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MINIMIZING THE DISCRETE LOGARITHMIC ENERGY ON

THE SPHERE: THE ROLE OF RANDOM POLYNOMIALS

DIEGO ARMENTANO, CARLOS BELTRÁN, AND MICHAEL SHUB

Abstract. We prove that points in the sphere associated with roots of random

polynomials via the stereographic projection, are surprisignly well-suited with
respect to the minimal logarithmic energy on the sphere. That is, roots of
random polynomials provide a fairly good approximation to Elliptic Fekete

points.

This paper deals with the problem of distributing points in the 2-dimensional
sphere, in a way that the logarithmic energy is minimized. More precisely, let
x1, . . . , xN ∈ R

3, and let

(0.1) V (x1, . . . , xN ) = ln
∏

1≤i<j≤N

1

‖xi − xj‖
= −

∑

1≤i<j≤N

ln ‖xi − xj‖

be the logarithmic energy of the N -tuple x1, . . . , xN . Here, ‖ · ‖ is the Euclidean
norm in R

3. Let
VN = min

x1,...,xN∈S2

V (x1, . . . , xN )

denote the minimum of this function when the xk are allowed to move in the unit
sphere S

2 = {x ∈ R
3 : ‖x‖ = 1}. We are interested in N -tuples minimizing the

quantity (0.1). These optimal N -tuples are usually called Elliptic Fekete Points.
This is a classical problem (see [14] for its origins) that has attracted much attention
during the last years. The reader may find modern background in [7, 8, 6] and
references therein. It is considered an example of highly non-trivial optimization
problem. In the list of Smale’s problems for the XXI Century [13], problem number
7 reads

Problem 1. Can one find x1, . . . , xN ∈ S
2 such that

(0.2) V (x1, . . . , xN ) − VN ≤ c lnN,

c a universal constant?

More precisely, Smale demands a real number algorithm in the sense of [5] that
with input N returns a N -tuple x1, . . . , xN satisfying equation (0.2), and such that
the running time is polynomial on N .
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One of the main difficulties when dealing with Problem 1 is that the value of VN

is not completely known. To our knowledge, the most precise result is the following,
proved in [8, Th. 3.1 and Th. 3.2].

Theorem 0.1. Defining CN by

VN = −N2

4
ln

(

4

e

)

− N lnN

4
+ CNN,

we have

−0.112768770... ≤ lim inf
N→∞

CN ≤ lim sup
N→∞

CN ≤ −0.0234973...

Thus, the value of VN is not even known up to logarithmic precision, as required
by equation (0.2).

The lower bound of Theorem 0.1 is obtained by algebraic manipulation of the
formula for V (x1, . . . , xN ), and the upper bound is obtained by the explicit con-
struction of N -tuples x1, . . . , xN at which V attains small values.

In this paper we choose a completely different approach to this problem. First,
assume that y1, . . . , yN are chosen randomly and independently on the sphere, with
the uniform distribution. One can easily show that the expected value of the
function V (y1, . . . , yN ) in this case is,

(0.3) E(V (y1, . . . , yN )) = −N2

4
ln

(

4

e

)

+
N

4
ln

(

4

e

)

.

Thus, a random choice of points in the sphere with the uniform distribution already
provides a reasonable approach to the minimal value VN , accurate to the order of
O(N lnN). It is a natural question whether other handy probability distributions,
i.e. different from the uniform distribution in (S2)N , may yield better expected
values. We will give a partial answer to this question in the framework of random
polynomials.

Part of the motivation of Problem 1 is the search for a polynomial all of whose
roots are well conditioned, in the context of [12]. On the other hand, roots of
random polynomials are known to be well conditioned, for a sensible choice of the
random distribution of the polynomial (see [11]). We make this connection more
precise in the historical note at the end of the Introduction. This idea motivates
the following approach:

Let f be a degree N polynomial. Let z1, . . . , zN ∈ C be its complex roots. Let
zk = uk + ivk and let

(0.4) ẑk =
(uk, vk, 1)

1 + u2
k + v2

k

∈ {x ∈ R
3 : ‖x − (0, 0, 1/2)‖ = 1/2}, 1 ≤ k ≤ N,

be the associated points in the Riemann Sphere, i.e. the sphere of diameter 1 cen-
tered at (0, 0, 1/2). Note that the ẑk’s are the inverse image under the stereographic
projection of the zk’s, seen as points in the 2-dimensional plane {(u, v, 1) : u, v ∈ R}.
Finally, let

(0.5) xk = 2ẑk − (0, 0, 1) ∈ S
2, 1 ≤ k ≤ N,

be the associated points in the unit sphere. Note that the ẑk, xk depend only on f ,
so we can consider the two following mappings

f 7→ V (ẑ1, . . . , ẑN ), f 7→ V (x1, . . . , xN ).
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These two mappings are well defined in the sense that they do not depend on the
way we choose to order the roots of f . Our main claim is that the points x1, . . . , xN

are well-distributed for the function of equation (0.1), if the polynomial f is chosen
with a particular distribution. That is, we will prove the following theorem in
Section 1.

Theorem 0.2 (Main). Let f(X) =
∑N

k=0 akXk ∈ PN be a random polynomial,
such that the coefficients ak are independent complex random variables, such that
the real and imaginary parts of ak are independent (real) Gaussian random variables

centered at 0 with variance
(

N
k

)

. Then, with the notations above,

E (V (ẑ1, . . . , ẑN )) =
N2

4
− N lnN

4
− N

4
.

E (V (x1, . . . , xN )) = −N2

4
ln

(

4

e

)

− N lnN

4
+

N

4
ln

4

e
.

By comparison of theorems 0.1 and 0.2 and equation (0.3), we see that the value
of V (x1, . . . , xN ) is surpringsingly small at points coming from the solution set of
random polynomials! In figure 1 below we have plotted (using Matlab) the roots
z1, . . . , z70 and associated points x1, . . . , x70 of a polynomial of degree 70 chosen
randomly.

Equivalently, one can take random homogeneous polynomials (as in the historical
note at the end of this introduction) and consider its complex projective solutions,
under the identification of IP(C2) with the Riemann sphere.

There exist different approaches to the problem of actually producing N -tuples
satisfying inequality (0.2) above (see [16, 8, 4] and references therein), although none
of them has been proved to solve Problem 1 yet. In [3, 4] numerical experiments
were done, designed to find local minima of the function V and involving massive
computational effort. The method used there is a descent method which follows a
gradient-like vector field. For the initial guess, N points are chosen at random in
the unit sphere, with the uniform distribution.

Our Theorem 0.2 above suggests that better-suited initial guesses are those com-
ing from the solution set of random polynomials. More especifically, consider the
following numerical procedure:

(1) Guess ak ∈ C, k = 0 . . . N , complex random variables as in Theorem 0.2.

(2) Construct the polynomial f(X) =
∑N

k=0 akXk and find its N complex
solutions z1, . . . , zN ∈ C.

(3) Construct the associated points in the unit sphere x1, . . . , xN following
equations (0.4,0.5).

In view of Theorem 0.2, it seems reasonable for a flow-based search optimization
procedure that attempts to compute optimal x1, . . . , xN , to start by executing the
procedure described above and then following the desired flow. Moreover, this
procedure might solve Smale’s problem on its own, as necessarily many random
choices of the ak’s will produce values of V below the average and very close to VN ,
possibly close enough to satisfy equation (0.2).

As it is well-known, item (2) of this procedure can only be done approximately.
We may perform this task using some homotopy algorithm as the ones suggested in
[10, 9, 1] which guarantee average polynomial running time, and produce arbitrarily
close approximations to the zk. In practice, it may be prefereable to construct the
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companion matrix of f and to compute its eigenvalues with some standard Linear
Algebra method.

The choice of the probability distribution for the coefficients of f(X) in Theorem
0.2 is not casual. That probability distribution corresponds to the classical unitarily
invariant Hermitian structure in the space of homogeneous polynomials, recalled at
the beginning of Section 1 below. This Hermitian structure is called by some authors
Bombieri-Weyl structure, or Kostlan structure, and it is a classical construction
with many interesting properties. The reader may see [5] for background.

There exists a more general framework for results like Theorem 0.2: that of
holomorphic sections on Riemann surfaces. Zhong proves in [15] asymptotic re-
sults in this context. We thank the referee for pointing out to us that there is
an inconsistency between our results and Zhong’s and that Zhong is preparing an
errata.

0.1. Historical Note. According to [13], part of the original motivation for Prob-
lem 1 was the search for well conditioned homogeneous polynomials as in [12]. Given
g = g(X,Y ) a degree N homogeneous polynomial with unknowns X,Y and com-
plex coefficients, the condition number of g at a projective root ζ = (x, y) ∈ IP(C2)
is defined by

µ(g, ζ) = N1/2 ‖g‖‖ζ‖N−1

|Dg(ζ) |ζ⊥ | ,

where ‖g‖ is the Bombieri-Weyl norm of g and Dg(ζ) |ζ⊥ is the differential mapping
of g at ζ, restricted to the complex orthogonal complement of ζ.

Let f(X) =
∑N

k=0 akXk be a degree N polynomial with one unknown X, and

consider the homogeneous counterpart of f , g(X,Y ) =
∑N

k=0 akXkY N−k. The
condition number µ(f, z) of f at a zero z ∈ C is then defined as µ(f, z) = µ(g, (z, 1)).

[11] proved that well-conditioned polynomials are highly probable. In [12] the
problem was raised as to how to write a deterministic algorithm which produces
a polynomial g all of whose roots are well-conditioned. It was also realised that
a polynomial whose projective roots (seen as points in the Riemann sphere) have
logarithmic energy close to the minimum as in Smale’s problem after scaling to S

2,
are well conditioned.

From the point of view of [12], the ability to choose points at random already
solves the problem. Here, instead of trying to use the logarithmic energy func-
tion V (·) to produce well-conditioned polynomials, we use the fact that random
polynomials are well-conditioned, to try to produce low-energy N -tuples.

The relation between the condition number and the logarithmic energy is

V (ẑ1, . . . , ẑN ) =
1

2

N
∑

i=1

lnµ(f, zi) +
N

2

N
∑

i=1

ln
√

1 + |zi|2 −
N

2
ln ‖f‖ − N

4
lnN,

where the roots in IP(C2) are (zi, 1), therefore f is monic.

1. Technical tools and proof of Theorem 0.2

As in the introduction, f = f(X) denotes a polynomial of degree N with com-
plex coefficients, z1, . . . , zN ∈ C are the complex roots of f , and ẑ1, . . . , ẑN and
x1, . . . , xN are the associated points in the Riemann Sphere and S

2 respectively
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Figure 1. The points zk and xk for a degree 70 polynomial f
chosen at random (using Matlab). The reader may see that the
points in the sphere are pretty well distributed.

defined by equations (0.4,0.5). Let PN be the vector space of degree N polyno-
mials with complex coefficients. As in [5, 2], we consider PN endowed with the
Bombieri-Weyl inner product, given by

〈
N
∑

k=0

akXk,

N
∑

k=0

bkXk〉 =

N
∑

k=0

(

N

k

)−1

akbk.

We denote the associated norm in PN simply by ‖ · ‖. Let f(X) =
∑N

k=0 akXk be
a random polynomial, where the ak’s are complex random variables as in Theorem
0.2. Then, note that the expected value of some measurable function φ : PN → R

satisfies

(1.1) E(φ(f)) =
1

(2π)N+1

∫

f∈PN

φ(f)e−‖f‖2/2 dPN .

Let W = {(f, z) ∈ PN × C : f(z) = 0} be the so-called solution variety, which is
a complex smooth submanifold of ⊆ PN × C of dimension N + 1. For z ∈ C, let
Wz = {f ∈ PN : f(z) = 0} be the set of polynomials which have z as a root. We
consider Wz endowed with the inner product inherited from PN .

Proposition 1.

V (ẑ1, . . . , ẑN ) = (N − 1)

N
∑

i=1

ln
√

1 + |zi|2 −
1

2

N
∑

i=1

ln |f ′(zi)| +
N

2
ln |aN |,

Proof. A simple algebraic manipulation yields

V (ẑ1, . . . , ẑN ) = −
∑

1≤i<j≤N

ln ‖ẑi − ẑj‖ = −
∑

1≤i<j≤N

ln
|zi − zj |

√

1 + |zi|2
√

1 + |zj |2
=
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(N − 1)
N
∑

i=1

ln
√

1 + |zi|2 −
∑

1≤i<j≤N

ln |zi − zj |.

Note that

f(X) = aN

N
∏

i=1

(X − zi).

Thus,

f ′(zi) = aN

∏

i6=j

(zi − zj),

and

|aN |N
N
∏

i=1

1

|f ′(zi)|
=

N
∏

i=1

∏

j 6=i

1

|zi − zj |
=

∏

1≤i<j≤N

1

|zi − zj |2
.

Thus,

−
∑

1≤i<j≤N

ln |zi − zj | =
1

2

(

−
N
∑

i=1

ln |f ′(zi)| + N ln |aN |
)

,

and the proposition follows. �

The rest of the proof of Theorem 0.2 will consist on the computation of the
expected values of the quantities in Proposition 1. The following lemma will be
useful

Lemma 1.1. For any t ∈ R,

N
∑

k=0

(

N

k

)

t2k = (1 + t2)N ,

N
∑

k=1

(

N

k

)

kt2k−1 = Nt(1 + t2)N−1,

N
∑

k=1

(

N

k

)

k2t2k−2 = N(1 + t2)N−2(1 + Nt2).

Proof. The first equality is the classical binomial expansion. Differentiate it to get

2

N
∑

k=1

(

N

k

)

kt2k−1 = 2Nt(1 + t2)N−1,

and the second equality follows. Differentiate again to get

N
∑

k=1

(

N

k

)

(2k2 − k)t2k−2 = N(1 + t2)N−1 + 2N(N − 1)t2(1 + t2)N−2.

Hence,

2

N
∑

k=1

(

N

k

)

k2t2k−2 =
1

t

N
∑

k=1

(

N

k

)

kt2k−1+N(1+t2)N−1+2N(N−1)t2(1+t2)N−2 =

N(1+ t2)N−1 +N(1+ t2)N−1 +2N(N −1)t2(1+ t2)N−2 = 2N(1+ t2)N−2(1+Nt2).

The last equality of the lemma follows. �
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Proposition 2. Let φ : W → R be a measurable function. Then,

(1.2)

∫

f∈PN

∑

z:f(z)=0

φ(f, z) dPN =

∫

z∈C

1

(1 + |z|2)N

∫

f∈Wz

|f ′(z)|2φ(f, z) dWz dC

Proof. As in [5, Th. 5, p. 243], we apply the smooth coarea formula to the double
fibration

W
ւ ց
PN C

to get the formula
∫

f∈PN

∑

z:f(z)=0

φ(f, z) dPN =

∫

z∈C

∫

f∈Wz

(DGz(f)DGz(f)∗)−1φ(f, z) dWz dC,

where Gz : Uf → Uz is the implicit function defined in a neighborhood of f satisfies
g(Gz(g)) = 0, and DGz(f) is the Jacobian matrix of Gz at f , writen in some

orthonormal basis. By implicit differentiation, DGz(f)ḟ = −f ′(z)−1ḟ(z). Thus, in

the orthonormal basis given by the monomials
(

N
k

)1/2
Xk, k = 0 . . . N , the jacobian

matrix is

DGz(f) = − 1

f ′(z)

(

(

N

0

)1/2

z0, . . . ,

(

N

N

)1/2

zN

)

.

We conclude that DGz(f)DGz(f)∗ = |f ′(z)|−2
∑N

k=0

(

N
k

)

|z|2k = |f ′(z)|−2(1 +

|z|2)N . The proposition follows. �

Proposition 3. Let z ∈ C and let φ : R → R be a measurable function. Then,
∫

f∈Wz

φ(|f ′(z)|2)e−‖f‖2/2 dWz = (2π)N

∫ ∞

0

tφ
(

t2N(1 + |z|2)N−2
)

e−t2/2 dt.

Proof. Consider the mapping ϕ : Wz → C, f(X) =
∑N

k=0 akXk 7→ w = f ′(z) =
∑N

k=0 kakzk−1. Denote by NJϕ(f) the Normal Jacobian of ϕ at f , that is

NJϕ(f) = max
ḟ∈Wz,‖ḟ‖=1

‖Dϕ(f)ḟ‖2

(see [5, pag. 241] for references and background). Let g1, g2 ∈ PN be the following
polynomials,

g1(X) =

N
∑

k=0

(

N

k

)

z kXk, g2(X) =

N
∑

k=1

k

(

N

k

)

z k−1Xk

Note that for any f ∈ PN and z ∈ C, we have

f(z) = 〈f, g1〉, f ′(z) = 〈f, g2〉.
Thus,

Wz = {f ∈ PN : f(z) = 0} = {f ∈ PN : 〈f, g1〉 = 0},
Dϕ(f)ḟ = ḟ ′(z) = 〈ḟ , g2〉.

Thus, if π is the orthogonal projection onto Wz, we have

NJϕ(f) = max
ḟ∈Wz,‖ḟ‖=1

|〈ḟ , g2〉|2 = ‖π (g2)‖2
= ‖g2‖2 − |〈g1, g2〉|2

‖g1‖2
=
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N
∑

k=1

(

N

k

)

k2|z|2k−2 −

(

∑N
k=1

(

N
k

)

k|z|2k−1
)2

∑N
k=0

(

N
k

)

|z|2k
.

From Lemma 1.1, we conclude

NJϕ(f) = N(1 + |z|2)N−2(1 + N |z|2) − N2|z|2(1 + |z|2)2N−2

(1 + |z|2)N
=

N(1 + |z|2)N−2(1 + N |z|2) − N2|z|2(1 + |z|2)N−2 = N(1 + |z|2)N−2

The coarea formula [5, p. 241] then yields

(1.3)

∫

f∈Wz

φ(|f ′(z)|2)e−‖f‖2/2 dWz =

1

N(1 + |z|2)N−2

∫

w∈C

φ(|w|2)
∫

{f∈Wz:f ′(z)=w}

e−‖f‖2/2 df dC.

The set {f ∈ Wz : f ′(z) = w} is an affine subspace of PN of dimension N − 1,
defined by the equations 〈f, g1〉 = 0, 〈f, g2〉 = w, which are linear independent
equations on the coefficients of f . One can compute the norm of the minimal norm
element of this affine subspace using standard tools from Linear Algebra. This
minimal norm turns to be equal to |w|ν where

ν =
1

√

‖g2‖2 − |〈g1,g2〉|2

‖g1‖2

=
1

√

NJϕ(f)
=

1√
N(1 + |z|2)N−2

2

.

Thus,
∫

{f∈Wz:f ′(z)=w}

e−‖f‖2/2 df = (2π)N−1 exp
(

−ν2|w|2/2
)

,

and
∫

w∈C

φ(|w|2)
∫

f∈Wz:f ′(z)=w

e−‖f‖2/2 df dC = (2π)N

∫ ∞

0

ρφ(ρ2)e−ν2ρ2/2 dρ =

(2π)N

ν2

∫ ∞

0

tφ

(

t2

ν2

)

e−t2/2 dt = (2π)NN(1 + |z|2)N−2

∫ ∞

0

tφ

(

t2

ν2

)

e−t2/2 dt.

From this and equation (1.3) we conclude,
∫

f∈Wz

φ(|f ′(z)|2)e−‖f‖2/2 dWz = (2π)N

∫ ∞

0

tφ

(

t2

ν2

)

e−t2/2 dρ,

as wanted. �

Proposition 4. Let f(X) =
∑N

k=0 akXk where the ak are as in Theorem 0.2.
Then,

(1.4) E

(

N
∑

i=1

ln
√

1 + |zi|2
)

=
N

2
.

(1.5) E (ln |aN |) =
ln(2) − γ

2
.

(1.6) E

(

N
∑

i=1

ln |f ′(zi)|
)

=
(ln(2) − 1 − γ + ln(N) + N)N

2
.

Here, γ ∼ 0.5772156649 is Euler’s constant.
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Proof. From equalities (1.1,1.2),

E

(

N
∑

i=1

ln
√

1 + |zi|2
)

=
1

(2π)N+1

∫

f∈PN

N
∑

i=1

ln
√

1 + |zi|2e−‖f‖2/2 dPN =

1

(2π)N+1

∫

z∈C

ln
√

1 + |z|2
(1 + |z|2)N

∫

f∈Wz

|f ′(z)|2e−‖f‖2/2 dWz dC.

From Proposition 3,
∫

f∈Wz

|f ′(z)|2e−‖f‖2/2 dWz = (2π)N

∫ ∞

0

t3N(1 + |z|2)N−2e−t2/2 dt =

(2π)N2N(1 + |z|2)N−2.

Thus,

E

(

N
∑

i=1

ln
√

1 + |zi|2
)

=
N

π

∫

z∈C

ln
√

1 + |z|2
(1 + |z|2)2 dC =

= 2N

∫ ∞

0

ρ ln
√

1 + ρ2

(1 + ρ2)2
dρ =

N

2
,

and equation (1.4) follows. Equation (1.5) is trivial, as

E (ln |aN |) =
1

2π

∫

a∈C

ln |a|e−|a|2/2 dC =

∫ ∞

0

ρ ln(ρ)e−ρ2/2 dρ =
ln(2) − γ

2
.

Now let us prove equation (1.6). Note that from the equalities (1.1,1.2),

E

(

N
∑

i=1

ln |f ′(zi)|
)

=
1

(2π)N+1

∫

f∈PN

e−‖f‖2/2
∑

z∈C:f(z)=0

ln |f ′(z)| dPN =

1

(2π)N+1

∫

z∈C

1

(1 + |z|2)N

∫

f∈Wz

e−‖f‖2/2|f ′(z)|2 ln |f ′(z)| dWz dC =

From Proposition 3, we know that
∫

f∈Wz

|f ′(z)|2 ln |f ′(z)|e−‖f‖2/2 dWz =

(2π)N

∫ ∞

0

t
(

t2N(1 + |z|2)N−2
)

ln
√

t2N(1 + |z|2)N−2e−t2/2 dt =

(2π)NN(1 + |z|2)N−2

∫ ∞

0

t3
(

ln t + ln
√

N(1 + |z|2)N−2

)

e−t2/2 dt =

(2π)NN(1 + |z|2)N−2

(

1 − γ + ln 2 + 2 ln
√

N(1 + |z|2)N−2

)

.

Thus,

E

(

N
∑

i=1

ln |f ′(zi)|
)

=
N

2π

∫

z∈C

1 − γ + ln 2 + ln(N(1 + |z|2)N−2)

(1 + |z|2)2 dC =

N (1 − γ + ln 2 + lnN)

∫ ∞

0

ρ

(1 + ρ2)2
dρ + N(N − 2)

∫ ∞

0

ρ ln(1 + ρ2)

(1 + ρ2)2
dρ =

N

2
(1 − γ + ln 2 + lnN) + N

N − 2

2
,

and equation (1.6) follows.
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�

1.1. Proof of Theorem 0.2. From Proposition 1,

E (V (ẑ1, . . . , ẑN )) = (N−1)E

(

N
∑

i=1

ln
√

1 + |zi|2
)

−1

2
E

(

N
∑

i=1

ln |f ′(zi)|
)

+
N

2
E (ln |aN |) ,

which from Proposition 4 is equal to

N(N − 1)

2
− (ln(2) − 1 − γ + ln(N) + N)N

4
+

N(ln(2) − γ)

4
,

and the first assertion of Theorem 0.2 follows. The second equality of Theorem 0.2
is then trivial, as the affine transformation in R

3 that takes the ẑk’s into the xk’s
is a traslation followed by a homotetia of dilation factor 2. Hence,

‖xi − xj‖ = 2‖ẑi − ẑj‖, 1 ≤ i < j ≤ N,

and for any choice of x1, . . . , xN we have

V (x1, . . . , xN ) = V (ẑ1, . . . , ẑN ) − N(N − 1)

2
ln 2.
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