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Abstract

In this dissertation, we analyze two different approaches to the problem of solving
systems of polynomial equations, along with some geometric and probabilistic
tools needed for these approaches.

In the first part of this thesis, we study the average conditioning of a random
underdetermined polynomial system. We compare the expected values of the
moments of the condition number to those of random matrices. An expression for
these moments is obtained by analyzing the kernel-finding problem for random
matrices. Furthermore, we compute the second moment of the Frobenius condition
number.

In the second part of this dissertation, we shift our attention to the solution
sets of random polynomials arising from the polynomial eigenvalue problem for
random matrices. For these solution sets, we compute the expected logarithmic
energy. We generalize known results for the Shub-Smale polynomials and the
spherical ensemble. These two processes represent the two extremal cases of the
polynomial eigenvalue problem, and we prove that the logarithmic energy lies
between them. In particular, the roots of the Shub-Smale polynomials have the
lowest logarithmic energy within this family.



Resumen

En esta tesis analizamos dos enfoques diferentes para el problema de resolver
sistemas de ecuaciones polinomiales, ası́ como algunas herramientas geométricas
y probabilı́sticas necesarias para estos enfoques.

En la primera parte de este trabajo, estudiamos el condicionamiento promedio
de un sistema polinomial aleatorio indeterminado. Comparamos los valores espera-
dos de los momentos del número de condición con los correspondientes a matrices
aleatorias. Esta relación se obtiene mediante el análisis del problema de encontrar
el núcleo de matrices aleatorias. En particular, se calcula el segundo momento del
número de condición de Frobenius.

En la segunda parte de esta tesis, centramos nuestra atención en los conjuntos
de solucion de polinomios aleatorios que surgen al considerar el problema de auto-
valores polinomiales para matrices aleatorias. Para estos conjuntos de soluciones,
calculamos la energı́a logarı́tmica esperada. Generalizamos algunos resultados
conocidos para los polinomios de Shub-Smale y el spherical ensemble. Estos dos
procesos representan los casos extremos del problema de autovalores polinomiales,
y demostramos que la energı́a logarı́tmica se encuentra entre estos dos extremos.
En particular, las raı́ces de los polinomios de Shub-Smale son las que presentan la
menor energı́a logarı́tmica dentro de esta familia.



. . . a la memoria de Mónica Ferretti.
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Chapter 1

Introduction

The problem of solving systems of polynomial equations is a classical subject with
a rich and influential history. It played a pivotal role in the development of complex
numbers and group theory and served as a major motivation behind the emergence
of Algebraic Geometry and Abstract Algebra.

This thesis is closely connected to the study of polynomial systems. Specifically,
we explore two distinct aspects of this problem. First, we investigate the average
conditioning for random underdetermined polynomial systems. Later, we shift our
attention to the solution sets of random polynomials chosen according to a given
probability distribution.

The next two sections provide an overview of these two approaches and high-
light the main contributions of this dissertation.

1.1 Condition number
Solving systems of equations is a fundamental problem, which has been deeply
studied from different points of view, such as algebraic, geometric and numerical
approaches.

A classic numerical method for solving such systems, is the so-called Newton’s
iteration. Shub and Smale introduced Newton’s operator for underdetermined
systems of equations in their work [SS4] (cf Dégot [D3]). The primary objective
of their efforts was to develop and analyse effective algorithms for computing
approximations to complete intersection algebraic subvarieties of Cn.

The condition number associated with a numerical problem measures the
sensitivity of the considered problem to variations of the input (see Blum et al.
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[BCSS], Bürgisser-Cucker [BC]). The condition number was introduced by Turing
[T] and von Neuman-Goldstine [vNG], while studying the propagation of errors
for linear equation solving and matrix inversion.

We study here polynomial systems f : Cn → Cr with r ≤ n. When r = n,
if x ∈ Cn is a simple zero of f and ḟ is a first order variation of the system, the
corresponding first order variation ẋ of x is equal to ẋ = K( f ,x) ḟ =−D f (x)−1 ḟ (x),
where D f (x) is the derivative of f at x. The map K( f ,x) is linear and the condition
number µ( f ,x) of this problem is the operator map of this map

µ( f ,x) := max
ḟ ̸=0

∥D f (x)−1 ḟ (x)∥
∥ ḟ∥ .

Shub and Smale in their famous series ”Complexity of Bézout Theorem”, show
that the complexity of a certain continuation algorithm for solving the polynomial
system f (x) = 0 depends mainly on the condition number µ( f ,x). Thus, the
condition number appears as a crucial continuous invariant, related to f and x,
which measures the complexity of solving polynomial systems. Ever since then,
condition numbers have played a leading role in the study of both accuracy and
complexity of numerical algorithms.

As pointed out by Demmel [D4], computing the condition number of any
numerical problem is a time-consuming task that suffers from intrinsic stability
problems. For this reason, understanding the behaviour of the condition number in
such a way that we can rely on probabilistic arguments is a useful strategy.

Thus, in the first part of this thesis, we focus on understanding the moments of
the condition number for random underdetermined polynomial systems. Namely,
we compared said moments to the ones of the condition number for random
matrices. In order to be more precise in our statement we need to introduce some
preliminary notations.

1.1.1 Preliminaries
For every positive integer d ∈ N, letHn

d be the complex vector space of all homo-
geneous polynomials of degree d in (n+1)-complex variables with coefficients in
C.

We denote by a multi-index j := ( j0, · · · , jn) ∈ Zn+1, ji ≥ 0 for i = 0, · · · ,n,
and consider | j|= j0 + · · ·+ jn. Then, for x = (x0, · · · ,xn) ∈ Cn+1, we write

x j := x j0
0 · · ·x jn

n .
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We consider the Bombieri-Weyl Hermitian product inHn
d , defined as follows.

Let h,g ∈Hn
d , be two elements, h(x) = ∑

| j|=d
a jx j, g(x) = ∑

| j|=d
b jx j, we define

⟨h,g⟩d = ∑
| j|=l

a jb j

(
d
j

)−1

,

where
(

d
j

)
=

d!
j0! · · · jn!

(see Shub-Smale [SS1]).

For any list of positives degrees (d) := (d1, · · · ,dr), r ≤ n, let

Hr,n
(d) :=

r

∏
i=1
Hn

di

be the complex vector space of homogeneous polynomial systems h := (h1, · · · ,hr)
of respective degrees di.

We denote by Dr the Bézout number associated with the list (d), i.e.

Dr :=
r

∏
i=1

di,

when n = r this is the number of generic roots of the system.
The previously defined Hermitian product induces a Hermitian product inHr,n

(d)
as follows. For any two elements h = (h1, · · · ,hr), g = (g1, · · · ,gr) ∈ Hr,n

(d), we
define

⟨h,g⟩ :=
r

∑
i=1
⟨hi,gi⟩di.

The Hermitian product ⟨·, ·⟩ induces a Riemannian structure in the spaceHr,n
(d).

The space Cn+1 is equipped with the canonical Hermitian inner product ⟨·, ·⟩
which induces the usual Euclidean norm ∥ · ∥, and we denote by P(Cn+1) its
associated projective space. This is a smooth manifold which carries a natural
Riemannian metric, namely, the real part of the Fubini-Study metric on P(Cn+1)
given in the following way: for a non-zero x ∈ Cn+1,

⟨w,w′⟩x :=
⟨w,w′⟩
∥x∥2 ,

for all w, w′ in the Hermitian complement x⊥ of x. This induces the norm ∥ · ∥x in
TxP(Cn+1).

The spaceHr,n
(d)×P(Cn+1) is endowed with the Riemannian product structure

(see Blum et al. [BCSS]).
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1.1.2 Average Conditioning
The condition number associated to a computational problem measures the sen-
sitivity of the outputs of the considered problem, to variations of the input (see
Bürgisser-Cucker [BC]). In [D2] Dedieu defined the condition number of a poly-
nomial f : Cn→ C at a point x ∈ Cn, such that f (x) = 0 and D f (x) is surjective,
as

µ( f ,x) := ∥D f (x)†∥op,

where D f (x)† is the Moore-Penrose pseudo inverse of the linear map D f (x), i.e.
the derivative of f at x, and ∥D f (x)†∥op is the operator norm of D f (x)†.

Following this idea, and using the normalized condition number µnorm intro-
duced in Shub-Smale [SS1], Dégot [D3] suggested an extension of this condition
number for the undetermined case which was adjusted into a projective quantity by
Beltrán-Pardo in [BP1].

As done in [BS1], we will consider the Frobenius condition number, just by
considering the Frobenius norm instead of the operator one.

Given h ∈Hr,n
(d) and x ∈Cn+1 such that h(x) = 0 and Dh(x) has rank r, then the

Frobenius condition number of h at x is defined by

µ
r
F(h,x) := ∥h∥∥Dh(x)†

∆(d1/2
i ∥x∥di−1)∥F ,

where ∥ · ∥F is the Frobenius norm (i.e. trace(L∗L)1/2 where L∗ is the adjoint of L).
If the rank of Dh(x) is strictly smaller than r, we set µr

F(h,x) := ∞.
When r = n, we will write µF(h,x) instead.

Let Σ′ := {(h,x)∈Hr,n
(d)×Cn+1 : h(x) = 0; rank(Dh(x))< r} and Σ⊆Hr,n

(d) be
the projection of Σ′ onto the first coordinate, commonly referred as the discriminant
variety. Observe that for all h ∈Hr,n

(d) \Σ, thanks to the inverse image of a regular
value theorem, the zero set

Vh := {x ∈ P(Cn+1) : h(x) = 0},

is a complex smooth submanifold of P(Cn+1) of dimension n− r. Then it is
endowed with a complex Riemannian structure that induces a finite volume form.

Now, for h ∈ Hr,n
(d) \ Σ it makes sense to consider the 2-nd moment of the

Frobenius condition number of h, µ
r,2
F,Av(h), as the average of (µr

F(h,x))
2 over its

zero set Vh, i.e.

µ
r,2
F,Av(h) :=

1
vol(Vh)

∫
x∈Vh

µ
r
F(h,x)

2 dVh. (1.1)
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1.1.3 Main Contributions
We study the average conditioning for a random underdetermined polynomial
system. The expected value of the moments of the condition number are compared
to the moments of the condition number of random matrices. An expression for
these moments is given by studying the kernel finding problem for random matrices.
Furthermore, the second moment of the Frobenius condition number is computed.

The main contribution of the thesis in this direction gives a closed formula

for the expected value of
µ

r,2
F,Av(h)
∥h∥2 . To be accurate in this notion, we need to fix a

probability measure inHr,n
(d).

Consider the average with respect to the standard Gaussian distribution onHr,n
(d),

that is,

E
h∈Hr,n

(d)

(φ(h)) =
1

πN

∫
h∈Hr,n

(d)

φ(h)e−∥h∥
2
dh,

where N is the complex dimension of Hr,n
(d) and φ : Hr,n

(d) → R is a measurable
function.

Theorem (I). The expected value, with respect to the standard Gaussian distri-

bution, of the 2-nd moment of the relative Frobenius condition number
µ

r,2
F,Av(h)
∥h∥2

is

E
h∈Hr,n

(d)

(
µ

r,2
F,Av(h)

∥h∥2

)
=

r
n− r+1

.

As a matter of fact, we will be proving a more general result (see Chapter
4). That result can be extended to the case where we consider the operator norm.
Furthermore, after some computations (see Chapter 3), we get the closed expression
for the case of the 2-nd moment stated in Corollary 4.4.4. The proof of the general
result strongly relies on Theorem 4.4.6, which states that the moments of the
condition number for the polynomial case are essentially the moments of the
condition number of a random matrix.

Remark 1.1.1. Observe that by taking r = n in the previous statement, one recovers
the average of the 2-nd moment of the relative Frobenius condition number for the
determined case, namely

E
g∈Hn,n

(d)

(
µ2

F,Av(g)

∥g∥2

)
= n

10



(see [ABB+1, Theorem 2]).

This statement provides the expected value of the 2-nd moment of the relative
condition number for the underdetermined case in terms of the expected one in the
determined case. From a geometric perspective, these two cases exhibit notable
distinctions, and there is no inherent requirement for these expected values to be in
any kind of relation. It would be interesting to understand which are the reasons
behind this relation.

Remark 1.1.2. In [BP1, Theorem 1.4], an upper bound of the expected value of the
average conditioning is computed, while using our argument we get an equality.
Furthermore, using Cauchy-Schwartz inequality and Corollary 4.4.4, we get a
sharper bound.

1.2 Random points configurations on the sphere
The problem of finding configurations of points in the 2-dimensional sphere with
small logarithmic energy is a very challenging problem, with several applications.
It is one of the problems listed by Smale for the XXI Century [S], and there have
been several advances in different directions related to this problem.

The original motivation for this problem, according to [S], was the search for
well-conditioned homogeneous polynomials as in [SS3]. It is proved in [SS2] that
well-conditioned polynomials are highly probable. In [SS3] the problem was raised
as to how to write a deterministic algorithm which produces a polynomial g such
that all of its roots are well conditioned, this question was answered by Beltrán et
al. in [BEMOC]. It was also realized that a polynomial whose roots (seen in the
Riemann sphere) have low logarithmic energy is well conditioned. So one would
like to use this relation in the other sense, from a well-conditioned polynomial
construct a low logarithmic energy configuration on the sphere.

Given N points in R3, the logarithmic energy of the configuration is defined as

V (x1, . . . ,xN) =− ∑
1≤i< j≤N

ln∥xi− x j∥.

The problem of minimizing this energy in the unit sphere S2 is considered a
very hard optimization problem, also known as the Fekete problem. Not only are
the configurations of points that minimize the energy not completely understood
even for a small number of points (for instance, N = 7), but also the asymptotic
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value of the minimum is not known with enough precision. More precisely, let

VN = min
x1,...,xN∈S2

V (x1, . . . ,xN)

be the minimum of the energy in the sphere. The 7th Smale problem consists of
finding a configuration of points x1, . . . ,xN in the sphere, in polynomial time in
N, such that its logarithmic energy V (x1, . . . ,xN) is close enough to the minimum,
namely V (x1, . . . ,xN)−VN ≤ c lnN, for a universal constant c.

One of the major obstacles is that the value of VN itself is not known with
precision up to the lnN term, and therefore problem number 7 of Smale’s list is
still far from being solved.

Indeed, the value of VN is [BS2]

VN =
κ

2
N2− N lnN

4
+CN +o(N), (1.2)

where κ = 1
2 − ln2 and C is an unknown constant. As far as it is known, this

constant C is bounded (lower bound by [L, BL] and recently improved by [M1],
upper bound by [BHS, BS2])

−0.0284228 . . .≤C ≤ ln2+
1
4

ln
2
3
+

3
2

ln
√

π

Γ(1/3)
=−0.027802 . . . ,

and the upper bound is conjectured to be actually the value for C [BHS, BS2].
Despite the intrinsic difficulties of finding these optimal configurations of

points, or even the value of the minimal energy, there have been some very ex-
citing advances throughout the last decades. For instance, the diamond ensemble
proposed by Beltrán and Etayo [BE], which achieves configurations of points with
logarithmic energy very close to the conjectured minimum, and two other random
processes, which we describe in more detail in what follows.

The first one, proposed by Armentano, Beltrán, and Shub in [ABS], consists of
taking the roots of a random polynomial. Specifically, let

pN(z) =
N

∑
k=0

ak

(
N
k

)1/2

zk (1.3)

with ak i.i.d. complex standard Gaussian coefficients NC(0,1), i.e., each coeffi-
cient is α + iβ , with α,β real independent zero-mean and 1/2 variance Gaussian.
Now compute the roots of pN in C, and project them to S2 through the inverse
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stereographic projection. The authors prove that the expected logarithmic energy
of the resulting ensemble in S2 is

κ

2
N2− N lnN

4
− κ

2
N. (1.4)

Observe that the expression coincides up to the first two terms with (1.2), and the
constant for the linear term is −κ

2 ≈ 0.096 . . ..
More recently, in [MY] the authors prove a central limit theorem for the logarithmic
energy resulting from this random process, where they show that the fluctuations
are of order

√
N, and therefore a typical realization of this process will have energy

close to the expression in (1.4).
The second approach consists of taking the eigenvalues of a random matrix.

Specifically, let A and B be two random matrices with i.i.d. complex standard
Gaussian entries NC(0,1). Now compute the eigenvalues of the matrix AB−1,
and project them to S2 through the inverse stereographic projection. Alishahi and
Zamani [AZ] proved that the expected value of the logarithmic energy for this
configuration, so-called spherical ensemble, is

κ

2
N2− N lnN

4
+

(
ln2
2
− γ

4

)
N− 1

8
+O

(
1
N

)
, (1.5)

where γ = 0.57721 . . . is the Euler-Mascheroni constant. Observe that the first two
terms coincide with the known expression in (1.2), and the constant for the linear
term is

( ln2
2 −

γ

4

)
≈ 0.2022 . . ..

1.2.1 Main Contributions
We compute the expected logarithmic energy of solutions to the polynomial eigen-
value problem for random matrices. We generalize some known results for the
Shub-Smale polynomials, and the spherical ensemble. These two processes are the
two extremal particular cases of the polynomial eigenvalue problem, and we prove
that the logarithmic energy lies between these two cases. In particular, the roots of
the Shub-Smale polynomials are the ones with the lowest logarithmic energy of
the family.

Let us consider the following polynomial in C,

F(z) = det

(
d

∑
i=0

Gi

(
d
i

)1/2

zi

)
,
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where each Gi is an r× r random matrix with independent entries distributed
as NC(0,1). The problem of finding the zeros of this function is known as the
polynomial eigenvalue problem (PEVP). Observe that F(z) has, generically, N =
dr roots in C, which can be projected to the unit sphere through the inverse
stereographic projection as before. We will call this configuration of points the
PEVP-ensemble.

Now, for a given number of points N, one can choose different pairs of its
divisors (d,r) forming N = dr. Notably, for r = 1 and d = N, we obtain exactly
the random polynomials as in (1.3). In the other extreme, for r = N and d = 1,
we obtain F(z) = det(G0 +G1z), whose roots coincide with the eigenvalues of
−G0G−1

1 , and therefore we recover the spherical ensemble.
Some numerical experiments suggest that the expected logarithmic energy of

intermediate instances (meaning 1 < d < N) lies between the energy of the two
extremal cases and decreases linearly with d. The main result of this paper, which
we state below, gives a precise computation of the expected logarithmic energy for
the PEVP-ensemble. The numerical experiments, along with the analysis of this
dependence on d, are presented in Section 5.3.

Theorem (II). Let F(z) be the random complex polynomial of degree N defined as

F(z) = det

(
d

∑
i=0

Gi

(
d
i

)1/2

zi

)
,

where Gi are r× r matrices with i.i.d. entries following NC(0,1). Then, with the
definitions above, we have

E(V (x1, · · · ,xN)) =
κ

2
N2− N logd

4
− N

4

(
1+ψ(r+1)−ψ(2)−2ln2

)
where ψ(n) = Γ′(n)

Γ(n) is the digamma function, i.e., the logarithmic derivative of the
gamma function Γ(n).

(See Section 5.2.2 for the proof.)

Observe that this result generalizes the computed expected logarithmic energies
of the ensembles by [AZ] and [ABS]. Moreover, for r = N,d = 1, we get

E(V (x1, · · · ,xN)) =
κ

2
N2− Nψ(N +1)

4
+N

(
ln2
2
− γ

4

)
.
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This is actually the exact value for the expected value of the spherical ensemble,
which, to the best of our knowledge, had not been computed before. Using the
usual approximation of ψ(N +1), we obtain the same asymptotic expression as in
(1.5). A more detailed asymptotic analysis of this expression is given in Section
5.3.

Remark 1.2.1. Observe that in the matrix
d

∑
i=0

Gi

(
d
i

)1/2

zi, each entry is a Shub-

Smale polynomial, like the ones in (1.3). The distribution of the roots of these
polynomials, projected to S2, are invariant under the orthogonal group. Now, since
the determinant is a homogeneous polynomial in the entries of the matrix, the zeros
of the resulting process F(z) are also invariant under the same group of isometries
(Proposition 2.1.1 of [K3]). This invariance in S2 is a desirable property if we want
the resulting points of a process in which every configuration is possible to be well
distributed in the sphere.

Layout of this dissertation
In Chapter 2, we introduce the some geometric tools and explore its intricacies,
applications, and related concepts. The goal is to present various contexts in which
those tools can be applied, with a focus on those relevant to the development of
this dissertation.

In Chapter 3, we present the probabilistic tools that underpin this thesis and
carry out key computations essential to the main results, including the well-known
Kac-Rice formula for random fields.

In Chapter 4, we study the average condition number for a random underdeter-
mined polynomial system. The expected value of the moments of the condition
number are compared to the moments of the condition number of random matrices.
An expression for these moments is given by studying the kernel finding prob-
lem for random matrices. In particular, we compute the second moment of the
Frobenius condition number.

In Chapter 5, we compute the expected logarithmic energy of solutions to
the polynomial eigenvalue problem for random matrices, generalize some known
results for the Shub-Smale polynomials, and the spherical ensemble.
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Chapter 2

Applications of the coarea formula

In this chapter, we introduce the coarea formula and explore its intricacies, ap-
plications, and related concepts. The aim is to present various contexts in which
the coarea formula can be applied, tailored specifically to the development of this
thesis, as it is one of the main tools employed. We refer the reader to [BCSS] and
[N] for further background. Let us begin with the following toy example to build
some intuition.

Let B = BR3(0,1) ⊆ R3 be the unit ball. To compute its volume, one simply
integrates the constant function 1 over B and apply Fubini’s theorem. This can be
interpreted as follows.

Let ϕ : B⊆ R3→ R be the projection onto the first coordinate, i.e. ϕ(p) = xp.
Given t ∈ [−1,1], the fibre ϕ−1(t) is the set

ϕ
−1(t) =

{
(t,
√

1− t2u) : u ∈ BR2(0,1)
}
,

where we naturally identify R×R2 with R3. Let At denote its area, which is

At =
∫

p∈ϕ−1(t)
1, dϕ

−1(t)(p) = π(1− t2).

Therefore, the volume of B is given by

vol(B) =
∫

B
1dB =

∫ 1

−1
At dt =

∫ 1

−1

(∫
p∈ϕ−1(t)

1dϕ
−1(t)(p)

)
dt =

4
3

π.

Now, let us compute the area of S2.
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Analogously, define ϕ : S2 ⊂ R3→ R by ϕ(p) = xp, the projection onto the
first coordinate. Given t ∈ [−1,1], the fibre ϕ−1(t) is the set

ϕ
−1(t) =

{
(t,
√

1− t2u) : u ∈ S1
}

and let Lt denote its length, which is

Lt =
∫

p∈ϕ−1(t)
1dϕ

−1(t)(p) = 2π

√
1− t2.

Thus, naively integrating gives

area(S2) =
∫

S2
1dS2 =

∫ 1

−1
Lt dt = 4π

∫ 1

0

√
1− t2 dt = π

2.

This contradicts the well-known fact, proven by Archimedes in the 3-rd century
BC, that

area(S2) = 4π.

What went wrong?

At any point p ∈ S2 the gradient of the map ϕ satisfies

∥∇ϕ(p)∥=
√

1− t2,

where t = ϕ(p). This can be verified by choosing a suitable orthonormal base
of the tangent space TpS2. Recall that TpS2 can be identified with p⊥ ⊂ R3 and
p = (t,

√
1− t2u) for some u ∈ S1, so it is easy to check that{

(
√

1− t2,−tu),(0,u⊥)
}
⊆ TpS2

is an orthonormal basis. In this base the gradient is exactly

∇ϕ(p) =
(√

1− t2,0
)
,

so the norm is as claimed.
This shows that ϕ does not preserve distances, for example, take the unit vector

v1 = (
√

1− t2,−tu), then the derivative of ϕ in the direction of v1

Dϕ(p)v1 =
√

1− t2

17



has norm strictly less than 1 if t ̸= 0. Roughly speaking, the fibres ϕ−1(t) “tighten”
as t approaches ±1. To account for this contraction, we must divide by ∥∇ϕ(p)∥.
Doing so gives

vol(S2) =
∫ 1

−1

(∫
p∈ϕ−1(t)

1
∥∇ϕ(p)∥ dϕ

−1(t)(p)
)

dt = 4π,

as expected.

We now turn to the linear case, which is the cornerstone of the coarea formula.

Let A : U →V a surjective linear map from to vector spaces of dimension n+k
and n, respectively. Taking the singular value decomposition (SVD), there exists
orthonormal bases {u1, · · · ,un+k} of U and {v1, · · · ,vn} of V , such that

A(ui) =

{
λivi if 1≤ i≤ n
0 otherwise .

Recall that the λ ′i s are the singular values of A, i.e., the square roots of the eigen-
values of the positive symmetric operator AAT : V → V . The square root of its
determinant,

NJA :=
√

detAAT

is called the normal Jacobian of A. Analogously NJA = |detA|ker⊥|, where A|ker⊥

is the restriction of A to the orthogonal complement of its kernel.
Thanks to this, can reformulate the situation as follows.
Let X =(x1, · · · ,xn) and Y =(xn+1, · · · ,xn+k), and consider the map A :Rn+k→

Rn defined by
A(X ,Y ) = D(X),

where D is the diagonal matrix with non-zero entries λ1, · · · ,λn. Then, given a
measurable function φ : U → [0,∞), applying change of variables and Fubini’s
theorem we get∫

Rn+k
φ(X ,Y )d(X ,Y ) =

∫
Rn+k

φ

(
x1

λ1
, · · · , xn

λn
,xn+1, · · · ,xn+k

)
1

NJA
dX dY

=
∫
Rn

(∫
A−1(X)

φ(X ,Y )
NJA

dY
)

dX ,

which is the first formulation of the coarea formula.
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Remark 2.0.1. It is easy to check that the normal Jacobian of the map A : U →V
quantifies the volume distortion between the image of a unit ball in U and the unit
ball in V .

Going back to the first example, the normal Jacobian would we ∥∇ϕ(p)∥.

In the next section, we will present the coarea formula in the setting most
relevant to this thesis, along with some of its applications.

2.1 Coarea formula and applications to probability
theory

Firstly, let us formulate the coarea formula in a more general setting and derive
some known results for random variables.

Suppose ϕ : M→ N is a surjective map from a Riemannian manifold M to
a Riemannian manifold N, whose derivative Dϕ(x) : TxM→ Tϕ(x)N is surjective
for almost all x ∈M. The horizontal space Hx ⊂ TxM is defined as the orthogonal
complement of KerDϕ(x). The horizontal derivative of ϕ at x is the restriction of
Dϕ(x) to Hx. The normal Jacobian NJϕ(x) is the absolute value of the determinant
of the horizontal derivative, defined almost everywhere on M. Namely,

NJϕ(x) =
√

det(Dϕ(x)Dϕ(x)T ).

Theorem ([BCSS, p. 241] The coarea formula). Let M,N be Riemannian manifolds
of respective dimensions m ≥ n, and let ϕ : M→ N be a smooth surjective map,
whose derivative Dϕ(x) : TxM→ Tϕ(x)N is surjective for almost all x ∈M. Then,
for any positive measurable function, Φ : M→ [0,+∞) we have∫

x∈M
Φ(x)dM =

∫
y∈N

∫
x∈ϕ−1(y)

Φ(x)
NJϕ(x)

dϕ
−1(y)dN

and ∫
x∈M

NJϕ(x)Φ(x)dM =
∫

y∈N

∫
x∈ϕ−1(y)

Φ(x)dϕ
−1(y)dN,

where dϕ−1(y) is the induced volume measure in the manifold ϕ−1(y).

Remark 2.1.1. Let M = A+ iB ∈ Cn×n be a complex matrix with A, B real ma-

trices, and MR =

(
A −B
B A

)
in R2n×2n its real representation. Observe that MR
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is conjugate to
(

A− iB 0
0 A+ iB

)
via the matrix 1√

2

(
−iIn iIn

In In

)
, where In is the

identity matrix of size n. Therefore,

detMR = |detM|2.

Taking this into account, we can extend the coarea formula to the complex context.
In this case, the normal Jacobian would be

NJϕ(x) = |det(Dϕ(x)Dϕ(x)∗)|,

where Dϕ(x)∗ is the conjugate transpose of Dϕ(x) (see [HKPV, Lemma 3.1.2]).
Let us state it in the univariate case for simplicity, but the general case is

analogous.

Let f : C→ C be a smooth surjective map such that f ′(z) ̸= 0 for almost
all z ∈ C. Then, since the fibres are countable sets, for any positive measurable
function φ : C→ [0,+∞) we have∫

C
φ(z)dC=

∫
u∈C ∑

z∈ f−1(u)

φ(z)
| f ′(z)|2 dC (2.1)

and ∫
C

φ(z)| f ′(z)|2 dC=
∫

u∈C ∑
z∈ f−1(u)

φ(z)dC. (2.2)

We refer the reader to Chapter 3 for all needed background of probability.

Lemma 2.1.2. Let X(·) : CD → Cd be a random field with density ρX(·), and
ϕ : Cd → Cl be a smooth surjective map, whose derivative Dϕ(x) : Cd → Cl is
surjective for almost all x ∈ Cd . Then, the pointwise density of the random field
Y (·) : CD→ Cl defined by Y (·) = ϕ(X(·)) is

ρY (y) =
∫

x∈ϕ−1(y)
ρX(x)

1
NJϕ(x)

dϕ
−1(y).

Proof. It follows from the coarea formula, applied to the fact that

P(Y ∈ B) = P
(
X ∈ ϕ

−1(B)
)
=
∫

x∈ϕ−1(B)
ρX(x)dx,

for every Borel subset B⊂ Cl .
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Remark 2.1.3. Please note, that given a random field X(·) : CD→ Cd and a point
z ∈ CD, we get a random vector X(z) ∈ Cd . Thus, the previous lemma, and many
other lemmas for random fields, can be stated for random vectors.

First we will consider a useful example that will be revisited throughout this
chapter.

Let PN be the set of complex polynomials of degree less or equal to N ∈ N
equipped with the Bombieri-Weyl norm, that is the norm induced by the following
inner product.

For f ,g ∈ PN , f (z) =
N

∑
0

akzk, g(z) =
N

∑
0

bkzk we define

⟨ f ,g⟩N =
N

∑
k=0

akb̄k

(
N
k

)−1

. (2.3)

For any z ∈ C consider ϕz : PN → C the linear map defined by ϕz( f ) = f (z),
namely, the evaluation map. In the space PN , take the orthonormal basis of

monomials
{(

N
k

)
Zk
}

for 0≤ k ≤ N. A straightforward computation shows that

∇ϕz( f ) =

((
N
0

)1/2

z0,

(
N
1

)1/2

z, · · · ,
(

N
N

)1/2

zN

)
,

and thus, the normal Jacobian satisfies

NJϕz( f ) = ∥∇ϕz( f )∥2 =
(
1+ |z|2

)N
.

If we consider ak ∈ C i.i.d. standard Gaussian random variables for 0≤ k ≤ N
then the elliptic polynomials, also called Kostlan-Shub-Smale polynomials, are
defined by

f =
N

∑
k=0

(
N
k

)1/2

akZk. (2.4)

Taking into account the orthonormal basis defined before it is clear that an
elliptic polynomial can be seen as the random vector of coefficients X ∈ CN+1.

Thus, we obtain that the density of these random polynomials is ρX( f ) = e−∥ f∥2

πN+1 .
Now, given z ∈ C, consider the complex random variable f (z). Following

Lemma 2.1.2 we have that the density of f (z) for any w ∈ C satisfies,

ρ f (z)(w) =
1

πN+1(1+ |z|2)N

∫
ϕ−1(w)

e−∥ f∥2
dϕ
−1(w).
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Please observe that the fibre ϕ−1(w) is exactly the set { f ∈PN : f (z) = w}. Let

g1 ∈ PN be the following polynomial g1 =
N

∑
k=0

(
N
k

)
z̄kZk. It is clear that ⟨ f ,g1⟩N is

equal to f (z) for any f ∈ PN , in particular ∥g1∥2 = g1(z) = (1+ |z|2)N . Then, the
fibre ϕ−1(w) is in fact, the affine hyperplane given by { f ∈ PN : ⟨ f ,g1⟩N = w}.

Projection of the polynomial f orthogonally onto the hyperplane yields, a
decomposition f = h+ w

(1+|z|2)N g1 such that h(z) = 0 and ∥ f∥2 = ∥h∥2 + |w|2
(1+|z|2)N .

Furthermore, since the integral of e−∥h∥
2

over the hyperplane {h ∈ PN : h(z) = 0}
is πN , we have,

ρ f (z)(w) =
e
− |w|2

(1+|z|2)N

π(1+ |z|2)N . (2.5)

This means that f (z) is a centred Gaussian random variable with variance equal
to (1+ |z|2)N .

Remark 2.1.4. Since f (z) is a linear combination of Gaussian random variables,
the previous statement follows, in another way, with basic properties of random
variables.

Corollary 2.1.5. Let A ∈ Cr×r be a random matrix with i.i.d. centred Gaussian
entriesNC(0,σ2). Then, the density at 0 of the random variable det(A) is equal to

ρdet(A)(0) =
1

πσ2rΓ(r)
.

Proof. Using the previous lemma, it follows that

ρdet(A)(0) =
1

πr2
σ2r2

∫
Σ

e
−∥A∥2

σ2
1

NJdet(A)
dΣ

where Σ = {A ∈ Cr×r : det(A) = 0}.
By Jacobi’s formula, the derivative of the determinant at A in the direction Ȧ is

equal to tr(adj(A)Ȧ), where the adjugate matrix of A, adj(A), is the transpose of
the cofactor matrix.

After a routine computation, it follows that

NJdet(A) = ∥adj(A)∥2
F.
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Let Σ̂ be the set of rank r−1 matrices of Cr×r. It is clear that Σ̂ is the smooth
part of the algebraic variety Σ. It follows that integrating over Σ is the same as
integrating over Σ̂, then

ρdet(A)(0) =
1

πr2
σ2r2

∫
Σ̂

e
−∥A∥2

σ2
1

∥adj(A)∥2
F

dΣ̂. (2.6)

Given a matrix A ∈ Σ̂, the kernel is a one dimensional subspace of Cr given
by the orthogonal complement of the column space of A. Furthermore, given a
direction v ∈ P(Cr), it is easy to check that there exist a matrix A ∈ Σ̂ such that
the column space is orthogonal to v. Therefore, there is a well-defined smooth
surjective submersion

ϕ : Σ̂→ P(Cr), ϕ(A) = v, such that Av = 0, (2.7)

A straightforward computation, using the derivative of an implicit function,
shows that the differential map Dϕ(A) : TAΣ̂→ TvP(C) is defined by

Dϕ(A)Ȧ =−A†Ȧv,

where A† is the Moore-Penrose pseudo-inverse of A. The tangent space to Σ̂ at A,
can be parametrized as {ẊA+AẎ : Ẋ ,Ẏ ∈ Cr×r} (see Arnold et al. [AGZV]).

One can verify that the Hermitian complement to kerDϕ(A) is the image of
{(0, ẇv∗) : ẇ∗v = 0} by the map (Ẋ ,Ẏ ) 7→ ẊA+AẎ . So, applying Dϕ(A), we get
the following composition

{(0, ẇv∗) : ẇ∗v = 0} 7→ Aẇv∗ 7→ ẇ,

which is the identity.
Then, the normal Jacobian of the map ϕ is the inverse of the normal Jacobian

of the first map, which is in fact the square of the product of the non-zero singular
values of A. In conclusion, the normal Jacobian of ϕ satisfies,

NJϕ(A) =
1

∥adj(A)∥2
F

Applying the coarea formula to ϕ : Σ̂→ P(Cr), equation (2.6) can be rewritten
as

ρdet(A)(0) =
1

πr2
σ2r2

∫
P(Cr)

∫
Cr×(r−1)

e
−∥A∥2F

σ2 dAdP(Cr).
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Recall that the volume of P(Cr) is πr−1

Γ(r) . Noting that the inner integral does not
depend on v, it follows that

ρdet(A)(0) =
πr−1

πr2
σ2r2

Γ(r)

∫
A∈Cr×(r−1)

e
−∥A∥2F

σ2 dA.

Finally, applying Fubini’s theorem and taking polar coordinates, we get

ρdet(A)(0) =
1

πσ2rΓ(r)
.

Another great application of the coarea formula that follows Lemma 2.1.2 is
for computing the conditional expectation.

Suppose X ∈ Cd is a random vector with density pX(·), and we define the
random vector Y ∈ Cl as ϕ(X) for some measurable, differentiable map ϕ : Cd →
Cl .

Then the total expectation can be written using the coarea formula as,

E( f (X)) =
∫
Cd

f (x)pX(x)dx =
∫
Cl

(∫
x∈ϕ−1(y)

f (x)pX(x)
1

NJϕ(x)
dϕ
−1(y)

)
dy.

Hence, the conditional expectation of f (X) given Y = ϕ(X) = y is

E( f (X) | Y = y) =
1

pY (y)

∫
ϕ−1(y)

f (x)pX(x)
1

NJϕ(x)
dϕ
−1(y), (2.8)

where the density of Y is given by Lemma 2.1.2, namely

pY (y) =
∫

ϕ−1(y)
pX(x)

1
NJϕ(x)

dϕ
−1(y).

The following lemma has a similar flavour to the Gaussian regression (3.3), in
the sense that reformulates the conditional expectation.

Lemma 2.1.6. Let A ∈ Cr×r be a random matrix with i.i.d. centred Gaussian
entries NC(0,σ2). If φ : Cr×r → [0,+∞) is a measurable function such that
φ(MU) = φ(M) for every unitary matrix U, then

E
A∈Cr×r

(
φ(A) | det(A) = 0

)
= E

A∈Cr×r
(φ(A) | Ar = 0)

where Ar is the r-th column of A.
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Proof. By definition, the conditional expectation of φ(A) conditional to {det(A) =
0} is equal to the integral of φ(A) with respect to the conditional density, i.e., by
(2.8)

E(φ(A) | det(A) = 0) =
1

ρdet(A)(0)

∫
Σ

φ(A)
NJdet(A)

e
−∥A∥2

σ2

πr2
σ2r2 dΣ.

Since ρdet(A)(0) =
1

πσ2rΓ(r) , and φ(AU) = φ(A) for every unitary matrix U , apply-
ing the coarea formula to the same map ϕ , defined in (2.7), as in the previous
corollary, we get

E(φ(A) | det(A) = 0) =
∫
Cr×(r−1)

φ(A)
e
−∥A∥2

σ2

πr(r−1)σ2r(r−1)
dA = E(φ(A) | Ar = 0).

2.2 Double-fibration technique, solution varieties and
volumes

Another important application of the coarea formula is the well-known double-
fibration technique, which proceeds as follows.

Consider a double-fibration setting, where V is a subvariety of the product
M×N and consider both projections π1 : V →M and π2 : V → N,

V

π1





π2

��
M N

In order to integrate some real-valued function over M whose value at some
point x is an average over the fibre Vx, we lift it to V and then pushforward to N
using the projections. The original expected value over M is then written as an
integral over N which involves the quotient of normal Jacobians of the projections
π1 and π2. More precisely,∫

M

∫
Vx

φ(x,y)dVx dM =
∫

N

(∫
Vy

φ(x,y)
NJπ1(x,y)
NJπ2(x,y)

dVy

)
dN, (2.9)
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where the quotient of the normal Jacobians satisfies

NJπ1(a,x)
NJπ2(a,x)

=
∣∣∣det

(
Dπ2(a,x)Dπ1(a,x)†

)∣∣∣2
Furthermore, if there exist a local map G : Ua→Vx from a neighbourhood of

a ∈M to a neighbourhood of x ∈ N then, the quotient of the normal Jacobians is
given by

NJπ1(a,x)
NJπ2(a,x)

= |detDG(a)DG(a)∗|−1,

where DG(a)∗ is the transpose conjugate of the differential DG(a) of the map G at
a (see Blum et al. [BCSS, Section 13.2], Dedieu [D1], also Remark 2.0.1).

In many examples, one has that V is given by the zero set of a function on M
or as an incidence variety. That is why, we call V the solution variety. Let us see
some examples.

2.2.1 Counting Roots of Elliptic Polynomials
In this subsection we will consider the roots of complex polynomials. This can be
extended to polynomial systems, but for simplicity and as a didactic approach we
do it for the univariate case (see Chapter 4).

Let PN be the set of complex polynomials of degree less or equal to N ∈ N
equipped with the Bombieri-Weyl norm.

Considering the evaluation map ev : PN×C→ C given by ev( f ,z) = f (z) one
can see the pairs of polynomial and roots as the double-fibration setting where
V = {( f ,z) ∈ PN×C : f (z) = 0},

V

π1





π2

��
PN // C

Let us compute the quotient of normal Jacobians.
Please observe that thanks to the Implicit Function Theorem, one gets, when

f ′(z) ̸= 0,
f ′(z)ż+ ḟ (z) = 0,
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which means that ż = − ḟ (z)
f ′(z) .

In turn, we get that
NJπ1( f ,z)
NJπ2( f ,z)

=
| f ′(z)|2

(1+ |z|2)N . (2.10)

To compute the average number of roots of random elliptic polynomials one
would compute the following

E

(
∑

x: f (x)=0
1

)
=
∫
C

∫
Vz

| f ′(z)|2e∥ f∥2

πN+1(1+ |z|2)N dVz dz

=
∫
C

NπN(1+ |z|2)N−2

πN+1(1+ |z|2)N

∫
∞

0
t3e−t2

dt dz

=
N
π

∫
C

1
(1+ |z|2)2 dz

= N,

where the second equality follows [ABS, Proposition 3] and the last arises from
taking polar coordinates.

Remark 2.2.1. The previous computation is obvious using the Fundamental theorem
of algebra, from where we know that ∑

x: f (x)=0
1 = N a.s.

Please observe that, by (2.8), the inner integral in the first step can be seen as

∫
Vz

| f ′(z)|2e∥ f∥2

πN+1(1+ |z|2)N dVz = E
(
| f ′(z)|2 | f (z) = 0

)
ρ f (z)(0).

The right-hand is easy to compute. Using Gaussian regression 3.3 [W, Proposi-
tion 1], one has that the conditional expectation is equal to N(1+ |z|2)N−2 while
following (2.5), ρ f (z) =

1
π(1+|z|2)N . This yield,

E
(
| f ′(z)|2

∣∣ f (z) = 0
)

ρ f (z)(0) =
N

π(1+ |z|2)2 . (2.11)

After taking polar coordinates we get,

E

(
∑

x: f (x)=0
1

)
=
∫
C

N
π(1+ |z|2)2 dz = N.
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2.2.2 The linear solution variety
In this section we consider the problem of solving linear systems, in particular we
prove the generalization, to the underdetermined case, of the Proposition 6.6 of
[ABB+2]. This example is going to be used in Section 4.4.

Given v ∈ Cn+1 such that Mv = 0, then for any λ ∈ C we have that w = λv
also satisfies the equation Mw = 0. Therefore, the natural space for studying the
solutions of this equation is the set of direction, or the set of lines, in Cn+1, namely
the projective space P(Cn+1).

Consider

V lin = {(M,v) ∈ Cr×(n+1)×P(Cn+1) : Mv = 0}.

The linear solution variety V lin, for the underdetermined case, is a (r+ 1)n-
dimensional smooth submanifold of Cr×(n+1)×P(Cn+1), and it inherits the Rie-
mannian structure of the ambient space.

The linear solution variety is equipped with the two canonical projections
π lin

1 : V lin→ Cr×(n+1) and π lin
2 : V lin→ P(Cn+1).

For M ∈ Cr×(n+1), (π lin
1 )−1(M) is a copy of the projective linear subspace

corresponding to the kernel of M in P(Cn+1), and for v ∈ P(Cn+1), (π lin
2 )−1(v) is

a copy of the linear subspace of Cr×(n+1) consisting of the matrices A ∈ Cr×(n+1)

such that Av = 0. Also, the set of critical points Σ′ is the set of pairs (M,v) ∈ V lin

such that rank(M)< r (see Blum et al. [BCSS, Section 13.2]).
In this case the tangent space to V lin at (M,v) is the set of pairs (Ṁ, v̇) in

Cr×(n+1)×Cn+1 satisfying the following linear equations

Ṁv+Mv̇ = 0, v∗v̇ = 0.

Then, if (M,v) /∈ Σ′, for any v̇ ∈ KerM⊥, since M†M = id|KerM⊥ , we have

Mv̇ =−Ṁv

M†Mv̇ =−M†Ṁv

v̇ =−M†Ṁv.

It is clear then, that we have the following decomposition in orthogonal sub-
spaces,

T(M,v)V lin = {(0, v̇) : v̇ ∈ KerM}⊕{(Ṁ, v̇) : v̇ = ϕ(Ṁ)}
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where ϕ(Ṁ) =−M†Ṁ. A routine computation shows that, if ∥v∥= 1, then ϕϕ∗ is
equal to M†(M†)∗. Writing down the singular value decomposition of M, it follows
that det(ϕϕ∗) = det(MM∗)−1.

Then,
NJ

π lin
1
(M,v)

NJ
π lin

2
(M,v)

= |detMM∗|.

Proposition 2.2.2. Let φ : Cr×(n+1)→ [0,∞) be a measurable unitary invariant
function in the sense that φ(MU∗) = φ(M) for any unitary matrix U ∈ U(n+1).
Then,

E
M∈Cr×(n+1)

(φ(M)) =
Γ(n− r+1)

Γ(n+1)
E

A∈Cr×n
(φ((0|A)) · |detAA∗|),

where (0|A) is the matrix whose first column is all 0’s and the following columns
are the same as A.

Proof. Let χ(M,v) = φ(M)e−∥M∥
2
F . Then, applying the double-fibration technique

we get that ∫
M∈Cr×(n+1)

∫
v∈P(KerM)

χ(M,v)dP(KerM)dCr×(n+1)

is equal to ∫
v∈P(Cn+1)

∫
M:Mv=0

χ(M,v) · |detMM∗|dM dP(Cn+1).

Now, since χ does not depend on v, and P(KerM) is a copy of P(Cn−r+1), we
have that the first integral is equal to

πn−r

Γ(n− r+1)

∫
M∈Cr×(n+1)

φ(M)e−∥M∥
2
F dM.

Also, by parametrizing {M : Mv = 0} by {(0|A)U∗v : A ∈ Cr×n}, where Uv is
any matrix in U(n+1) such that Uve1 = v, and since χ(M,v) · |detMM∗| is equal
to χ(MU∗,Uv) · |detMU∗UM∗| for all U ∈ U(n+1) by hypothesis, we have that
the second integral is equal to

πn

Γ(n+1)

∫
A∈Cr×n

φ(0|A) · |detAA∗|e−∥A∥2
F dM.
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In conclusion, dividing by πrn, we get

1
Γ(n− r+1)

E
M∈Cr×(n+1)

(φ(M)) =
1

Γ(n+1)
E

A∈Cr×n
(φ((0|A)) · |detAA∗|)

2.2.3 The solution variety for the finding kernel problem
It will be useful for computations done in Section 4.4 to consider a scheme similar
to that of the previous subsection for the case of finding kernels of rectangular
matrices.

We denote by G(k, l) the Grassmannian of k-planes in Cl , i.e. the set of k-
dimensional linear subspace of Cl . It can be seen that G(k, l) is a projective variety

of dimension k(l− k) and degree Γ(k(k− l)+1)
k

∏
i=1

Γ(i)
Γ(k+ i)

, so its volume with

regard to the usual Riemannian metric, satisfy

vol(G(k, l)) = π
k(l−k)

k

∏
i=1

Γ(i)
Γ(k+ i)

(2.12)

(see Harris [H], Mumford [M2]).

Now, consider

Vker = {(M,V ) ∈ Cr×n×G(n− r,n) : MV = 0}
where G(n− r,n) is the Grassmannian of (n− r)-planes in Cn.

The linear kernel variety Vker is an rn-dimensional smooth submanifold of
Cr×n×G(n− r,n), and it inherits the Riemannian structure of the ambient space.

The linear kernel variety is equipped with the two canonical projections πker
1

and πker
2 .

In this case the tangent space to Vker at (M,V ) is the set of pairs (Ṁ,V̇ ) in
Cr×n×Cn×(n−r) satisfying the following linear equations

ṀV +MV̇ = 0, V ∗V̇ = 0.

Then, if (M,V ) /∈ Σ′, for any V̇ such that V ∗V̇ , we have

MV̇ =−ṀV

M†MV̇ =−M†ṀV

V̇ =−M†ṀV.
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It is clear then, that the tangent space at (M,V ) is the set of pairs (Ṁ,V̇ )
such that V̇ = Φ(Ṁ), where Φ(Ṁ) =−M†ṀV . A routine computation shows that
det(ΦΦ∗) = |detMM∗|n−r.

It follows that,
NJ

πker
1
(M,V )

NJ
πker

1
(M,V )

= |detMM∗|n−r.

Applying the double-fibration technique and (2.12) we get the following.

Proposition 2.2.3. Let φ : Vker→ [0,∞) be a measurable unitarily invariant func-
tion in the sense that φ(M,V ) = φ(MU∗,UV ) for any unitary matrix U ∈ U(n).
Then,

E
M∈Cr×n

(φ(M,KerM)) =
n−r

∏
i=1

Γ(i)
Γ(r+ i)

E
B∈Cr×r

(
φ((0|B),Vn−r) · |detB|2(n−r)

)
where Vn−r is the subspace generated by the first n− r vectors in the canonical
base.

Remark 2.2.4. Observe that the previous proposition is in fact a generalization in
another sense than Proposition 2.2.2 of the same result. It is clear from the fact that
if r = n−1, the previous proposition is exactly Proposition 6.6 of [ABB+2].
Remark 2.2.5. Observe that the previous proposition can be proved by applying
Proposition 2.2.2 successively n− r times.

2.2.4 Solutions to the Polynomial Eigenvalue Problem
In this subsection, we lay the foundations for the geometric framework required in
Chapter 5.

Let d ∈ N and Ak ∈ Cr×r be random matrices with i.i.d. standard Gaussian
entries for 0≤ k ≤ d.

We consider the solutions of the Polynomial Eigenvalue Problem for the matri-
ces {Ak}, i.e. the zero set of the determinant of the polynomial matrix

F(z) = det

(
d

∑
k=0

(
d
k

)1/2

zkAk

)
. (2.13)

Denote by Mr(Pd) the set of r× r matrices of polynomials of degree less
than d. One can consider F(z) = det(A(z)) where A ∈Mr(Pd) has i.i.d. random
elliptic polynomial entries.
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Consider the solution variety V = {(A,z) ∈Mr(Pd)×C : F(z) = 0} and its
two projections

V

π1

��

π2

��
Mr(Pd) // C

.

Please observe that the implicit function theorem defines a local map, G :
U(A,z)→ C, around a well suited pair (A,z). Also, the same result gives an expres-
sion of its differential, namely, if one differentiate the condition det(A(z)) = 0 we
get

tr(adj(A(z))A′(z))ż+ tr(adj(A(z))Ȧ(z)) = 0,

implying

DG(A)Ȧ =− tr(adj(A(z))Ȧ(z))
tr(adj(A(z))A′(z))

.

Considering the orthogonal basis
{(d

k

)1/2
ZkEi j

}
of monomial matrices, where

the matrices Ei j are the elemental matrices with just a one in the i j entry, the
Jacobian matrix is

DG(A) =− 1
F ′(z)

((
d
k

)1/2

zkadj(A(z))ij

)
,

where F ′(z) = tr(adj(A(z))A′(z)) is the derivative of F(z) = det(A(z)) as a func-
tion from C to C.

Then, the quotient of normal Jacobians satisfies,

NJπ2(A,z)
NJπ1(A,z)

= |det(DG(A)DG(A)∗)|−1 =
|F ′(z)|2

(1+ |z|2)d∥adj(A(z))∥2
F
. (2.14)

Let φ : V → [0,∞) be a measurable function, applying the double-fibration
technique, we get

∫
M

N

∑
i=1

φ(A,zi)dMr(Pd) =
∫
C

∫
Vz

φ(A,z)
|F ′(z)|2

(1+ |z|2)d∥adj(A(z))∥2
F

dVz dz.

(2.15)
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If one takes a probability distribution on M(Pd) with density ρ , applying
Lemma 2.1.2 and (2.8) to equation (2.15), one gets

E

(
N

∑
i=1

φ(A,zi)

)
=
∫

C
E(φ(A,z) | det(A(z)) = 0)ρdet(A(z))(0)dz. (2.16)

Remark 2.2.6. This equation is the so-called weighted Kac-Rice formula for the
PEVP (see Section 3.3.2).

2.3 Point processes
In this section we revisit some of the previous examples and present new ones, but
in the context of Point processes. These examples are going to be used in Chapter 5.
We refer the reader to [HKPV] for all the needed technicalities in this marvellous
subject. The idea behind this section is to illustrate how the double-fibration
technique can be used in this setting.

A point process is a random variable taking values in the space of discrete
subsets of a metric space. Many physical phenomena can be modelled by random
discrete sets. For example, the arrival times of people in a queue, the arrangement
of stars in a galaxy, energy levels of heavy nuclei of atoms etc. The single most
important such process, known as the Poisson process has been widely studied
and applied. The Poisson process is characterized by independence of the process
when restricted to disjoint subsets of the underlying space. This assumption of
independence is acceptable in some examples, but naturally, not all. If one looks
at the distribution of like-charge particles confined by an external field, knowing
that a particular location holds a particle makes it unlikely for there to be any other
close to it.

Given a point process X , the joint intensities of the point process with respect
to the measure µ in the underlying metric space Λ are functions (if any exist)
ρk : Λk → [0,∞) for k ≥ 1, such that for any non-negative measurable function
f : Λk→ [0,∞),

E
(
∑ f (x1, · · · ,xk)

)
=
∫

Λk
f (x1, · · · ,xk)ρk(x1, · · · ,xk)dµ(x1) · · · dµ(xk), (2.17)

where the sum is taken over all distinct k-tuples of point in the process X .
So the question that remains is, how can we find these intensity functions?
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A particular case of point processes, are the so-called Determinantal Point
Processes (DPP’s) where one has a Hermitian, positive semidefinite kernel K :
Λ×Λ→ R such that,

ρk(x1, · · · ,xk) = det
(
[K(xi,x j)]

k
i, j=1

)
.

In general is very difficult to prove that a point process is determinantal, and
there are cases where it can be proved that it is not determinantal, so what can one
do in such cases?

This is where the double-fibration technique comes to play, let us see it in the
following section.

Elliptic Polynomials
Let ak ∈ C be i.i.d standard Gaussian random variables. Then, the elliptic polyno-
mials, also called Kostlan-Shub-Smale polynomials, are defined by

f (z) =
N

∑
k=0

(
N
k

)1/2

akzk.

We consider the point process on S2 given by the inverse stereographic projec-
tion of the zero set of elliptic polynomials.

Now, let us compute its first and second intensity.
Consider the solution variety V = {( f ,z) ∈ PN ×C : f (z) = 0} and its two

projections
V

π1





π2

��
PN // C

.

Following (2.10), the quotient of normal Jacobians is
NJπ1( f ,z)
NJπ2( f ,z) =

| f ′(z)|2

(1+|z|2)N .

So, for any measurable function φ : C→ [0,+∞) applying the double-fibration
technique (2.9) one has that∫

PN
∑

{z: f (z)=0}
φ(z)

e−∥ f∥2

πN+1 dPN =
∫
C

φ(z)
∫
Vz

| f ′(z)|2e−∥ f∥2

πN+1 (1+ |z|2)N dVz,
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meaning,

ρ1(z) =
∫
Vz

| f ′(z)|2e−∥ f∥2

πN+1 (1+ |z|2)N dVz =
N

π (1+ |z|2)2 . (2.18)

Please observe that reorganizing the last equality and following (2.11)

ρ1(z) = E(| f ′(z)|2| f (z) = 0)ρ f (z)(0) =
N

π (1+ |z|2)2 .

For the second intensity, one can work in an analogous manner, but considering
the solution variety V = {( f ,(z,w)) ∈ PN×C2 : f (z) = 0 = f (w)}.

The quotient of normal Jacobians in this case satisfies

NJπ2( f ,(z,w))
NJπ1( f ,(z,w))

=
| f ′(z)|2| f ′(w)|2

(1+ |z|2)N
(1+ |w|2)N

(1−|ρ(z,w)|2N)

where ρ(z,w) := 1+zw̄

(1+|z|2)1/2
(1+|w|2)1/2 which its module is in fact, the cosine of the

angle between the two roots z,w embedded in R3.
So, the second intensity function for the zero set of elliptic polynomials can be

computed by

ρ2(z,w) =
∫
V(z,w)

| f ′(z)|2| f ′(w)|2e−∥ f∥2

πN+1 (1+ |z|2)N
(1+ |w|2)N

(1−|ρ(z,w)|2N)
dV(z,w)

Or in an equivalent way, using (2.8),

ρ2(z,w) = E(| f ′(z)|2| f ′(w)|2
∣∣ f (z) = f (w) = 0)ρ( f (z), f (w))(0,0)

Once again, doing a Gaussian regression between the random vectors Y =(
f ′(z)
f ′(w)

)
and X =

(
f (z)
f (w)

)
, one gets

E(| f ′(z)|2| f ′(w)|2
∣∣ f (z) = f (w) = 0) = E(|η1|2|η2|2),

for some η1,η2 Gaussian random vectors independent of f (z) and f (w). The last
expectation is in turn equal to the permanent per((ηη∗)) using Wick’s formula
(see (3.4)). Recall that the permanent of a matrix is analogous to the determinant,
but without taking into account the signature of the permutation.
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Then, it follows

ρ2(z,w) =
per(C−BA−1B∗)

π2(1+ |z|2)N(1+ |w|2)N(1−|ρ(z,w)2N |) , (2.19)

where A = E(XX∗), B = E(XY ∗) and C = E(YY ∗). If one would like to compute
the k-th intensity one would do so in an analogous manner (see [HKPV][Corollary
3.4.2]).

Generalized Eigenvalue Problem (Spherical ensemble)
Let A,B ∈ CN×N be two random matrices with i.i.d. standard Gaussian entries.

We consider the point process on S2 given by the inverse stereographic projec-
tion of the solutions of the Generalized Eigenvalue Problem for the matrices A,B,
i.e. the zero set of the polynomial det(A+ zB).

It was proved by Krishnapur in [K3] that this point process on the complex
plane is a DPP with kernel

K(z,w) =
N
π

(1+ zw̄)N−1

(1+ |z|2)N+1
2 (1+ |w|2)N+1

2
,

with respect to the Lebesgue measure in C.
This gives rise to the following first and second order intensities,

ρ1(z) = K(z,z) =
N
π

1
(1+ |z|2)2 , (2.20)

and

ρ2(z,w) = det
(

K(z,z) K(z,w)
K(w,z) K(w,w)

)
=

N2

π2

(
1−|ρ(z,w)|2(N−1)

)
(1+ |z|2)2(1+ |w|2)2 . (2.21)

Polynomial Eigenvalue Problem (PEVP ensemble)
Let d ∈ N and Ak ∈ Cr×r be random matrices with i.i.d. standard Gaussian entries
for 0≤ k ≤ d.
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We consider the point process on S2 given by the inverse stereographic projec-
tion of the solutions of the Polynomial Eigenvalue Problem for the matrices {Ak},
i.e. the zero set of the polynomial

F(z) = det

(
d

∑
k=0

(
d
k

)1/2

zkAk

)
.

It is easy to see that when d = 1 one recovers the Spherical Ensemble and when
r = 1 one recovers the zero set of Elliptic Polynomials.

Denote by Mr(Pd) the set of r× r matrices of polynomials of degree less
than d. One can consider F(z) = det(A(z)) where A ∈Mr(Pd) has i.i.d. random
elliptic polynomial entries.

Consider the first solution variety V = {(A,z) ∈Mr(Pd)×C : F(z) = 0} and
its two projections

V

π1

��

π2

��
Mr(Pd) // C

.

As seen in (2.14), one has that the quotient of normal Jacobians is
NJπ2(A,z)
NJπ1(A,z)

=

|F ′(z)|2
(1+|z|2)d∥adj(A(z))∥2

F
.

Then, proceeding in the same way as before,

ρ1(z) =
∫
Vz

|F ′(z)|2e−∥A∥
2

πr2(d+1)(1+ |z|2)d∥adj(A(z))∥2
F

dVz

= E
(
| tr(adj(A(z))A′(z))|2

∣∣det(A(z)) = 0
)

ρdet(A(z))(0)

and after some manipulations we get

ρ1(z) =
N

π(1+ |z|2)2 . (2.22)

Remark 2.3.1. Please observe that in the three cases, the first intensities (2.18),
(2.20) and (2.22) are the same. This can be seen because all these point processes
are invariant under the same group of transformations, meaning that one can not
distinguish them simply by their point distributions.
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Chapter 3

Computations for complex random
Gaussian Fields

In this chapter, we introduce the probabilistic tools that underpin the thesis and
carry out key computations essential for the developments of the main results. We
refer the reader to [AW], [AT] and [HKPV] for further background.

3.1 Introduction
A complex Gaussian random field is a collection of complex random vectors in-
dexed by points in a domain, often a complex manifold or subset of Cn, such that
every finite set of these vectors has a complex multivariate Gaussian distribution.
Namely, it is a generalization of a real Gaussian field where in this case the field
values are complex-valued random variables. These fields arise naturally in quan-
tum physics, signal processing, and complex geometry (e.g., random holomorphic
sections or waves).

The motivation behind working with random fields lie in the Kac-Rice formula
(3.9), which is a fundamental tool in the proof of the main result of Chapter 5.

3.2 Complex Gaussian random vectors
Throughout this dissertation, we shall encounter complex Gaussian random vari-
ables. As conventions vary, we begin by establishing our terminology. By
N (µ,σ2), we mean the distribution of the real-valued random variable with prob-
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ability density 1
σ
√

2π
e−

(x−µ)2

2σ2 . Here µ ∈ R and σ2 > 0 are the mean and variance
respectively.

A standard complex Gaussian is a complex-valued random variable with proba-
bility density 1

π
e−|z|

2
with respect to the Lebesgue measure on the complex plane,

and we denote it by NC(0,1). Equivalently, one may define it as X + iY , where X
and Y are i.i.d. N

(
0, 1

2

)
random variables.

Let X1, · · · ,Xn be i.i.d. standard complex Gaussians. Then we say that the
random vector

X :=

X1
...

Xn

 ∈ Cn

is a standard complex Gaussian vector. Then if A ∈ Cm×n is a matrix, the random
vector

Y = AX +µ ∈ Cm (3.1)

is said to be a complex Gaussian random vector with mean µ and covariance
Σ = AA∗, where A∗ is the conjugate transpose of A. We denote it by NCm(µ,Σ).
When µ is equal to 0, we say that is a centred Gaussian random vector.

Note that if X has NCm(µ,Σ) distribution, then for every j,k ≤ m, we have

E
(
(Xk−µk)

(
X j−µ j

))
= 0, and E

(
(Xk−µk)

(
X j−µ j

))
= Σk j. (3.2)

Remark 3.2.1. If a complex Gaussian random vector satisfies the first equation of
(3.2), is sometimes called a circularly symmetric random vector. Since we will not
consider the case where this is not satisfied, we include it as a part of the definition
of complex Gaussian random vector.

Let us now examine some important properties of Gaussian random vectors.

3.2.1 Regression Formula
One of the powerful features of multivariate Gaussian distributions is the explicit
form of conditional expectations and covariances.

Let (X ,Y ) ∈ Cn+m be a jointly Gaussian random vector with mean and covari-
ance given by (

X
Y

)
∼NCn+m

((
µX
µY

)
,

(
ΣXX ΣXY
ΣY X ΣYY

)
.

)
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If ΣYY is not singular, then consider the random Gaussian vector

Z = X−ΣXY Σ
−1
YYY.

Note that the variance of Z satisfies ΣZZ = ΣXX − ΣXY Σ
−1
YY Σ∗Y X , and that Z is

independent of Y . Essentially, Z is obtained by subtracting from X its orthogonal
projection on Y (seen as elements in L1).

Hence, for any bounded function f , we have

E( f (X) | Y = y) = E
(

f
(
Z +ΣXY Σ

−1
YY y
))

, (3.3)

for almost every y.
This equation is called Gaussian regression (see [AW, Proposition 1.2].
Another common way to present this equation, is to say that the distribution of

the random vector X given Y i.e. the conditional distribution of (X | Y = y) is

NCn
(
µX +ΣXY Σ

−1
YY (y−µY ),ΣXX −ΣXY Σ

−1
YY ΣY X

)
,

see [HKPV, Exercise 2.1.3]).

3.2.2 Wick Formula
Wick’s formula, also known as Isserlis’ theorem, expresses higher-order moments
of centred Gaussian variables in terms of their second moments.

Lemma ([HKPV, Lemma 2.1.7] Wick’s formula). Let (X ,Y ) ∈ Cn+m be a jointly
centred Gaussian random vector with mean and covariance given by(

X
Y

)
∼NCn+m

((
0
0

)
,

(
ΣXX ΣXY
ΣY X ΣYY

)
.

)
Then,

E
(
X1 · · ·XnY 1 · · ·Y n

)
= per(ΣXY ).

In particular,
E
(
|X1 · · ·Xn|2

)
= per(ΣXX). (3.4)
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3.2.3 Computations for random vectors
Let us turn to some computation of the expected value of the norm of random
Gaussian vectors. These computations are needed for sections 3.2.4 and 4.4.

Lemma 3.2.2. Let v be a standard Gaussian random vector in Cn and α ∈ R with
α >−2n. Then,

E
v∈Cn

(∥v∥α) =
Γ(n+α/2)

Γ(n)
.

Proof. By a simple calculation, taking polar coordinates, we have

E
v∈Cn

(∥v∥α) =
1

πn

∫
v∈Cn
∥v∥αe−∥v∥

2
dC

=
vol(S2n−1)

πn

∫
∞

0
ρ

2n+α−1e−ρ2
dρ =

Γ(n+α/2)
Γ(n)

,

where S2n−1 is the unit sphere in Cn = R2n.

Lemma 3.2.3. Let v be a standard Gaussian random vector in Cn and α,β ∈ R
with 2α +β > 1−2n. Then,

E
v∈Cn

(
∥v∥2α∥Πe⊥n

v∥β

)
=

Γ(n+α +β/2)
nΓ(n−1)

,

where Πe⊥n
v is the projection of v on the Hermitian complement of en.

Proof. By definition of the norm in Cn and the binomial expansion, we have that

∥v∥2α =
(
∥Πe⊥n

v∥2 + |vn|2
)α

=
α

∑
i=0

(
α

i

)
(∥Πe⊥n

v∥2)α−i(|vn|2)i.

Since the entries of v are independent, it follows

E
v∈Cn

(
∥v∥2α∥Πe⊥n

v∥β

)
= E

(
α

∑
i=0

(
α

i

)(
∥Πe⊥n

v∥2
)α+β/2−i (

|vn|2
)i
)

=
α

∑
i=1

(
α

i

)
E

w∈Cn−1

(
∥w∥2α+β−2i

)
E

z∈C

(
|z|2i) .

Then, applying the previous lemma
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E
v∈Cn

(
∥v∥2α∥Πe⊥n

v∥β

)
=

α

∑
i=0

Γ(α +1)Γ(n+α +β/2− i−1)
Γ(α− i+1)Γ(n−1)

=
Γ(α +1)
Γ(n−1)

Γ(n+α +β/2)
nΓ(α +1)

=
Γ(n+α +β/2)

nΓ(n−1)
.

Lemma 3.2.4. Let v be a Gaussian random vector in Cn with diagonal variance
matrix ∆(σ1, · · · ,σn) and u∈Cn an independent standard Gaussian random vector.
Then,

E
u∈Cn

(
E
(
|Πuv|2

))
=

∑
n
i=1 σ2

i
n

.

Proof. Since,

|Πuv|2 = |⟨v,u⟩|
2

∥u∥2 =

∣∣∣∣〈v,
u
∥u∥

〉∣∣∣∣2 = n

∑
i, j=1

viv̄ j
uiū j

∥u∥2 .

Taking expectation, since the entries of v are independent we have

E
(
|Πuv|2

)
=

n

∑
i=1

σ
2
i
|ui|2
∥u∥2 .

Taking expectation again, since the entries of u are i.i.d., the result follows.

3.2.4 Random matrices computations
Random matrices can be viewed as random vector in Cr×r. However, since our
interest lies in computing expectations that depend on the determinant of random
matrices, we believe it is more appropriate to present these results in a separate
section.

Our main approach to working with the determinant follows the ideas of Azaı̈s
and Wschebor [AW], where |detA| is interpreted as the volume of the parallelotope
in Cr generated by the columns A1, · · · ,Ar of A.
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Observe that vol(A1, · · · ,Ak) = vol(A1, · · · ,Ak−1)∥ΠV⊥k−1
Ak∥, where Vk−1 is the

subspace generated by A1, · · · ,Ak−1, and ∥ΠV⊥k−1
Ak∥ is the Euclidean norm in Cr of

the orthogonal projection of the vector Ak onto the Hermitian complement subspace
Vk−1.

The following is a generalization of the Proposition 7.1 of Armentano et al.
[ABB+2].

Lemma 3.2.5. Let A be a standard Gaussian random matrix in Cr×r and k > 0.
Then,

E
A∈Cr×r

(
∥A−1∥2

F · |detA|2k
)
=

r
k

r

∏
i=1

Γ(k+ i)
Γ(i)

.

Proof. Observe that from a direct application of Cramer’s rule we have

∥A−1∥2
F =

1
|detA|2

r

∑
i, j=1
|det(Ai j)|2.

It follows,

E
A∈Cr×r

(
∥A−1∥2

F · |detA|2k
)
= E

(
r

∑
i, j=1
|det(Ai j)|2 · |detA|2(k−1)

)
= r2E

(
|det(Ann)|2 · |detA|2(k−1)

)
.

Using the ideas of Azaı̈s-Wschebor [AW], considering |detA| as the volume of
the parallelepiped generated by the columns of A we get,

E
A∈Cr×r

(
∥A−1∥2

F · |detA|2k
)
= r2 E

z∈C

(
|z|2(k−1)

)
·

r

∏
i=2

E
v∈Ci

(
∥v∥2(k−1)∥Πe⊥i

v∥2
)
.

By Lemma 3.2.2 and Lemma 3.2.3 we get

E
A∈Cr×r

(
∥A−1∥2

F · |detA|2k
)
= r2 Γ(k)

Γ(1)

r

∏
i=2

Γ(i+ k)
iΓ(i−1)

= r
Γ(k)

Γ(k+1)

r

∏
j=1

Γ(k+ j)
Γ( j)

=
r
k

r

∏
j=1

Γ(k+ j)
Γ( j)

.
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Lemma 3.2.6. Let A be an r× r random complex matrix with standard Gaussian
i.i.d. entries. Then

E(log |detA|) = r(ψ(r+1)−1)
2

,

where ψ(n) = Γ′(n)
Γ(n) is the digamma function.

Proof. Using the linearity of the expectation and the properties of the logarithm,
iterating this process, we conclude that

E(log(vol(A1, · · · ,Ar))) =
r

∑
i=1

E
vi∈Ci

(log(∥vi∥)), (3.5)

where vi is a standard Gaussian complex vector in Ci, and abusing notation, ∥vi∥
stands for the Euclidean norm of vi in its corresponding space.

Using polar coordinates,

E
vi∈Ci

(log(∥vi∥)) =
2

Γ(i)

∫
∞

0
ρ

2i−1e−ρ2
logρdρ =

ψ(i)
2

,

where the last equality follows from taking t = ρ2 and differentiating the integral
expression of Γ(i) with respect to i, or see directly Gradshteyn and Ryzhik [GR,
4.352.4].

Since ψ(n) =

(
n−1

∑
i=1

1
i

)
− γ , where γ is the Euler-Mascheroni constant, and

nψ(n+1) = nψ(n)+1, it follows

r

∑
i=1

ψ(i) = r(ψ(r+1)−1).

Then, we conclude

E(log(|detA|)) = r(ψ(r+1)−1)
2

.

Lemma 3.2.7. Let A be an r× r random complex matrix with standard Gaussian
i.i.d. entries.

Then, E
A∈Cr×r

(
|detA|2 log |detA|

)
is equal to

r!
2

(
(r+1)ψ(r+2)− r−ψ(2)

)
.
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Proof. Let us define,

Ir(k) := E
Ai∈Cr

(
vol(A1, · · · ,Ak)

2 log(vol(A1, · · · ,Ak))
)

Vr(k) := E
Ai∈Cr

(
vol(A1, · · · ,Ak)

2)
where the Ai’s are independent standard Gaussian random vectors in Cr.

Observe that

vol(A1, · · · ,Ak) = vol(A1, · · · ,Ak−1)∥ΠV⊥k−1
Ak∥, (3.6)

where Vk−1 is the subspace generated by A1, · · · ,Ak−1. Now, using the indepen-
dence of the random vector, and proceeding iteratively, it is easy to check that

Ir(k) =Ir(k−1) E
v∈Cr−k+1

(
∥v∥2)+Vr(k−1) E

v∈Cr−k+1

(
∥v∥2 log∥v∥

)
...

=Ir(1)
r

∏
i=r−k+1

E
v∈Ci

(
∥v∥2)+ Γ(r+1)

Γ(r− k+1)

r−1

∑
i=r−k+1

1
i
E

v∈Ci

(
∥v∥2 log∥v∥

)
=

Γ(r+1)
Γ(r− k+1)

r

∑
i=r−k+1

1
i
E

v∈Ci

(
∥v∥2 log∥v∥

)
.

Using the iterative formula for Ir(r), we get that

E
A∈Cr×r

(
|detA|2 log |detA|

)
=

r!
2
((r+1)ψ(r+2)− r−ψ(2)) .

Remark 3.2.8. If one has a similar setting as the previous lemma, but the last column

has a diagonal covariance matrix whose entries are d1, · · · ,dr and
r

∑
i=1

di = N, the

previous lemma can be extended to this case using Lemma 3.2.4 and following the
same reasoning,

E
A∈Cr×r

(
|detA|2 log |detA|

)
=

NΓ(r)
2

(
(r+1)ψ(r+2)− r−ψ(2)− log

(
N
r

))
.
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Corollary 3.2.9. Let A be an r× r random complex matrix with standard Gaussian
i.i.d. entries and M be a fixed r× r matrix.

Then, E
A∈Cr×r

(
|detAM|2 log |detAM|

)
is equal to

|detM|2 r!
2

(
(r+1)ψ(r+2)− r−ψ(2)+ log |detM|2

)
.

Proof. Using the multiplicative nature of the determinant, the properties of the
logarithm, and the linearity of the expectation, one gets that the expectation
E

A∈Cr×r

(
|detAM|2 log |detAM|

)
is equal to

|detM|2
(

E
A∈Cr×r

(
|detA|2 log |detA|

)
+ log |detM| E

A∈Cr×r
|detA|2

)
.

Now observe that using the same recursive argument as in (3.6), one gets that

E
A∈Cr×r

|detA|2 =
r

∏
i=1

E
vi∈Ci
∥vi∥2 = r!, where again vi is a standard Gaussian vector

in Ci. The result follows.

Remark 3.2.10. Please observe, that if one has another fixed matrix B multiplying
on the other side, one gets an analogous result.

3.3 Complex Gaussian Random Fields
A complex random field will denote a random function

f : M ⊂ CD→ Cd, D≥ 1, D≥ d.

Namely, a complex random field is a collection { f (z) : z ∈M} of complex-valued
random vectors indexed by a set M (typically a domain of CD). In the case where
D = d = 1, it is called a complex random process. This notion can be extended to
manifolds.

We say that a complex random field

f : M ⊂ CD→ Cd

is a complex Gaussian random field if for any finite set {z1, . . . ,zk} ⊂ M, the
random vector

( f (z1), . . . , f (zk)) ∈ Ckd
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is complex Gaussian random vector.
These fields are characterized by their mean function

µ(z) = E[ f (z)]

and the covariance kernel

K(z,w) = E[ f (z) f (w)∗].

Remark 3.3.1. As in Remark 3.2.1, complex Gaussian field is called Hermitian (or
proper) if

∆(z,w) = E[ f (z) f (w)T ] = 0 for all z,w ∈M.

From our definition this condition is always satisfied, and since we are not going to
consider the case where this is not satisfied, we do not do this distinction.

3.3.1 Examples
Let us see some examples of complex Gaussian random field that will appear
throughout this dissertation.

Elliptic Polynomials

Let f be an elliptic polynomial defined in (2.4). This give rise to a random map

f : C→ C, z 7→ f (z)

which is in fact a complex random process.
It is clear, that for any finite set {z1, · · · ,zk} we have that f (z1)

...
f (zk)

=

1
√

Nz1
(N

2

)1/2
z2

1 · · ·
(N

N

)1/2
zN

1
...

...
... · · · ...

1
√

NzN
(N

2

)1/2
z2

N · · ·
(N

N

)1/2
zN

N


a0

...
aN

 .

Since

a0
...

aN

 is a standard complex Gaussian random vector, by definition (3.1)

we have that  f (z1)
...

f (zk)

∼NCk(0,Σ),
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where Σi j = E
(

f (zi) f (z j)
)

.
It follows that this is a complex Gaussian random process.

Polynomial Systems

Let Pr,n
(d) be the space of complex polynomial systems, defined in the same way as

Hr,n
(d), but for the case of polynomials of degree at most d in n-complex variables

(see Chapter 4).

Consider a polynomial system f = ( f1, · · · , fr) ∈ Pr,n
(d) such that every fi is an

elliptic polynomial. In an analogous way as the previous case, this gives rise to a
random map

f : Cn→ Cr, z 7→ f (z) =

 f1(z)
...

fr(z)


which is in fact a random field.

It is clear, that for any finite set {z1, · · · ,zk} we have that f (z1)
...

f (zk)

∼NCrk(0,Σ),

where Σ is given by the entries E
(

fi(z j) fl(zk)
)

.
It follows that this is a complex Gaussian random field.

Polynomial Eigenvalue Problem

Consider the random polynomial defined in (2.13). Then the map F : C→ C
defined by

z 7→ det

(
d

∑
k=0

(
d
k

)1/2

zkAk

)
,

where the matrices Ai ∈ Cr×r are standard Gaussian random matrices (see Sec-
tion 2.2.4), yields a random process. Note that if r = 1 we recover the elliptic
polynomials which is a Gaussian process, but if r > 1 this process is not Gaussian.
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Gaussian Analytic Functions

A random analytic function on a region Λ⊂C is called a Gaussian analytic function
if for any finite subset {z1, · · · ,zk} of Λ the random vector ( f (z1), · · · , f (zk)) is
centred complex Gaussian random vector.

Namely, a random Gaussian analytic function is a random Gaussian field
f : Λ→ C who is analytic.

3.3.2 Kac-Rice Formula
The Kac-Rice formula provides an expression for the expected measure of a level
set by a random field under certain regularity and non-degeneracy conditions. Here
we are going to present the case for complex random fields.

Let f : C→ C a smooth random process and for every u ∈ C and every Borel
set B⊂ C consider

Nu( f ,B) := #{z ∈ B : f (z) = u}.
By the coarea formula (2.2), for any measurable function φ : C→ [0,+∞) we get∫

C
φ(u)Nu( f ,B)du =

∫
B

φ( f (z))| f ′(z)|2 dz. (3.7)

Taking expectation on both sides, applying the Fubini Theorem, and condition-
ing by f (z) = u, we get∫

C
φ(u)E(Nu( f ,B))du =

∫
C

φ(u)du
∫

B
E
(
| f ′(z)|2 | f (z) = u

)
ρ f (z)(u)dz.

Since φ is arbitrary, we have that for almost every u ∈ C we get

E(Nu( f ,B)) =
∫

B
E
(
| f ′(z)|2 | f (z) = u

)
ρ f (z)(u)dz. (3.8)

Remark 3.3.2. Note that the previous strategy still works if one considers a weight
in the level set, namely consider a map ϕ : C→ [0,+∞) (it could be pretty general),
then

E

(
∑

z∈B: f (z)=u
ϕ(z)

)
=
∫

B
E
(
ϕ(z)| f ′(z)|2 | f (z) = u

)
ρ f (z)(u)dz, (3.9)

for almost all levels u ∈ C.
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Some practitioners regard the result above as sufficient for practical purposes.
However, this is rarely adequate. In many cases, as the one of interest in this
dissertation, the level of interest is u = 0, and a result that holds for almost every
level u does not necessarily apply at the level u = 0. Therefore, it is essential
to establish formula (3.9) for all levels. Doing so requires substantial effort,
particularly in the case of non-Gaussian models.

By Hammersley’s formula (see [HKPV, Theorem 3.3.1]), for any Gaussian
analytic function f with strictly positive definite covariance kernel and such that
det
(
K(zi,z j)

)
does not vanish anywhere, the counting measure on the level set at

any level u ∈ C is given by

E
(
| f ′(z)|2 | f (z) = u

)
p f (z)(u).

Therefore, equation (3.9) holds for every level.
This formula can be extended to the setting of random fields. We will state

a general result for the case of real-valued Gaussian random fields. A complex
random field can be viewed as a real one by separating it into its real and imaginary
parts, so the results apply in that context as well.

Theorem ([AAL, Theorem 2.2] Kac-Rice formula). Let f : M→Rd be a Gaussian
random field, M ⊂ RD an open subset (D≥ d), satisfying the following:

• The sample paths of f (·) are a.s. C1;

• for each t ∈M, f (t) has a positive definite variance-covariance matrix.

Then, for every Borel subset B⊂M and every level u ∈ R, one has

E(σD−d(Lu(B))) =
∫

B
E
(√

det(D f (t)D f (t)T ) | f (t) = u
)

p f (t)(u)dz, (3.10)

where σD−d(Lu(B)) is the corresponding dimensional measure of the level set
Lu(B) = {z ∈ B : f (z) = u}.
Remark 3.3.3. The Kac-Rice formula (3.10) has been extended to different settings,
for instance for the non-Gaussian case (see [AAL]). Also for the case where one
puts weights on the level set (see [AAL, Theorem 6.1]). To each point z ∈M, we
associate a weight g(z) that depends on the location z ∈M. Then, under certain
conditions, we get

E(Gu( f ,B)) =
∫

B
E
(
g(z)|∆(z)|2 | f (z) = u

)
p f (z)(u)dz, (3.11)
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where
Gu( f ,B) =

∫
z∈B: f (z)=u

g(z)dσD−d(z).

Remark 3.3.4. When D= d, the level setLu(B), under the condition of this theorem,
consists of isolated points. Then, σD−d(Lu(B)) = Nu( f ,B) is just the number of
solutions in B. Then, the formula (3.10) takes its most known form

E(Nu( f ,B)) =
∫

B
E(|detD f (z)| | f (z) = u) p f (z)(u)dz. (3.12)

Remark 3.3.5. When D = d, since the level sets consists of isolated points, one
can consider the Point Process given by the solution of f (z) = u. Note that in such
case the first intensity function is given by the integrand of (3.12). Furthermore, in
general the k-th intensity function is given by the integrand of the generalization of
(3.12) to higher moments (see (2.19) and [HKPV, Corollary 3.4.2]).
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Chapter 4

Polynomial Systems

In this chapter we study complex systems of polynomial equations. We are going
to compute the condition number and its average. The results obtained in this work
led to [C], which has been submitted for publication. The first part of this chapter
is dedicated to placing the correct setting for this subject and also presenting the
known results for the determined systems. On the last section, the new work for
the underdetermined polynomial systems is displayed.

4.1 Introduction
Solving systems of equations is a fundamental problem, which has been deeply
studied from different points of view, such as algebraic, geometric and numerical
approaches.

A classic numerical method of solving such systems, is the called Newton’s
iteration. In this chapter, we establish the average values of a key quantity influ-
encing the computational performance of Newton’s operator in underdetermined
scenarios. Shub and Smale introduced Newton’s operator for underdetermined
systems of equations in their work [SS4] (cf Dégot [D3]). The primary objective
of their efforts was to develop and analyse effective algorithms for computing
approximations to complete intersection algebraic subvarieties of Cn.

This key quantity is the condition number, which measures the sensitivity of
the set of solutions of the considered system, to variations of the equations (see
Blum et al. [BCSS], Bürgisser-Cucker [BC]).

The condition number was introduced by Turing [T] and von Neuman-Goldstine
[vNG], while studying the propagation of errors for linear equation solving and
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matrix inversion. Ever since then, condition numbers have played a leading role in
the study of both accuracy and complexity of numerical algorithms.

As pointed out by Demmel [D4], computing the condition number of any
numerical problem is a time-consuming task that suffers from intrinsic stability
problems. For this reason, understanding the behaviour of the condition number in
such a way that we can rely on probabilistic arguments is a useful strategy.

In order to be more precise in our statement we need to introduce some prelim-
inary notations.

4.2 Preliminaries
For this section we refer the reader to [BCSS, Chapters 10 and 12].

4.2.1 Space of homogeneous polynomials and projective space
For every positive integer d ∈ N, letHn

d be the complex vector space of all homo-
geneous polynomials of degree d in (n+1)-complex variables with coefficients in
C, whose dimension is

(n+d
n

)
.

We denote by a multi-index j := ( j0, · · · , jn) ∈ Zn+1, ji ≥ 0 for i = 0, · · · ,n,
and consider | j|= j0 + · · ·+ jn. Then, for x = (x0, · · · ,xn) ∈ Cn+1, we write

x j := x j0
0 · · ·x jn

n .

It follows that any element h ∈Hn
d can be written as

h(x) = ∑
| j|=d

a jx j,

where a j = a j0,··· , jn ∈ C.
We consider the Bombieri-Weyl Hermitian product inHn

d , defined as follows.
Let h,g ∈Hn

d , be two elements, h(x) = ∑
| j|=d

a jx j, g(x) = ∑
| j|=d

b jx j, we define

⟨h,g⟩d = ∑
| j|=d

a jb j

(
d
j

)−1

,

where
(

d
j

)
=

d!
j0! · · · jn!

(see Shub-Smale [SS1]).
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For any list of positives degrees (d) := (d1, · · · ,dr), r ≤ n, let

Hr,n
(d) :=

r

∏
i=1
Hn

di

be the complex vector space of homogeneous polynomial systems h := (h1, · · · ,hr)
of respective degrees di. It is easy to check thatHr,n

(d) is a complex vector space of

dimension N :=
r

∑
i=1

(
n+di

n

)
.

Remark 4.2.1. In the case where r = n, the spaceHn,n
(d) is usually denoted byH(d)

as for example in [SS1], [BCSS], [ABB+1], [BP2].

We denote by Dr the Bézout number associated with the list (d), i.e.

Dr :=
r

∏
i=1

di.

The previously defined Hermitian product induces a Hermitian product inHr,n
(d) as

follows. For any two elements h = (h1, · · · ,hr), g = (g1, · · · ,gr) ∈Hr,n
(d), we define

⟨h,g⟩ :=
r

∑
i=1
⟨hi,gi⟩di. (4.1)

The Hermitian product ⟨·, ·⟩ induces a Riemannian structure in the spaceHr,n
(d).

The space Cn+1 is equipped with the canonical Hermitian inner product ⟨·, ·⟩
which induces the usual Euclidean norm ∥ · ∥, and we denote by P(Cn+1) its
associated projective space. This is a smooth manifold which carries a natural
Riemannian metric, namely, the real part of the Fubini-Study metric on P(Cn+1)
given in the following way: for a non-zero x ∈ Cn+1,

⟨w,w′⟩x :=
⟨w,w′⟩
∥x∥2 ,

for all w, w′ in the Hermitian complement x⊥ of x. This induces the norm ∥ · ∥x in
TxP(Cn+1).
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4.2.2 Solution, critical and discriminant varieties and condition
number

Given h ∈Hr,n
(d), if h(x) = 0 then, h(λx) = 0 for any λ ∈ C. Then, the solutions to

the polynomial system h(x) = 0, can be thought in the projective space P(Cn+1).
We may define the solution variety as the pairs (h,x) ∈ Hr,n

(d)×P(Cn+1) of
polynomial systems and solutions, namely,

V =
{
(h,x) ∈Hr,n

(d)×P(Cn+1)/h(x) = 0
}
,

then we have the following (see [BCSS, Proposition 10.1]).

Proposition 4.2.2. The solution variety V is a smooth connected subvariety of
Hr,n

(d)×P(Cn+1) of codimention r. The tangent space to V at (h,x) is the vector

space of (ḣ, ẋ) ∈ ThHr,n
(d)×TxP(Cn+1) such that ḣ(x)+Dh(x)ẋ = 0, where Dh(x)v

is the differential of the map h : Cn+1→ Cr at x ∈ Cn+1 applied to v ∈ Cn+1.

If we consider the two canonical projections π1 : V →Hr,n
(d), π2 : V → P(Cn+1),

we have the following diagram:

V

π1

		

π2

��
Hr,n

(d) P(Cn+1)

We define the critical variety Σ′⊆V as the set of critical points of the projection
π1, i.e. the set of point (h,x) such that Dπ1(h,x) is not surjective. It can be proved
that

Σ
′ = {(h,x) ∈ V : rank(Dh(x))< r}

(see [SS1]).
The discriminant variety Σ⊆Hr,n

(d) is defined as the image of Σ′ by π1, namely,
the set of systems h such that rank(Dh(x))< r for some of its solutions. It can be
proved that it is a zero measure set (see [SS1]).

Recall that the condition number associated to a computational problem mea-
sures the sensitivity of the outputs of the considered problem, to variations of the
input (see Bürgisser-Cucker [BC] or Blum et al. [BCSS]).
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For the case where r = n, Shub and Smale in [SS1], defined the normalized
condition number at a pair (h,x) ∈ V \Σ′ as,

µnorm(h,x) = ∥h∥
∥∥∥(D f (x)|x⊥)−1

∆

(
∥x∥di−1d1/2

i

)∥∥∥
op

(4.2)

and ∞ in other case.
In [D2] Dedieu defined the condition number of a polynomial f : Cn→ C at a

point x ∈ Cn, such that f (x) = 0 and D f (x) is surjective, as

µ( f ,x) := ∥D f (x)†∥op,

where D f (x)† is the Moore-Penrose pseudo inverse of the linear map D f (x), i.e.
the derivative of f at x, and ∥D f (x)†∥op is the operator norm of D f (x)†.

Following this idea, and using the normalized condition number µnorm (4.2),
Dégot [D3] suggested an extension of this condition number for the undetermined
case which was adjusted into a projective quantity by Beltrán-Pardo in [BP1].

So putting all together, given h ∈ Hr,n
(d) and x ∈ Cn+1 such that h(x) = 0 and

Dh(x) has rank r, the normalized condition number of h at x is defined by

µ
r(h,x) := ∥h∥

∥∥∥Dh(x)†
∆(d1/2

i ∥x∥di−1)
∥∥∥

op
, (4.3)

where ∥ · ∥op is the operator norm. If the rank of Dh(x) is strictly smaller than r,
we set µr(h,x) := ∞.

As done in [BS1] and [ABB+1], we will also consider the Frobenius condition
number, just by considering the Frobenius norm instead of the operator one, that is,

µ
r
F(h,x) := ∥h∥

∥∥∥Dh(x)†
∆(d1/2

i ∥x∥di−1)
∥∥∥

F
. (4.4)

Recall that the Frobenius norm of a matrix L is trace(L∗L)1/2 where L∗ is the
adjoint of L, and its denoted by ∥L∥F . Note that µr(h,x)≤ µr

F(h,x)≤
√

nµr(h,x).
When r = n, we will write µnorm(h,x) and µF(h,x) instead.

4.2.3 Unitary invariance
The unitary group U(n+ 1) acts on Cn+1 as the group of linear automorphisms
that preserve the Hermitian product ⟨·, ·⟩ on Cn+1. More precisely,

⟨σv,σw⟩= ⟨v,w⟩, for all v, w ∈ Cn+1, σ ∈U(n+1).
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This action, induces an action of U(n+1) onHr,n
(d), given by σh(x) := h(σ−1x), for

all x ∈ Cn+1, and also induces a natural action of U(n+1) on P(Cn+1). Then we
have the following result, which is the reason why we consider the Bombieri-Weyl
Hermitian structure onHr,n

(d).

Theorem 4.2.3. The Hermitian structure onHr,n
(d) defined in (4.1) is invariant under

the action of U(n+1). That is,

⟨σh,σg⟩= ⟨h,g⟩, for all h,g ∈Hr,n
(d), σ ∈U(n+1).

Remark 4.2.4. There are several proofs of this fact, for example see [K1]. We are
going to do a different proof because of its simplicity.

Proof. Please observe that it is sufficient to prove that the result holds for the case
r = 1.

Given x ∈ Cn+1 define the polynomial Kd(·,x) ∈Hn
d as the polynomial given

by ⟨·,x⟩d , that is

Kd(y,x) = ∑
|α|=d

(
d
α

)
x̄αyα .

It follows the definition of Kd(·,x) that ⟨h,Kd(·,x)⟩= h(x) for all h ∈Hn
d , and

by a straightforward computation, one has that σKd(·,x) = Kd(·,σx). Putting both
things together one gets, for any x,y ∈ Cn+1,

⟨σKd(·,x),σKd(·,y)⟩= Kd(σy,σx) = Kd(y,x).

Also, observe that if h ∈Hn
d is such that

⟨h,Kd(·,x)⟩= 0 for all x ∈ Cn+1,

since ⟨h,Kd(·,x)⟩= h(x), then it satisfies h(x) = 0 for all x ∈ Cn+1. This means,
that the only polynomial orthogonal to every Kd(·,x) is the zero polynomial. In
conclusion, the subspace generated by {Kd(·,x) : x ∈ Cn+1} is exactlyHn

d .
Then, since every h ∈Hn

d is a linear combination of some of the Kd(·,x)’s, by
linearity the invariance follows.

Taking the product action, the unitary group acts onHr,n
(d)×P(Cn+1) by

σ(h,x) := (σh,σx),

furthermore, this action is a good one, in the sense of the following proposition.
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Proposition 4.2.5. Considering the action of U(n+1) onHr,n
(d)×P(Cn+1). Then,

the solution variety V and the critical variety Σ′ are invariant under this action.
Furthermore, µr

F : V \Σ′→ R is unitarily invariant; that is, for all σ ∈U(n+1),
µr

F(σ(h,x)) = µr
F(h,x).

4.3 Average conditioning for determined systems
In this section we are going to work with the case r = n, so taking into account
Remark 4.2.1 we will denote the spaceHn,n

(d) simply asH(d).
The different results of this section can be found in [ABB+1], [BP2], we will

specify when needed. Some of the proofs are going to be omitted, only the relevant
ones for the development of the following section will remain.

Given h ∈ H(d) \Σ, the fibre Vh = {x ∈ P(Cn+1) : h(x) = 0} has exactly D
elements. Then, given a real number α > 0, the α-th moment of the condition
number of h can be defined as the average over its fibre Vh of the α-th power of the
condition number, namely,

µ
α
Av(h) :=

1
D ∑

x:h(x)=0
µ(h,x)α , µ

α
F,Av(h) :=

1
D ∑

x:h(x)=0
µF(h,x)α . (4.5)

Then Armentano et al. proved in [ABB+1, Theorem 2] the following for the
2-nd moment of the Frobenius condition number:

Theorem 4.3.1 (Average Frobenius condition number). For every ĥ ∈ H(d) and
θ > 0,

E
h∼N (ĥ,σ2Id)

(
µ2

F,Av(h)

∥h∥2

)
≤ n

σ2 ,

and equality holds in the centred case.

Remark 4.3.2. The equality (in the centred case) of Theorem 4.3.1 implies from
[ABB+1, Lemma 2] with p =−2 that

E
h∈H(d)

µ
2
F,Av(h) = (N−1)n,

where N is the dimension ofH(d).

Remark 4.3.3. The extension of the centred case of this theorem is the motivation
of this chapter (see Theorem 4.4.1).
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For the operator norm case, Beltrán and Pardo proved in [BP2, Theorem 23]
the following for the α-th moment of the normalized condition number.

Theorem 4.3.4 (Average condition number). Let 0 < α < 4 be a real number.
Then,

E
h∈H(d)

(
µα

Av(h)
∥h∥α

)
=

Γ(N)

Γ(N−α/2)

n−1

∑
k=0

(n+1
k

)
Γ(n− k+1−α/2)

nn−k+1−α/2Γ(n− k)
.

In particular,

E
h∈H(d)

(
µ2

Av(h)
∥h∥2

)
= (N−1)

(
n
(

1+
1
n

)n+1

−2n−1

)
,

where N is the dimension ofH(d).

4.4 Underdetermined systems
In this section we are going to work with the case r < n. First we are going to
present the condition number for this case, afterwards we are going to prove new
results for the average conditioning of said condition number.

4.4.1 Average conditioning
Let Σ′ := {(h,x) ∈ Hr,n

(d)×Cn+1 : h(x) = 0; rank(Dh(x)) < r} and Σ ⊆Hr,n
(d) be

the projection of Σ′ onto the first coordinate, commonly referred as the discriminant
variety. Observe that for all h ∈Hr,n

(d) \Σ, thanks to the inverse image of a regular
value theorem, the zero set

Vh := {x ∈ P(Cn+1) : h(x) = 0},

is a complex smooth submanifold of P(Cn+1) of dimension n− r. Then it is
endowed with a complex Riemannian structure that induces a finite volume form.

Now, for h ∈ Hr,n
(d) \ Σ it makes sense to consider the α-th moment of the

Frobenius condition number of h, µ
r,α
F,Av(h), as the average of (µr

F(h,x))
α over its

zero set Vh, i.e.

µ
r,α
F,Av(h) :=

1
vol(Vh)

∫
x∈Vh

µ
r
F(h,x)

α dVh. (4.6)
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4.4.2 Main Result
The main result of this chapter gives a closed formula for the expected value of
µ

r,2
F,Av(h)
∥h∥2 . To be accurate in this notion, we need to fix a probability measure inHr,n

(d).
Recall the average with respect to the standard Gaussian distribution onHr,n

(d),
that is,

E
h∈Hr,n

(d)

(φ(h)) =
1

πN

∫
h∈Hr,n

(d)

φ(h)e−∥h∥
2
dh, (4.7)

where N is the complex dimension of Hr,n
(d) and φ : Hr,n

(d) → R is a measurable
function.

The main result of this chapter is the following.

Theorem 4.4.1 (Main Theorem). The expected value, with respect to the standard
Gaussian distribution, of the 2-nd moment of the relative Frobenius condition

number
µ

r,2
F,Av(h)
∥h∥2 is equal to

E
h∈Hr,n

(d)

(
µ

r,2
F,Av(h)

∥h∥2

)
=

r
n− r+1

.

As a matter of fact, we will be proving a more general result (see Section
4.4.3). That result can be extended to the case where we consider the operator
norm. Furthermore, after some computations (see Lemma 3.2.5), we get the closed
expression for the case of the 2-nd moment stated in Theorem 4.4.4. The proof of
the general result strongly relies on Theorem 4.4.6, which states that the moments
of the condition number for the polynomial case are essentially the moments of the
condition number of a random matrix.

Remark 4.4.2. Observe that by taking r = n in the previous statement, one recovers
the average of the 2-nd moment of the relative Frobenius condition number for the
determined case, namely

E
g∈Hn,n

(d)

(
µ2

F,Av(g)

∥g∥2

)
= n

(see Theorem 4.3.1).

From Theorem 4.4.1 and the previous remark we get the following proposition.
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Proposition 4.4.3. The expected value, with respect to the standard Gaussian
distribution, of 2-nd moment of the relative Frobenius condition number satisfies

E
h∈Hr,n

(d)

(
µ

r,2
F,Av(h)

∥h∥2

)
=

1
n− r+1

E
g∈Hr,r

(d)

(
µ2

F,Av(g)

∥g∥2

)
.

This statement provides the expected value of the 2-nd moment of the relative
condition number for the underdetermined case in terms of the expected one in the
determined case. From a geometric perspective, these two cases exhibit notable
distinctions, and there is no inherent requirement for these expected values to be in
any kind of relation. It would be interesting to understand which are the reasons
behind this relation.

Corollary 4.4.4. The expected value, with respect to the standard Gaussian distri-
bution, of the 2-nd moment of the Frobenius condition number µ

r,2
F,Av(h) satisfies:

E
h∈Hr,n

(d)

(
µ

r,2
F,Av(h)

)
=

(N−1)r
n− r+1

,

where N is the dimension of Hr,n
(d).

Proof. To compute the expected value of µ
r,2
F,Av, we just need to apply Lemma 2 of

[ABB+1] to
µ

r,2
F,Av
∥h∥2 for p =−2, and we get

E
h∈Hr,n

(d)

(
µ

r,2
F,Av(h)

∥h∥2

)
=

Γ(N−1)
Γ(N)

E
h∈S(Hr,n

(d))

(
µ

r,2
F,Av(h)

∥h∥2

)
,

where S(Hr,n
(d)) is the set of h ∈Hr,n

(d) such that ∥h∥= 1. Since
µ

r,2
F,Av(h)
∥h∥2 = µ

r,2
F,Av(h) if

∥h∥= 1, and the latter is scale invariant, we have that

E
h∈Hr,n

(d)

(µr,2
F,Av(h)) =

Γ(N)

Γ(N−1)
E

h∈Hr,n
(d)

(
µ

r,2
F,Av(h)

∥h∥2

)
.

Remark 4.4.5. In Theorem 1.4 of Beltrán-Pardo [BP1], an upper bound of the
expected value of the average conditioning is computed, while using our argument
we get an equality. Furthermore, using Cauchy-Schwartz inequality and Corollary
4.4.4, we get a sharper bound.
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4.4.3 Proof of Main Theorem
For the proof of Theorem 4.4.1, we need some background and previous results
which are explained in the following subsections.

Recall that for a homogeneous polynomial system h ∈ Hr,n
(d), we denote by

Vh ⊆ P(Cn+1) the zero set, namely, Vh = {x ∈ P(Cn+1) : h(x) = 0}, which can
be identified with π

−1
1 (h). Observe that for all systems h ∈Hr,n

(d) \Σ, the set Vh is a
projective variety of dimension n− r (see Harris [H]).

For every x ∈ P(Cn+1) we denote by Vx the linear subspace ofHr,n
(d) given as

Vx := {h ∈Hr,n
(d) : h(x) = 0},

which can be identified with π
−1
2 (x).

Consider the linear map L0 : Ve0 → Cr×n given by

L0(h) = ∆(d−1/2
i )Dh(e0)|e⊥0 , (4.8)

where ∆(ai) is the diagonal matrix whose diagonal entries are exactly the ai’s.
Observe that for any g ∈ Ker(L0)

⊥ we have that ∥g∥ = ∥L0(g)∥F . This implies
that NJL0(g) = 1. So, if we apply the smooth coarea formula to L0 : Ve0 → Cr×n,
we have that for any measurable mapping φ : Ve0 → [0,+∞)∫

h∈Ve0

φ(h)dVe0 =
∫

A∈Cr×n

∫
h∈L−1

0 (A)
φ(h)dL−1

0 (A)dA. (4.9)

Let us prove the following theorem, which is a first step towards the general
version of Theorem 4.4.1. Consider the relative Frobenius condition number µ̂r

F ,
then the α-th moment of the relative condition number is defined as

µ̂
r,α
F (h) :=

1
vol(Vh)

∫
x∈Vh

µr
F(h,x)

α

∥h∥α
dVh. (4.10)

Theorem 4.4.6. The expected value, with respect to the standard Gaussian dis-
tribution, of the α-th moment of the relative Frobenius condition number µ̂

r,α
F

satisfies:
E

h∈Hr,n
(d)

(
µ̂

r,α
F (h)

)
= E

M∈Cr×(n+1)

(
∥M†∥α

F

)
.
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Proof. Since h ∈Hr,n
(d) \Σ, Vh is a projective variety of degree Dr and dimension

n− r, then we have,

vol(Vh) =Dr vol(P(Cn−r+1)) =Dr
πn−r

Γ(n− r+1)

(see Mumford [M2, Theorem 5.22]). Then, by definition (4.10), we have the
following

µ̂
r,α
F (h) =

Γ(n− r+1)
πn−rDr

∫
x∈Vh

µr
F(h,x)

α

∥h∥α
dVh.

Taking expectation with regard to the Gaussian distribution, we get

E
h∈Hr,n

(d)

(
µ̂

r,α
F (h)

)
=

Γ(n− r+1)
πN+n−rDr

∫
h∈Hr,n

(d)

∫
x∈Vh

µr
F(h,x)

α

∥h∥α
e−∥h∥

2
dVh dh.

Then, by the definition of µr
F (4.4), applying the double-fibration technique

(2.9) and the unitary invariance, taking x = e0, we get that∫
h∈Hr,n

(d)

∫
x∈Vh

µr
F(h,x)

α

∥h∥α
e−∥h∥

2
dVh dh

is equal to

∫
x∈P(Cn+1)

∫
h∈Vx

∥Dh(x)†
∆(∥x∥did1/2

i )∥α
F · |det(Dh(x)Dh(x)∗)|e−∥h∥2

dVx dP(Cn+1)

= vol(P(Cn+1))
∫

h∈Ve0

∥Dh(e0)
†
∆(d1/2

i )∥α
F · |det(Dh(e0)Dh(e0)

∗)|e−∥h∥2
dVe0

=
πnDr

Γ(n+1)

∫
h∈Ve0

∥L0(h)†∥α
F · |det(L0(h)L0(h)∗)|e−∥h∥

2
dVe0,

where L0(h) is given by (4.8)
If we apply (4.9), the latter is equal to

πnDr

Γ(n+1)

∫
A∈Cr×n

∥A†∥α
F · |det(AA∗)|e−∥A∥2

dA
∫

h∈L−1
0 (A)

e−∥h∥
2
dL−1

0 (A).

Since L−1
0 (A) is a linear subspace of dimension N− r− rn, the right hand side

integral is equal to πN−r−rn.
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Then,

E
h∈Hr,n

(d)

(
µ̂

r,α
F (h)

)
=

Γ(n− r+1)
Γ(n+1)

E
A∈Cr×n

(∥A†∥α
F · |det(AA∗)|)

= E
M∈Cr×(n+1)

(
∥M†∥α

F

)
.

The last equality follows from Proposition 2.2.2 applied to the unitarily invariant
map φ(M) = ∥M†∥α

F .

Remark 4.4.7. This result, can be seen as an extension in the Frobenius context
of computations done by Beltrán-Pardo in [BP1] and [BP2], namely that ( f ,x) 7→
(∆(d−1/2

i )D f (x),x) gives a partial isometry from V to the linear variety V lin, and a
similar relation can be established.
Remark 4.4.8. Note that ∥M†∥F =

(
∑σi(M)2)1/2, where σi(M) are the singular

values of the matrix M. According to Edelman [E, Formula 3.12], we get that if
α < 2(n− r+2) the α-th moment of ∥M†∥F is finite.

Theorem 4.4.9. Let 0 < α < 2(n− r+2), then the expected value, with respect to
the standard Gaussian distribution, of the α-th moment of the relative Frobenius
condition number µ̂

r,α
F is finite and satisfies:

E
h∈Hr,n

(d)

(µ̂r,α
F (h)) = Cr,n E

B∈Cr×r

(
∥B−1∥α

F · |detB|2(n−r+1)
)
,

where Cr,n :=
n−r+1

∏
i=1

Γ(i)
Γ(r+ i)

.

Proof. Applying Theorem 4.4.6 and Proposition 2.2.3, we have

E
h∈Hr,n

(d)

(µ̂r,α
F (h)) =

n−r+1

∏
i=1

Γ(i)
Γ(r+ i)

E
B∈Cr×r

(∥B−1∥α
F · |detB|2(n−r+1)).

Taking Cr,n =
n−r+1

∏
i=1

Γ(i)
Γ(r+ i)

, we get

E
h∈Hr,n

(d)

(µ̂r,α
F (h)) = Cα

r,n E
B∈Cr×r

(
∥B−1∥α

F · |detB|2(n−r+1)
)
.
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Proof of Theorem 4.4.1:

Consider the case where α = 2.
Applying Lemma 3.2.5 we have that

E
B∈Cr×r

(∥B−1∥2
F · |detB|2(n−r+1)) =

r
n− r+1

r

∏
i=1

Γ(n− r+1+ i)
Γ(i)

.

It follows

E
h∈Hr,n

(d)

(µ̂r,2
F (h)) =

(
n−r+1

∏
i=1

Γ(i)
Γ(r+ i)

)(
r

n− r+1

r

∏
i=1

Γ(n− r+1+ i)
Γ(i)

)
=

r
n− r+1

Now, given h ∈Hr,n
(d) \Σ, recall that the α-th moment of the (absolute) normal-

ized condition number is

µ
r,α
F,Av(h) =

Γ(n− r+1)
πn−rDr

∫
x∈Vh

µ
r
F(h,x)

α dx,

then reasoning in the same way as in Corollary 4.4.4 we get the following, which
is a more general version of it.

Corollary 4.4.10. The expected value, with respect to the standard Gaussian
distribution, of the α-nd moment of the Frobenius condition number µ

r,α
F,Av(h)

satisfies:

E
h∈Hr,n

(d)

(µr,α
F,Av(h)) =

Γ(N)

Γ(N−α/2)
E

h∈Hr,n
(d)

(µ̂r,α
F (h)).

where N is the dimension of Hr,n
(d).

Remark 4.4.11 (Results for the operator norm). Observe that if one considers the
operator norm instead of the Frobenius one in (4.4), one gets the operator analogue
of Theorem 4.4.6 and Theorem 4.4.9. This two combined extend Theorem 4.3.4.
Please observe, that the computations done for the exact formula in the case α = 2
are messier than for the Frobenius case. Therefore, we do not include it here.
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Chapter 5

Logarithmic energy and the
polynomial eigenvalue problem

In this chapter we compute the expected logarithmic energy of solutions to the
polynomial eigenvalue problem for random matrices. We generalize some known
results for the Shub-Smale polynomials, and the spherical ensemble. These two
processes are the two extremal particular cases of the polynomial eigenvalue
problem, and we prove that the logarithmic energy lies between these two cases.
In particular, the roots of the Shub-Smale polynomials are the ones with the lowest
logarithmic energy of the family. The results obtained in this work led to [ACF],
which has been accepted for publication in Constructive Approximation.

5.1 Introduction and Main Result
The problem of finding configurations of points in the 2-dimensional sphere with
small logarithmic energy is a very challenging problem, with several applications.
It is one of the problems listed by Smale for the XXI Century [S], and there have
been several advances in different directions related to this problem.

Given N points in R3, the logarithmic energy of the configuration is defined as

V (x1, . . . ,xN) =− ∑
1≤i< j≤N

ln∥xi− x j∥.

The problem of minimizing this energy in the unit sphere S2 is considered a very
hard optimization problem, also known as the Fekete problem. Not only are the
configurations of points that minimize the energy not completely understood even
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for a small number of points (for instance, N = 7), but also the asymptotic value of
the minimum is not known with enough precision. More precisely, let

VN = min
x1,...,xN∈S2

V (x1, . . . ,xN)

be the minimum of the energy in the sphere. The 7th Smale problem consists of
finding a configuration of points x1, . . . ,xN in the sphere, in polynomial time in
N, such that its logarithmic energy V (x1, . . . ,xN) is close enough to the minimum,
namely V (x1, . . . ,xN)−VN ≤ c lnN, for a universal constant c.

One of the major obstacles is that the value of VN itself is not known with
precision up to the lnN term, and therefore problem number 7 of Smale’s list is
still far from being solved.

Indeed, the value of VN is [BS2]

VN =
κ

2
N2− N lnN

4
+CN +o(N), (5.1)

where κ = 1
2 − ln2 and C is an unknown constant. As far as it is known, this

constant C is bounded (lower bound by [L, BL] and recently improved by [M1],
upper bound by [BHS, BS2])

−0.0284228 . . .≤C ≤ ln2+
1
4

ln
2
3
+

3
2

ln
√

π

Γ(1/3)
=−0.027802 . . . ,

and the upper bound is conjectured to be actually the value for C [BHS, BS2].
Despite the intrinsic difficulties of finding these optimal configurations of

points, or even the value of the minimal energy, there have been some very ex-
citing advances throughout the last decades. For instance, the diamond ensemble
proposed by Beltrán and Etayo [BE], which achieves configurations of points with
logarithmic energy very close to the conjectured minimum, and two other random
processes, which we describe in more detail in what follows.

The first one, proposed by Armentano, Beltrán, and Shub in [ABS], consists of
taking the roots of a random polynomial. Specifically, let

pN(z) =
N

∑
k=0

ak

(
N
k

)1/2

zk (5.2)

with ak i.i.d. complex standard Gaussian coefficients NC(0,1), i.e., each coeffi-
cient is α + iβ , with α,β real independent zero-mean and 1/2 variance Gaussian.
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Now compute the roots of pN in C, and project them to S2 through the inverse
stereographic projection. The authors prove that the expected logarithmic energy
of the resulting ensemble in S2 is

κ

2
N2− N lnN

4
− κ

2
N. (5.3)

Observe that the expression coincides up to the first two terms with (5.1), and the
constant for the linear term is −κ

2 ≈ 0.096 . . ..
More recently, in [MY] the authors prove a central limit theorem for the logarithmic
energy resulting from this random process, where they show that the fluctuations
are of order

√
N, and therefore a typical realization of this process will have energy

close to the expression in (5.3).
The second approach consists of taking the eigenvalues of a random matrix.

Specifically, let A and B be two random matrices with i.i.d. complex standard
Gaussian entries NC(0,1). Now compute the eigenvalues of the matrix B−1A,
and project them to S2 through the inverse stereographic projection. Alishahi and
Zamani [AZ] proved that the expected value of the logarithmic energy for this
configuration, so-called spherical ensemble, is

κ

2
N2− N lnN

4
+

(
ln2
2
− γ

4

)
N− 1

8
+O

(
1
N

)
, (5.4)

where γ = 0.57721 . . . is the Euler-Mascheroni constant. Observe that the first two
terms coincide with the known expression in (5.1), and the constant for the linear
term is

( ln2
2 −

γ

4

)
≈ 0.2022 . . ..

In this chapter, we study a strategy for producing configurations of points,
for which the last two examples (zeros of random polynomials and eigenvalues
of random matrices) are particular cases. Namely, let us consider the following
polynomial in C,

F(z) = det

(
d

∑
i=0

Gi

(
d
i

)1/2

zi

)
,

where each Gi is an r× r random matrix with independent entries distributed
as NC(0,1). The problem of finding the zeros of this function is known as the
polynomial eigenvalue problem (PEVP). Observe that F(z) has, generically, N =
dr roots in C, which can be projected to the unit sphere through the inverse
stereographic projection as before. We will call this configuration of points the
PEVP-ensemble.
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Now, for a given number of points N, one can choose different pairs of its
divisors (d,r) forming N = dr. Notably, for r = 1 and d = N, we obtain exactly
the random polynomials as in (5.2). In the other extreme, for r = N and d = 1,
we obtain F(z) = det(G0 +G1z), whose roots coincide with the eigenvalues of
−G−1

1 G0, and therefore we recover the spherical ensemble.
Some numerical experiments suggest that the expected logarithmic energy of

intermediate instances (meaning 1 < d < N) lies between the energy of the two
extremal cases and decreases linearly with d. The main result of this chapter, which
we state below, gives a precise computation of the expected logarithmic energy for
the PEVP-ensemble. The numerical experiments, along with the analysis of this
dependence on d, are presented in Section 5.3.

Theorem 5.1.1 (Main Theorem). Let F(z) be the random complex polynomial of
degree N defined as

F(z) = det

(
d

∑
i=0

Gi

(
d
i

)1/2

zi

)
,

where Gi are r× r matrices with i.i.d. entries following NC(0,1). Then, the
expected value of the logarithmic energy of the PEVP-ensemble is equal to

E(V (x1, · · · ,xN)) =
κ

2
N2− N logd

4
− N

4

(
1+ψ(r+1)−ψ(2)−2ln2

)
where ψ(n) = Γ′(n)

Γ(n) is the digamma function, i.e., the logarithmic derivative of the
gamma function Γ(n).

(See Section 5.2.2 for the proof and [AS, Section 6.3] for more information on
the digamma function.)

Observe that this result generalizes the computed expected logarithmic energies
of the ensembles by [AZ] and [ABS]. Moreover, for r = N,d = 1, we get

E(V (x1, · · · ,xN)) =
κ

2
N2− Nψ(N +1)

4
+N

(
ln2
2
− γ

4

)
.

This is actually the exact value for the expected value of the spherical ensemble,
which, to the best of our knowledge, had not been computed before. Using the
usual approximation of ψ(N +1), we obtain the same asymptotic expression as in
(5.4). A more detailed asymptotic analysis of this expression is given in Section
5.3.
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Remark 5.1.2. Observe that in the matrix ∑
d
i=0 Gi

(d
i

)1/2
zi, each entry is a Shub-

Smale polynomial, like the ones in (5.2). The distribution of the roots of these
polynomials, projected to S2, are invariant under the orthogonal group. Now, since
the determinant is a homogeneous polynomial in the entries of the matrix, the zeros
of the resulting process F(z) are also invariant under the same group of isometries
(Proposition 2.1.1 of [K3], see also [K2]). This invariance in S2 is a desirable
property if we want the resulting points of a process in which every configuration
is possible to be well distributed in the sphere.

The rest of the chapter is organized as follows. The proof of the main theorem
reduces to decomposing the logarithmic energy as a sum of three terms, and
computing the expectation of each of them individually. Each of these computations
present uneven levels of difficulties. Indeed, the results of the first and last terms
follow from relatively simple random matrix computations, while the second one
requires more tools, like the Kac-Rice formula.

In Section 5.2.1, we instantiate some of the results from Chapter 3 to obtain
the expectation of the two most straightforward terms and use the weighted Kac-
Rice formula, along with other computations for random matrices, to compute
the remaining expectation. We aggregate these computations in Section 5.2.2 to
complete the proof of the main theorem. We conclude in Section 5.3 with some
experimental results and a discussion on the dependence on d of the expected
logarithmic energy. Furthermore, in Section 5.4, we extend the work done in this
chapter to a general case where there is no need to assume that all polynomial
entries have the same degree.

5.2 Technical considerations and proof of Main The-
orem

In what follows, we compute the expected logarithmic energy of the PEVP-
ensemble, but instead of doing so in the unit sphere, we will derive the expression
through the Riemann sphere (i.e., the sphere of radius 1/2 centred at (0,0,1/2) as
in [SS3]). Throughout the chapter, we will denote as z1, . . . ,zN the roots of F(z)
in C, and as ẑ1, . . . , ẑN their inverse stereographic projections onto the Riemann
sphere. We can then transform this configuration to the unit sphere S2 via

(a,b,c)→ (2a,2b,2c−1).

Given a configuration of points ẑ1, . . . , ẑN in the Riemann sphere, it is easy
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to see that the logarithmic energies of this configuration and the corresponding
configuration in S2 are related as

V (x1, · · · ,xN) =V (ẑ1, · · · , ẑN)−
N(N−1)

2
log2. (5.5)

The goal is then to compute E(V (ẑ1, · · · , ẑN)). Following Armentano et al.
[ABS], since F(z) is a polynomial, the logarithmic energy can be decomposed as
follows:

V (ẑ1, · · · , ẑN) = (N−1)
N

∑
i=1

log
√

1+ |zi|2−
1
2

N

∑
i=1

log |F ′(zi)|+
N
2

log |aN |,

where aN is the leading coefficient of F(z). It is easy to see that this leading
coefficient is det(Gd).

Then, taking expectation we get that E(V (ẑ1, · · · , ẑN)) is equal to

(N−1)E

(
N

∑
i=1

log
√

1+ |zi|2
)
− 1

2
E

(
N

∑
i=1

log |F ′(zi)|
)
+

N
2
E(log |det(Gd)|).

(5.6)
By computing the expectation of the three terms in the previous expression, we
obtain the main result of this chapter.

5.2.1 Three little terms
This section is dedicated to compute the three terms of (5.6).

Let us focus now on the first and last terms, which follow from a straightforward
computation.

Proposition 5.2.1. In the conditions of Theorem 5.1.1, we have

E

(
N

∑
i=1

log
√

1+ |zi|2
)

=
N
2
.

Proof. Observe that the function F(z) is in fact a polygaf (see for example Kr-
ishnapur [K3]). Then, following Krishnapur [K3], we have that the first intensity
function is

ρ1(z) =
1

4π
∆z log(K(z,z)), z ∈ C,
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where 1
4∆zu = ∂ 2u

∂ z∂ z is the complex Laplacian of u, and K(z,w) = (1+ zw)d is the
covariance kernel of each polynomial in the entries of A. Then,

ρ1(z) =
N
π

1
(1+ |z|2)2 , z ∈ C.

It follows,

E

(
N

∑
i=1

log
√

1+ |zi|2
)

=
N
π

∫
C

log
√

1+ |z|2
(1+ |z|2)2 dC=

N
2
,

where the last equality follows from taking polar coordinates.

Remark 5.2.2. The previous result can be also proved by stating that the roots are
invariant under the action of the unitary matrices (cf. Remark 5.1.2).

Proposition 5.2.3. In the conditions of Theorem 5.1.1, we have

E(log |det(Gd)|) =
r(ψ(r+1)−1)

2
.

Proof. The result follows from recalling that Gd is an r× r random matrix with
i.i.d. standard Gaussian entries and applying Lemma 3.2.6.

Now we will focus on the second term of (5.6).

Let us define A(z) :=
d

∑
i=0

Gi

(
d
i

)1/2

zi, where each Gi is an r× r random matrix

with i.i.d. standard Gaussian entries NC(0,1). The random complex polynomial
F(z), can be seen as a stochastic process from C to C by taking F(z) = det(A(z)).

Applying the weighted Kac-Rice formula to this particular process (2.16) (see
also [AW, Theorem 6.10] or [AAL, Theorem 6.1]),

E

(
N

∑
i=1

log |F ′(zi)|
)

=
∫

z∈C
E
(
|F ′(z)|2 log |F ′(z)| | F(z) = 0

)
ρF(z)(0)dz, (5.7)

where ρF(z)(0) is the density at 0 of the random variable F(z), and E(· | F(z) = 0)
is the conditional expectation, conditioned on the event {F(z) = 0}.

As a direct application of Corollary 2.1.5 we get the following.
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Proposition 5.2.4. In the conditions of Theorem 5.1.1, the density ρF(z)(0) satisfies

ρF(z)(0) =
1

π(1+ |z|2)NΓ(r)
.

Proof. It follows from the fact that A(z) ∈ Cr×r is a random matrix with i.i.d.
centred Gaussian entries with variance (1+ |z|2)d , and F(z) = det(A(z)).

Proposition 5.2.5. In the conditions of Theorem 5.1.1, the conditional expectation
E
(
|F ′(z)|2 log |F ′(z)| | F(z) = 0

)
is equal to

N(1+ |z|2)N−2Γ(r)
2

(
(r+1)ψ(r+2)− r−ψ(2)+ log

(
d(1+ |z|2)N−2)).

Proof. Taking ϕ(A(z)) = |F ′(z)|2 log |F ′(z)|, which is in fact invariant, and apply-
ing Lemma 2.1.6, we have the following equality of conditional expectations,

E
(
|F ′(z)|2 log |F ′(z)| | F(z) = 0

)
= E

(
|F ′(z)|2 log |F ′(z)| | Ar(z) = 0

)
(5.8)

where Ar(z) is the r-th column of A(z).
Since F(z) = det(A(z)), we have that F ′(z) = tr(adj(A(z))A′(z)), where A′(z)

is the derivative of A(z). Using the definition of the adjugate matrix, it follows
from a straightforward computation that

tr(adj(A(z))A′(z)) =
r

∑
i=1

det
(

A(z) i← A′(z)
)

where the matrix
(

A(z) i← A′(z)
)

is obtained from A(z) replacing its i-th column
with the i-th column of A′(z). If we expand this matrix in terms of its columns, we
get the expression(

A(z) i← A′(z)
)
=
(
A1(z)

∣∣ · · · ∣∣Ai−1(z)
∣∣A′i(z)∣∣Ai+1(z)

∣∣ · · · ∣∣Ar(z)
)
. (5.9)

In the case where Ar(z) = 0, we get

F ′(z) = det
(

A(z) i← A′(z)
)
= det

(
A1(z)

∣∣ · · · ∣∣Ar−1(z)
∣∣A′r(z)) .

In conclusion, the right-hand side of (5.8) is

E
(∣∣∣det

(
A(z) i← A′(z)

)∣∣∣2 log
∣∣∣det

(
A(z) i← A′(z)

)∣∣∣ | Ar(z) = 0
)
.
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Let us do a Gaussian regression, as in Proposition 1 of Wschebor [W]. Write
A′r(z) = η(z)+βAr(z) such that η(z) is a Gaussian random vector independent of
Ar(z).

It is easy to check that E(η(z)η(z)∗) = d(1+ |z|2)d−2Idr = σ2
η Idr, and we have

that the last conditional expectation is equal to,

E
(∣∣det

(
A1(z)

∣∣ · · · ∣∣Ar−1(z)
∣∣η(z)

)∣∣2 log
∣∣det

(
A1(z)

∣∣ · · · ∣∣Ar−1(z)
∣∣η(z)

)∣∣) .
Lastly, the last expectation is equal to

E
(
|detAM|2 log |detAM|

)
,

where A is an r× r matrix with i.i.d. complex standard Gaussian entries, and M is
the diagonal matrix whose first (r−1) entries are (1+ |z|2) the last one is ση .

The result follows from applying Corollary 3.2.9.

Now that we have computed successfully the density ρF(z)(0) and the condi-
tional expectation E

(
|F ′(z)|2 log |F ′(z)| | F(z) = 0

)
, let us compute the remaining

term of (5.6).

Proposition 5.2.6. In the conditions of Theorem 5.1.1,

E

(
N

∑
i=1

log |F ′(zi)|
)

=
N
2

(
N + logd +(r+1)ψ(r+2)− r−ψ(2)−2

)
.

Proof. From (5.7), we get that the left-hand side is equal to∫
z∈C

E
(
|F ′(z)|2 log |F ′(z)| | F(z) = 0

)
ρF(z)(0)dz.

Furthermore, applying Proposition 5.2.5 and Proposition 5.2.4 we have that it is
equal to

N
2π

(∫
z∈C

(r+1)ψ(r+2)− r−ψ(2)+ logd
(1+ |z|2)2 dz+(N−2)

∫
z∈C

log(1+ |z|2)
(1+ |z|2)2 dz

)
.

Then, the result follows from changing to polar coordinates.
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5.2.2 Proof of Main Theorem
Now, we will combine everything done so far, to prove Theorem 5.1.1.

Let F(z) be the complex polynomial of degree N = rd, defined as

F(z) = det

(
d

∑
i=0

Gi

(
d
i

)1/2

zi

)
,

where Gi are r× r complex random matrices with i.i.d. standard Gaussian entries
NC(0,1).

We want to compute E(V (ẑ1, · · · , ẑN)), the expected value of the logarithmic
energy of the projection of the roots of F(z) onto the Riemann sphere.

Recall (5.6), we have that E(V (ẑ1, · · · , ẑN)) is equal to

(N−1)E

(
N

∑
i=1

log
√

1+ |zi|2
)
− 1

2
E

(
N

∑
i=1

log |F ′(zi)|
)
+

N
2
E(log |det(Gd)|),

which, thanks to the computations of Section 5.2.1, is in turn equal to

(N−1)N
2

− N
4

(
N+ logd+(r+1)ψ(r+2)−r−ψ(2)−2

)
+

Nr(ψ(r+1)−1)
4

.

In conclusion,

E(V (ẑ1, · · · , ẑN)) =
N2

4
− N logd

4
− N

4

(
1+ψ(r+1)−ψ(2)

)
.

The result in S2 follows by subtracting N(N−1)
2 ln2, see (5.5).

5.3 Discussion and experimental examples
As observed above, the PEVP ensemble contains the spherical ensemble [AZ]
and the random polynomial roots [ABS] as particular examples. Remember that
the constant for the linear term in the energy was

( ln2
2 −

γ

4

)
≈ 0.2022 . . . for the

spherical ensemble, and −κ

2 ≈ 0.096 . . . for the random polynomial roots. This
means that the random polynomial roots are better distributed than the spherical
ensemble in terms of the logarithmic energy.
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In this section, we study the dependence on d of the logarithmic energy of the
PEVP ensemble in order to see if for an intermediate (d,r), the logarithmic energy
lies between the two extremes described above. From Theorem 5.1.1, we have that
the expectation of the logarithmic energy is

E(V (x1, · · · ,xN)) =
κ

2
N2− N logd

4
− N

4

(
1+ψ(r+1)−ψ(2)−2ln2

)
.

Now, it is well known that (see for example [AS, Section 6.3])

ψ(r+1) =
Γ′(r+1)
Γ(r+1)

=−γ +
r

∑
j=1

1
j
, (5.10)

and using the Euler-Maclaurin formula as in [AZ] we have

r

∑
j=1

1
j
= lnr+ γ +

1
2r
− 1

12r2 +O
(

1
r4

)
. (5.11)

Combining (5.10) and (5.11) we have

ψ(r+1) = lnr+
1
2r
− 1

12r2 +O
(

1
r4

)
. (5.12)

Using (5.12) and the equality γ = 1−ψ(2) in the logarithmic energy expression,
we obtain

E(V (x1, · · · ,xN)) =
κ

2
N2− N lnN

4
+N

(
ln2
2
− γ

4

)
− d

8
+

d2

48N
+NO

(
1
r4

)
.

Let us make two observations. Firstly, for d = 1 we recover the expression for
the logarithmic energy of the spherical ensemble. Secondly, for a given N, the
logarithmic energy of the PEVP ensemble decreases linearly with d. Indeed, the
term d2

48N is comparable with d
8 only for d ≥ 6N, which is obviously not the case if

d is a factor of N.
In what follows, we present some experimental results which illustrate this

dependence with d, and the comparison of the computed expected value of the
logarithmic energy with the empirical values.

We take two values for the number of points, N = 60 and N = 120, which have
several divisors, namely 12 and 16, respectively. For each N and for each pair (d,r)
such that N = dr, we sort random matrices and solve numerically the corresponding
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PEVP. The obtained eigenvalues are projected to S2, and we compute the resulting
logarithmic energy. This process is repeated 100.000 times for each pair (d,n).

In Figure 5.1, we present a violin plot (a kernel density estimation) for each d,
on top of the expected value computed in Theorem 5.1.1. Notice that for d = N,
the logarithmic energy corresponds to the roots of random polynomials [ABS].

In Figure 5.2, we show, with the same experimental data, the linear dependence
of the logarithmic energy on d.

In Figure 5.3, we show the difference between the expected value computed
in Theorem 5.1.1 and the density estimated in the 100.000 problem samples for
each d. Observe that the distributions are centred at zero, and the variance seems
to decrease with d.

1 2 3 4 5 6 10 12 15 20 30 60
d

−405

−400

−395

−390

−385

V
N

PEVP logarithmic energy vs. d for N = 60

Theoretical expected value

1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120
d

−1530

−1525

−1520

−1515

−1510

−1505

−1500

−1495

V
N

PEVP logarithmic energy vs. d for N = 120

Theoretical expected value

Figure 5.1: Empirical logarithmic energies for PEVP ensembles. The violin plots
are computed using 100.000 repetitions for each pair (r,d).
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1 5 10 15 20 30 40 60 120
d
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−1520

−1515

−1510

−1505

−1500

−1495

V
N

PEVP logarithmic energy vs. d for N = 120

Theoretical expected value

Experimental mean

Figure 5.2: Dependence of the logarithmic energy on d. The empirical results are
the same as in Fig. 5.1, but with d now correctly scaled on the x-axis, and the
expected value from Theorem 5.1.1 included.

1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120
d
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0
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15

V̂
N
−
V
N

PEVP logarithmic energy - Empirical/theoretical difference for N = 120

Figure 5.3: Difference between the empirical results and the expected value of
Theorem 5.1.1. Notice how the difference is centred at zero for all d.
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5.4 Extension for any N

In the first part of this chapter, we focused on studying the PEVP of degree d for
matrices of size r× r. Meaning, the point process producing N = rd points. In this
section we study the case for any N, extending the results previously obtained.

Let N,r ∈ N and d = (d1, · · · ,dr) ∈ Nr such that
r

∑
i=1

di = N and D = max
i

di.

Let us consider the random polynomial

F(z) = det

(
D

∑
i=0

∆

((
d j

i

)1/2
)

Gizi

)
,

where each Gi is an r× r random matrix with independent entries distributed

as NC(0,1) and ∆

((d j
i

)1/2
)

is the diagonal matrix whose non-zero entries are(d1
i

)1/2
, · · · ,

(dr
i

)1/2
and recall that if k > m then

(m
k

)
= 0. Observe that F(z) has,

generically, N = d1 + · · ·+dr roots in C, which can be projected to the unit sphere
through the inverse stereographic projection as before.

Please observe, that if we denote by A(z) the random polynomial matrix

A(z) =
D

∑
i=0

∆

((
d j

i

)1/2
)

Gizi,

the only difference with the work done in the previous sections is the fact that
between each row of A(z) we have different degree polynomials, i.e. deg(A(z)i j)
is di for all j. So, in the case where every di is the same, we recover the previous
setting.

Take N = 7, r = 3 and d = (3,2,2), in such case, the random matrices that we
are considering are of the form

G0 +


√

3 0 0
0
√

2 0
0 0

√
2

G1z+

√3 0 0
0 1 0
0 0 1

G2z2 +

1 0 0
0 0 0
0 0 0

G3z3, (5.13)

where Gi ∈ Cr×r have i.i.d. standard Gaussian entries.
In this sense, we get a new formulation for Theorem 5.1.1.
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Theorem 5.4.1 (New Main Theorem). Let F(z) be the random complex polynomial
of degree N defined as

F(z) = det

(
D

∑
i=0

∆

((
d j

i

)1/2
)

Gizi

)
,

where Gi are r× r matrices with i.i.d. entries following NC(0,1). Then, we have

E(V (x1, · · · ,xN)) =
κ

2
N2− N log(N/r)

4
− N

4

(
1+ψ(r+1)−ψ(2)−2ln2

)
where ψ(n) = Γ′(n)

Γ(n) is the digamma function, i.e., the logarithmic derivative of the
gamma function Γ(n).

An interesting fact that follows the previous result is that, for fixed N,r ∈ N,
the expected logarithmic energy does not depend on the way one decomposes N as
a sum of r positive numbers.

AZ [1, 7, 9, 16, 27] [2, 3, 12, 15, 28] [4, 9, 9, 15, 23] [7, 7, 12, 13, 21] [9, 10, 11, 12, 18] [12, 12, 12, 12, 12] ShubSmale

Ensamble

−405

−400

−395

−390

−385

V
N

Logarithmic energy for different ensambles, N = 60

Figure 5.4: Empirical logarithmic energies for PEVP for N = 60 and r = 5 and
different degree configurations. Notice how the empirical values coincide for the
different ensembles with r = 5.

The proof of the reformulated Main Theorem is done by tweaking the proof of
Theorem 5.1.1 so let us go straight to it.
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Recall the expression (5.6), in that case, the leading coefficient of the polyno-
mial F(z) was det(Gd), where Gd was the matrix of leading coefficients. Now,
observe that the leading coefficient for this generalization is once again the deter-
minant of the matrix of leading coefficients GL. In this case, the matrix GL is the
matrix whose i-th row is the i-th row of the matrix Gdi . In the example (5.13), the
matrix of leading coefficient would be

GL =

g(3)11 g(3)12 g(3)13

g(2)21 g(2)22 g(2)23

g(2)31 g(2)32 g(2)33

 ,

where g(k)i j is the i j-th entry of the matrix Gk. Then, we have an analogous expres-
sion of (5.6), namely,

(N−1)E

(
N

∑
i=1

log
√

1+ |zi|2
)
− 1

2
E

(
N

∑
i=1

log |F ′(zi)|
)
+

N
2
E(log |det(GL)|).

Please note that GL is an r× r random matrix with i.i.d. standard Gaussian entries,
which means that the third term is equal to the previous case (see Proposition 5.2.3).
The first term follows from Remark 5.2.2, since the set of roots is invariant under
the actions of unitary matrices, which is in fact equal to the previous case.

For the middle term, we will use the same strategy is the same, but we will
have to check where it differs with the previous computations.

Using Kac-Rice formula once again (2.16), we get the equality,

E

(
N

∑
i=1

log |F ′(zi)|
)

=
∫

z∈C
E
(
|F ′(z)|2 log |F ′(z)| | F(z) = 0

)
PF(z)(0)dz.

Observe that the density ρF(z)(0) is the same as before, so we only need to
compute the conditional expectation.

Proposition 5.4.2. In the conditions of Theorem 5.4.1, the conditional expectation
E
(
|F ′(z)|2 log |F ′(z)| | F(z) = 0

)
is equal to

N(1+ |z|2)N−2Γ(r)
2

(
(r+1)ψ(r+2)− r−ψ(2)+ log

(
N
r
(1+ |z|2)N−2

))
.
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Proof. The proof is in essence the same as the proof of Proposition 5.2.5, but with
some adjustments.

Taking ϕ(A(z)) = |F ′(z)|2 log |F ′(z)|, which is in fact invariant, and applying
Lemma 2.1.6, we have the following equality of conditional expectations,

E
(
|F ′(z)|2 log |F ′(z)| | F(z) = 0

)
= E

(
|F ′(z)|2 log |F ′(z)| | Ar(z) = 0

)
(5.14)

where Ar(z) is the r-th column of A(z).
Since F(z) = det(A(z)), we have that F ′(z) = tr(adj(A(z))A′(z)), where A′(z)

is the derivative of A(z). Using the definition of the adjugate matrix, it follows
from a straightforward computation that

tr(adj(A(z))A′(z)) =
r

∑
i=1

det
(

A(z) i← A′(z)
)

where the matrix
(

A(z) i← A′(z)
)

is defined in (5.9).
In the case where Ar(z) = 0, we get

F ′(z) = det((A(z)|A′(z))r) = det
(

A1(z)
∣∣∣∣ · · · ∣∣∣∣Ar−1(z)

∣∣∣∣A′r(z)) .

In conclusion, the right-hand side of (5.14) is

E
(∣∣det((A(z)|A′(z))r)

∣∣2 log
∣∣det((A(z)|A′(z))r)

∣∣ | Ar(z) = 0
)
.

Let us do a Gaussian regression, as in Proposition 1 of Wschebor [W]. Write
A′r(z) = η(z)+βAr(z) such that η(z) is a Gaussian random vector independent of
Ar(z).

It is easy to check that E(η(z)η(z)∗) = ∆
(
di(1+ |z|2)di−2) and the last condi-

tional expectation is equal to,

E

(∣∣∣∣det
(

A1(z)
∣∣∣∣ · · · ∣∣∣∣Ar−1(z)

∣∣∣∣η(z)
)∣∣∣∣2 log

∣∣∣∣det
(

A1(z)
∣∣∣∣ · · · ∣∣∣∣Ar−1(z)

∣∣∣∣η(z)
)∣∣∣∣
)
.

Lastly, the last expectation is equal to

E
(
|detMAD|2 log |detMAD|

)
,

where A is a random matrix whose entries are all independent and the first r−1
columns are complex standard Gaussian vectors and the last column is a centred
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Gaussian random vector with covariance matrix ∆(di), M is the diagonal matrix

whose entries are (1+ |z|2)
di
2 , and D is the diagonal matrix whose first r−1 entries

are 1 and the last one is (1+ |z|2)−1.
The result follows from applying Corollary 3.2.9 and taking into account

Remark 3.2.8.

So, Theorem 5.4.1 follows from the fact that instead of having log(d) one has
log(N/r) in the previous proposition.
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