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On Perturbations of Extreme Kerr–Newman
Black Holes and their Evolution

Martin Reiris

Abstract. Using black hole inequalities and the increase of the horizon’s
areas, we show that there are arbitrarily small electro-vacuum pertur-
bations of the standard initial data of the extreme Reissner–Nordström
black hole that (by contradiction) cannot decay in time into any extreme
Kerr–Newman black hole. This proves that, in a formal sense, the reduced
family of the extreme Kerr–Newman black holes is unstable. It remains
of course to be seen whether the whole family of charged black holes,
including those extremes, is stable or not.

1. Introduction

In this article it is proved that there are arbitrarily small electrovacuum pertur-
bations of the standard initial data of the extreme Reissner–Nordström black
hole that cannot decay in time into any extreme Kerr–Newman (EKN) black
hole. Strictly speaking, this says that the reduced family of EKN black holes is
unstable. One must make it clear however that this does not prove the insta-
bility, nor the stability, in the way that they are currently formulated in the
literature and which are, for their physical significance, the relevant notions
than one should consider. Roughly speaking (see [15]), the eKN black holes
are called stable if small generic perturbations of them settle eventually into
extreme or near-extreme Kerr–Newman black holes. Otherwise, they are called
unstable. As discussed later, the results presented in this article will favor the
stability (in this last sense), rather than the instability.

To bring more accuracy to this introduction, let us start reviewing the
mathematics and the qualitative properties of the extreme black holes. The
Lorentzian metric of the EKN space-time of electric charge QE, magnetic
charge QM, angular momentum J and mass m2 = (Q2 +

√
4J2 + Q4)/2 ̸= 0,

(Q2 = Q2
E + Q2

M), is given by
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g = − ∆ − a2 sin2 θ

Σ
dt2 − 2a sin2 θ

Σ
(r2 + a2 − ∆) dt dφ

+
(r2 + a2)2 − ∆a2 sin2 θ

Σ
sin2 θ dφ2 +

Σ
∆

dr2 + Σdθ2, (1)

where a = J/m, Σ = r2 + a2 cos2 θ, and ∆ = r2 + a2 + Q2 − 2mr (see for
instance [5]). The coordinate t ranges in (−∞,∞), r in (m,∞) and (θ,ϕ) are
the standard coordinates of the unit sphere S2. The space-time M is therefore
diffeomorphic to R × R × S2.

The electromagnetic potential A is given explicitly by

A = −QE r

Σ
(
dt − a sin2 θ dφ

)
+

QM cos θ
Σ

(
adt − (r2 + a2) dφ

)

and recall that the electromagnetic tensor is Fab = ∇aAb − ∇bAa.1 The
solution is rotational symmetric and stationary. Of particular interest for this
article are the EKN solutions with J = 0, QM = 0 but QE ̸= 0, which are
called extreme Reissner–Nordström (ERN). When QE = 1 the ERN metric
(from now on ERN1) takes the synthetic form

g = −
(
1 − 1/r

)2dt2 +
1

(
1 − 1/r

)2 dr2 + r2dΩ2, (2)

(dΩ2 is the line element of the round sphere), and the electromagnetic potential
simplifies to A = −dt/r. Over the Cauchy hypersurface {t = 0} the electric
field is Ea = Fab nb = ∂r/(r2|∂r|) and the magnetic field is zero, i.e., Ba =
⋆Fab nb = 0. Here n is the time-like unit normal to {t = 0}. The solution
is time symmetric and therefore the second fundamental form K of the slice
{t = 0} is zero. Finally, the solution is spherically symmetric and static. For
future reference the data set over Σ0 := {t = 0} will be called the standard
initial data of the ERN1 solution and denoted by (Σ0; g0,K0;E0, B0).

The EKN solutions form part of the larger family of Kerr–Newman (KN)
space-times and lie exactly between those KN space-times representing black
holes and those exhibiting naked singularities. Due to their special properties,
the EKN solutions have played a peculiar role in the mathematical and physical
analysis of black holes. Some of their most noticeable features are the following.
The past and the future null infinity of the ERN space-time can be reached
from any of its space-time points. Yet the ERN space-time is geodesically
incomplete and exhibits future and past Cauchy horizons. Each Cauchy horizon
is diffeomorphic to R × S2, has complete null generators and the area of any
spherical section is

A = 4π
√

4|J | + Q2

In particular, if an extreme solution has QE = 1 then to be the one with
QE = 1, QM = 0 and J = 0 it is necessary and sufficient that A = 4π.
Moreover, the “initial” Cauchy hypersurface {t = 0} is maximal and complete
(as a Riemannian manifold), and possess no trapped region. This hypersurface
is diffeomorphic to R × S2 and has one cylindrical end and one asymptotically

1 Note that A is not smooth at {θ = 0} ∪ {θ = π}. In this article smooth means C∞.
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Figure 1. Picture of the (half) Penrose diagram of the EKN
black-holes. The picture shows also a visualization of the
geometry of the standard initial data and the future Cauchy
horizon

flat (AF) end (see Fig. 1). Of special interest to us is the cylindrical space-
time of the ERN1 solution (Bertotti’s space-time). It is found by taking a
sequence ri → 1, making then the change of variables x̄ = ln

(
(r−1)/(ri −1)

)
,

t̄ = (ri −1)t in (2), and finally taking the limit as ri → 1. This gives the result

ǧ = −e2x̄dt̄2 + dx̄2 + dΩ2 (3)

The three-metric over {t̄ = 0} is then ǧ0 = dx̄2 + dΩ2, that is, that of the
metric product R×S2, hence cylindrical. For future reference, over this slice the
electric field is Ě0 = ∂x̄ and the magnetic field B̌0 and the second fundamental
form Ǩ0 are zero. The data set (R × S2; ǧ0, Ǩ0; Ě0, B̌0) will be called the
standard initial data of the extreme RN1 throat (ERNT1).

It is fundamentally the presence of these peculiar Cauchy horizons what
makes extreme solutions so special. Are extreme black holes physically realistic
solutions? Are they stable under small perturbations of the initial data? What
occurs to their horizons under such perturbations?

A revitalised interest in these old questions reappeared in the last years
as a part of new and larger mathematical investigations on the stability of
black hole space-times, [1,3,11,14,17] (to mention some). Most of these theo-
retical developments are characterized by the use of linear techniques over the
otherwise unperturbed ERN background. As a contribution to the ongoing
discussion we prove here that there are arbitrarily small perturbations of the
standard ERN1 initial data whose evolution cannot decay in any way into any
EKN solution. The proof is satisfactory to us in that it is the result of combin-
ing black hole inequalities [10,12], and the ubiquitous law of area increase of
event horizons [7], and does not rely in any linear or linearization technique.
In a sense, our argument belongs to a class of natural procedures to prove
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instabilities that was used in the literature during the last years2 and which
consists in finding certain inequalities at the level of the perturbed initial data
that are shown to be propagated along the evolution and that are incompatible
with the stationary states that one wants to rule out as the long time limit of
the evolution (see for instance [13] and references therein).

Before we pass to explain the generalities behind the proof, let us explain
in precise terms the main statement to be proved. We first introduce the notion
of “perturbation” of the standard initial data (Σ0; g0,K0;E0, B0) of the ERN1

space-time.

Definition 1. Let (Σ; g, K;E,B) be a smooth an maximal electro-vacuum data
set and let k be an integer greater or equal than 1. We say that the data set is
ε-close in Ck to the ERN1 standard initial data iff there is a diffeomorphism
ϕ : Σ0 → Σ such that for any (U,U0) equal to either (g, g0), (K, K0), (E,E0)
or (B,B0) we have

∥∥ϕ∗U − U0

∥∥
Ck

g0
(Σ0)

≤ ε.

The Ck
g0

norm of a tensor W (no matter its valence) is defined as usual by

∥∥W
∥∥2

Ck
g0

(Σ0)
= sup

p∈Σ0

[ j=k∑

j=0

∣∣(∇(j) W
)
(p)

∣∣2
g0

]

The Definition 1 is satisfactory, but we need to make sure that the perturbation
“falls off” along the asymptotically cylindrical end and that the “cylindrical
asymptotic” is preserved. To be concrete, we will work with perturbations
that “fall off exponentially along the cylindrical end into the ERN1 standard
initial data”. Precisely, we say that a data set (Σ; g, K;E,B), ε-close in Ck to
(Σ0; g0,K0;E0, B0), falls off exponentially into (Σ0; g0,K0;E0, B0) along the
cylindrical end iff there is Λ > 0 such that for any (U,U0) equal to either
(g, g0), (K, K0), (E,E0) or (B,B0) we have

lim
r(p)→1

eΛ ln(r − 1)
[ j=k∑

j=0

∣∣(∇(j) (ϕ∗U − U0)
)
(p)

∣∣2
g0

]
= 0,

where ϕ∗ is the pull-back by the diffeomorphism ϕ : Σ0 → Σ (note that
r(p) → 1 means that “p” diverges along the cylindrical end).

With all these definitions at hand we can state our main result as follows.

Theorem 1. For any ε̄ > 0 and integer k ≥ 1 there is a smooth and maximal
electro-vacuum data set (Σ̄; ḡ, K̄; Ē, B̄), ε̄-close in Ck to the standard ERN1

initial data and falling into it exponential along the cylindrical end, which
cannot decay, towards the future or the past, into any EKN solution.

Let us overview now the basics behind the proof. A technical proof has to
be found inside the text. The argument that follows can be done in any time
direction. The idea is to construct (arbitrarily small) axisymmetric perturba-
tions of the standard ERN1 initial data and do so with sufficiently control to

2 I would like to thank Piotr Chruściel for making this remark to me.
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Figure 2. Diagram of the initial data used in this article

be able to prove that a Marginally Outer Trapped Surface (MOTS) forms sep-
arating the two ends (see Fig. 2). In addition, the perturbation is done keeping
QE = 1, QM = 0 and J = 0. In particular, and because the electromagnetic
charges and the angular momentum are conserved, if the perturbation evolves
into an EKN space-time in the long-time, then it must be one with QE = 1,
QM = 0 and J = 0, that is, it has to be the ERN that is being perturbed.3
Moreover, due to presence of a MOTS which acts as a barrier, the event horizon
must intersect the initial Cauchy hypersurface somewhere between the MOTS
and the asymptotically flat end. In parallel to all this it is shown that every
surface S embedded in the initial hypersurface and separating the two ends
has area strictly greater than 4π. In particular, the intersection of the event
horizon and the initial hypersurface must have area strictly greater than 4π.
As the areas of sections of the event horizon are non-decreasing in time, we
conclude that the initial data cannot evolve into the ERN1 solution because
its horizon has area exactly 4π. The perturbed data set is depicted in Fig. 2
and the (presumed) evolution in Fig. 3.

This argumentation essentially contains all the ingredients of the proof,
but as the reader may have wondered, it assumes implicitly a particular “con-
vergence” of the dynamical horizon to the smooth one of ERN1. This is not
entirely satisfying because horizons are found out of global information and
their local regularity is not tied up necessarily to the local regularity of the
space-time. For this reason one could imagine a space-time decaying into a
EKN but with a highly irregular horizon whose areas (due to this irregularity)
do not approach the area of the horizon of the EKN but rather some bigger
value. To avoid this objection the definition that we adopt for “decaying into
a EKN solution” does not make any hypothesis about the horizon but instead
assumes only convergence to a EKN strictly outside of it. The statement is
given in Definition 4 and is postponed until Sect. 7 (when we use it for the
first time) as introducing it here would cause much disruption. The actual

3 To be certain here, the charges and the angular momentum are not only conserved at null
infinity, they take also the same values over any embedded sphere isotopic to a “sphere” at
“spatial infinity”. This is explained in Sect. 2.
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Figure 3. Picture of the geometric construction in the argu-
ment by contradiction of the proof of Theorem 1

proof of the Theorem 1 modifies slightly the argument given above to stick to
the actual definition.

Like any argument by contradiction, our proof of Theorem 1 does not
say what indeed occurs during the time evolution. It just says something of
what cannot happen. Nevertheless, the presence of the mentioned MOTS in
the perturbed initial data suggests that it must decay in the long-time into a
non-extremal RN black hole. For this reason, it is expected also that whatever
occurs to the “old” horizon of the ERN1, that part of the space-time stays
hidden inside the new black hole region. Regardless of that, this work does
not yield any light about the fate of the ERN horizon under perturbations.
In this sense it does not make previous investigations about the ERN horizon
less interesting.

In principle, with further work but following a similar argument, one
should be able to prove that there are arbitrarily small perturbations of any
EKN that cannot decay in any way into an EKN black hole. What makes the
use of the ERN and not of any other EKN solution more useful is that the
perturbations can be made time-symmetric and for this reason proving the
existence of a MOTS reduces to proving the existence of a minimal surface
which is technically more accessible.4

The organization of this article is the following. In Sect. 2, we recall the
basic material to be used about electro-vacuum space-times. In Sect. 3, we
discuss black hole inequalities on data sets that we call of the ERN1 “type”
and that are introduced in Definition 3. Roughly speaking, such data sets are
defined to share the topology and the asymptotic geometry of the standard
initial data of the ERN1 solution. Not surprisingly, the perturbations of the
standard initial data of the ERN1 solution that we are going to use are of
the ERN1 type. The main result of this section is to prove that the area of
any (compact, boundaryless and embedded) surface separating the two ends

4 I would like to thank Sergio Dain for pointing this out.
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of any data set of the ERN1 type is strictly greater than 4π. The analysis
in this section shares many elements with [19]. In Sect. 4, we construct the
mentioned initial perturbations using the conformal method. The existence
of solutions of the conformal equations is proved following standard barrier
methods [8] which give good control on the solutions. In Sect. 5, we show
the rigidity of the ERNT1 initial data which will be necessary in Sect. 6 to
show that one can make arbitrarily small perturbations containing MOTS. It
is worth mentioning that the rigidity of the ERNT1 initial data is of interest
in itself. In particular, the formation of extreme RN throats along sequence
of data sets can be studied in the same way as was done in [19] with the
formation of extreme Kerr-throats. The proof of the main result following the
lines explained above is made formally and finally in Sect. 7.

2. Background Material

In this section, we recall succinctly and with certain formality those notions,
like that of electric and magnetic charges, that will be necessary throughout
the article. The formal treatment is justified by the mathematical nature of
the paper.

We will be working with smooth (C∞) electro-vacuum space-times
(M;g;F), where (M;g) is an orientable and time orientable Lorentzian man-
ifold. We will assume that an orientation on M was chosen and that a future
direction was assigned. Let Σ be a space-like hyper-surface and n a future
unit normal to Σ. As usual, the orientation on M and the field n provide an
orientation on Σ, more precisely: {e1(p), e2(p), e3(p)} is a positive basis of TpΣ
iff {n(p), e1(p), e2(p), e3(p)} is a positive basis of TpM. Space-times tensors,
like the Ricci curvature Ric of g, will be boldfaced.

(i) The Einstein–Maxwell system.

In coordinate-independent form the Einstein–Maxwell equations are

Ric − 1
2

Rg = 8πT, dF = 0, and d ⋆F = 0 (4)

where d is the exterior derivative and ⋆ is the g-Hodge star, namely ⋆Fab =
ϵabcdFcd/2. The electromagnetic energy-momentum tensor T appearing in (4)
is

Tab =
1
4π

(
FacF c

b − 1
4
FcdFcdgab

)
.

The 3+1 picture of (4) will be also used during the article. We recall it in
what follows [6]. Let Σ0 be a space-like hyper-surface (possibly with boundary)
and V a nowhere zero time-like vector field defined on an open neighborhood
of Σ0. By moving Σ0 along V one obtains a flow of space-like hypersurfaces Σt

(at least for a short time). Coordinates charts (x1, x2, x3) are propagated by V
to every Σt and any two Σt and Σt′ are naturally diffeomorphic. In this way one
obtains a flow (gij(t),Kij(t)) of induced three-metrics and second fundamental
forms on the fixed manifold Σ0. Writing V|Σt = N(t)n + Xi(t)∂i, where n is
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a future unit normal to Σt, one obtains also a flow of lapse functions N(t)
and shift vectors X(t) = Xi∂i. In this 3 + 1 setup the Einstein equation (first
Eq. in (4)) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ġij = −2NKij + LXgij ,

K̇ij = −∇i∇jN + N(Ricij + kKij − 2KilKl
j)

+LXKij − 8πN(Tij + 1
2 (Tabgab)gij),

R = |K|2 − k2 + 16πT00,

∇iKij − ∇jk = 8πT0i,

where T00 = T(n,n) and T0i = T(n, ∂i), ∇ is the g-covariant derivative,
k = trgK is the mean curvature and L is the Lie-derivative. The space-time
metric is written in the form

g = −(N2 − XiX
i)dt2 + Xi(dt ⊗ dxi + dxi ⊗ dt) + gijdxidxj

At every slice Σt, the electric and magnetic fields E and B, are defined by
Ei = Fi

ana and Bi = ⋆Fi
ana. In terms of them the electro-vacuum constraint

equations are
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R = |K|2 − k2 + 2
(
|E|2 + |B|2

)
,

∇iKij − ∇jk = 2(E × B)j ,

∇iEi = 0,

∇iBi = 0

(5)

where (E ×B)j = ϵijkEjBk. A set (g, K;E,B) satisfying the constraint equa-
tions (5) on a manifold Σ is called an electro-vacuum data set. The data is
maximal if k = trgK = 0.

(ii) The electric and magnetic charges.

Let [S] be an oriented, compact and boundaryless surface S embedded in M.
The bracket [ ] signifies that an orientation on S has been assigned. Then
QE([S]) and QM([S]) are defined by

QE([S]) = − 1
4π

∫

[S]
⋆F and QM([S]) := − 1

4π

∫

[S]
F

As dF = 0 and d ⋆F = 0 then QE([S]) and QM([S]) depend only on the
homology class of [S]. We will be referring this fact as the conservation of
charge. If S is embedded in a space-like hypersurface Σ then QE([S]) and
QM([S]) take the more familiar expressions

QE([S]) :=
1
4π

∫

S
⟨E, ζ⟩dA and QM([S]) :=

1
4π

∫

S
⟨B, ζ⟩dA (6)

where ⟨E, ζ⟩ = Eiζjgij and where ζ the unit normal field to S in Σ such that
if {e2(p), e3(p)} is a positive basis for TpS then {n(p), ζ(p), e2(p), e3(p)} is a
positive basis for M. Observe that if [S] and [S′] are homologous in Σ (and
therefore in M) then the conservations QE([S]) = QE([S′]) and QM([S]) =
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QM([S′]) can be seen also as a consequence of the laws div E = 0 and div B = 0
(div U = ∇iUi).

In this context, the total charges QE and QM that show up in the metric
expression (1) of the EKN solutions are of course the electric and magnetic
charges of any sphere with t and r constant and oriented using the outgoing
normal ζ = ∂r/|∂r|.5

It is the case that the normal ζ will be given from the context (or simply
will not matter). For this reason we will often write QE(S) and QM(S).

(iii) Angular momentum in electro-vacuum space-times.

Suppose now that the electro-vacuum space-time (M;g;F) is axisymmetric
and that F = dA with the potential A axisymmetric.6 Denote by ξ the
axisymmetric Killing field. Then the angular momentum of an oriented and
axisymmetric (compact and boundaryless) surface [S] is [5]

J([S]) :=
1
8π

∫

[S]
⋆(∇aξb) +

1
4π

∫

[S]
(Aaξa)⋆F (7)

The angular momentum is conserved too [5]. Namely if [Σ] is an oriented
compact and axisymmetric hypersurface of M and ∂[Σ] = [S] − [S′], then
J([S]) = J([S′]).

If S is embedded in an axisymmetric Cauchy hypersurface Σ, then the
first term in (7) (which is the Komar angular momentum) reduces to the
standard form (

∫
S K(ξ, ζ)dA)/8π and is therefore zero when K = 0. If in

addition B = 0 over Σ then the second term in (7) is also zero. To see this
use the axisymmetry of A to get ξaFai = ∇iA(ξ) and to conclude that A(ξ)
must be a constant over Σ. When S is in addition a sphere then the constant
must be zero because A(ξ) must vanish at the axes. This information shows
that the perturbations constructed in Sect. 4, which have K = 0 and B = 0,
also have total angular momentum J equal to zero.

(iv) The stability inequality of minimal surfaces embedded in maximal data
sets.

Let (Σ; g, K;E,B) be an electro-vacuum data set and suppose that S is a (com-
pact, boundary-less and orientable) minimal surface embedded in Σ. Recall
that a surface S is said minimal inside (Σ; g) if its mean curvature is identi-
cally zero. Let ζ be a unit normal vector field to S in Σ and let α : S → R be
a smooth function. The first variation of area when S is deformed along αζ is
zero by minimality. Instead, the second variation is [9]

A′′
α(S) :=

∫

S

[
|∇α|2 −

(
|Θ|2 + Ric(ζ, ζ)

)
α2

]
dA, (8)

where here Θ is the second fundamental form of S. The surface S is said to be
stable if A′′

α(S) ≥ 0 for all α. In dimension three the r.h.s of (8) is simplified

5 Assume {∂t, ∂r, ∂θ, ∂ϕ) is positive for M.
6 If F is exact then an axisymmetric potential A can always be found by averaging any
potential by the rotational group U(1). Observe too that F is exact iff all the magnetic
charges (i.e., QM([S]) = 0 for all S) are zero.
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due to the identity 2κ = (trhΘ)2−|Θ|2+R−2Ric(ς, ς), where κ is the Gaussian
curvature of S (with its induced metric). Using this expression, the minimality
of S (i.e., trhΘ = 0) and the energy constraint, we deduce that if S is stable
then for any α we have

∫

S

(
|∇α|2 + κα2

)
dA ≥ 1

2

∫

S

(
2|E|2 + 2|B|2 + |K|2 + |Θ|2 − k2

)
α2 dA. (9)

3. Black Holes Inequalities in Maximal Data Sets

Definition 2. We say that a sphere S embedded in a maximal electro-vacuum
data set (Σ; g, K;E,B) is a (normalized) extreme RN sphere if over S we have

κ = 1, E = ζ, B = 0, Θ = 0, and K = 0, (10)

where κ is the Gaussian curvature, ζ is a unit normal to S in Σ and Θ is the
second fundamental form of S in (Σ; g).

Normalized extreme RN spheres S are totally geodesic and have
|QE(S)| = 1, QM(S) = 0 and A(S) = 4π.

The following lemma discusses the equality case in the general inequality
A ≥ 4πQ2

E and that was not treated in [12].

Lemma 1. Let S be a stable (compact, boundaryless and orientable) minimal
surface embedded in a maximal electro-vacuum data set and having A(S) = 4π
and |QE(S)| = 1. Then, S is a (normalized) extreme RN sphere.

Proof. Recall from (9) that the stability inequality of the area implies
∫

S

(
|∇α|2 + κα2

)
dA ≥

∫

S

(
|E|2 + |B|2 +

|K|2

2
+

|Θ|2

2

)
α2 dA (11)

for all α : S → R. As |QE(S)| = 1 we can select the unit normal field ζ to S
such that 1

4π

∫
S⟨E, ζ⟩dA = |QE(S)| = 1. Choosing α = 1 in (11) and using

then Gauss–Bonet and that

1 = |QE(S)| =
1
4π

∣∣∣∣
∫

S
⟨E, ζ⟩dA

∣∣∣∣ ≤ 1
(4π)1/2

(∫

S
|E|2 dA

)1/2

(12)

we obtain

4π ≥ 4π +
∫

S

(
|B|2 +

|K|2

2
+

|Θ|2

2

)
dA

This shows that B = 0, K = 0 and Θ = 0 and that equality must hold.
Therefore equality must hold also in (12) which implies (by Cauchy–Schwarz)
that E = ζ. It remains to see that κ = 1, i.e., that S has a round metric. Let
us show this below.

Using B = 0, K = 0, Θ = 0 and E = ζ in (11) we obtain
∫

S

(
|∇α|2 + (κ− 1)α2

)
dA ≥ 0

for all functions α. This implies that the first eigenvalue λ of the operator
α → −∆α + (κ − 1)α must be non-negative. Denote by αλ its eigenfunction
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(which is unique up to a constant and that is well known to be nowhere zero).
Then we have

− ∆αλ + (κ− 1)αλ = λαλ (13)

Multiplying by 1/αλ and integrating over S we obtain

−
∫

S
|∇ lnαλ|2 dA = 4πλ ≥ 0

This implies that λ = 0 and that αλ is a constant. Using this information
in (13) we obtain κ = 1 as wished. !
Definition 3. A maximal electro-vacuum data set (Σ; g, K;E,B) is said to be
of the ERN1 type if there is a (smooth) diffeomorphism ϕ : Σ0 → Σ such that

lim
p→End

∣∣(ϕ∗U)(p) − U0(p)
∣∣
g0

= 0

where (U,U0) is any of the pairs (g, g0), (K, K0), (E,E0), (B,B0) and p → End
means “as p diverges along the cylindrical end or the asymptotically flat end”.

Observe that we require that (ϕ∗g,ϕ∗K;ϕ∗E,ϕ∗B) converges to
(g0,K0;E0, B0) along the ends only in C0. For this reason the ADM masses of
both data sets are not necessarily equal. However, the total electric and mag-
netic charges must stay the same as they can be calculated from the formulas
(6) along the divergent sequence of spheres Sri = {r = ri} on the cylindrical
end. That is, any data set of the ERN1 type has total charges |QE| = 1 and
QM = 0.

The next proposition is essentially a particular case of the results in [12].
We include a proof for a more convenient exposition.

Proposition 1. Let (Σ; g, K;E,B) be a maximal electro-vacuum data set of
ERN1 type. Then every (compact, boundaryless and orientable) embedded sur-
face S which is non-contractible inside Σ has

|QE(S)| = 1 and A(S) ≥ 4π. (14)

Proof. We prove first that |QE(S)| = 1. Think Σ as R3\{o} and S as a surface
embedded in it. Then recall that any compact, boundary-less and orientable
surface embedded in R3 divides R3 into two connected components one of
which is necessarily unbounded. As S is non-contractible inside R3\{o} then
the bounded component of R3\S must contain the origin o. That is, S separates
the two ends of Σ and the electric charge of S (with an appropriate normal)
must be that of the asymptotically flat end, i.e., |QE(S)| = 1.

We prove now that A(S) ≥ 4π. Assume by contradiction the existence of
an S with A(S) < 4π. Let A(S) = inf{A(S′), S′ isotopic to S}. Then obviously
we have 4π > A. We claim that we also have A(S) > 0. In fact, if there is a
sequence S′

j of surfaces isotopic to S such that A(S′
j) → 0 then

1 = |QE(S′
j)| =

1
4π

∣∣∣∣
∫

S′
j

⟨E, ζ⟩dA

∣∣∣∣ ≤ 1
4π

∥E ∥L∞
g

A(S′
j) → 0

which would show a contradiction.
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Now, following [16] (Theorem 1’)7 there is a (non-empty) set of compact
boundary-less and non-contractible (inside Σ) minimal surfaces {S1, . . . , Sl}
embedded in Σ and a set of positive integers {n1, . . . , nl} such that

A(S) =
i=l∑

i=1

niA(Si)

As Σ is diffeomorphic to R3\{o} then all the Si’s must be orientable and
therefore stable minimal surfaces [16]. Consider now S1 and note that A(S1) ≤
A(S) < 4π. We show now that in addition to this it must also be A(S1) ≥ 4π,
which is a contradiction. To show A(S1) ≥ 4π we recall (as was shown before)
that |QE(S1)| = 1. Therefore plugging α = 1 in (11) we have

4π ≥
∫

S1

|E|2 dA ≥ 1
A(S1)

(∫

S1

|⟨E, ζ⟩|dA

)2

≥ (4π|QE(S1)|)2

A(S1)
=

(4π)2

A(S1)
(15)

as wished. !

The following crucial refinement of Proposition 1 shows that equality in
the second equation of (14) cannot be achieved. The proof is based in similar
arguments to those in [19].

Proposition 2. Let (Σ; g, K;E,B) be a maximal electro-vacuum data set of
ERN1 type. Then every (compact, boundary-less and orientable) embedded sur-
face S which is non-contractible inside Σ has

A(S) > 4π.

Proof. By Proposition 1 it is enough to show that equality in (14) cannot
be achieved. Proceeding by contradiction assume then that there is S0 with
A(S0) = 4π. Then observe that if S is isotopic to S0 then S is also non-
contractible inside Σ. Therefore, again by Proposition 1, we have A(S) ≥ 4π
for any surface S isotopic to S0. This implies that S0 is minimal and stable.8
By Lemma 1 S0 is an extreme RN sphere.

Let Y0 be a large and strictly convex sphere (w.r.t the outer normal) over
the asymptotically flat end. Denote by Ω0 the region enclosed by it and the

7 There is a caveat here. Strictly speaking Theorem 1’ applies to manifolds with convex
boundary which is not the case here (instead we have an AF end and a Cylindrical end
∼ R × S2). To apply Theorem 1’ one can work between two spheres, one convex and far
away in the AF end and another far away on the cylindrical end where in a neighborhood of
it one modifies slightly the metric to have also a convex boundary. Apply Theorem 1’ and
then show that the minimizer does not intersect the deformed region. The reader can see
how this type of argument works when we use as similar one in the proof of Aux-Proposition
3.
8 More explicitly, for any smooth F : [−ε, ε] × S0 → Σ with F (0, −) = Id(−) and ε small
to have F (x, −) : S0 → Σ a smooth embedding, the real function λ → A(F (λ, S0)), (which
is greater or equal than 4π for all λ), must have an absolute minimum at λ = 0. It follows
that the first λ-derivative is zero and the second is non-negative. As this is valid for all F
then the surface is minimal and stable.



On Perturbations of EKN Black Holes

cylindrical end and assume that S0 ⊂ Int(Ω0). In what follows we are going to
use this region Ω0 together with a positive solution N = N0 of

∆N − |E|2N = 0 (16)

over Ω0, asymptotically vanishing over the cylindrical end and not-identical to
a constant over S0. The existence of such N0 is proved as follows. Take any two
linearly independent smooth positive functions f1 and f2 over Y0. For i = 1, 2,
let Ñi be the solution to (16) on Ω0 with the boundary condition Ñi|Y0 = fi

and asymptotically vanishing over the cylindrical end of Ω0. By the maximum
principle we have Ñi > 0 for i = 1, 2. If both solutions are constant over S0

then one can take a linear combination Ñ := α1Ñ1 + α2Ñ2 vanishing exactly
over S0 but with α1 ̸= 0 and α2 ̸= 0. As Ñ asymptotically vanishes over the
cylindrical end of Ω0 and is zero over S0 then, by the uniqueness of solutions
to (16), the combination has to be zero all over the set enclosed by S0 and the
cylindrical end. Then, the unique continuation principle [2] tells that Ñ has to
be zero all over Ω0 which is not possible because f1 and f2 were chosen to be
linearly independent.

The reason why we take such N0 is twofold and will be explained ade-
quately during the argumentation below.

In the space-time generated by the initial data consider the future-
pointing congruence {γ(p, τ)} of time-like geodesics γ(p, τ) starting perpen-
dicularly to Ω0 at p ∈ Ω0 and parametrized by proper time τ . We are going to
move Ω0 with the help of this congruence and obtain a foliation {Ωt}.9 The
leaves Ωt of the foliation are defined, for every given t, as the image of the map

Ft : p ∈ Ω0 → γ(p, N0(p)t) ∈ Ωt

This map in turn induces Lapse and Shifts, Nt, Xt over each Ωt with the
property that Nt=0 = N0 and X0 = 0. Of course the result of moving a
point p ∈ Ω0 through the space-time vector field Nτnτ + Xτ and for a lapse
of time t is the same as Ft(p). The leaves Ωt are naturally identified to Ω0

and thus the space-time metric together with the electromagnetic tensor are
described by a flow (gt,Kt;Nt,Xt;Et, Bt) over Ω0 (c.f. Sect. 2 item (i); note
also that we are changing notation from (g(t),K(t);N(t),X(t);E(t), B(t)) to
(gt,Kt;Nt,Xt;Et, Bt) which makes the writing clearer in this part).

To simplify notation below, when we omit the subindex t we mean t = 0.
We can comment now on one of the reasons why we chose N0 satisfying

(16). In general, the time derivative of the mean curvature kt of the leaves of
a space-like foliation {Ωt} with Lapse Nt and Shift Xt is given by

∂tkt − LXkt = −∆gtNt +
(
4π(T00 + Tijg

ij
t ) + |Kt|2

)
Nt

In our case we have kt|t=0 = 0 and thus LXkt=0 = 0. Also at time t equal zero
we have

(
4π(T00 + Tijgij) + |K|2

)
= |E|2 (use T00 = Tijgij and 8πT00 =

|E|2+|B|2) and hence ∂tkt|t=0 = 0. Thus we obtain kt = (∂2
t kt|t=0)t2/2+O(t3)

in short times. Having this quadratic behavior of kt in short times was one of
the reasons behind the choice of N0 and will be crucial later.

9 Of course is a foliation of a piece of the space-time.
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Define St = Ft(S0) ⊂ Ωt, the translation of S0 by Ft. Recall tat we
are identifying Ωt to Ω0 through Ft. In this identification the surface St is
identified to S0. In this sense the area of St is the same as Agt(S0), a notation
that we keep using below.

We claim that

Ägt(S0)
∣∣∣∣
t=0

= −A′′
N0

(S0) (17)

where the double dot means twice the t-derivative of Agt(S0) and A′′
N0

(S0) is,
following the notation introduced before, the second variation of area of S0

along N0ζ. We prove this claim in what follows. As was calculated in Propo-
sition 3 in [19] we have

Ägt(S0)
∣∣∣∣
t=0

=
∫

S0

[
N0∇A∇BN0 − N2

0

(
RicAB − 2KAiK

i
B

)]
hAB dA

+
∫

S0

8πN2
0

[
TAB − 1

2
(Tijg

ij − T00

)
gAB

]
hABdA (18)

where we included here the term involving T that was omitted in [19] as in
there only vacuum solutions were considered.10 In the previous formula Ric
is the Ricci curvature of g = g0 and ∇ its covariant derivative. We note then
that:

1. The electromagnetic stress-energy is traceless and therefore Tijgij −
T00 = 0,

2. RicABhAB = R − Ric(ζ, ζ) = 2|E|2 − Ric(ζ, ζ),
3. And finally, because S0 has the geometry of an extreme RN-horizon the

conditions (10) hold and we have

8πTABhAB = 2|E|2, KAiK
i
BhAB = 0, and,

∫

S0

N0(∇A∇BN0)hAB dA = −
∫

S0

|∇N0|2 dA

where in the last formula the gradient of N0 is taken over S0.
Combining this information in (18) and after a crucial cancelation of the terms
involving |E|2 we obtain

Ägt(S0)
∣∣∣∣
t=0

= −
∫

S0

(
|∇N0|2 − Ric(ζ, ζ)N2

0

)
dA = −A′′

N0
(S0)

where to deduce the second equality we have used (8) and that Θ = 0 over S0.
We can comment now on the second reason for our particular selection of N0.
If N0 is not exactly the constant function one over S0, as we are assuming,
then A′′

N0
(S0) > 0 and therefore Ägt(S0)|t=0 < 0. This is our second reason

and will be also crucial below.

10 More precisely, in the second formula of Proposition 3 use K̇ij = −∇i∇jN + N(Ricij −
2KilKl

j) − 8πN(Tij + 1
2 (Tlmglm − T00)gij) instead of just K̇ij = −∇i∇jN + N(Ricij −

2KilKl
j) (recall that the data at the initial time is maximal, that is k = 0).
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The space-time vector field V which moves Ω0 to Ωt and which generates
the flow gt, is, at a space-time point q = γ(p, N0(p)t), given by

V(q) =
dF (p, N0(p)t)

dt
= N0(p)

dγ(p, τ)
dτ

∣∣∣∣
τ=N0(p)t

= N0(p)γ′(q)

Recalling that N0 tends to zero (indeed exponentially) over the asymptotically
cylindrical end of (Ω0, g0) we conclude that V tends to zero over the asymp-
totically cylindrical end and for this reason the evolution of gt over the end
freezes up. Thus the metrics gt inherit exactly the same cylindrical asymptotic
for every t, that is, that of the metric product of the unit two-sphere and the
half-real line.

Take (by continuity) t∗ > 0 small enough such that for all t ∈ [0, t∗],
the boundary of (Ω0, gt) is still strictly convex. Assume that t∗ was chosen
small enough that Agt(S0) < 4π for every t ∈ [0, t∗]. Then, again based on
general results on minimal surfaces [16] we can guarantee, for every t ∈ [0, t∗],
the existence of a stable minimal sphere11 Ŝt in Ω0 of area less or equal than
Agt(S0), non-contractible inside Ω0 and thus of electric charge one.

We proceed now to gather conveniently all the information obtained so
far and use it thereafter to reach a contradiction.

1. From kt = (∂2
t kt|t=0)t2/2 + O(t3) we have, for all t ∈ [0, t∗] (chose t∗

smaller if necessary),

k2
t ≤ 2c2

1t
4 where c1 = sup

{∣∣∂2
t kt(p)

∣∣
t=0

2
, p ∈ Ω0

}
, (19)

2. From Agt(S0) = 4π − A′′
N0

(S0)t2/2 + O(t3) we have, for all t ∈ [0, t∗]
(chose t∗ smaller if necessary),

Agt(S0) ≤ 4π − c2

2
t2 ≤ 4π where c2 =

A′′
N0

(S0)
2

> 0 (20)

3. For every t ∈ [0, t∗] there is a stable minimal sphere Ŝt with QE(Ŝt) = 1
and Agt(Ŝt) ≤ Agt(S0).

Now, the stability inequality at Ŝt with trial function α = 1 gives

4π ≥
∫

Ŝt

|Et|2 dAt −
∫

Ŝt

k2
t

2
dAt

Use then (19) and that
∫

Ŝt
|Et|2 dAt ≥ (4π)2/A(Ŝt) (because QE(Ŝt) = 1) to

transform this equation into

4π ≥ (4π)2

A(Ŝt)
− c2

1t
4A(Ŝt)

Multiply this equation by A(Ŝt)/4π and then use that A(Ŝt) ≤ A(S0) and
(20) to deduce 4π − c2t2/2 ≥ 4π − 4πc1

2t
4 or, the same, 8πc2

2t
4 ≥ c1t2, which

is impossible for small t. !
11 That the limit is connected and is a sphere follows from the genus bounds (1.4) of
Theorem 1 in [16].
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4. A Family of Perturbations of the ERN1 Initial Data

Recall that the metric of the ERN1 space-time is

g = −
(
1 − 1/r

)2dt2 +
1

(
1 − 1/r

)2 dr2 + r2dΩ2 (21)

and that on the hypersurface Σ0 = {t = 0} we have K0 = 0, B0 = 0 and that
the electric field is radial and takes the form E0 = ζ/r2 where ζ = ∂r/|∂r|
is the unit normal to the radial spheres Sr̄ = {r = r̄}. Now, the constraint
equations (5) of an electro-vacuum data set (g, K;E,B) with K = 0 and B = 0
reduce to

{
R = 2|E |2,
div E = 0 (22)

Because of this the scalar curvature R0 of the metric g0 of the ERN1 standard
initial data is R0 = 2/r4.

In the argumentation given below we will make use of an expression for
the three-Laplacian ∆g0 acting on radial functions φ = φ(r) of Σ0. A direct
calculation using the general formula ∆φ = ∂r(

√
ggrr∂rφ)/√

g gives, when
φ = φ(r), the expression

∆g0 φ =
r(r − 1)

r4

d
dr

[
r(r − 1)

d
dr
φ

]

This formula is simplified if we use the harmonic radial coordinate x = ln(1 −
1/r) instead of r (harmonic means ∆g0x = 0). With this definition the range of
x is (−∞, 0). In this new coordinate the Laplacian acting on radial functions
reads

∆g0 φ =
φ′′

r4
, (23)

where here φ′′ = d2φ/dx2. Note then that ∆g0 φ = |E0|2 φ′′.
We proceed now to construct the bi-parametric family of axisymmetric

“perturbations” of the initial data on Σ0. The axisymmetric Killing field will be
∂ϕ, which, note, is also axisymmetric Killing for the background data set. The
two parameters of the family will be ϵ̂ and x̂. Roughly speaking the variable ϵ̂
represents the “strength” of the perturbation while x̂ marks the sphere around
which the perturbation “concentrates”. This interpretation will be clear as
the construction progresses. To explain the construction let us recall in what
follows the conformal method to solve the constraint equations but for the
situation that is of interest here, namely when the data set to be found is time
symmetric and has no magnetic field. Let (Σ, g) be a Riemannian manifold of
scalar curvature R. On it let Ê be a g-divergence-less vector field. If for φ > 0
we have

∆φ = Rφ− 2| Ê |2 φ−3, (24)

then ḡ = φ4g and Ē = φ−6Ê satisfy the constrain equations (22). We will use
this method below with (Σ, g) = (Σ0, g0) and Ê = Eϵ̂,x̂ suitably chosen.
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In what follows we will identify Σ0 to (−∞, 0] × S2 where the factor
(−∞, 0] is the range of the coordinated x introduced before. From now on the
parameter x̂ is set to vary in (−∞,−2] and ϵ̂ in (0, 1/16). Fix a smooth and non-
zero axisymmetric two-form ω supported on (−3,−1) × S2 ⊂ (−∞,−1) × S2.
This form is set to be fixed from now on and will not be adjusted anymore.
For every x̂ let χ∗

x̂ ω be the pull-back of ω to [x̂ − 1, x̂ + 1] × S2 under the
transformation χx̂ : [x̂ − 1, x̂ + 1] × S2 → [−3,−1] × S2 given by (x, θ,ϕ) →
(x − x̂ − 2, θ,ϕ). Then, for every x̂ and ϵ̂ define

Êx̂,ϵ̂ = E0 + λ̂
(
⋆ d ⋆ (χ∗

x̂ ω)
)♯ (25)

where λ̂ = λ̂x̂,ϵ̂ is a factor chosen to have ϵ̂ = sup
∣∣1 − |Êx̂,ϵ̂|2/|E0|2

∣∣ (here
| . . . | = | . . . |g0), the star ⋆ in ⋆d⋆ is the g0-Hodge star and (⋆d ⋆ (χ∗

x̂ ω))♯ is
the g0-dual vector field of the form ⋆d ⋆ (χ∗

x̂ ω). In this way Êx̂,ϵ̂ comprises a
bi parametric family of divergence-less axisymmetric vector fields which are
equal to the background field E0 outside [x̂ − 1, x̂ + 1] × S2 but otherwise not
very different from it.

In what follows and to simplify notation we keep using | . . . | = | . . . |g0

and make also Ê = Êx̂,ϵ̂.
We pass now to show that for every Ê we can find an axisymmetric

solution to the Lichnerowitz equation (24) (L-equation from now on) with
good geometric properties. To this extent we use the method of sub and super-
solutions. Namely, if for axisymmetric functions (barriers) φ+ > 0 and φ− > 0
with φ+ > φ− we have

⎧
⎨

⎩
∆g0φ+ ≤ 2|E0|2φ+ − 2|Ê|2φ−3

+ ,

∆g0φ− ≥ 2|E0|2φ− − 2|Ê|2φ−3
−

(26)

(recall R0 = 2|E0|2) then there is an axisymmetric solution φ > 0 to (24) with
φ− ≤ φ ≤ φ+, (for a proof of this fact in this context see [8]12). We explain now
how to find φ− which will be a radial function, i.e., φ− = φ−(x). In (I) below
we define φ−(x) over (−∞,−1] and in (II) over [−1, 0). The global function
defined by (I) and (II) will be smooth over the separate domains (−∞,−1)
and (−1, 0) but will be just C0 at x = −1. For this reason, to check that such
global function is a barrier in the distributional sense [8] it will be necessary
to check that its left derivative at x = −1 is less than its right derivative.13
This will be done after (I) and (II) below.
(I) Defining φ−(x) on (−∞,−1]. Make ψ− = φ− − 1 and recall that

∆ψ− = |E0|2ψ′′
−. With this information and after a simple manipula-

tion the second equation in (26) can be displayed in the form

ψ′′
− ≥ 2

[
1 + φ−1

− + φ−2
− + φ−3

−
]
ψ− + 2

[
1 − |Ê|2

|E0|2

]
φ−3

− (27)

12 To get an axisymmetric solution out of the method of barriers just work inside the family
of axisymmetric functions all the time in [8].
13 Alternatively, a smooth barrier can be easily found by rounding off the global function
constructed by (I) and (II).
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Now, it can be easily checked that for any real number γ such that |γ −
1| ≤ 1/8 we have

3 ≤ 1 + γ−1 + γ−2 + γ−3 ≤ 5, and
1
2

≤ γ−3 ≤ 2 (28)

Thus, if we can find ψ−(x) with −1/8 < ψ− < 0 and satisfying

ψ′′
− ≥ 6ψ− + 4ϵ̂Î (29)

where Î = Î(x) is the indicator function on [x̂ − 1, x̂ + 1], (i.e., equal to
one on [x̂ − 1, x̂ + 1] and zero otherwise), then φ− = 1 + ψ− will verify
(27) because, in this case, we would have

6ψ− + 4ϵ̂Î ≥ 2
[
1 + φ−1

− + φ−2
− + φ−3

−
]
ψ− + 2

[
1 − |Ê|2

|E0|2

]
φ−3

−

due to (28) (with γ = φ−) and because, by construction, we have 1 −
|Ê|2/|E0|2 ≤ ϵ̂ point-wise. The function

ψ−(x) =
−4ϵ̂

cosh (x − x̂)

verifies −1/8 < ψ−(x) < 0 because ϵ̂ < 1/16. To see that it also satisfies
(29) on (−∞,−1] we argue as follows. First we compute ψ′′

− = 4ϵ̂(1 −
2 sinh2(x − x̂)/ cosh2(x − x̂))/ cosh(x − x̂) and, after plugging this inside
(29) and after a simple manipulation we conclude that to verify (29)
it is enough to verify the inequality 7 − 2 sinh2(x − x̂)/ cosh2(x − x̂) ≥(
cosh(x − x̂)

)
Î(x) for all x ∈ (−∞,−1]. This is easily seen because the

l.h.s of this expression is greater than five and the r.h.s is less or equal
than cosh 1 which is less than e. Summarizing, φ− = ψ− + 1 is a sub-
solution on this range of x. Note that as ψ− < 0 then it is φ− < 1.

(II) Defining φ−(x) on [−1, 0). On [−1, 0) define φ−(x) by φ−(x) = 1+ψ−(x)
where

ψ−(x) =
4ϵ̂x

cosh (−1 − x̂)

To see that φ− is a sub-solution it is necessary to check (27). Firstly, as
φ−(x) is linear in x the l.h.s of (27) is zero. Secondly, the second term on
the r.h.s of (27) is zero because when x ∈ [−1, 0) it is |E0|2 = |Ê|2. The
inequality (27) then follows because ψ− < 0 and so is the first term on
the r.h.s of (27).
So far we have defined φ− and proved that it is a sub-solution when

restricted to the intervals (−∞,−1) and (−1, 0). It remains to prove that it
is also a sub-solution in the neighborhood of x = −1. As said, to see this it
is enough to check that the left-sided derivative of φ− at x = −1 is less than
its right-sided derivative. The left-sided derivative at x = −1 is 4ϵ̂ sinh(−1 −
x̂)/ cosh2(−1 − x̂) while the right-sided is 4ϵ̂/ cosh(−1 − x̂) and the desired
inequality follows.
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x −1 0

1

x̂

φ

φ−

+

Figure 4. Picture of the barriers φ− and φ+

Summarizing, the sub-solution is

φ−(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − 4ϵ̂
cosh(x − x̂)

if x ∈ (−∞,−1],

1 +
4ϵ̂x

cosh(−1 − x̂)
if x ∈ [−1, 0)

(30)

A graph of φ− is presented in Fig. 4. Reproducing the argument that
lead to φ−, it is found that φ+(x), defined by

φ+(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 +
4ϵ̂

cosh(x − x̂)
if x ∈ (−∞,−1],

1 − 4ϵ̂x
cosh(−1 − x̂)

if x ∈ [−1, 0)
(31)

is a super-solution. We conclude that there is φ > 0, solution of (24), and
satisfying φ− ≤ φ ≤ φ+. The metric ḡ = φ2g0 and the electric field Ē = Êφ−6

satisfy the constraint equations (22).
Summarizing, from the explicit form of the sub and super-solutions we

observe that φ− 1 “concentrates“ around x̂ and decays exponentially to zero
in both directions of x starting from x̂. In the direction of increasing x the
exponential decay however stops at x = −1 and after that it is linear in x,
namely of the order 1/r in the r-coordinate. Observe, to be recalled later,
that the exponential decay of φ in the asymptotically cylindrical end implies
by standard elliptic estimates that the perturbed data sets (ḡ, K̄; Ē, B̄) decay
exponentially as defined in the introduction.

5. Rigidity of the ERNT1 Initial Data

The next lemma shows the rigidity of the ERNT space-time and has interest
in itself. It will be used in the proof of Proposition 4.

Lemma 2. Let (Σ; g, K;E,B) be a smooth complete and maximal electro-
vacuum data set where Σ is diffeomorphic to R × S2. Let S0 := 0 × S2 and
suppose that |QE(S0)| = 1. Suppose too that for any (compact, boundaryless
and embedded) surface S non-contractible inside Σ we have A(S) ≥ 4π, and
that there is at least one such S with A(S) = 4π. Then the data set is the
standard ERNT1 initial data.



M. Reiris Ann. Henri Poincaré
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Figure 5. Representation of the manifolds V1, V2, W1 and W2

For expository reasons it is better to divide the proof into three Auxiliary
Propositions. In every one of them we let F be the set of (compact, boundaryless
and embedded) surfaces of area 4π and which are non-contractible inside Σ.

Aux-Proposition 1. Assume the hypothesis of Lemma 2. Then, each S ∈ F is
a (normalized) ERN sphere and every two different spheres in F are disjoint.
Moreover, the set

⋃
S∈F{S} is closed as a set in Σ.

Aux-Proposition 2. Assume the hypothesis of Lemma 2. If
⋃

S∈F{S} = Σ then
the data set is the standard ERNT1 initial data (Σ̌; ǧ0, Ǩ0; Ě0, B̌0).

Aux-Proposition 3. Assume the hypothesis of Lemma 2. Then,
⋃

S∈F{S} = Σ.

The proofs of the three propositions are presented consecutively.

Proof of Aux-Proposition 1. By the hypothesis of Lemma 2 every non-
contractible surface has area greater or equal than 4π. Therefore the surfaces
in F , which have area equal to 4π, must be minimal and stable (see footnote
8). By Lemma 1 they are (normalized) ERN spheres. We show next that two
different spheres S1 and S2 in F (in case F has more than one element) must be
disjoint. If S1∩S2 ̸= ∅ then, being minimal surfaces, they must intersect trans-
versely. We will think the surfaces Si, i = 1, 2 as embedded in

(
R3\{o}

)
∼ Σ.

As the Si, i = 1, 2 are non-contractible inside R3\{o} then there are open balls
B1 and B2 in R3 containing the origin o and such that ∂Bi = Si for i = 1, 2.
Define the manifolds

V1 := S1 ∩ Int(Bc
2), V2 := S2 ∩ Int(Bc

1) and W1 := S1 ∩ B2, W2 := S2 ∩ B1

where Int(Bc
i ) is the interior of the complement of Bi (see Fig. 5). The mani-

folds V1,V2,W1 and W2 are pairwise disjoint and their closures have the same
boundary. We will denote such boundary (a union of embedded circles indeed)
by B. We have S1 = V1 ∪ W1 and S2 = V2 ∪ W2 and for this reason it is

4π = A(V1) + A(W1) and 4π = A(V2) + A(W2). (32)
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The manifolds

V := V1 ∪ V2 and W := W1 ∪ W2,

are embedded and smooth except at B, where they have necessarily corners.
Note that V and W are not necessarily connected (see Fig. 5). Moreover, we
have V = ∂(B1 ∪ B2) and W = ∂(B1 ∩ B2). Therefore, as o ∈ B1 ∪ B2 and
o ∈ B1 ∩ B2, then at least one of the connected component of V and at least
one of W divide R3\{o} into two connected components and are consequently
non-contractible inside Σ. By (32) if A(V2) ≤ A(W1) then A(V) ≤ 4π, while
if A(V2) ≥ A(W1) then A(W) ≤ 4π. In any case, we can round off the corners
at B of either the manifold V or the manifold W to obtain one of area less
than 4π and having at least one connected component non-contractible inside
Σ. This is against hypothesis and therefore the surfaces S1 and S2 have to be
disjoint.

It remains to be proved that the set
⋃

S∈F{S} is closed in Σ. But if
pi(∈ Si ∈ F) is a sequence of points in

⋃
S∈F{S} with limit point p∞, then

the sequence Si of (normalized) ERN spheres, and therefore of stable and
area minimizing minimal surfaces, has a subsequence converging (in Ck for
every k ≥ 1) to a limit stable minimal sphere S∞ ∋ p∞, [18].14 The sphere
S∞ cannot be contractible inside Σ, otherwise the Sis would be contractible
for sufficiently big i. We have 4π = lim A(Si) = A(S∞), thus S∞ ∈ F and
therefore p∞ ∈

⋃
S∈F{S}. !

Proof of Aux-Proposition 2. Assume at the moment that the foliation F is
smooth (see the definition of smooth foliation in [4]). We will be proving this
later. Fix a sphere S∗ in F and denote by Σ∗

L and Σ∗
R the connected compo-

nents of Σ\S∗. For any p ∈ Σ let S(p) be the sphere in F containing p and
denote by Ω(p) the region enclosed by S∗ and S(p). Then define the (smooth)
function x̃ : Σ → R as

x̃(p) =

{
Vol(Ω(p)) if p ∈ Σ∗

R,

−Vol(Ω(p)) if p ∈ Σ∗
L

This function is constant over every leaf and has nowhere zero gradient.15 Let
Y = ∇x̃/|∇x̃|2 and note that as Y (x̃) = 1 the flow induced by Y carries
leaves (of F) into leaves (of F). Fix an isometry ψ : S2 → S∗ and define the
diffeomorphism Φ : R × S2 → Σ by sending a pair (t, s) into the translation of
ψ(s) through the flow induced by Y and by a parametric time t. Of course we
have Φ∗∂t = Y . On the other hand, if we denote by hx̃ the induced metric on
the leaves, then we have LY hx̃ = 0 because each leaf is totally geodesic (here
L is the Lie-derivative). Therefore we can write

Φ∗g = |∇x̃|2dx̃2 + dΩ2

14 Precisely there are embeddings fi : S2 → Si converging in Ck to a covering immersion
f∞ : S2 → S∞. But in our case Σ ∼ R3\{o} and therefore S∞ must be orientable, hence a
sphere and f∞ an embedding.
15 This can be easily seen from the fact that F is assumed smooth.
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We show now that |∇x̃| is constant over every leaf. Indeed, as the areas of the
spheres of F is 4π then the second variation of area of any sphere in F along Y
is zero, i.e., A′′

Y (S) = 0. This implies that |Y | = 1/|∇x̄| is constant over every
sphere (see the proof of Lemma 1). The metric (3) is recovered by making a
simple change of variables x̄ = x̄(x̃), with |∇x̃| = dx̄/dx̃. Finally by Lemma
1 we have B = 0, K = 0 and E = ζ with ζ a normal field to the leaves of F
(i.e., either ∂x̄ or −∂x̄). Hence we have (g, K;E,B) = (ǧ, Ǩ; Ě, B̌) as claimed.

It remains to prove that the foliation F is smooth. We will show that
the 1-distribution of lines perpendicular to the leaves of F is smooth. This
implies that the distribution of the tangent planes to the leaves of F is smooth
and the smoothness of F is then direct from Frobenius’s theorem [4]. Let
S be a sphere of F , let ζ be a normal field to it and let h be the induced
two-metric. We will show that the Ricci curvature Ric of g over S has the
following form: Ric(ζ, ζ) = 0 and for any v, w ∈ TS we have Ric(ζ, v) = 0
and Ric(v, w) = h(v, w). The 1-distribution of normal directions to F is then
uniquely characterized by the null space of Ric (i.e., {v ∈ TS, Ric(v, v) = 0}),
and is easily seen to be smooth because Ric is smooth.

Again let S be a surface in F and ζ a unit normal field to it. Let
{γq(τ), q ∈ S, 0 ≤ τ ≤ τ0} be the congruence of geodesics in Σ starting at
τ = 0 perpendicularly to S in the direction of ζ and parametrized by the
arc-length τ . We will move S by the vector field V = ∂τγq(τ) and obtain a
smooth one-parametric family of surfaces S(τ). We assume that τ0 is small
enough that the surfaces S(τ) are embedded (and smooth).

In the forthcoming equations, but inside this proof, we will denote the
mean curvature trhΘ by µ. Recall from Lemma 1 that over S we have κ = 1,
R = 2 and Θ = 0. Therefore from the general identity

2κ− |Θ|2 + µ2 = R − 2Ric(ζ, ζ) (33)

we obtain Ric(ζ, ζ) = 0. Also from div Θ − dµ = Ric(ζ,−) we obtain
Ric(ζ, v) = 0 for any v ∈ TS. To show that for any v, w ∈ TS we have
Ric(v, w) = h(v, w) it is enough to prove that LV Θ = Θ̇ = 0 because of the
general identity (on TS)

Θ̇ = −µΘ + 2Θ ◦ Θ + κh − Ric

which gives Θ̇(0) = h − Ric at τ = 0. Now, at any time τ ∈ (0, τ0) we have

Ä(S(τ)) =
∫

S(τ)
(µ̇ + µ2) dA

=
∫

S(τ)

(
− |Θ|2

2
+

µ2

2
+ κ− |E|2

)
dA

=
∫

S(τ)

(
− |Θ|2

2
+

µ2

2

)
dA +

[
4π −

∫

S(τ)
|E|2 dA

]

≤
∫

S(τ)

(
− |Θ|2

2
+

µ2

2

)
dA

︸ ︷︷ ︸
U(τ)

(34)
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where: (i) to obtain the first inequality we use dȦ = µdA, (ii) to pass from the
second to the third line we use the focussing (Riccati) equation µ̇ = −|Θ|2 −
Ric(ζ, ζ) in conjunction with (33) and R ≥ 2|E|2, (iii) to pass from the second
to the third line we use Gauss–Bonnet and (iv) from the third to the fourth
we use (12). On the other hand, we can express A(S(τ)) as

A(S(τ)) = 4π +
∫ τ

0
Rτ̃

∫ τ̃

0
Ä(S(˜̃τ)) d˜̃τ

and we have Ä(S(τ)) ≤ U(τ) = U(0) + U ′(0)τ + U ′′(0)τ2/2 + O(τ3) with
U(0) = 0, U ′(0) = 0 and

U ′′(0) = −1
2

∫

S(0)
|Θ̇(0)|2 dA

as can be easily seen using µ(0) = 0, µ̇(0) = 0, Θ(0) = 0 and Θ̇(0) = h − Ric.
Therefore, if Θ̇(0) ̸= 0 then we would have A(S(τ)) < 4π for small τ which is
against the hypothesis. This finishes the proof. !
Proof of Aux-Proposition 3. We will proceed by contradiction and assume that⋃

S∈F{S} ̸= Σ. As by Aux-Proposition 1 the set
⋃

S∈F{S} is closed, then every
connected component of Σ\

⋃
S∈F{S} is either an open region enclosed by two

spheres in F or an open region enclosed by a sphere in F and one of the two
ends of Σ. Thus, if there is only one connected component of Σ\

⋃
S∈F{S}

then
⋃

S∈F{S} must at least contain a closed region enclosed by a sphere in
F and one end of Σ. As in Aux-Proposition 2 the data set over such region
must be ERNT1. Because of this one can cut out such region and “double” the
remaining one to construct a new data set (Σ′; g′,K ′;E′, B′) in the hypothesis
of Lemma 2 but with two connected components of Σ′\

⋃
S∈F{S}.

Assume then without loss of generality that there are at least two con-
nected components of Σ\

⋃
S∈F{S}. We want to prove that such data set

cannot exist. This will be done exactly as in Proposition 2. For this reason the
paragraphs below are first dedicated to construct a setup similar to the one in
the proof of Proposition 2.

For the discussion that follows the Fig. 6 could be of great help. Denote
two of the connected components of

⋃
S∈F{S} by ΩL and ΩR (L for “Left” and

R for “Right”). Let SL and SR be any two spheres embedded in ΩL and ΩR,
respectively, and non-contractible inside Σ. Denote by ΩLR the region enclosed
by them and including them, and by Σ−

L (resp. Σ+
R) the connected component

of Σ\SL (resp. Σ\SR) not containing SR (resp. SL). Also let D∗ > 0 be small
enough such that

1. if p ∈ Σ−
L (resp. p ∈ Σ+

R) and dist(p, SL) ≤ D∗ (resp. dist(p, SR) ≤ D∗)
then p ∈ ΩL (resp. p ∈ ΩR), and

2. for any 0 < D ≤ D∗ the set {p ∈ Σ−
L ,dist(p, SL) = D} (resp. {p ∈

Σ+
R,dist(p, SR) = D}) is a smooth and embedded sphere.

In this context define the sphere S∗
L (resp. S∗

R) as S∗
L := {p ∈ Σ−

L ,dist(p, SL) =
D∗} (resp. S∗

R := {p ∈ Σ+
R,dist(p, SR) = D∗}) and let Ω∗

LR be the set enclosed
by S∗

L and S∗
R including them. As the components ΩL and ΩR are different
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Figure 6. Representation of the construction in the proof of
Aux-Proposition 3

there is at least one sphere S0 ∈ F embedded in ΩLR and therefore in Ω∗
LR.

Now, on Ω∗
LR consider a positive solution N = N0 of the maximal lapse equa-

tion

∆N −
(
4π(T00 + Tijg

ij) + |K|2
)
N = ∆N − (|E|2 + |B|2 + |K|2)N = 0

and that is not identically to a constant over S0. The existence of such N0 is
shown in the same way as was done in Proposition 2 and is left to the reader.
Also in the same way as in Proposition 2 construct from N0 a time-like vector
field V and from it a flow (gt,Kt;Et, Bt) over Ω∗

LR, with 0 ≤ t ≤ t∗ and for
some t∗ small. As in Proposition 2 now we have Ȧgt(S0) = 0 and Ägt(S0) < 0.
Therefore Agt(S0) < 4π in short times t.

Instead of gt we are going to consider a modified flow of metrics g̃t confor-
mally related to gt. This will help to guarantee the existence of certain stable
minimal spheres. To the purpose of defining g̃t consider the following function
of z ∈ [0,D∗],

Ψδ(z) = 1 + e−1/z + 1/(D∗ + δ − z)

where δ is a constant to be fixed soon below. Observe that Ψδ(0) = 1 and
that all the right-sided derivatives of Ψδ are zero at z = 0. Observe too that
Ψδ ≥ 1. We then define g̃t by

g̃t(p) =

⎧
⎪⎪⎨

⎪⎪⎩

gt(p) if p ∈ ΩLR,

Ψδ

(
d(p, SL)

)
gt(p) if p ∈ Ω∗

LR ∩ Σ−
L ,

Ψδ

(
d(p, SR)

)
gt(p) if p ∈ Ω∗

LR ∩ Σ+
R

Now chose t∗ and δ > 0 small enough that the boundaries of (Ω∗
LR, g̃t) are

strictly mean convex (in the outgoing directions) for any 0 ≤ t ≤ t∗. Once this
is granted we can consider for every t ≤ t∗ a sphere S̃t minimizing the g̃t-area
among all the spheres embedded in Ω∗

LR and isotopic to S0 [16].
Until now we have not done any particular progress in the proof. The

key point of the proof lies in showing that one chose t∗ smaller if necessary
in such a way that the area minimizing spheres S̃t are embedded in Int(ΩLR)
and therefore do not intersect the regions where the metric gt was conformally
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modified. Once this is shown a contradiction is proved following exactly the
same argument as in Proposition 2 and will not be repeated here.

Suppose then that there is a sequence of times ti ↓ 0 such that for each
ti the minimal and stables sphere S̃ti is not strictly embedded in Int(ΩLR).
Take then a subsequence (indexed again by “i”) such that S̃ti converges to
a stable minimal sphere S̃0 intersecting Ω∗

LR\Int(ΩLR). As the S̃ti are non-
contractible inside Σ then neither is S̃0. Moreover, as Ag̃ti

(S̃ti) ≤ Ag̃t(S0) < 4π
then Ag̃t(S̃0) ≤ 4π. But Ag̃0(S̃0) ≥ Ag(S̃0) because the conformal factor is
greater or equal than one. Then, the sphere S̃0 ⊂ Σ has A(S̃0) ≤ 4π. So it
must be A(S̃0) = 4π by the hypothesis of Lemma 2 and by Lemma 1 it must
be a (normalized) ERN sphere. Thus S̃0 ∈ F . But this is a contradiction as
the set Ω∗

LR\Int(ΩLR) does not contain any point of
⋃

S∈F{S}. !

6. Perturbations Containing MOTS

The following proposition is direct from standard elliptic estimates and is left
to the reader (use ϕ = id and recall that ḡ = φ2g0, K̄ = 0, Ē = Ê0φ−6 and
B̄ = 0). It says that the data sets constructed in Sect. 4 are small in the sense
of Definition 1.

Proposition 3. Given 0 < ϵ̂ < 1/16 and integer k ≥ 1 there is ε = ε(ϵ̂, k) > 0
such that for any x̂ ∈ (−∞,−1] the data set (ḡ, K̄; Ē, B̄) constructed in Sect. 4
out of ϵ̂ and x̂, is ε-close in Ck to the standard ERN1 initial data. Moreover,
ε → 0 if we fix k and let ϵ̂ → 0.

In what follows we explain a pointed convergence that will be useful inside
the proof of Proposition 4. We keep identifying Σ0 to (−∞, 0) × S2 as we
did before, in particular the factor (−∞, 0) is the range of x. Let x̂i be a
sequence diverging to minus infinity, i.e., lim x̂i = −∞ and let s0 be a fixed
point in S2. If we “follow” the ERN1 metric g0 around the sequence of points
x̂i ×s0 then, as we know, it converges to the metric ǧ0 of the standard ERNT1

initial data. The standard mathematical way of saying this is that the pointed
sequence (Σ0; g0; x̂i × s0) converges smoothly to (R × S2; ǧ0, 0 × s0). We write
this convergence by saying that for any integers n ≥ 1 and k ≥ 1 we have

lim
i↑∞

∥∥ϕ∗
n,i g0 − ǧ0

∥∥
Ck

ǧ0
([−n,n]×S2)

= 0, (35)

where ϕn,i : [−n, n]×S2 → [−n+ x̂i, n+ x̂i]×S2(⊂ Σ0) is the map ϕn,i(x, s) =
(x + x̂i, s) (note that ϕn,i(0 × s0) = x̂i × s0 for all i). More generally, the
pointed sequence of initial data (Σ0; g0;E0; x̂i × s0) converges smoothly to
(R × S2; ǧ0; Ě0; 0 × s0) because in addition to (35) we have

lim
i↑∞

∥∥ϕ∗
n,i E0 − Ě0

∥∥
Ck

ǧ0
([−n,n]×S2)

= 0, (36)

for any n ≥ 1 and k ≥ 1. Fix now 0 < ϵ̂ < 1/16 and consider the sequence of
vector fields Êi := Êx̂i,ϵ̂ given in (25) out of x̂ = x̂i, ϵ̂ and ω. In the same way
as before, this sequence converges smoothly to Ê∞ := Ě0 + λ̂∞(⋆ d ⋆ ω∞)♯
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where ω∞ is the pull-back of ω by the map (x, s) → (x−2, s) from [−1, 1]×S2

into [−3,−1] × S2 and λ̂∞ is a constant such that

sup
∣∣∣∣1 −

|Ê∞|2ǧ0

|Ě0|2ǧ0

∣∣∣∣ = ϵ̂ (37)

As before this convergence is expressed by the limit

lim
i↑∞

∥∥ϕ∗
n,i Êi − Ê∞

∥∥
Ck

ǧ0
([−n,n]×S2)

= 0, (38)

for any n ≥ 1 and k ≥ 1. Note that as ω∞ has support in [−1, 1] × S2 then
Ê∞ = Ě0 outside [−1, 1] × S2. In particular, |Ê∞|ǧ0 = 1 outside [−1, 1] × S2

because |Ě0|ǧ0 = 1.
Now, let φi be the sequence of conformal factors constructed in Sect. 4 out

of x̂i and the fixed ϵ̂. Using standard elliptic estimates and the barrier bounds
(30)–(31) one easily shows that the sequence φi has a subsequence (indexed
again by “i”) converging smoothly to a limit smooth conformal factor φ∞ > 0.
Namely,

lim
i↑∞

∥∥ϕ∗
n,i φi − φ∞

∥∥
Ck

ǧ0
([−n,n]×S2)

= 0, (39)

for any n ≥ 1 and k ≥ 1. Moreover, because of (35), (36) and (38) the limit
conformal factor φ∞ satisfies the limit L-equation

∆ǧ0φ∞ = 2|Ě0|2ǧ0
φ∞ − 2|Ê∞|2ǧ0

φ−3
∞ . (40)

The convergences (35), (36), (38) and (39) also show that the pointed sub-
sequence (ḡi = φ4

i g0; Ēi = Êi = φ−6Êi; x̂i × s0) converges smoothly to
(ḡ∞ := φ4

∞ǧ0; Ē∞ := φ−6
∞ Ê∞, 0 × s0).

It is an important fact that the limit data set (R×S2; ḡ∞; Ē∞) is never the
ERNT1 initial data. If this were the case then we would have |Ē∞|2ḡ∞ = 1 and
therefore |Ê∞|2ǧ0

φ−8
∞ = 1. Plugging this in (40) and recalling that |Ě0|ǧ0 = 1

we would obtain

∆ǧ0φ∞ = 2φ∞ − 2φ5
∞.

Then observe that as |Ê∞|ǧ0 = 1 outside [−1, 1] × S2 we would have φ∞ = 1
also outside [−1, 1] × S2. Then, as the constant function one is a solution of
(40) we must have φ∞ = 1 everywhere by the unique continuation principle.
Thus, it would be |Ê∞|ǧ0 = 1 everywhere, contradicting (37).

Observe that any non-contractible surface S embedded in (R × S2; ḡ∞)
must have ḡ∞-area greater or equal than 4π. To see this use Proposition
1 to have Aḡ∞(S) = lim Aḡi(ϕn,i(S)) ≥ 4π. Similarly, we have |QE(S)| =
lim |QE(ϕn,i(S))| = 1. We can now use this information together with Lemma
2 and the fact that the limits (ḡ∞; Ē∞) are not the ERNT1 initial data, to
conclude that for any non-contractible embedded S we have Aḡ∞(S) > 4π.
This will be crucially used in the following proposition.

Proposition 4. Let 0 < ϵ̂ < 1/16. Then there is x̂0 = x̂0(ϵ̂) such that for any
x̂ ≤ x̂0 the data set (ḡ, K̄; Ē, B̄) constructed in Sect. 4 out of ϵ̂ and x̂ possess
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an embedded minimal and stable sphere M separating the two ends. Because
K̄ = 0 such sphere is also a MOTS (to the past and to the future).

Proof. We will proceed by contradiction. Assume therefore that there is 0 <
ϵ̂ < 1/16 and a sequence x̂i → −∞ such that, if we denote by ((−∞, 0) ×
S2; ḡi; Ēi) the data sets constructed out of ϵ̂ and x̂i, then none of the manifolds
((−∞, 0)×S2; ḡi) possess a stable minimal sphere M separating the two ends.
We will see that this leads to a contradiction.

Firstly, as commented before, one can take a subsequence of the pointed
sequence ((−∞, 0) × S2; ḡi; Ēi; x̂i × s0) converging (in the pointed sense) to a
smooth data set ((−∞,∞) × S2; ḡ∞, Ē∞). Moreover, as was commented right
before the statement of the proposition, we know that for any embedded sphere
S isotopic to S0 := 0 × S2 we have Aḡ∞(S) > 4π.

Secondly, let ψδ(z) be the smooth real function of the one variable z ∈
[−1,∞] defined as

ψδ(z) =

{
1 + e1/z + 1/(z + 1 + δ) if z ∈ [−1, 0],
1 if z ∈ [0,∞)

With this function define the metric g̃i = [ψδ(x − x̂i)] ḡi on the manifold
[−1+ x̂i, 0)× S2 and set δ > 0 small enough that the boundary (−1+ x̂i)× S2

of [−1 + x̂i, 0) × S2 is strictly mean convex (in the direction of decreasing
x) for all i. Of course the pointed sequence ([−1 + x̂i, 0) × S2; g̃i; x̂i × s0)
converges to ([−1,∞) × S2; g̃∞) where g̃∞ = ψδ ḡ∞ and because ψδ ≥ 1 we
have Ag̃∞(S) ≥ Aḡ∞(S) > 4π for any embedded sphere isotopic to S0.

Thirdly, recall that ḡi = φ2
i g0 where φi is a solution to the L-equation

enjoying the upper and lower bounds φi,− ≤ φi ≤ φi,+ where φi,± are given by
(30)–(31) with x̂ = x̂i. In particular, the conformal factor φi restricted to the
spheres Sx̂i/2 := {x = x̂i/2} is bounded below by 1−4ϵ̂/ cosh(x̂i/2) and above
by 1 + 4ϵ̂/ cosh(x̂/2). This implies that Aḡi(Sx̂i/2) → 4π and therefore that
Ag̃i(Sx̂i/2) → 4π. Let S̃i ⊂ [−1+x̂i, 0)×S2 be the embedded sphere minimizing
the g̃i-area among all spheres embedded in [−1 + x̂i, 0) × S2 and isotopic to
S0. Such sphere always exists because ([−1 + x̂i, 0) × S2, g̃i) has strictly mean
convex boundary and is asymptotically flat [16]. Moreover, as Ag̃i(Sx̂i/2) → 4π
and as Ag̃i(S̃i) ≥ 4π for all i then we must have Ag̃i(S̃i) → 4π.

On the other hand, every surface S̃i must intersect [−1 + x̂i, x̂i] × S2,
which is the domain where g̃i differs from ḡi, otherwise S̃i would be ḡi-minimal
and stable which is against the assumption. Now, take another subsequence if
necessary in such a way that S̃i converges to a g̃∞-minimal and stable sphere
intersecting [−1, 0] × S2 (inside the limit space) and isotopic to S0 := 0 ×
S2. As discussed before we must have Ag̃∞(S̃∞) > 4π and at the same time
Ag̃∞(S̃∞) = lim Ag̃i(S̃i) = 4π which is a contradiction. !

7. Proof of the Main Result

We are ready to prove the main result of this article. For the convenience of
the reader we restate it below.
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Theorem 1. For any ε̄ > 0 and integer k ≥ 1 there is a smooth and maximal
electro-vacuum data set (Σ̄; ḡ, K̄; Ē, B̄), ε̄-close in Ck to the standard ERN
initial data and falling into it exponential along the cylindrical end, which
cannot decay, towards the future or the past, into any EKN solution.

The precise definition of decaying into a EKN that we adopt, and that we
provide below, is the laxest one can imagine. In very rough terms it says that,
as one moves conveniently to the future but remaining outside the future black
hole (if any), the space-time becomes “more and more similar” to a EKN. This
is quantified by demanding that the data sets induced on certain domains of a
sequence of Cauchy hypersurfaces, (the domains outside the black hole if any),
converges to the data set induced on a future Cauchy hypersurface of the EKN
in an appropriate norm.

To alleviate the statement of the definition, we introduce before some
preliminary terminology. Let (M;g) be a globally hyperbolic space-time. Then,

1. A sequence of Cauchy hypersurfaces Σi exhaust M to the future if (i)
D+(Σi′) ⊂ D+(Σi)◦ when i′ > i, and (ii)

⋂
D+(Σi) = ∅.

2. A space-like hypersurface C is a future Cauchy hypersurface if M\C has
two connected components one of which is D+(C)\C.

3. A sequence of open sets Vi of a future Cauchy surface C is an exhaustion
if (i) Vi ⊂ Vi′ when i′ ≥ i, and (ii)

⋃
Vi = C.

With this terminology at hand, we give now the definition we need. We com-
ment on it thereafter.

Definition 4. A globally hyperbolic electro-vacuum space-time (M,g;F)
decays (to the future) into an eKN space-time (Me;ge;Fe) iff

1. (M;g) is asymptotically flat at spatial and null infinity ([21], p. 276), and,
2. There are diffeomorphisms into the images

ϕi : Vi −→ I−(S+) ∩ Σi,

from the opens Vi of an exhaustion of a future Cauchy hypersurface Ce

of (Me;ge) into I−(S+) ∩ Σi, where the sequence Σi exhausts (M;g) to
the future, and such that for (Ui, Ue) equal either (ϕ∗

i gi, ge), (ϕ∗
i Ki,Ke),

(ϕ∗
i Ei, Ee) or (ϕ∗

i Bi, Be) we have

lim
i→∞

∥Ui − Ue∥C1
ge

(Vi) = 0. (41)

The hypersurface Ce is assumed spherically axisymmetric when
(Me;ge;Fe) is ERN, and axisymmetric when (Me;ge;Fe) is any other
EKN. Finally if (M,g;F) is axisymmetric then the Σi are also assumed
axisymmetric.

A few comments are in order. Firstly, item 1 in Definition 4 imposes a
basic global condition which allows us to speak of future null-infinity S+ and
therefore of black holes. Secondly, the use of the maps ϕi : Vi −→ I−(S+)∩Σi

in item 2 guarantees that the notion of “decaying into a EKN” deals only with
the strict exterior of the black hole and does not hypothesize about the nature
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of the event horizon as was discussed at length in the introduction. Thirdly,
the convergence in (41) is only in C1 which is very weak.

On these grounds it is hard to imagine a more adequate definition of
“decaying into a EKN” than this. In any case, this is the one we use in Theorem
1 that we now prove.

Proof of Theorem 1. Set ϵ̂ be small enough in such a way that the ε(ϵ̂, k)
provided by Proposition 3 is less or equal than ε̄. Let then x̂ be any number less
or equal than the x̂(ϵ̂) provided by Proposition 4 and let (ḡ, K̄ = 0; Ē, B̄ = 0)
be the axisymmetric and time symmetric data set constructed in Sect. 4 out of
ϵ̂ and x̂. By Proposition 3 such data set is ε̄-close in Ck to the standard ERN
initial data. Its total electromagnetic charges are QE = 1, QM = 0 and the
total angular momentum is J = 0 (see Sect. 2 (iii)). Moreover, the data set falls
off exponentially towards the background data set (g0,K0;E0, B0) along the
cylindrical end as explained at the end of Sect. 4. Also, by Proposition 4, such
data set possess a stable minimal surface M separating the two ends, which
is therefore a future and past MOTS. For this reason the following argument
applies equally to the future and to the past. Here we will argue only to the
future. The future globally hyperbolic development of the initial data will be
denoted by (M+;g).

Suppose now that the future evolution of the initial data decays into an
extreme EKN solution according to Definition 4. In this situation the EKN
limit must be necessarily ERN1 because the electromagnetic charges and the
angular momentum are everywhere conserved. Also, because of the presence of
the MOTS M acting as a barrier, the set I−(S+) ∩ Σ̄ lies in the region inside
Σ̄ enclosed by M and the asymptotically flat end. Note that I−(S+)∩ Σ̄ is the
exterior black hole region at the “instant” Σ̄.

Let Ce be the spherically symmetric future Cauchy surface in ERN1 and
let {Vi} be the exhaustion, as granted by Definition 4. Then observe that no
matter which is the Ce at hand, one can find a sequence of spheres Sj ⊂ Ce

with strictly positive outer null expansions θ+|Sj and whose areas tend to 4π
as j → ∞. One can take for instance any sequence of spheres of constant
coordinates r and t, “going towards” one of the ends of Ce (where the future
Cauchy horizon of ERN1 “is”). Hence, appealing now to (41) in Definition
4, one can consider a subsequence {Vij } of {Vi} such that Sj ⊂ Vij for all j
and such that the spheres ϕij (Sj) have strictly positive outer null expansion
θ+|ϕij (Sj) in (M+;g).

Let Σ∗
ij

be the closure of the connected component of Σij \ϕij (Sj) con-
taining the asymptotically flat end. Consider now the (non-necessarily smooth)
null boundary

N :=
[
∂
(
J−(Σ∗

ij
) ∩ M+

)]
\
(

Σij ∪ Σ̄
)

.

Then observe that every null generator of N ends at a point in ϕij (Sj) and as
ϕij (Sj) ⊂ I−(S+) observe that N ⊂ I−(S+). Also note that at any end point
of a null generator of N the expansion of the null congruence is positive because
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it is (proportional to) θ+|ϕij (Sj) which is positive. As by the Rauchadhury
equation the expansion of N is non-increasing along its null generators, we
deduce that it is also positive at every smooth point in N . In particular the area
of ϕij (Sj) is bigger than the area of the two-rectifiable set Hj := ∂(J−(Σ∗

ij
)∩Σ̄)

in the initial slice Σ̄, [7]. Hence lim sup Aḡ(Hj) ≤ 4π.
By the item 1 in Definition 4 the set J−(Σ∗

ij
) ∩ Σ̄ contains (obviously) a

large sphere over the asymptotically flat end of Σ̄ and its exterior region. For
this reason Hj is homologous to that sphere and therefore to M , [20]. Take
now another sphere M̃ far away along the cylindrical end of Σ̄ in such a way
that the region Σ̃ enclosed by it and the asymptotically flat end contains the
MOTS M . Then, as we did for instance in the proof of Proposition 4, deform
the metric ḡ around M̃ = ∂Σ̃ in Σ̃ to a metric g̃ by means of a conformal factor
greater or equal than one, in such a way that the outward mean curvature of
M̃ = ∂Σ̃ in (Σ̃, g̃) is strictly positive. The conformal factor is assumed to be
one on the region enclosed by M and the asymptotically flat end, therefore
ḡ = g̃ in there. Then, based on general grounds of geometric measure theory
[20], one can find a smooth g̃-area-minimizer among all the two-rectifiable sets
in Σ̃ homologous to M . As lim sup Ag̃(Hj) = lim sup Aḡ(Hj) ≤ 4π , we
conclude that the g̃-area of such minimizer (which is homologous to M and
non-empty) is less or equal than 4π. As g̃ ≥ ḡ we conclude that the ḡ-area of
the minimizer is less or equal than 4π contradicting Proposition 2. !
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