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On the classification problem

Goal:
From a training sample D, = {(X1, Y1), (X2, Y2), ..., (Xu, ¥u) } iid. of (X,Y) € F x {0,1}
we want a predictor g : F — {0, 1}, which minimize P(g(X) # Y).
Let us denote
1) n(x) =E(Y|X = x) = P(Y = 1|X = x) the regression function.
2) g*(x) = Lgp(x)>1/2) the Bayes rule.
3) L* = P(g*(X) # Y) the optimal Bayes risk.
If na(x) : £ — [0, 1] and gu(x) = Lin,)>1/23

0 < P(ga(X) #Y) — L* < E[n(X) — na(X)[*.

The classical estimator of 7(x) is 7, (X) = >_7_; W,i(X)Y;. for some weights
Wi (X) = Wai(X, X1, - .., Xn).

k-NN in R4

For W,;;(X) = %H{X,‘Ekn (x)}» where X; € ki (X) if X; is one of the k nearest neighbours of X,
conditions 1 to 5 holds if n — oo and k, /n — 0.
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Classification of PP.P.

Given,
@ (S, p) a separable bounded metric space.
@ v a Borel measure.
0 5 ={xCS:#x < oo}
@ \:S — RT integrable.
o (9, .A,P) aprobability space.

X : © — §°° is a Poisson Point Process on S with intensity X, X ~ Poisson(S, \), if
o Ny:Q—{0,1,...,00}, Na(w) = #(X(w) NA) are random variables for all A € B(S).
@ given n disjoint Borel subsets Ay, ..., A, of S, N4, , ..., Na, are independent.

@ N, has Poisson distribution with mean p(A), being

u(A) = /A A)dv ().



© Clas:

ification of P.P.P.
o Bayes rule




Theorem

Let Xy ~ Poisson(S, A1) and X, ~ Poisson(S, \y) being (S, p) a non-empty, bounded metric
space. such that j1;(S) < oo, i = 1,2. Suppose that A (§) > 0 = (&) > 0. Then,
Px, < Px,, with density

A1(6)
A (8)’

£ = exp [1a(8) = i (9)] TT

Eex

with 0/0 = 0.

Corollary
If X, ~ Poisson(S, 1), then, for all X ~ Poisson(S, \) we have Px < Px, and

1) = exp [v(8) = ()] [T 2®),

EEs

being u(S) = [ Mdv.



Bayes rule

fx, ®P(Y =1)
Sy )P(Y = 1) + fx, (x)P(Y = 0)

P(Y =1]X =x) =

b
then,

o e (s —m©)] [ > 2,
fex

P(Y = 1]X =x) >

N =

wherep =P(Y = 1).
For two homogeneous Poisson processes

exp (R0 — A)w(S)) (ﬁ) >1-r M

where n = #x.
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Bayes rule: estimating the intensity

Given a realization {&y, . .., &} of X, the intensity A(x) for x € S can be estimated by

p(x, &) _ p(x,€)
Z < > Ka(xw/s ( )d ©).

with k : RY — R a symmetric kernel, o > 0 a smoothing parameter.

If we have {Xi, ..., Xu}, where Xj = {&1,...,&,;}j = 1,...,m, letus define
koy (1) = k(-/om),

m )
2 1 s N -
Snlx) = 51_221: A () A7 () K% rome DL GEL)

Theorem

) |

Ifom — 0, we have that ~ lim sup [An(x) — A(x)| =0  a.s.
m— o0 .XES
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A suitable distance for k-NN

Hausdorff distance.

Given two non-empty compact sets A, C C S,
dir(A, €) = max { sup d(a, C), supd(c,A) }, @)
acA ceC

where d(a, C) = inf{p(a,c) : ¢ € C}.
Remark: (S°°, dy) is separable.
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Theorem, Consistency of k-NN

Let us consider
e (X,Y) € 5 x {0, 1}.
o X; =X|Y =1~ Poisson(\1), Xo = X|Y =0 ~ Poisson()g).
@ )\, and )\ continuous functions of p.
@ v does not have atoms (i.e. v({z}) = 0 forall z € S).
Then k — NN is consistent.



Simulations

Simultations

The model

We generate N = 200 data (N /2 for training), half of them (the O-class) with Poisson
distribution on [0, 1] and intensity

Xo(x,y) = coexp(—do((x — 1/2)* + (y — 1/2))),
where we fixed ¢y = 500 and dy = 20.

A ((x,y),c1,dy,a) = crexp(—dy ((x — 1/2 —a1)? + (y — 1/2 — ap)?)).
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Level sets of the estimation of the densities

(a1) (@2) (a3)

(b1) (b2) (b3)

0.00 0.2 0.50 0.7 1.60 0.00 0.2 050 o075 o0 0.00 0.25 o050 0.7 1.00

Figure: In all cases dy = 20, ¢cop = 500. First row: x = 0.03,x = 0.04, x = 0.05. d; = 20, ¢; = 500.
Second row: x = 0, d; = 20, 30, 40, ¢; = 600. Third row: x = 0, d; = 20, 30,40 ¢; = 700.



	Binary Classification
	On the classification problem

	Classification of P.P.P.
	Bayes rule
	k-NN
	Other distances for k-NN

	Simulations

