On the classification problem for Poisson Point Processes.

Alejandro Cholaquidis

CMAT-Facultad de Ciencias, UdelaR

Escuela CIMPA - La Habana

- Binary Classification
 - On the classification problem

- Classification of P.P.P.
 - Bayes rule
 - k-NN
 - Other distances for k-NN

- Binary Classification
 - On the classification problem

- Classification of P.P.P.
 - Bayes rule
 - k-NN
 - Other distances for k-NN

On the classification problem

Goal

From a training sample $\mathcal{D}_n = \{(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)\}$ i.i.d. of $(X, Y) \in \mathcal{F} \times \{0, 1\}$ we want a predictor $g : \mathcal{F} \to \{0, 1\}$, which *minimize* $\mathbb{P}(g(X) \neq Y)$.

Let us denote

- 1) $\eta(x) = \mathbb{E}(Y|X=x) = \mathbb{P}(Y=1|X=x)$ the regression function.
- 2) $g^*(x) = \mathbb{I}_{\{\eta(x) > 1/2\}}$ the Bayes rule.
- 3) $L^* = \mathbb{P}(g^*(X) \neq Y)$ the optimal Bayes risk.

If $\eta_n(x): \mathcal{E} \to [0,1]$ and $g_n(x) = \mathbb{I}_{\{\eta_n(x) > 1/2\}}$

$$0 \leq \mathbb{P}(g_n(X) \neq Y) - L^* \leq \mathbb{E}|\eta(X) - \eta_n(X)|^2.$$

The classical estimator of $\eta(x)$ is $\eta_n(X) = \sum_{i=1}^n W_{ni}(X)Y_i$. for some weights $W_{ni}(X) = W_{ni}(X, X_1, \dots, X_n)$.

k-NN in \mathbb{R}^4

For $W_{ni}(X) = \frac{1}{k} \mathbb{I}_{\{X_i \in k_n(X)\}}$, where $X_i \in k_n(X)$ if X_i is one of the k nearest neighbours of X, conditions 1 to 5 holds if $n \to \infty$ and $k_n/n \to 0$.

Motivation

type

- CRIMINAL DAMAGE
- NARCOTICS
- ROBBERY and ASSAULT

Motivation

Given,

- (S, ρ) a separable bounded metric space.
- ν a Borel measure.
- $\bullet S^{\infty} = \{x \subset S : \#x < \infty\}.$
- $\lambda: S \to \mathbb{R}^+$ integrable.
- \bullet $(\Omega, \mathcal{A}, \mathbb{P})$ a probability space.

 $X:\Omega\to S^\infty$ is a Poisson Point Process on S with intensity $\lambda,X\sim Poisson(S,\lambda)$, if

- $N_A: \Omega \to \{0, 1, \dots, \infty\}, N_A(\omega) = \#(X(\omega) \cap A)$ are random variables for all $A \in \mathcal{B}(S)$.
- given *n* disjoint Borel subsets A_1, \ldots, A_n of $S, N_{A_1}, \ldots, N_{A_n}$ are independent.
- N_A has Poisson distribution with mean $\mu(A)$, being

$$\mu(A) = \int_A \lambda(x) d\nu(x).$$

- On the classification problem
- Classification of P.P.P.
 - Bayes rule
 - k-NN
 - Other distances for k-NN

Radon Nikodym for P.P.P.

Theoren

Let $X_1 \sim Poisson(S, \lambda_1)$ and $X_2 \sim Poisson(S, \lambda_2)$ being (S, ρ) a non-empty, bounded metric space. such that $\mu_i(S) < \infty$, i = 1, 2. Suppose that $\lambda_1(\xi) > 0 \Rightarrow \lambda_2(\xi) > 0$. Then, $P_{X_1} \ll P_{X_2}$, with density

$$f(x) = \exp\left[\mu_2(S) - \mu_1(S)\right] \prod_{\xi \in x} \frac{\lambda_1(\xi)}{\lambda_2(\xi)},$$

with 0/0 = 0.

Corollary

If $X_2 \sim Poisson(S, 1)$, then, for all $X \sim Poisson(S, \lambda)$ we have $P_X \ll P_{X_2}$ and

$$f(x) = \exp \left[\nu(S) - \mu(S)\right] \prod_{\xi \in x} \lambda(\xi),$$

being $\mu(S) = \int_{S} \lambda d\nu$.

Bayes rule

$$\mathbb{P}(Y=1|X=x) = \frac{f_{X_1}(x)\mathbb{P}(Y=1)}{f_{X_1}(x)\mathbb{P}(Y=1) + f_{X_0}(x)\mathbb{P}(Y=0)},$$

then,

$$\mathbb{P}(Y=1|X=x) > \frac{1}{2} \quad \Leftrightarrow \quad \exp\left[\mu_0(S) - \mu_1(S)\right] \prod_{\xi \in x} \frac{\lambda_1(\xi)}{\lambda_0(\xi)} > \frac{(1-p)}{p},$$

where $p = \mathbb{P}(Y = 1)$.

For two homogeneous Poisson processes

$$\exp\left((\lambda_0 - \lambda_1)\nu(S)\right) \left(\frac{\lambda_1}{\lambda_0}\right)^n > \frac{1 - p}{p},\tag{1}$$

where n = #x.

Bayes rule: estimating the intensity

Given a realization $\{\xi_1, \dots, \xi_n\}$ of X, the intensity $\lambda(x)$ for $x \in S$ can be estimated by

$$\hat{\lambda}(x) = \frac{1}{K_{\sigma}(x)} \sum_{i=1}^{n} k \left(\frac{\rho(x, \xi_i)}{\sigma} \right) \qquad K_{\sigma}(x) = \int_{S} k \left(\frac{\rho(x, \xi)}{\sigma} \right) d\nu(\xi),$$

with $k: \mathbb{R}^d \to \mathbb{R}$ a symmetric kernel, $\sigma > 0$ a smoothing parameter.

If we have $\{X_1,\ldots,X_m\}$, where $X_j=\{\xi_1,\ldots,\xi_{n(j)}\}$ $j=1,\ldots,m$, let us define $k_{\sigma_m}(\cdot)=k(\cdot/\sigma_m)$,

$$\hat{\hat{\lambda}}_m(x) = \frac{1}{m} \sum_{j=1}^m \hat{\lambda}_j^m(x) \qquad \qquad \hat{\lambda}_j^m(x) = \frac{1}{K_{\sigma_m}(x)} \sum_{i=1}^{n(j)} k_{\sigma_m}(\rho(x, \xi_i)).$$

Theorem

If
$$\sigma_m \to 0$$
, we have that $\lim_{m \to \infty} \sup_{x \in S} |\hat{\lambda}_m(x) - \lambda(x)| = 0$ a.s.

- Binary Classification
 - On the classification problem

- Classification of P.P.P.
 - Bayes rule
 - k-NN
 - Other distances for k-NN

Hausdorff distance

Given two non-empty compact sets $A, C \subset S$,

$$d_H(A,C) = \max \left\{ \sup_{a \in A} d(a,C), \sup_{c \in C} d(c,A) \right\}, \tag{2}$$

where $d(a,C) = \inf\{\rho(a,c) : c \in C\}.$

Remark: (S^{∞}, d_H) is separable.

- - On the classification problem
- Classification of P.P.P.
 - Bayes rule
 - k-NN
 - Other distances for k-NN

Theorem, Consistency of k-NN

Let us consider

- $\bullet (X,Y) \in S^{\infty} \times \{0,1\}.$
- $X_1 \doteq X|Y = 1 \sim Poisson(\lambda_1), \quad X_0 \doteq X|Y = 0 \sim Poisson(\lambda_0).$
- λ_1 , and λ_0 continuous functions of ρ .
- ν does not have atoms (i.e. $\nu(\{z\}) = 0$ for all $z \in S$).

Then k - NN is consistent.

The model

We generate N = 200 data (N/2 for training), half of them (the 0-class) with Poisson distribution on $[0, 1]^2$ and intensity

$$\lambda_0(x,y) = c_0 \exp(-d_0((x-1/2)^2 + (y-1/2)^2)),$$

where we fixed $c_0 = 500$ and $d_0 = 20$.

$$\lambda_1((x,y),c_1,d_1,a) = c_1 \exp(-d_1((x-1/2-a_1)^2+(y-1/2-a_2)^2)).$$

Level sets of the estimation of the densities

Figure: In all cases $d_0 = 20$, $c_0 = 500$. **First row:** x = 0.03, x = 0.04, x = 0.05. $d_1 = 20$, $c_1 = 500$. **Second row:** x = 0, $d_1 = 20$, 30, 40, $c_1 = 600$. **Third row:** x = 0, $d_1 = 20$, 30, 40, $c_1 = 700$.