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a b s t r a c t

In this paper we define a new condition number adapted to direc-
tionally uniform perturbations in a general framework of maps be-
tween Riemannianmanifolds. The definitions and theorems can be
applied to a large class of problems. We show the relation with the
classical condition number and study some interesting examples.
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1. Introduction and main result

Let X and Y be two real (or complex) Riemannian manifolds of real dimensions m and n (m ≥ n)
associated respectively to some computational problem, where X is the space of inputs and Y is the
space of outputs. Let V ⊂ X × Y be the solution variety, i.e. the subset of pairs (x, y) such that y is an
output corresponding to the input x. Let π1 : V → X and π2 : V → Y be the canonical projections.
The set of critical points of the projection π1 is denoted byΣ ′, and letΣ := π1(Σ ′).
When dim V = dim X , for each (x, y) ∈ V \ Σ ′, there is a differentiable function locally defined

between some neighborhoods Ux and Uy of x ∈ X and y ∈ Y respectively, namely

G := π2 ◦ π−11 |Ux : Ux → Uy.

Let us denote by 〈·, ·〉x and 〈·, ·〉y the Riemannian (orHermitian) inner product in the tangent spaces
TxX and TyY at x and y respectively. The derivative DG(x) : TxX → TyY is called the condition linear
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operator at (x, y). The condition number at (x, y) ∈ V \Σ ′ is defined as

κ(x, y) := max
ẋ∈TxX
‖ẋ‖2x=1

‖DG(x)ẋ‖y. (1)

This number is an upper-bound—to first-order approximation—of the worst-case sensitivity of the
output error with respect to small perturbations of the input. There is an extensive literature about
the role of the condition number in the accuracy of algorithms, see for example Higham [12] and
references therein.

Remark 1.1. Our general framework of maps between Riemannian manifolds was motivated by
Shub–Smale [14] and Dedieu [8]. This general framework for a computational problem differs from
the usual one, where the problem being solved can be described by a univalent function G. In the
given context, we allow multi-valued functions, that is, we allow inputs with different outputs. In
this way, one can define the condition number for the input x ∈ X as a certain functional defined
over (κ(x, y))

{y∈π2(π
−1
1 (x))}. When the function G is univalent the condition number κ(x) := κ(x, y)

coincides with the classical condition number (see Higham [12], p. 8). In what follows, wewill restrict
ourselves to study the condition number given by (1), but it is worth pointing out that all the analysis
we will pursue here can be carried out to this kind of condition numbers without modifications.

In many practical situations, however, there exists a discrepancy between worst case theoretical
analysis and observed accuracy of an algorithm. There exist several approaches that attempt to rectify
this discrepancy. Among themwe find average-case analysis (see Edelman [10], Smale [15]) and smooth
analysis (see Spielman–Teng [16], Bürgisser–Cucker–Lotz [7], Wschebor [21]). For a comprehensive
review on this subject with historical notes see Bürgisser [5].
In many problems, the space of inputs has a much larger dimension than the one of the space

of outputs (m � n). Then, it is natural to assume that infinitesimal perturbations of the input will
produce drastic changes in the output only when they are performed in a few directions. Then, a
possibly different approach to analyze accuracy of algorithms is to replace ‘‘worst direction’’ by a
certain mean over all possible directions. This alternative was already suggested and studied inWeiss
et al. [19] in the case of the linear system solving Ax = b, and more generally, in Stewart [17] in the
case of matrix perturbation theory, where the first-order perturbation expansion is assumed to be
random.
In this paper we extend this approach to a large class of computational problems, restricting

ourselves to the case of directionally uniform perturbations.
Generalizing the concept introduced in Weiss et al. [19] and Stewart [17], we define the pth-

stochastic condition number at (x, y) as

κst
[p](x, y) :=

[
1

vol(Sm−1x )

∫
ẋ∈Sm−1x

‖DG(x)ẋ‖pydS
m−1
x (ẋ)

]1/p
, (p = 1, 2, . . .), (2)

where vol(Sm−1x ) = 2πm/2
0(m/2) is the measure of the unit sphere S

m−1
x in TxX and dSm−1x is the induced

volume element. We will be mostly interested in the case p = 2, which we simply write κst and call
it the stochastic condition number.
Before stating the main theorem, we define the Frobenius condition number as

κF (x, y) := ‖DG(x)‖F =
√
σ 21 + · · · + σ

2
n ,

where ‖ · ‖F is the Frobenius norm and σ1, . . . , σn are the singular values of the condition operator.
Note that κF (x, y) is a smooth function in V \ Σ ′, where its differentiability class depends on the
differentiability class of G.

Theorem 1.

κst
[p](x, y) =

1
√
2

[
0
(m
2

)
0
(m+p
2

)]1/p · E(‖ησ1,...,σn‖p)1/p,
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where ‖ · ‖ is the Euclidean norm in Rn and ησ1,...,σn is a centered Gaussian vector in Rn with the diagonal
covariance matrix Diag(σ 21 , . . . , σ

2
n ).

In particular, for p = 2

κst(x, y) =
κF (x, y)
√
m

. (3)

Remark 1.2. Since κ(x, y) ≤ κF (x, y) ≤
√
n · κ(x, y), we have from (3) that

1
√
m
· κ(x, y) ≤ κst(x, y) ≤

√
n
m
· κ(x, y).

This result is most interesting when m � n, for in that case κst(x, y) � κ(x, y). Thus, in these cases
onemay expect much better stability properties than those predicted by classical condition numbers.

Remark 1.3. In many situations, one needs to analyze how the condition number varies in order to
study (or to improve) the accuracy of an algorithm. In this way, the replacement of the usual non-
smooth condition number κ given in (1) by a smooth one has an important theoretical and practical
application.

In numerical analysis, many authors are interested in relative errors. Thus, when (X, 〈·, ·〉X ) and
(Y , 〈·, ·〉Y ) are real (or complex) finite dimensional vector spaceswith an inner (orHermitian) product,
instead of considering the (absolute) condition number (1), one can take the relative condition number
defined as

κrel(x, y) :=
‖x‖X
‖y‖Y

· κ(x, y), x 6= 0, y 6= 0;

and the relative Frobenius condition number as

κrelF (x, y) :=
‖x‖X
‖y‖Y

· κF (x, y), x 6= 0, y 6= 0,

where ‖ · ‖X and ‖ · ‖Y are the respective induced norms. In the same way, we define the relative
pth-stochastic condition number as

κrel
[p]
st (x, y) :=

‖x‖X
‖y‖Y

· κst
[p](x, y), (p = 1, 2, . . .). (4)

For the case p = 2 we simply write κrelst and call it the relative stochastic condition number.
In this case, we can define Riemannian structures on X \ {0} and Y \ {0} in the following way: for

each x ∈ X, x 6= 0, and y ∈ Y , y 6= 0, we define

〈·, ·〉x :=
〈·, ·〉X

‖x‖2X
, and 〈·, ·〉y :=

〈·, ·〉Y

‖y‖2Y
.

Notice that, in these Riemannian structures the usual condition number defined in (1) turns to be
the relative condition number defined before. Then, Theorem 1 remains true if one exchanges the
(absolute) condition number by the relative condition number. In particular,

κrelst(x, y) :=
κrelF (x, y)
√
m

.

2. Componentwise analysis

In the case Y = Rn, we define the kth-componentwise condition number at (x, y) ∈ V \Σ ′ as

κ(x, y; k) := max
ẋ∈TxX
‖ẋ‖2x=1

|(DG(x)ẋ)k|, (k = 1, . . . , n), (5)

where | · | is the absolute value andwk indicates the kth-component of the vectorw ∈ Rn.
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Following Weiss et al. [19] for the linear case, we define the pth-stochastic kth-componentwise
condition number as

κst
[p](x, y; k) :=

[
1

vol(Sm−1x )

∫
ẋ∈Sm−1x

|(DG(x)ẋ)k|p dSm−1x (ẋ)
]1/p

, (p = 1, 2, . . .). (6)

Then we have the following proposition.

Proposition 1.

κst
[p](x, y; k) =

[
1
√
π
·
0
(m
2

)
0
(m+p
2

) · 0 (p+ 1
2

)]1/p
· κ(x, y; k).

In particular,

κst(x, y; k) =
κ(x, y; k)
√
m

.

Proof. Observe that κst [p](x, y; k) is the pth-stochastic condition number for the problem of finding
the kth-component of G = (G1, . . . ,Gn) : X → Rn. Theorem 1 applied to Gk yields

κst
[p](x, y; k) =

1
√
2

[
0
(m
2

)
0
(m+p
2

)] 1p · E(|ησ1 |p)1/p
where σ1 = ‖DGk(x)‖ = κ(x, y; k). Then,

E(|ησ1 |
p)1/p = κ(x, y; k) · E(|η1|p)1/p,

where η1 is a standard normal in R. Finally,

E(|η1|p) =
2
√
2π

∫
∞

0
ρpe−ρ

2/2dρ =
2
√
2π
2
p−1
2 0

(
p+ 1
2

)
,

and the proposition follows. �

3. Examples

In this section we will compute the stochastic condition number for different problems: systems
of linear equations, eigenvalue and eigenvector problems, finding kernels of linear transformations
and solving polynomial systems of equations. The first two have been computed in Stewart [17] and
are an easy consequence of Theorem 1 and the usual condition number κ .
The computations of κ for the case of systems of linear equations, eigenvalue and eigenvector

problems, and solving polynomial systems of equations are fairly well-known. However, as far as
we know, previous results of κ for the problem of finding kernels of linear transformations only
offers bounds (see Kahan [13], Stewart–Sun [18], Beltran–Pardo [2]). In Section 3.3 we give an explicit
computation of κ for this problem.
In what follows, we will drop the output in the notation of condition number when the

input–output map is univalued.

3.1. Systems of linear equations

We consider the problem of solving for y ∈ Rn the system of linear equations Ay = b, y 6= 0,
where A ∈ Mn(R) (the space of n× n real matrices), and b ∈ Rn. If we assume that b is fixed, then we
can consider the input space X = Mn(R) equipped with the Frobenius inner product

〈A, B〉F = trace(ABt), (7)

Please cite this article in press as: D. Armentano, Stochastic perturbations and smooth condition numbers, Journal of
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where Bt is the transpose of B, and the output space Y = Rn equipped with the Euclidean inner
product. It is easy to see that Σ equals the subset of non-invertible matrices. Then, the map G :
Mn(R) \Σ → Rn is globally defined and differentiable, namely

G(A) = A−1b(= y).

By implicit differentiation,

DG(A)Ȧ = −A−1Ȧy. (8)

It is easy to see from (8) that

κ(A) = ‖A−1‖ · ‖y‖.

Let H be the orthogonal complement of kerDG(A), i.e. H is the set of rank one matrices of the form
uyt , u ∈ Rn, where yt denotes the transpose of y ∈ Rn. Then, themap u 7→ uyt/‖y‖ is a linear isometry
between Rn and H . Under this identification, it is easy to see from (8) that DG(A)|H coincides with the
map−‖y‖ · A−1, from where we conclude

κF (A) = ‖A−1‖F · ‖y‖.

Then, from Theorem 1 we get

κst(A) =
‖A−1‖F · ‖y‖

n
,

and therefore

κst(A) ≤
κ(A)
√
n
. (9)

A similar result was proved in Stewart [17].
For the general case, we consider X = Mn(R)×Rn equipped with the product metric structure of

the Frobenius inner product inMn(R) and the Euclidean inner product in Rn. Then, G : Mn(R) \Σ ×
Rn → Rn satisfies G(A, b) = A−1b.
Similar to the preceding case, we have κ(A, b) = ‖A−1‖ ·

√
1+ ‖y‖2 and κF (A, b) = ‖A−1‖F ·√

1+ ‖y‖2. Again from Theorem 1 we get

κst(A, b) =
‖A−1‖F ·

√
1+ ‖y‖2

√
n2 + n

,

and therefore

κst(A, b) ≤
κ(A, b)
√
n+ 1

.

For the kth-componentwise condition number, we have that

κst
[p]((A, b); k) =

 1
√
π
·

0

(
n2+n
2

)
0

(
n2+n+p
2

) · 0 (p+ 1
2

)1/p · κ((A, b); k),
and

κst((A, b); k) =
κ((A, b); k)
√
n2 + n

.

A similar result was proved inWeiss et al. [19], where the average in (6) is performed over the unit
ball instead of the unit sphere.
In Edelman [10], it is proved that the expected value of the relative condition number κrel(A) =

‖A‖ · ‖A−1‖ of a randommatrix A, whose elements are i.i.d standard normal, satisfies

E(log κrel(A)) = log n+ c + o(1),
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as n→∞, where c ≈ 1.537. If we consider the relative stochastic condition number defined in (4),
we get from (9)

E(log κrelst(A)) ≤
1
2
log n+ c + o(1),

as n→∞.

3.2. Eigenvalue and eigenvector problem

We focus on the complex case. The real case is analogue. We consider the problem of solving for
(λ, v) ∈ C×Cn the system of equations (λIn−A)v = 0, v 6= 0, where A ∈ Mn(C) (the space of n×n
complex matrices). Since this system of equations is homogenous in v, we define the solution variety
associated with this problem as

V = {(A, v, λ) ∈ Mn(C)× P(Cn)× C : (λIn − A)v = 0},

where P(Cn) denotes the projective space associated with Cn.
Following Shub–Smale [14], let X = Mn(C) be equipped with the Frobenius Hermitian inner

product, i.e. the complex analogue of (7), and Y = P(Cn)×C be equipped with the canonical product
metric structure.
Then, for (A, v, λ) ∈ V \ Σ ′, i.e. when λ is a simple eigenvalue (cf. Wilkinson [20]), the condition

linear operators DG1 and DG2 associated with the eigenvector and eigenvalue problem are

DG1(A)Ȧ =
(
πv⊥(λIn − A)|v⊥

)−1 (
πv⊥ Ȧv

)
and DG2(A)Ȧ =

〈Ȧv, u〉
〈v, u〉

,

where πv⊥ denotes the orthogonal projection onto v
⊥ and u is some left eigenvector associated with

λ, that is, u∗A = λu∗.
The associated condition numbers are

κ1(A, v) =
∥∥∥(πv⊥(λIn − A)|v⊥)−1∥∥∥ and κ2(A, λ) =

‖v‖ · ‖u‖
|〈v, u〉|

. (10)

From our Theorem 1, we get the respective stochastic condition numbers:

κ1st(A, v) =
1
n

∥∥∥(πv⊥(λIn − A)|v⊥)−1∥∥∥
F
≤
1
√
n
κ1(A, v),

κ2st(A, λ) =
1
n
κ2(A, λ).

A similar result for κ2st(A, λ)was proved in Stewart [17].

3.3. Finding kernels of linear transformations

For the sake of completeness of the exposition, we focus on the complex case. All ideas carry over
naturally on the real case. LetMk,p(C) be the linear space of k×p complexmatriceswith the Frobenius
Hermitian inner product, and Rr ⊂ Mk,p(C) be the subset of matrices of rank r . Given A ∈ Rr we
consider the problem of finding the subspace F of Cp such that Ax = 0 for all x ∈ F , i.e. finding
the kernel subspace ker(A) of A. For this purpose, we introduce the Grassmannian manifold Gp,` of
complex subspaces of dimension ` in Cp, where ` = p− r is the dimension of ker(A).
The input space X = Rr is a smooth submanifold ofMk,p(C) of complex dimension (k+ p)r − r2

(see Dedieu [9]). Thus, it has a natural Hermitian structure induced by the Frobenius Hermitian inner
product onMk,p(C).
In what follows, we identify Gp,` with the quotient Sp,`/U` of the Stiefelmanifold

Sp,` := {M ∈ Mp,`(C) : M∗M = I}

Please cite this article in press as: D. Armentano, Stochastic perturbations and smooth condition numbers, Journal of
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by the unitary groupU` ⊂ M`(C), which acts on the right of Sp,` in the natural way (see Dedieu [9]).
Then, the complex dimension of the output space Y = Gp,` is (p − r)r . (We will use the same letter
to represent an element of Sp,` and its class in Gp,`).
The manifold Sp,` has a canonical Riemannian structure induced by the real part of the Frobenius

Hermitian structure in Mp,`(C). On the other hand, U` is a Lie group of isometries acting on Sp,`.
Therefore,Gp,` is a homogeneous space (seeGallot–Hulin–Lafontaine [11]),with a natural Riemannian
structure that makes the quotient projection π : Sp,` → Gp,` a Riemannian submersion. More
precisely, the orbit of M ∈ Sp,` under the action of the unitary groupU`, namely, π−1(M) = {MU :
U ∈ U`}, defines a smooth submanifold of Sp,`. In this way, the tangent space TMSp,` splits into two
orthogonally complementary subspaces, namely,

TMSp,` = TMπ−1(M)⊕
(
TMπ−1(M)

)⊥
,

where TMπ−1(M) is the tangent space of π−1(M) at M . Then, we can naturally identify the tangent
space TMGp,` with

(
TMπ−1(M)

)⊥ with the inherited Riemannian structure induced by Sp,`. Moreover,
in this fashion, we can carry out all computations over the quotient manifold Gp,` onto Sp,`.
To compute the derivative of the input–output map G : Rr → Gp,` which maps A onto

ker(A), notice that if M ∈ Sp,` is any representative in π−1(ker(A)), then AM = 0. Then, implicit
differentiation in the lift Sp,` yields

ȦM + A(DG(A)Ȧ) = 0,

where Ȧ ∈ TARr , and DG(A)Ȧ ∈ TMGp,`. Then,

DG(A)Ȧ = −AĎȦM, (11)

where AĎ is the Moore–Penrose inverse of A.
We have concluded that the condition operator DG(A) is a linear map from TARr (with the

Hermitian structure induced by Mk,p(C)) onto
(
TMπ−1(M)

)⊥ (with the inherited Riemannian
structure of Sp,`), and given by Eq. (11).
One way to compute the singular values of the condition operator described in (11) is to take an

orthonormal basis in Mk,p(C) which diagonalizes A. From the singular value decomposition, there
exists positive numbers σ1 ≥ · · · ≥ σr > 0 and orthonormal basis {u1, . . . , uk} ofCk and {v1, . . . , vp}
of Cp, such that A =

∑r
i=1 σiuiv

∗

i and A
Ď
=
∑r
i=1 σ

−1
i viu∗i . Here w

∗ denotes the conjugate transpose
of the vector w. Thus, {uiv∗j : i = 1, . . . , k; j = 1, . . . , p} is an orthonormal basis ofMk,p(C) which
diagonalizes A. On this basis the tangent space TARr is the orthogonal complement of the subspace
generated by {uiv∗j : i = r + 1, . . . , k; j = r + 1, . . . , p}.
Acting by an element U ∈ U`, if necessary, one can assumeM =

∑`
h=1 vh+re

∗

h , where {e1, . . . , e`}
is the canonical basis of C`. Observe that ‖AĎȦM‖F ≤ ‖AĎ‖ · ‖ȦM‖F . Then,

κ(A) = ‖AĎ‖,

where the maximum is attained, for example, at Ȧ = urv∗r+1 ∈ TARr .
Observe that κF (A)2 =

∑
i,j ‖DG(A)uiv

∗

j ‖
2
F , where the sum runs over all elements uiv

∗

j ∈ TARr . As
uiv∗j ∈ kerDG(A), for i = r + 1, . . . , p and j = 1, . . . , k, then,

κF (A)2 =
r∑
i=1

p∑
j=1

‖AĎuiv∗j M‖
2
F =

r∑
i=1

p∑
j=r+1

‖σ−1i vie∗j−r‖
2
F = (p− r) ·

r∑
i=1

σ−2i .

That is,

κF (A) =
√
p− r · ‖AĎ‖F .

From our Theorem 1,

κst(A) =
√
p− r

√
(k+ p− r)r

· ‖AĎ‖F ≤

√
p(p− r)

(k+ p− r)r
· κ(A).

Please cite this article in press as: D. Armentano, Stochastic perturbations and smooth condition numbers, Journal of
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In Beltŕan [1], it is proved that

E(log κrel(A) : A ∈ Rr) ≤ log
[

k+ p− r
k+ p− 2r + 1

]
+ 2.6,

where the expected value is computed with respect to the normalized naturally induced measure in
Rr . Our Theorem 1 immediately yields a bound for the stochastic relative condition number, namely,

E(log κrelst(A) : A ∈ Rr) ≤
1
2
log

[
(k+ p− r)r

(k+ p− 2r + 1)2p(p− r)

]
+ 2.6.

3.4. Finding roots problem I: Univariate polynomials

We start with the case of one polynomial in one complex variable. Let X = Pd = {f : f (z) =∑d
i=0 fiz

i, fi ∈ C}. Identifying Pd with Cd+1, we can define two standard Hermitian inner products in
the space Pd:
- Weyl inner product:

〈f , g〉W :=
d∑
i=0

figi

(
d
i

)−1
; (12)

- Canonical Hermitian inner product:

〈f , g〉Cd+1 :=
d∑
i=0

figi. (13)

The solution variety is given by V = {(f , z) ∈ Pd × C : f (z) = 0} andΣ ′ = {(f , z) ∈ V : f ′(z) = 0}.
Thus, by implicit differentiation,

DG(f )(ḟ ) = −
(
f ′(ζ )

)−1 ḟ (ζ ).
We denote by κW and κCd+1 the condition numbers with respect to the Weyl and Hermitian inner
product. The reader may check that

κW (f , ζ ) =
(1+ |ζ |2)d/2

|f ′(ζ )|
and κCd+1(f , ζ ) =

√
d∑
i=0
|ζ |2i

|f ′(ζ )|
,

(for a proof see Blum et al. [4], p. 228). From Theorem 1, we get

κW st(f , ζ ) =
1

√
2(d+ 1)

κW (f , ζ ), κCd+1 st(f , ζ ) =
1

√
2(d+ 1)

κCd+1(f , ζ ).

3.5. Finding roots problem II: systems of polynomial equations

We now study the case of complex homogeneous polynomial systems. Let Hd be the space of
homogeneous polynomials in n+1 complex variables of degree d ∈ N\ {0}. We considerHd with the
Hermitian inner product 〈·, ·〉d, namely, the homogeneous analogous of the Weyl structure defined
above (see Chapter 12 of Blum et al. [4] for details).
Fix d1, . . . , dn ∈ N\ {0} and letH(d) = Hd1 ×· · ·×Hdn be the vector space of polynomial systems

f : Cn+1 → Cn, f = (f1, . . . , fn), where fi ∈ Hdi . The space H(d) is naturally endowed with the
Hermitian inner product 〈f , g〉W =

∑n
i=1〈fi, gi〉di .

Let X = P(H(d)) and Y = P(Cn+1), then the solution variety is given by V = {(f , ζ ) ∈
P(H(d))× P(Cn+1) : f (ζ ) = 0} andΣ ′ = {(f , ζ ) ∈ V : Df (ζ )|ζ⊥ is singular}.

We denote by N =
∑n
i=1

(
di+n
n

)
− 1 the complex dimension of X . We may think of 2N as the size

of the input.
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Then, for (f , ζ ) ∈ V \Σ ′, we have

DG(f )ḟ = −
(
Df (ζ )|ζ⊥

)−1 ḟ (ζ ),
and the condition number is

κW (f , ζ ) =
∥∥∥(Df (ζ )|ζ⊥)−1∥∥∥ ,

where some norm 1 affine representatives of f and ζ have been chosen (cf. Blum et al. [4]).
For the complexity analysis of path-following methods, it is convenient to consider the normalized

condition number defined by

κnorm(f , ζ ) =
∥∥∥(Df (ζ )|ζ⊥)−1 · Diag(d1/21 , . . . , d1/2n )

∥∥∥ ,
where Diag(d1/21 , . . . , d1/2n ) denotes the diagonal matrix with entries d1/21 , . . . , d1/2n . (Notice that κnorm
is the usual condition number for the slightly modified Hermitian inner product in H(d) given by
〈f , g〉norm =

∑n
i=1

1
di
〈fi, gi〉di .)

Associated with κnorm, we consider

κnorm(f )2 :=
1
D

∑
{ζ :f (ζ )=0}

κnorm(f , ζ )2, (14)

whereD = d1 · · · dn is the number of projective solutions of a generic system.
The expected value of κ2norm(f ) is an essential ingredient in the complexity analysis of path-

following methods (cf. Shub–Smale [14], Beltran–Pardo [3], and recently Bürgisser–Cucker [6]). In
Beltran–Pardo [3], the authors proved that

Ef
[
κnorm(f )2

]
≤ 8nN, (15)

where f is chosen at random with the Weyl distribution.
The relation between complexity theory and the stochastic condition number is not clear yet.

However, it is interesting to study the expected value of the κst-analogue of Eq. (14), namely

κnormst(f )
2
:=
1
D

∑
{ζ :f (ζ )=0}

κnormst(f , ζ )
2.

Here κnormst(f , ζ ) is the stochastic condition number for the modified condition operator, given by

ḟ 7→
(
Df (ζ )|ζ⊥

)−1
· Diag(d1/21 , . . . , d1/2n ) · ḟ (ζ ).

(Notice that, κnormst(f , ζ ) is the stochastic condition number for themodified Hermitian inner product
inH(d) given by 〈·, ·〉norm).
From our Theorem 1 we get,

κnormst(f , ζ ) ≤
κnorm(f , ζ )
√
N/n

, Ef
[
κnormst(f )

2]
≤ 8n2.

Note that the last bound depends on the number of unknowns n, and not on the size of the input
N � n.

4. Proof of the main theorem

In the case of complex manifolds, the condition matrix turns to be an n × n complex matrix. In
what follows, we identify it with the associated 2n× 2n real matrix. We focus on the real case.
The main theorem follows immediately from Lemma 1 and Proposition 2 below.
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Lemma 1. Let η be a Gaussian standard random vector in Rm. Then

κst
[p](x, y) =

1
√
2

[
0
(m
2

)
0
(m+p
2

)]1/p · [E(‖DG(x)η‖p)]1/p ,
where E is the expectation operator and ‖ · ‖ is the Euclidean norm in Rn.

Proof. Let f : Rm → R be the continuous function given by

f (v) = ‖DG(x)v‖.

Then, [
E(‖DG(x)η‖p)

]1/p
=

[
1

(2π)m/2

∫
Rm
f (v)p · e−‖v‖

2/2dv
]1/p

.

Integrating in polar coordinates, we get

E(‖DG(x)η‖p) =
Im+p−1
(2π)m/2

·

∫
Sm−1

f pdSm−1, (16)

where

Ij =
∫
+∞

0
ρ je−ρ

2/2dρ, j ∈ N.

Making the change of variable u = ρ2/2, we obtain

Ij = 2
j−1
2 0

(
j+ 1
2

)
;

therefore

Im+p−1 = 2
m+p−2
2 · 0

(
m+ p
2

)
. (17)

Then, joining together (16) and (17), we obtain the result. �

Proposition 2. If η is a Gaussian standard random vector in Rm, then

E(‖DG(x)η‖p) = E(‖ησ1,...,σn‖
p),

where ησ1,...,σn is a centered Gaussian vector inRn with the diagonal covariance matrixDiag(σ 21 , . . . , σ
2
n ),

and σ1, . . . , σn are the singular values of DG(x).

Proof. Let DG(x) = UDV be a singular value decomposition of DG(x), where V and U are orthogonal
transformations of Rm and Rn respectively, and D := Diag(σ1, . . . , σn). By the invariance of the
Gaussian distribution under the action of the orthogonal group inRm, Vη is again a Gaussian standard
random vector in Rm. Then,

E(‖DG(x)η‖p) = E(‖UDη‖p),

and by the invariance under the action of the orthogonal group of the Euclidean norm, we get

E(‖DG(x)η‖p) = E(‖Dη‖p).

Finally Dη is a centered Gaussian vector in Rn with the covariance matrix Diag(σ 21 , . . . , σ
2
n ), and the

proposition follows. For the case p = 2,

κst(x, y) =
[
E
(
σ 21 η

2
1 + · · · + σ

2
n η
2
n

)]1/2
,
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where η1, . . . , ηn are i.i.d. standard normal in R. Then,

κst(x, y) =

(
n∑
i=1

σ 2i

)1/2
= κF (x, y). �
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