−ε)

3(1+ε)4
≈ 0.00178.

We will carry out the proof on the curve (4) in the sphere S(Hn). We do so to
simplify the exposition and without implying that algorithm EC should be modified
to normalize matrices. Indeed, all the quantities involved in our proof depending
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on triples in Hn × R × Cn —distances dS×P, condition numbers µ, and Newton’s
method— are scale invariant on the first two components. Furthermore, to avoid
burdening the notation, we will write λ instead of λ. This should introduce no
confusion.

Let 0 = τ0 < τ1 < · · · < τK = 1 and (λ0, v0) = (ν0, w0), (ν1, w1), . . . , (νK , wK) be
the sequences of τ -values and pairs in R × Cn generated by the algorithm EC. To
simplify notation we write Pi instead of Pτi and (λi, vi) instead of (λτi , vτi).

We claim that for i = 0, . . . ,K − 1, the following statements are true:

(a) dS×P((Pi, νi, wi), (Pi, λi, vi)) ≤
Cε

µ(Pi, λi, vi)
.

(b)
µ(Pi, νi, wi)

1 + ε
≤ µ(Pi, λi, vi) ≤ (1 + ε)µ(Pi, νi, wi).

(c) dS×P((Pi, λi, vi), (Pi+1, λi+1, vi+1)) ≤
Cε

µ(Pi, λi, vi)

2(1− ε)
3(1 + ε)

.

(d) dS×P((Pi+1, νi, wi), (Pi+1, λi+1, vi+1)) ≤
2Cε

(1 + ε)µ(Pi, λi, vi)
.

(e) (νi, wi) is an approximate eigenpair of Pi+1 with associated eigenpair
(λi+1, vi+1).

We proceed by induction, showing that

(a, i)⇒ (b, i)⇒ (c, i)⇒ (d, i)⇒
(
(e, i) and (a, i+ 1)

)
.

Inequality (a) for i = 0 is trivial.
Assume now that (a) holds for some i ≤ K − 1. Then, Proposition 3 (with

A = A′ = Pi) implies

µ(Pi, νi, wi)

1 + ε
≤ µ(Pi, λi, vi) ≤ (1 + ε)µ(Pi, νi, wi)

and thus (b). We now prove (c). To do so, let τ∗ > τi be such that∫ τ∗

τi

∥∥∥∥d(Pτ , λτ , vτ )

dτ

∥∥∥∥dτ =
Cε

µ(Pi, λi, vi)

2(1− ε)
3(1 + ε)

or τ∗ = 1, whichever is smaller. Then, for all t ∈ [τi, τ∗],

dS×P((Pi, λi, vi), (Pt, λt, vt)) ≤
∫ t

τi

∥∥∥∥d(Pτ , λτ , vτ )

dτ

∥∥∥∥ dτ
≤ Cε
µ(Pi, λi, vi)

2(1− ε)
3(1 + ε)

.

(6)

It is therefore enough to show that τi+1 ≤ τ∗. This is trivial if τ∗ = 1. We therefore
assume τ∗ < 1. The bound above allows us to apply Proposition 3 and to deduce,
for all τ ∈ [τi, τ∗],

µ(Pτ , λτ , vτ ) ≤ (1 + ε)µ(Pi, λi, vi).
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Corollary 1 implies that∥∥∥∥ ddτ (Pτ , λτ , vτ )

∥∥∥∥ ≤ 2µ(Pτ , λτ , vτ )

∥∥∥∥ ddτ Pτ
∥∥∥∥

We now deduce that

Cε
µ(Pi, λi, vi)

2(1− ε)
3(1 + ε)

=

∫ τ∗

τi

∥∥∥∥d(Pτ , λτ , vτ )

dτ

∥∥∥∥dτ ≤ ∫ τ∗

τi

2µ(Pτ , λτ , vτ )

∥∥∥∥ ddτ Pτ
∥∥∥∥dτ

≤ 2(1 + ε)µ(Pi, λi, vi)

∫ τ∗

τi

∥∥∥∥ ddτ Pτ
∥∥∥∥dτ = 2(1 + ε)µ(Pi, λi, vi) dS(Pi, Pτ∗).

Consequently, using (b), we obtain

dS(Pi, Pτ∗) ≥
Cε(1− ε)

3(1 + ε)2µ2(Pi, λi, vi)
≥ Cε(1− ε)

3(1 + ε)4µ2(Pi, νi, wi)
.

Recall that the parameter ξ in EC was chosen as ξ = Cε(1−ε)
3(1+ε)4

. By the definition of

τi+1 − τi in EC we have α(τi+1 − τi) = ξ
µ2(Pi,νi,wi)

. So we obtain

dS(Pi, Pτ∗) ≥ α(τi+1 − τi) = dS(Pi, Pi+1).

This implies τi+1 ≤ τ∗ as claimed, and hence inequality (c) follows from (6) with
t = τi+1. With it, we may apply Proposition 3 once more to deduce, for all τ ∈
[τi, τi+1],

µ(Pi, λi, vi)

1 + ε
≤ µ(Pτ , λτ , vτ ) ≤ (1 + ε)µ(Pi, λi, vi). (7)

We now observe that

dS×P((Pi+1, νi, wi), (Pi, νi, wi)) ≤ dS(Pi, Pi+1) = α(τi+1 − τi) =
ξ

µ2(Pi, νi, wi)

≤ Cε(1− ε)
3(1 + ε)µ(Pi, νi, wi)

and use this bound, together with the triangle inequality, (a), and (c) to obtain

dS×P((Pi+1,νi, wi), (Pi+1, λi+1, vi+1)) ≤ dS×P((Pi+1, νi, wi), (Pi, νi, wi))

+ dS×P((Pi, νi, wi), (Pi, λi, vi))

+ dS×P((Pi, λi, vi), (Pi+1, λi+1, vi+1))

≤ Cε(1− ε)
3(1 + ε)µ(Pi, νi, wi)

+
Cε

µ(Pi, λi, vi)
+

Cε
µ(Pi, λi, vi)

2

3

1− ε
1 + ε

=
2Cε

(1 + ε)µ(Pi, λi, vi)
,

(8)
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which proves (d). We then use that 2Cε
1+ε ≈ 0.0158 < c0 and apply Theorem 1 to

deduce that (νi, wi) is an approximate eigenpair of Pi+1 associated with its eigenpair
(λi+1, vi+1), and hence (e) holds.

It follows from (e) that (νi+1, wi+1) = NPi+1(νi, wi) satisfies

dS×P((Pi+1, νi+1, wi+1), (Pi+1, λi+1, vi+1)) ≤
1

2
dS×P((Pi+1, νi, wi), (Pi+1, λi+1, vi+1)).

Using this bound, (d) and the right-hand inequality in (7) with τ = τi+1, we obtain

dS×P((Pi+1, νi+1, wi+1), (Pi+1λi+1, vi+1)) ≤
Cε

(1 + ε)µ(Pi, λi, vi)
≤ Cε
µ(Pi+1, λi+1, vi+1)

,

which proves (a) for i+ 1. The claim is thus proved.
Note that (e) for K − 1 shows that (νK−1, wK−1) is an approximate eigenpair

of QK = A with associated eigenpair (λ1, v1) and consequently, so is the returned
point (νK , wK) = NA(νK−1, wK−1).

Consider now any i ∈ {0, . . . ,K − 1}. Using (7), (b), and by the choice of the
step size ∆τ in Algorithm 1, we obtain∫ τi+1

τi

µ2(Pτ , λτ , vτ )dτ ≥
∫ τi+1

τi

µ2(Pi, λi, vi)

(1 + ε)2
dτ =

µ2(Pi, λi, vi)

(1 + ε)2
(τi+1 − τi)

≥ µ2(Pi, νi, wi)

(1 + ε)4
(τi+1 − τi)

=
µ2(Pi, νi, wi)

(1 + ε)4
ξ

αµ2(Pi, νi, wi)

=
ξ

(1 + ε)4α
=

Cε(1− ε)
3(1 + ε)8

1

α

≥ 1

822α
.

This implies ∫ 1

0
µ2(Pτ , λτ , vτ )dτ ≥ K

822α
,

which proves the stated upper bound on K. The lower bound follows from∫ τi+1

τi

µ2(Pτ , λτ , vτ )dτ ≤
∫ τi+1

τi

µ2(Pi, λi, vi)(1 + ε)2dτ

= µ2(Pi, λi, vi)(1 + ε)2(τi+1 − τi)
≤ µ2(Pi, νi, wi)(1 + ε)4(τi+1 − τi)

=
ξ(1 + ε)4

α
=

Cε(1− ε)
3α

≤ 1

383α
.

�
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3.2 Proof of Theorem 4

In order to apply Proposition 4, it will be central in our development to calculate the
integral (5) of the squared condition number with respect to the parameterization t
of [M,A] introduced in Proposition 7. Abusing notation, we shall write Qt = (1 −
t)M + tA. For this parameterization we have the following bound on the norm of
the speed of the spherical curve t 7→ Pt := Qt

‖Qt‖F .

Lemma 4 We have ∥∥∥dPt
dt

∥∥∥ ≤ ‖A‖F ‖M‖F‖Qt‖2F
.

Proof. Note that dQt
dt = A−M . Hence, if Pr denotes the orthogonal projection

of Hn onto the tangent space TQtS(Hn), we have (we are using [8, Lemma 14.10]),

dPt
dt

=
1

‖Qt‖F
Pr(A−M).

We show now by some elementary geometry that ‖Pr(A−M)‖F ≤ ‖A‖F ‖M‖F‖Qt‖F . For
this, as for Proposition 7, we introduce Cartesian coordinates in the plane spanned
by A and M and assume that M has the coordinates (s, 0) and A has the coordinates
(r cosα, r sinα); see Figure 3. We write Q := Qt and L := ‖A − M‖F . Then

s M

r

0

Q

y

A

L sinβ

α
τα β

ϕ

Figure 3: An elementary geometric argument.

‖Q−M‖F = tL, and trigonometry tells us that

sinϕ

sin(τα)
=

s

tL
.

Hence
‖Pr(A−M)‖F = L sinϕ =

s

t
sin(τα) =

s

t

y

‖Q‖F
.

We have
y

t
= L sinβ ≤ r,
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and therefore

‖Pr(A−M)‖F ≤
r s

‖Q‖F
=
‖A‖F ‖M‖F
‖Qt‖F

as claimed. �

Recall that our goal is to bound

Num Iter(n) = E
A∼GUE(n)

E
M∼GUE(n)

1

n

n∑
i=1

K(A,M, λi, vi) (9)

where λ1, . . . , λn are the eigenvalues of M . The next proposition is a step in this
direction.

Proposition 8 We have

Num Iter(n) ≤ 1644nπ E
Q∼GUE(n)

n∑
i=1

µ2(Q,λi, vi)

‖Q‖2F
.

Proof. The starting point is the bound for K(A,M, λi, vi) in Proposition 4.
We consider the truncated GUE(n) on Hn (which we will denote by GUET (n))

given by the density

ρT (A) =

{
ρHn (A)
Pn

if ‖A‖F ≤ n,

0 otherwise,
(10)

where Pn := ProbA∼GUE(n)

{
‖A‖F ≤ n

}
, and ρHn is the density of GUE(n). We

now observe that, since the random variable ‖A‖2F is chi-square distributed with
n2 degrees of freedom (by Lemma 2(ii)), the expectation of such random variable
is n, and since the median of a chi-square is bounded by its expectation (see [9,
Corollary 6]), we have Pn ≥ 1

2 .

Writing λ
(i)
τ to denote the continuation of the eigenvalue λi of M (and similarly

for v
(i)
τ ) we obtain

Num Iter(n) ≤ 822 E
A∼GUE(n)

E
M∼GUE(n)

1

n

n∑
i=1

∫ 1

0
µ2(Qτ , λ

(i)
τ , v

(i)
τ ) dτ

= 822 E
A∼GUET (n)

E
M∼GUET (n)

1

n

n∑
i=1

∫ 1

0
µ2(Qτ , λ

(i)
τ , v

(i)
τ ) dτ

≤ 822 E
A∼GUET (n)

E
M∼GUET (n)

1

n

n∑
i=1

∫ 1

0

‖A‖F ‖M‖F
‖Qt‖2F

µ2(Qt, λ
(i)
t , v

(i)
t ) dt.

The first inequality is a trivial consequence of Proposition 4. The equality after it

follows from the fact that the expressions
∫ 1
0 µ

2(Qτ , λ
(i)
τ , v

(i)
τ ) dτ are scale invariant
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with respect to both A and M . Hence, we can replace the GUE(n) distribution
by its truncation. For the bottom inequality we used (5) and Lemma 4. We can
next use that ‖A‖2F ‖M‖2F ≤ n2 and replace the expectations by integrals against
densities to bound the last expression as follows:

822
n2

P 2
n

∫
‖A‖F≤n

∫
‖M‖F≤n

1

n

n∑
i=1

∫ 1

0

µ2(Qt, λ
(i)
t , v

(i)
t )

‖Qt‖2F
dt ρHn(M) ρHn(A) dM dA

≤ 3288n2 E
A∼GUE(n)

E
M∼GUE(n)

1

n

n∑
i=1

∫ 1

0

µ2(Qt, λ
(i)
t , v

(i)
t )

‖Qt‖2F
dt

= 3288n2
1

n
E

Q∼GUE(n)

n∑
i=1

(
µ2(Q,λi, vi)

‖Q‖2F

)∫ 1

0

1

(1− t)2 + t2
dt

= 1644nπ E
Q∼GUE(n)

n∑
i=1

µ2(Q,λi, vi)

‖Q‖2F

where the equality before the last follows from Lemma 2(i) and the last from the
fact that the integral evaluates to π

2 . �

The proof of Theorem 4 now trivially follows by replacing in the right-hand side

of Proposition 8, the expectation EQ∼GUE(n)

∑n
i=1

µ2(Q,λi,vi)
‖Q‖2F

by n(n − 1) (we use

Theorem 3) and noting that

Cost(n) = O(n4) +O(n3)Num Iter(n) = O(n6)

where the first term in the addition comes from Proposition 6.

3.3 Proof of Theorem 3

Given (A, λ, v) ∈ W, we define the Frobenius condition number µF as

µF (A, λ, v) := ‖A‖F ‖Aλ,v−1‖F .

Since the operator norm of matrices is bounded from above by the Frobenius norm,
and from the fact that the expression ‖A‖F ‖Aλ,v−1‖ is bounded from below by
1/
√

2 (cf. Lemma 3.8 in [2]), we have that

µ(A, λ, v) ≤
√

2‖A‖F ‖Aλ,v−1‖ ≤
√

2µF (A, λ, v), (11)

for every (A, λ, v) ∈ W.
The proof of Theorem 3 relies on several lemmas the first of which is a crucial

linear algebra result.

Lemma 5 Let A ∈ Cn×n and v ∈ Cn such that ‖v‖ = 1. Let Â : v⊥ → v⊥ be given
by Â := Πv⊥A|v⊥ , and w := Πv⊥(Av) ∈ v⊥. If A and Â are invertible, then,∣∣det(A)

∣∣2 · ∥∥A−1v∥∥2 =
∣∣det(Â)

∣∣2 +
∣∣det(Â)

∣∣2 · ∥∥Â−1w∥∥2.
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Proof. Fix an orthonormal basis of Cn, with first element e1 = v. Then (slightly

abusing notation) we may write A =

(
a ∗
w Â

)
. By Cramer’s rule we have,

∥∥A−1e1∥∥2 · ∣∣det(A)
∣∣2 =

n∑
i=1

∣∣ det([Ai; e1])
∣∣2, (12)

where [Ai; e1] is the matrix formed by replacing the ith column of A by the column
vector e1. That is,∥∥A−1e1∥∥2 · ∣∣ det(A)

∣∣2 =
∣∣ det(Â)

∣∣2 +
n∑
i=2

∣∣det([Ai; e1])
∣∣2.

Furthermore, it is immediate to check that |det([Ai; e1])| = |det([(Â)i−1;w])|, for
i = 2, . . . , n. The proof follows replacing in (12), A and e1 by Â and w, respectively.

�

Lemma 6 Let A ∈ Cm×m. If η is a standard Gaussian vector in Cm, then

E
η∼NC(0,1m)

‖Aη‖2 = ‖A‖2F .

Proof. The proof is similar to that of [1, Proposition 2]. We give it nonetheless,
for the sake of completeness.

Let A = UDV be a singular value decomposition of A, where U and V are
unitary matrices and D = diag(σ1, . . . , σm) is a diagonal matrix with real positive
entries. By the unitary invariance of the Gaussian distribution NC(0,1m), V η has
the same distribution as η. Furthermore, by the unitary invariance of the norm in
Cm we obtain

E
η∼NC(0,1m)

‖Aη‖2 = E
η∼NC(0,1m)

‖Dη‖2 =
m∑
i=1

σ2i E
ηi∼NC(0,1)

|ηi|2.

Since Ez∼NC(0,1) |z|
2 = 1, the statement follows. �

In all what follows, for shorteness, we will write

En := E
Q∼GUE(n)

n∑
k=1

µ2F (Q,λk, vk)

‖Q‖2F
,

where (λk, vk), for k = 1, . . . , n, denote the eigenpairs of Q.

Lemma 7

En =
1

(n− 1)!
E

λ∼N (0,1)
E

B∼GUE(n−1)

(∥∥(B − λ Idn−1)−1
∥∥2
F
·
∣∣det(B − λ Idn−1)

∣∣2)
where N (0, 1) denotes the standard Gaussian distribution on R.
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Proof. Let Q ∈ Hn \ Σ, and let (λ1, v1), . . . , (λn, vn) be its eigenpairs. Then,
for k = 1, . . . , n,

µF (Q,λk, vk)
2

‖Q‖2F
=

n∑
i=1,i 6=k

1

|λi − λk|2
.

By Corollary 2, and the invariance under permutations of the joint density of
the eigenvalues, we get

En = E
(λ1,...,λn)∼Wn

n∑
k=1

 n∑
i=1, i 6=k

1

|λi − λk|2

 = n E
(λ1,...,λn)∼Wn

(
n−1∑
i=1

1

|λi − λn|2

)

=
n

Zn

∫
Rn

(
n−1∑
i=1

1

|λi − λn|2

)
∆2
n(λ1, . . . , λn) exp

(
−

n∑
i=1

λ2i
2

)
dλ1 . . . dλn.

Furthermore, applying Fubini’s theorem and writing λ in the place of λn, we have

En =
nZn−1
Zn

∫
R

exp

(
−λ

2

2

){
1

Zn−1

∫
Rn−1

(
n−1∑
i=1

1

|λi − λ|2

)
n−1∏
i=1

(λi − λ)2×

∆2
n−1(λ1, . . . , λn−1) exp

(
−
n−1∑
i=1

λ2i
2

)
dλ1 . . . dλn−1

}
dλ,

that is,

En =
nZn−1
Zn

∫
R

exp

(
−λ

2

2

)[
E

(λ1,...,λn−1)∼Wn−1

(
n−1∑
i=1

1

|λi − λ|2

)
n−1∏
i=1

(λi − λ)2

]
dλ.

Using Corollary 2 we obtain

En =
nZn−1
Zn

√
2π E

λ∼N (0,1)
E

B∼GUE(n−1)

(∥∥(B − λ Idn−1)−1
∥∥2
F
·
∣∣det(B − λ Idn−1)

∣∣2).
The statement now follows from the definition of the normalization constant Zn

given in Theorem 2. �

For fixed λ ∈ R, and m ≥ 1, let

cm(λ) := E
B∼GUE(m)

(∥∥(B − λ Idm)−1
∥∥2
F
·
∣∣ det(B − λ Idm)

∣∣2);
dm(λ) := E

B∼GUE(m)

(∣∣det(B − λ Idm)
∣∣2).

Lemma 8 For every λ ∈ R and m ≥ 2, one has

cm(λ) = m!

(
1 +

m−1∑
k=1

dk(λ)

k!

)
.
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Proof. Let η ∼ NC(0,1m) be independent of B ∼ GUE(m). Then, by Lemma 6
and Fubini’s theorem, one has,

cm(λ) = E
η∼NC(0,1m)

E
B∼GUE(m)

(∥∥(B − λ Idm)−1η
∥∥2 · ∣∣ det(B − λ Idm)

∣∣2).
Since η is a standard Gaussian in Cm, integrating in polar coordinates, it is easily
seen that u := η/‖η‖ and ‖η‖ are independent random variables. Furthermore, from
Lemma 6 for A = Idm, it follows that Eη∼NC(0,1m)(‖η‖2) = m. Then

cm(λ) = m E
u∼U(S2m−1)

E
B∼GUE(m)

(∥∥(B − λ Idm)−1u
∥∥2 · ∣∣ det(B − λ Idm)

∣∣2),
where U(S2m−1) denotes the uniform measure on the real unit sphere of Cm.

By the unitary invariance of the GUE(m) distribution and the fact that λ Idm
is fixed under the conjugation action, we have that the distribution of B − λ Idm is
invariant under conjugations by unitary matrices. Furthermore, from the fact that
the Euclidean norm is unitarily invariant, we conclude

cm(λ) = m E
B∼GUE(m)

(∥∥(B − λ Idm)−1e1
∥∥2 · ∣∣ det(B − λ Idm)

∣∣2),
where e1 is the first element of the canonical basis of Cm. Then, by Lemma 5,

cm(λ) = m E
B∼GUE(m)

(∣∣det(Bλ,e1)
∣∣2 +

∥∥(Bλ,e1)−1b
∥∥2∣∣ det(Bλ,e1)

∣∣2),
where Bλ,e1 := Πe⊥1

(B − λIdm)|e⊥1 , and b := Πe⊥1
(B − λ Idm)e1 = Πe⊥1

(Be1). Since

B ∼ GUE(m), we have that Πe⊥1
B|e⊥1 and b are independent GUE(m − 1) and

NC(0,1m−1), respectively. Hence, again by Lemma 6 and the definition of dm(λ),
we conclude that

cm(λ) = m(dm−1(λ) + cm−1(λ)).

Working by induction and using the fact that c1(λ) = 1, the result follows. �

Lemma 9 For every k = 1, 2, . . . , one has

E
λ∼N (0,1)

dk(λ) = (k + 1)!.

Proof. By the definition of the normalizing constant Zn we have

1 =
1

Zk+1

∫
Rk+1

∆2
k+1(λ1, . . . , λk+1) exp

(
−
k+1∑
i=1

λ2i
2

)
dλ1, . . . , dλk+1.
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Then, by arguments similar to those in the proof of Lemma 7, we have

1 =
Zk
Zk+1

√
2π E

λ∼N (0,1)
E

B∼GUE(k)

(∣∣ det(B − λ Idk)
∣∣2)

=
Zk
Zk+1

√
2π E

λ∼N (0,1)
dk(λ) =

1

(k + 1)!
E

λ∼N (0,1)
dk(λ)

from where the statement follows. �

Proof of Theorem 3. From Lemmas 7 and 8 one gets

En =
1

(n− 1)!
E

λ∼N (0,1)
(cn−1(λ)) = 1 +

n−2∑
k=1

Eλ∼N (0,1)(dk(λ))

k!
.

Then, Lemma 9 yields

En = 1 +
n−2∑
k=1

(k + 1) =
n(n− 1)

2
,

and the bound in (11) finishes the proof. �

3.4 Proof of Proposition 2

Let k ≤ n and Vn,k := {A ∈ Hn | rank(A) = k}. The set Vn,k is a locally closed
subset of Hn in the Zariski topology.

Lemma 10 (Proposition 1.1 in [6]) For 0 ≤ k ≤ n we have dimVn,k = k(2n −
k). �

Proof of Proposition 2. Let W2 := {A ∈ Hn | rank(A) ≤ n− 2}. Then W2

is the disjoint union W2 =
⊔
k≤n−2 Vn,k and we have

dimW2 = max
k≤n−2

dimVn,k = dimVn,n−2 = (n− 2)(2n− n+ 2) = n2 − 4.

Now consider the function

Φ : Hn × R → Hn
(A, λ) 7→ A− λId.

It is immediate to see that Φ is a linear map (and hence smooth). Also, since
matrices in Hn diagonalize, that Φ(W2 × R) = Σ (this equality would be false for
arbitrary matrices in Cn×n). This shows that dim Σ ≤ dimW2 + 1 = n2− 3 and the
fact that for all A ∈ Σ the fiber Φ−1|W2×R(A) ⊂ W2 × R is finite (it is actually the

number of different multiple eigenvalues of A) shows that this inequality is indeed
an equality. �
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3.5 Proof of Proposition 1

Proof of Proposition 1. Since the system of equations defining the solution
variety is homogeneous in the variable v, it is enough to prove that the set

V̂ := {(A, λ, v) ∈ Hn × R× (Cn \ {0}) : (λId−A)v = 0} ,

is a smooth manifold of real dimension n2 + 2.
Let Skew(n) := {B ∈ Cn×n : B∗ = −B} be the set of n × n skew-symmetric

matrices. Note that the real dimension of Skew(n) is n2.
Let F1 : Cn×n × C× (Cn \ {0})→ Cn given by

F1(A, λ, v) = (λId−A)v,

and let F2 : Cn×n × C× (Cn \ {0})→ Skew(n) given by

F2(A, λ, v) = A−A∗.

Note that V̂ = F−1(0, 0), where F = (F1, F2). We will prove that (0, 0) is a regular
value of F . If this is the case, it is easily seen that the dimension of V̂ is 2n2 + 2 +
2n− 2n− n2 = n2 + 2.

The derivative DF2(A, λ, v) is a surjective map onto the space Skew(n). There-
fore, it is enough for us to show that Cn × {0} ⊂ rangeDF (A, λ, v).

Claim: For all v ∈ Cn \ {0} one has {Πv⊥Bv : B ∈ Hn} = v⊥.

To prove this claim we first note that the space Hn is invariant under unitary
conjugations. Hence, we may assume that v is the first vector of the canonical basis
in Cn (up to a scaling by a positive number). Now the claim follows immediately
from the matrix entries’ structure of an Hermitian matrix.

Since at any triple (A, λ, v) the derivative of F1 applied to (Ȧ, λ̇, 0) is given by
λ̇v − Ȧv, we conclude from the Claim (and the fact that Hn × C × {0} is in the
kernel of DF2(A, λ, v)) that DF (A, λ, v) (Hn × C× {0}) = Cn × {0}. �
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