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Resumen

El hilo conductor de esta monograf́ıa es la Fórmula de Rice para el número
de cruces de un proceso estocástico con un nivel o altura dada.

Trabajamos sobre dos tipos de problemas vinculados con dicha fórmula (fa-
milia de fórmulas).

Por un lado, en la primer parte de la tesis, abordamos el problema de extender
la Fórmula de Rice a procesos cuyas trayectorias tengan saltos, se obtiene tal
fórmula para un proceso que es la suma de dos procesos independientes: un
proceso de trayectorias regulares (suaves) al cual se le pueda aplicar la versión
tradicional y uno de saltos.

Se dan expresiones integrales para el número medio de cruces continuos y
para el número medio de cruces discontinuos (saltos) al nivel dado. Para ello es
necesario aplicar técnicas distintas, unas de procesos continuos y otras de procesos
puntuales.

Luego, se presenta un par de ejemplos de cálculo concreto de estas fórmulas y
se compara qué tipo de cruces predomina a medida que el nivel tiende a infinito.
Además, en uno de estos ejemplos y en otro de un proceso puramente de saltos,
se estudia la cola de la distribución del máximo cuando el nivel crece a infinito.

Por otro lado, en la segunda parte de la tesis, nos dedicamos a la aplicación
de la Fórmula de Rice (tradicional, es decir, para procesos suaves) para estudiar
el número de ráıces de polinomios aleatorios y sistemas de polinomios aleatorios.

Más concretamente, en primer lugar, abordamos los Polinomios Aleatorios
Trigonométricos Clásicos definidos como combinaciones lineales de cosenos con
coeficientes independientes Gaussianos. Se obtiene la varianza asintótica y un
Teorema Central del Ĺımite para el número de ceros de este tipo de polinomios.
En este punto, juega un rol protagónico el llamado Caos de Wiener.

Finalmente, estudiamos sistemas de ecuaciones polinomiales aleatorios com-
plejos, para ello adaptamos la Fórmula de Rice sobre variedades a este contexto.
Luego, usamos estas herramientas para dar un posible camino de prueba del Teo-
rema de Bézout sobre el número de soluciones de tales sistemas. Obtenemos la
prueba en algunos casos particulares, entre ellos el Teorema Fundamental del
Álgebra y los sistemas cuadrados cuadráticos (grado dos) de cualquier orden.
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Abstract

The main line of this monograph is Rice Formula for the number of crossings
through a fixed level by a stochastic process.

We are concerned with two types of problems associated with this formula
(family of formulas):

On one hand: in the first part of the thesis, we focus on the problem of
extending Rice’s formula to processes which trajectories include jumps, we obtain
such formula for processes that can be written as the sum of two independent
processes, one with smooth paths and a pure jump one.

We give integral expressions for the mean number of continuous and discon-
tinuous crossings through the given level. In order to do that, we need to use
different tools, from continuous processes theory to point processes theory.

Afterwards, departing from these results we present two examples of actual
computation of these formulas and we compare which kind of crossing predom-
inate as the level tends to infinity. Besides, in one of these examples and in
another example of a pure jump process, we study the tail of the distribution of
the maximum as the level grows to infinity.

On the other hand, in the second part of the thesis, we are concerned with the
application of (classical, that is, for smooth processes) Rice Formula to study the
number of roots of random polynomials and to systems of random polynomials.

More precisely, in the first place, we study Random Classical Trigonometric
Polynomials, which are defined as linear combinations of cosines with independent
Gaussian coefficients. We obtain the asymptotic variance and a Central limit
theorem for the number of roots on an interval. At this point, a key role is
played by the so called Wiener Chaos.

Finally, we study systems of random polynomials complex equations. For
that, we adapt Rice formula for manifolds to that context. Afterwards, we use
these tools in order to give a possible approach to the proof of Bézout Theorem
about the number of roots of such systems. We do obtain the proof in some
particular cases, for example, The Fundamental Theorem of Algebra and for
square quadratic (degree 2) systems of equations of any order.
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Chapter 1

Introduction

The main stream of this thesis is Rice Formula, also known as Kac-Rice Formula,
on the mean number of crossings through a fixed level by a stochastic process on
a time interval.

The basic underlying problem for Rice Formula is the following: given a
stochastic process defined on an interval, to study the random variable number
of points where the process crosses through a fixed level u.

This problem is intimately related with the barrier problem for the same
process, that is, with the problem of studying the probability that the process
exceeds certain level on the interval. The connection between these problems have
been used to obtain bounds for the tail of the distribution of the maximum of the
process on the interval in terms of Rice Formula. These are classical problems in
Probability Theory.

The multivariate version of the level crossing counting problem is as follows:
given a stochastic field defined on a parameter space T , usually (a subset of) Rd,
and a level u in Rd′ , d′ ≤ d, respectively, to study the random variable number of
points in T where the process takes the level u in the case d = d′; or the random
variable geometric measure of the level set for level u when d′ < d.

These problems appear in diverse topics of science and technology. For in-
stance, there are many situations where there are critical levels, above (or below)
which extreme events occur. For example, if the height of sea waves exceeds
certain level, they can cause damages on oil platforms or on ships; or if the con-
centration of certain substances may be harmful to health if too high; and so
on.

To be more precise, we can enumerate a few examples, in different fields and
areas, where the methodology of Rice Formulas has been applied: telecommuni-
cations and signal processing by Rice [73, 74]; reliability theory in engineering
by Rychlik [75]; oceanography: the height of sea waves by Longuett & Higgins
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2 1. Introduction

[59] and by Azäıs, León & Wschebor [10]; physics and astronomy: random
mechanics by Krée [51], the Shot Noise process by Biermé & Desolneux [18]
and Microlensing by Petters, Rider & Teguia [69]; algorithm complexity for
solving random systems of polynomial equations by Cucker, Crick, Malajovic &
Wschebor [24] and by Armentano & Wschebor [8], etc.

On this context, on the present monograph we deal with two problems:

1. to extend Rice Formula to new classes of processes. More precisely, we
consider processes whose paths are càdlàg and piecewise smooth but may
include jumps with finite intensity. We are interested in studying both, the
continuous and discontinuous crossings of such processes through a fixed
level.

The first part of the thesis is concerned with this problem and some related
topics.

2. to extend the applications of classical Rice Formula to polynomial equa-
tions, and systems of polynomial equations. We consider two ensembles of
random polynomials: classical trigonometric polynomials and study their
asymptotic behavior as the number of terms grows to infinity; complex sys-
tems of m variables and m equations with Weyl randomization and Bezout’s
theorem about its mean number of roots.

The second part of the thesis is concerned with these applications.

In the Preliminaries we review with some care the development of this method
and describe our contributions with more details.

This monograph is associated with the papers: Rice Formulas for processes
with jumps and applications, Dalmao & Mordecki [27], and CLT for Classical
Trigonometric Polynomials, Dalmao & León [26]. Besides, the work on complex
systems of equations in Chapter 6 is in collaboration with Diego Armentano,
see his PhD thesis [7], it is worth to say that the case of quadratic systems of
equations does not appear there.

We end this introduction with some general remarks about Rice Formula.

To fix ideas, we must say that by a Rice Formula we understand an expres-
sion (generally an integral formula) for the mathematical expectation, or for a
higher moment, of the random variable number of crossings by a stochastic pro-
cess through a fixed level in terms of the parameters and local properties of the
underlying process.

Generally speaking, very few is known about the distribution of the number
of crossings and of the maximum of the process on a finite interval, excepting

Rice Formula Federico Dalmao Artigas
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some very particular cases. Though for the case of processes of irregular paths,
as martingales or Lévy processes, there are well known results, for processes with
smooths paths, or piecewise smooth, not very much is known. For the former class
of processes see for instance Ikeda & Watanabe [41] or Karatzas & Shreeve [46],
for the latter class see Borovkov & Last [20, 21]. There are also results relating
the crossings (or level sets) of processes with smooth and processes with non-
smooth paths, by regularizing the paths by convolution with some convenient
kernel, see Wschebor [81] for a review. See also the Introduction of the book
Azäıs & Wschebor [12] for a review of known results on the distribution of the
maximum.

Thus, Rice Formula is a very relevant tool, as it gives some information about
this distribution, not directly but through its moments.

One of the main characteristics of the formula is that it expresses a global
property such as the number of crossings, which depend on the whole parameter
space, in terms of the parameters and local properties of the process. On the
other hand, one of the drawbacks is that the resulting expression may be very
hard or impossible to compute explicitly. But, it does can be computed, or at
least bounded, on some well chosen cases.

This family of formulas have a very rich history, we will talk about it briefly
in the Preliminaries, see page 5. Now, we limit ourselves to analyze the original
formula due to Rice in 1944. It was established for a stationary, centered Gaussian
process with covariance function r on the interval [0, T ], and states that the
expectation of the number of up-crossings, Uu, through the level u by the process
is given by

EUu = T

√
λ2

2π
e−u

2/2 = T

√
λ2

2π
ϕ(u), (1.1)

where the process has been normalized in order to have r(0) = 1. As usual, ϕ
is the standard Gaussian density function on R and λ2 is the second spectral
moment of the process.

Observe that from Equation (1.1), it follows that the maximum intensity of
crossings is reached at the level u = 0 (generally, if the process is not centered,
the maximum intensity of crossings is reached when u equals the mean of the
process) and that this intensity decays exponentially fast as the level u moves
away from zero.

Besides, it is well known from Harmonic Analysis that the second spectral
moment λ2 gives a measure of the local oscillation of the paths of X , that is,
the larger is the value of λ2 the more oscillations the paths present, then, it is
natural that for processes with large value of λ2 there be more crossings (if there
is a crossing, the oscillations tend to produce other crossings near the first one).

Federico Dalmao Artigas Rice Formula



4 1. Introduction

It is also important to remark that Equation (1.1) implies that the mean
number of crossings is proportional to the one dimensional density function of
the stationary process. This is one of the main features of Rice Formula and it
will appear several times in the sequel.

Undoubtedly, the most studied case in the literature is that of Gaussian pro-
cesses, specially when they are stationary. The main reason for such preference
is quite practical, since in that case there is a great simplification of the ingre-
dients in the formulas, with respect to their definition and actual computation.
For instance, the regularity of the paths implies the regularity of the moments
and densities and vice versa, or specially the remarkable and peculiar fact that
on the Gaussian case conditional expectations can be computed easily by means
of the procedure of Gaussian regression. Furthermore, in many situations, the
Gaussian law, with convenient parameters, is invariant under the orthogonal (uni-
tary) group on the parameter space, that is, under isometries, this fact permits
to remove the integrals and to compute everything at a single and convenient
point. See the Appendix on Gaussian processes for some details on Gaussian
distribution, page 131.

Apart from the Gaussian case, few is known, since the available results either
impose very restrictive conditions to the processes or the processes are assumed
to have a very particular form and the prove of the formula is based on ad hoc
arguments, see for instance Azäıs & Wschebor [12], Biermé & Desolneux [18] and
Alodat & Aludaat [4].

Rice Formula Federico Dalmao Artigas



Chapter 2

Preliminaries - Rice Formula

On this chapter we give a general panorama of the state of the art in what respect
to Rice Formulas and present with some detail the contributions of the present
monograph. For simplicity, we deal mainly with the univariate case.

2.1 Introduction

Consider a (real valued) stochastic process X = (X(t) : t ∈ [0, T ]) with smooth
paths, that is, the functions X(ω, ·) are of class Ck on [0, T ], for some k ≥ 1, with
probability one.

Eventually, we will allow the paths to have finitely many jumps.

As mentioned in the Introduction, the problem of studying the number of
level crossings of the process X and the problem of studying its extreme values
are classical in Probability Theory.

Let us start with the definition of a crossing. We avoid pathologies, see
Leadbetter, Lindgren & Rootzén [54, Section 7.2] for a wider discussion of the
definition.

Definition 2.1. Let u ∈ R and f : R → R be a càdlàg function with isolated
jumps and of class C1 between jumps, we say that:

· f has a continuous crossing through the level u at s ∈ (0, T ) if f is contin-
uous at s, f(s) = u and f ′(s) 6= 0.

· f has a discontinuous crossing through the level u at s ∈ (0, T ) if (f(s−)−
u)(f(s)− u) < 0. As usual, f(s−) = limt→u,t<u f(t).

If f ′(s) > 0 in the continuous case, or f(s−) < u < f(s) in the discontinuous

Federico Dalmao Artigas Rice Formula



6 2. Preliminaries - Rice Formula

one, we say that f has an up-crossing at s, otherwise the crossing is said to be a
down-crossing.

Remark 2.1. The paths of the processes we deal with have isolated zeros.

We denote the set of crossings through the level u by the process X on the
interval [0, T ] by Cu = Cu(X , [0, T ]), the number of these crossings by Nu = #Cu,
that is

Cu = {s ∈ (0, T ) : f has a crossing at s}, Nu = #Cu.

Analogously the number of up-crossing is denoted by Uu and the number of down-
crossings by Du. To distinguish between continuous and discontinuous crossings
we use the super indices c, d respectively.

There are some classical results which give general conditions for a process in
order not to have critical points at a given level. They permit to identify, in the
continuous crossings case, the roots of the equation X(t) = u with the crossings
of that level. See Azäıs & Wschebor [12] and Kratz [48] and references therein.

Theorem 2.1 (Bullinskaia). Let X be a stochastic process with paths of class C1

defined on an interval I in R. If for each t ∈ I, the random variable X(t) has a
density, and the density is bounded for t ∈ I and x on a neighborhood of u, then,
X has no critical points at the level u with probability one.

Theorem 2.2 (Ylvisaker). Let Z be a Gaussian process with continuous paths
over a separable compact topological space T with positive variance for all t ∈ T ,
then, Z has no critical points at the level u with probability one.

Theorem 2.3 (Tsirelson). Let Z be a Gaussian process over an arbitrary pa-
rameter space T , then, for each u such that

P
(

sup
t∈T

X(t) < u

)
> 0,

almost surely, there are not critical points at level u.

Classical Rice formula, that is, Rice Formula for processes with path of class
at least C1, is based on the Kac Counting Formula for the continuous crossings
through a fixed level by a real function on an interval I, [0, T ] on our case:

Nu(f, [0, T ]) = lim
δ→0

1

2δ

∫
[0,T ]

|f ′(t)| I{|f(t)− u| < δ}dt,

where IA stands for the indicator, or characteristic, function of the set A. See
Figure 2.1.

Rice Formula Federico Dalmao Artigas



2.1 Introduction 7

t

X(t)

u
u+ δ

u− δ

X(ω, t)

Figure 2.1: Kac Counting Formula

Roughly speaking, in order to obtain Rice Formula departing from Kac Count-
ing Formula, we apply the latter to the paths of the process X , i.e: to each
function f(·) = X(·, ω) and take expectations on both sides.

Informally, we can think on Kac Counting Formula in terms of the Dirac delta
measure. In effect, assume that the (continuous) crossings through the level u
are isolated, hence, in a small enough neighborhood Ii of one of the crossings si,
we may apply the change of variable formula to obtain

1 =

∫
R
δu(y)dy =

∫
Ii

δu(f(t))|f ′(t)|dt.

Summing over the crossings si : i = 1, . . . , Nu we obtain

Nu =

∫
[0,T ]

δu(f(t))|f ′(t)|dt.

See Adler & Taylor [1, page 265] and Kratz & León [49].

On this manner, we see that the limit when δ tends to zero in the above
formula represents nothing but an approximation to the unity.

Of course, one can use other approximations of the unity, for instance, Kratz
& León [49] and Azäıs & León [9] use Gaussian kernels.

In the case u = 0, in 1943 using the Fourier transform of the Dirac Delta
function, Kac [45] expressed the number of zeros, N0, of a C1 function as

N0 =
1

2π

∫ ∞
−∞

∫ t

0

cos(ζf(s))|f ′(s)|dsdζ.

Federico Dalmao Artigas Rice Formula



8 2. Preliminaries - Rice Formula

A generalization for other levels is given in Kratz & León [49].

It is a key fact that Kac Counting Formula ignores, that is, it does not take
into account, the discontinuous crossings through level u, in effect, for δ small
enough the strip (u − δ, u + δ) is completely included on the jump (f(t−), f(t))
and therefore the indicator function vanishes, see Figure 2.1 again.

2.2 Brief summary of the history and methods

For the sake of readability and of better understanding of the contributions of
the monograph, we include in the following lines a very brief summary of the
existing results related to Rice Formula.

In particular, we present different approaches and classes of processes for
which some of the versions of Rice Formula hold true.

2.2.1 The original Formula

The original Rice Formula obtained by Rice in 1944, 1945 in [73, 74] for a sta-
tionary centered Gaussian process with variance one on the interval [0, 1] states
that:

EUu =

√
λ2

2π
e−u

2/2, (2.1)

where λ2 stands for the second spectral moment of the process at t = 0, that is,
λ2 measures the local oscillation of the paths of X, see Adler & Taylor [1]

This result was obtained by Rice by informal arguments in his work about
telecommunications and signal processing [73, 74], see also Rainal [71]. After-
wards, it was formally proved under successively weaker conditions by Ivanov
(1960), Bulinskaya (1961), Itô (1964) and Ylvisaker (1965). The final result is
that Formula (2.1) holds true (with either finite or infinite value of λ2) whenever
the process has almost surely continuous paths, see Leadbetter & Spaniolo [55]
and Azäıs & Wschebor [12] and references therein.

One of the most surprising consequences of Formula (2.1) is that the mean
number of crossings is proportional to the density of the process at the initial time
(or at an arbitrary time instant since the process is stationary), see Leadbetter
& Spaniolo [55].
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2.2 Brief summary of the history and methods 9

2.2.2 A general formula for stationary processes

At this point we follow Leadbetter and Spaniolo [55], the following general formula
holds true for stationary processes

EUu =

∫ ∞
0

zp(u, z)dz (2.2)

where p is the joint density of the stationary process X and its derivative X ′ at
(any time) t, here the derivative is understood in some convenient way. Further,
it is easy to extend this formula to non-stationary processes adding an integral
w.r.t. to t.

In that sense, different classes of derivatives can be used: Marcus [61] consider
the derivative in the sense of absolute continuity of X; Albin [2] consider the
derivative in the L1 sense (subject to regularity conditions). Following Azäıs &
Wschebor [12], we interpret the derivative path wise.

Besides, from Equation (2.2) follows the formula for the mean number of
crossings in terms of the conditional expectation for the stationary case.

Following Ylvisaker (1965) and Leadbetter (1966), Leadbetter and Spaniolo
use polygonal processes in order to approximate the original process with simpler
ones. It is clear that the main advantage of polygonal paths is that each segment
of the polygonal path can cross only once the given level.

The stationarity of the process is a key fact to enable or, at least, to simplify
the computations in order to obtain this formula. For instance, if we take the
polygonal approximation method, by dividing the original interval in a large
number of sub-intervals of the same length, the law of the process is the same
at each one of them and the sub-intervals are more suited to treat the local
properties.

More precisely, they set q > 0, and approximate the number of up-crossings
through the level u by the process X, Uu, by the number of points of the form
jq in [0, 1] such that X(jq) < u < X((j + 1)q). Therefore

EUu ≈ Jq(u) = q−1P{X(0) < u < X(q)} = P{u− qZq < X(0) < u}

being Zq = (X(q) − X(0))/q. Then, the authors state, [55, Th.1], that for
stationary processes with continuous distribution, EUu = limq→0 Jq(u), using the
second form given for J to avoid the degeneracy of the distribution, and the limit
always exist either finite or infinite.

This is the basic result, under differentiability assumptions Formula (2.2) and
other related formulas follow.
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In particular, Theorem 2 of [55] state that if X(0) and X(q) have joint density
fq(x, z), then X(0) and Zq have joint density gq(x, z) = qfq(x, x+ qz) and

EUu = lim
q→0

∫ ∞
0

dz

∫ z

0

gq(u− qx, z)dx,

Further, this limit always exists, but it can be infinite. If in addition gq(u −
qx, z) →q p(u, z), then, Formula (2.2) follows provided some domination is as-
sumed. The final step is to interpret p as the joint density of the process and its
derivative.

2.2.3 Almost sure formulas

Usually, when dealing with level crossings and Rice Formulas one needs that such
a formula holds true for every level u, since, for instance if the interest relies on
the critical points, the formula must be valid for the derivative of the process at
the level u = 0.

But, in some circumstances it suffices to state an almost sure version with
respect to Lebesgue measure, that is, a formula which holds true for u in a set of
total Lebesgue measure rather than for all u in R. The almost sure version can
be obtained under much weaker and less restrictive conditions.

For instance, Rychlik [75] show that the formula

ENu = E (|Ẋ(0)|)pX(0)(u)

holds almost surely whenever E |Ẋ(0)| is finite and X(0) has a density w.r.t.
Lebesgue measure.

Examples are given in Rychlik [75] of situations where the almost sure version
suffices, in all of them the author is ultimately interested in computing some
intensity given in terms of the expectation of the number of crossings w.r.t. the
level u or uses a Bayesian argument which also yields an expectation of Nu w.r.t.
u.

The Bayesian argument is, roughly speaking, the following: in practical situ-
ations usually one does not know exactly the level u, perhaps due to the lack of
precision in some measuring device, so it is quite reasonable to assign it some a
priori probabilistic distribution (uniform in some small interval for example) and
then to take the average on this distribution.

The almost sure approach was used by Brillinger [22] for the multidimensional
case, by Geman and Horowitz [35] as a by product of the study of occupation
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times, by Zähle [82] also for the multidimensional case but for the (Hausdorff)
geometric measure of level sets and by Rychlik [75].

To end this discussion, let us mention that, in general, in order to obtain
the formula for every level departing from the almost sure formula some kind of
continuity of the number of crossings with respect to the level u is needed.

2.2.4 The general theory and some recent extensions

Our main reference on Rice Formulas is the book by Azäıs and Wschebor [12].
The authors present a general theory about Rice Formula. In particular, giving
important extensions and applications of Rice Formula.

Formulas are given for the factorial moments, of order one and higher, of
the number of crossings through a fixed level by a Gaussian or non-Gaussian
stochastic process.

On the Gaussian case, the required conditions on the process are of regularity
of the paths and of non-degeneracy of the finite-dimensional distributions of the
process. On the general case (not necessarily Gaussian) strong conditions on the
regularity of the density functions and conditional expectations are assumed. See
the Appendix A, page. 131.

Besides, the authors provide formulas for random fields, in the cases when the
domain has dimension larger than the co-domain. The remaining case is unin-
teresting. In the case of different dimensions the formulas involve the geometric
(Hausdorff) measure of the level set. Furthermore, the authors provide formulas
for counting the number of weighted crossings, for example, the weights may be
the values of the derivatives at the crossings.

Furthermore, these formulas are extended to the case when the parameter
space is a smooth manifold.

The book considers other aspects of the subject, as the Rice Series which give
some well behaved numeric algorithms for approximating some functional of the
number of level crossings; and some asymptotic for the number of crossings.

Finally, let us mention briefly the applications, they range from the distri-
bution of the maximum of the process on an interval, to random polynomials,
algorithmic complexity, gene detection, or the height of the sea waves (on an
infinitely deep sea). It is worth to say that these authors have studied recently
the problem of the tail of the maximum for a parameter space with a fractal
structure, see Azäıs and Wschebor [13].

In what respect some new extensions, Biermé & Desolneux [18] obtain a Rice

Federico Dalmao Artigas Rice Formula



12 2. Preliminaries - Rice Formula

Formula for the so called Shot Noise Process. More precisely, they assume that
the process has Gaussian impulses at random epochs given by a Poisson process
in R; the Shot Noise process is stationary. The resulting formula is expressed in
terms of the Fourier Transform (or characteristic function) of the process. The
authors apply the formula for the stationary centered Gaussian process obtaining
Classical Rice Formula and study some asymptotic in other cases. An interesting
point in this work is a bound on the number of crossings of a sum of processes in
terms of the number of crossings of their derivative processes. Finally, it is worth
to say that this kind of processes is very important in Physics.

Alodat & Aludaat [4] obtain a Rice Formula for the Generalized Hyperbolic
Process. This process is not Gaussian but it is stationary. As particular cases,
the Generalized Hyperbolic Process includes chi-squared and Student processes.

2.2.5 Formula for processes with jumps

On the case in which the paths of the process are allowed to have jumps with
finite intensity but are smooth between the jumps, very few is known. Basically,
the only results available are due to Borovkov and Last [20, 21].

In 2007 Borovkov and Last [20], proved the Rice Formula for a class of pro-
cesses called Piecewise Deterministic Markov Processes. These are stationary
processes, they have jumps at random epochs with random magnitudes, but
between its jumps the evolution of the process is deterministic, and described
through a given function µ and its associated flux.

In particular, from this definition follows that given the level u, the continuous
crossings through u only can be up-crossings on the case that µ(u) > 0 and down-
crossings on the case µ(u) < 0, these facts simplify the structure of the process
and strongly relate the continuous and discontinuous crossings.

Borovkov and Last’s formula says that if µ(u) 6= 0, then

ENu = |µ(u)|p(u),

being p the density of the stationary distribution of the process.

Some interesting facts about the Piecewise Deterministic Markov Processes
are that the jump part and the continuous part of the processes are not indepen-
dent, that the one-dimensional distribution are (conditionally) degenerated and
that the intensities of continuous and discontinuous crossings are linked.

It is worth to say that the major part of Borovkov and Last’s article [20] is
devoted to prove that as the interval increases to cover the positive axis and the
level tends to infinity the point process of crossings through the level u, suitably
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normalized, converge to a Poisson Process. This is the first result of this type for
this kind of processes, but is a well known result for Gaussian processes.

2.3 Contributions

At this point, we are able to write down in some detail which are the contributions
of the present monograph. These are twofold.

2.3.1 Processes with jumps

Part I of the thesis is dedicated to an extension of Rice Formula to a wider class of
stochastic processes. This extension allow the process to have jumps with finite
intensity, all the jumps epochs, the jumps magnitudes and the evolution between
the jumps are (can be) stochastic.

We deal with both, continuous and discontinuous crossings.

Part I is organized as follows, in Chapter 3 we obtain formulas for the mean
number of crossings, both continuous and discontinuous, through a fixed level by
the process on a compact interval. On Chapter 4, we compute these formulas in
some examples and apply the result to the asymptotic as the level goes to infinity
and to the study of the tail of the distribution of the maximum on a compact
interval.

The main new aspect in our formulas is that we study also the discontinuous
crossings through the given level. Although, Borovkov and Last in [20] studied
a special class of stochastic processes with jumps, there was a strong relation
between continuous and discontinuous crossings.

See Dalmao & Mordecki [27].

2.3.2 Random Polynomials

Part II of the thesis is concerned with the application of Rice classical Formula
to a pair of problems related to the number of roots of random polynomials and
polynomial systems.

Part II is organized as follows, in Chapter 5 we consider the Classical Trigono-
metric ensemble of random polynomials which are very important in Physics. We
follow Azäıs & León [9], who studied a stationary version of trigonometric polyno-
mials. We prove a previous conjecture for the asymptotic variance of the number
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of roots of such polynomials and a Central Limit Theorem for this ensemble. In
the proof of these results, we use the Chaotic expansion.

See Dalmao & León [26].

On chapter 6, we consider random complex square systems of polynomial
equations. We adapt Rice Formula to the complex framework and give some
argument that should lead to a proof of Bézout’s Theorem about the number
of roots of such a system. We are able to prove some particular cases of this
theorem, mainly the quadratic case of an m × m system whose equations have
degree 2.

Rice Formula Federico Dalmao Artigas
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Processes with Jumps
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As mentioned above, the first part of the thesis is dedicated to the extension
of Rice Formula to a wider class of stochastic processes. More precisely, we want
the paths of the process to have jumps with finite intensity and to count not only
the continuous crossings but also the jumps (discontinuous) crossings through
the level u.

This work began some time ago under the initiative of Mario Wschebor, and
is largely inspired by his fundamental contribution in the field, masterly exposed
by Azäıs and Wschebor in the book [12].

Part I is organized as follows.

In Chapter 3, we obtain integral formulas for the mean number of continu-
ous and discontinuous (and total) level crossings of such processes on compact
intervals.

In Chapter 4, we perform actual computations of these formulas in a few
examples. Then, we apply these formulas for the study of the tail of the distri-
bution of the maximum of a stationary process with Gaussian one-dimensional
distribution and jumps and also for a pure jump process. Besides, we compare
which kind of level crossings predominate as the level grows to infinity.
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Chapter 3

Rice Formula for processes
with jumps

In this chapter we present an extension of Rice Formula that allows the paths
of the process to have jumps with finite intensity, that is, we consider a class
of stochastic processes that may jump finitely many times on compact intervals
and have a smooth (stochastic) evolution between these jumps (excepting Section
4). More precisely, we consider a process X which can be written in the form
X = Z +J where Z is a process with continuously differentiable paths and J is
a pure jump process, independent from Z.

Thus, the process Z describes the continuous evolution of X and the process
J describes the jumps (instants and magnitudes) of X .

Observe that such a process can cross the level u in a continuous way but
it also can cross u at one of the jump epochs. Our interest relies on both,
continuous and discontinuous crossings through the level u. Up to our knowledge,
the discontinuous crossings have not been considered in the literature.

We obtain formulas for the mean number of continuous and discontinuous
crossings through a fixed level u ∈ R by such processes on a compact time interval
In the next chapter, we apply these formulas to the study of the distribution
function of the maximum of the process. We also include a generalization of
Borovkov-Last’s Rice-type formula to the non-stationary case

Naturally, when there are no jumps, our formulas reduce to the classical for-
mulas.

We start with some preliminaries, including the basic definition and the de-
scription of the processes we deal with.
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3.1 Preliminaries

We recall the definition of a crossing. Consider a càdlàg, C1 between jumps,
function f : [0, T ]→ R, T > 0. We say that f has a continuous crossing through
the level u at s ∈ (0, T ) if f is continuous at s, f(s) = u and f ′(s) 6= 0; and a
discontinuous crossing if (f(s−)− u)(f(s)− u) < 0.

If f ′(s) > 0 in the continuous case, or f(s−) < u < f(s) in the discontinuous
one, we say that f has an up-crossing at s, otherwise the crossing is said to be a
down-crossing.

Let T > 0 and X = (X(t) : t ∈ [0, T ]) be a stochastic process defined on the
interval [0, T ]. We assume that X can be written in the form X = Z + J where
Z and J are independent processes on [0, T ] as described below.

The process Z describes the continuous evolution of the main process X , we
assume some regularity conditions on Z, see Azäıs & Wschebor [12, Th. 3.4],
namely:

A1 the paths of Z are C1, almost surely.

A2 We assume that the density of Z(t), pZ(t)(x), is jointly continuous for t ∈
[0, T ] and x in a neighborhood of u. Further, assume that for every t, t′ ∈
[0, T ] the joint distribution of (Z(t), Z ′(t′)) has a density pZ(t),Z′(t′)(x, x

′)
which is continuous w.r.t. t (t′, x, x′ fixed) and w.r.t. x at u (t, t′, x′ fixed).

A3 for every t ∈ [0, T ] there exists a continuous version of the conditional
expectation

E (Z ′(t)|X(t) = x),

for x in a neighborhood of u.

A4 the modulus of continuity of Z ′ tends to 0 if δ → 0:

w(Z ′, δ) := sup
0≤s<t≤T, |t−s|<δ

|Z ′(t)− Z ′(s)| →
δ→0

0.

For such a process, Rice Formula holds true, see again Azäıs & Wschebor [12].

Let us now describe the jump process J .

The process J = (Jt : t ∈ [0, T ]) is based on a general point process (τn, ξn)n∈N
on [0,∞)× R, and is constructed via a family of Markov kernels (P

(n)
x,t ), (π

(n)
x,t ) :

n ∈ N as follows, see Jacobsen [42]: set τ0 = 0 and draw ξ0 according to the
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initial distribution π0, then, conditioned on the resulting value of ξ0, say x0, draw
τ1 with (conditional) distribution

P (τ1 ∈ · | ξ0 = x0) = P (1)
x0

(·).

Similarly, conditioned on the values of ξ0, τ1, say x0, t1 respectively, draw ξ1 with
distribution π

(1)
x0,t1(·). That is

P (ξ1 ∈ · | ξ0 = x0, τ1 = t1) = π
(1)
x0,t1(·).

Then, conditioned on the preceding values and on ξ1 = x1 draw τ2 with distribu-
tion P

(2)
(x0,x1),t1

(·) and so on.

Finally, for τn ≤ t < τn+1 let νt = n and

J(t) =
νt∑
k=0

ξk.

Therefore, τn represents the n-th jump instant (or epoch) and ξn represents the
n-th jump magnitude (or increment) of the process J . Besides, between the jump
epochs J is constant.

Remark 3.1. Equivalently, the kernels (P
(n)
x,t ) can be used to obtain the actual

value of the process at the jump instants, in that case we set J(τn) = ξn.

We can identify the (basic) marked point process
(
τn, J(τn) : n ∈ N

)
with its

associated random counting measure (RCM) µ =
∑νT

n=0 δ(τn,J(τn)) on [0, T ] × R,
where δ(t,x) is Dirac Delta measure concentrated at the point (t, x). Thus, the
RCM µ of a Borel set C in [0, T ]× R is just the number of points (jump epochs
and marks) of the marked point process that lie in C.

It can be proven, see Jacobsen [42, Chapter 4] or Appendix B in page 135, that
there exists a random measure L(dt, dy) on [0, T ] × R, called the compensating
measure of µ, such that the processes t 7→ L([0, t), A) are predictable for any
A ∈ B and under quite general conditions (for example the absolute continuity
of the kernels and the finiteness of the intensity of jumps), L can be written in
terms of ordinary Lebesgue integrals. Furthermore

E
∫

[0,T ]×R
fdµ = E

∫
[0,T ]×R

fL(dt, dy)

for any predictable function f .

Recall that, roughly speaking, to be predictable means that the value at t can
be “predicted” from the previous values on [0, t).
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3.2 Rice Formula

We turn now to the extension of Rice Formula for the process X just introduced.

By the preceding assumptions on the process X , we can apply the definition of
a crossing to almost all of its paths. Denote N c

u (resp. Nd
u) the (random) number

of continuous (resp. discontinuous) crossings through the level u by the process
X on the interval [0, T ] and by Nu the total number of crossings. Analogously
Uu, U

c
u, U

d
u (Du, D

c
u, D

d
u) denote respectively the total number, continuous, and

discontinuous up-crossings (down-crossings).

It is clear that Nu = N c
u + Nd

u , therefore, taking expectation on both sides,
we have

ENu = EN c
u + ENd

u . (3.1)

The two terms of the r.h.s. of Equation (3.1) are treated separately and by
different methods. For the continuous crossings we recall that classical Rice
Formula is based on Kac Counting Formula for the number of crossings of a C1

function, and observe that when the function has jumps (and the value u is not
one of the lateral limits) Kac Formula counts the number of continuous crossings
through the level, ignoring the discontinuous ones. On the other hand, for the
discontinuous crossings we use techniques from point processes theory.

We present now the main theorem of the first part of this monograph, which
includes the case of non-Gaussian continuous processes Z.

Theorem 3.1. Let Z and J be two independent processes on [0, T ] and assume
the following conditions

1. Z verifies the conditions A1, A2, A3 and A4 described above,

2. J is a pure jump process, as described above, with λ <∞

Let also X be defined by X(t) = Z(t)+J(t). Then, the mean number of continuous
and discontinuous crossings through the level u by the process X on the interval
[0, T ] are given, respectively, by:

EN c
u =

∫
[0,T ]

E (|X ′(t)| | X(t) = u) pX(t)(u)dt

=

∫
[0,T ]

E (|Z ′(t)| | X(t) = u) pX(t)(u)dt,

and

ENd
u = E

∫∫
[0,T ]×R

I{(X(t−)− u)(X(t−) + y − u) < 0}L(dt, dy),
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where IA is the indicator (or characteristic) function of the set A and L is the
compensating measure of the random counting measure generated on [0, T ] × R
by the jump process J . Similar formulas hold for the number of up and down
crossings with self evident changes.

Some remarks are in order. First, note that when the jump process J vanishes,
that is, if J(t) = 0 almost surely for all t ∈ [0, T ], Theorem 3.1 reduces to Classical
Rice Formula for the process Z.

Next, observe that the random variable J(t) does not need to have a density
for each t, but, in case it does we have a more explicit result.

Corollary 3.1. If J(t) has a continuous density pJ(t)(x) for t ∈ [0, T ] and x ∈ R,
we can also write

EN c
u =

∫
[0,T ]

dt

∫
R
E (|Z ′(t)| | Z(t) = v) pZ(t)(v)pJ(t)(u− v)dv.

Proof. Using the first equality in Lemma 3.1 in order to add the condition on
the value of Z(t), the integrand of the second expression in Theorem 3.1 for the
number of continuous crossings becomes∫

R
E [|Z ′(t)| | X(t) = u, Z(t) = v] pZ(t)|X(t)=u(v)pX(t)(u)dv

=

∫
R
E [|Z ′(t)| | Z(t) = v, J(t) = u− v] pZ(t)|X(t)=u(v)pX(t)(u)dv

where we used the fact that the events {X(t) = u, Z(t) = v} and {Z(t) =
v, J(t) = u − v} are equivalent. Further, since Z, and thus Z ′, is independent
from J , we can remove the condition J(t) = u − v from the conditional expec-
tation. Finally, by standard arguments, it follows that pZ(t)|X(t)=u(v)pX(t)(u) =
pZ(t),J(t)(v, u− v). This proves the corollary.

Finally, a careful analysis of the proof of Theorem 3.1 in Section 4 shows that
the result in Theorem 3.1 holds true whenever the law of the process Z, restricted
to the subintervals [τi, τi+1], conditioned to the paths of the jump process verifies
the hypothesis A1 - A4. Besides, A3 can be weakened assuming that the product
of the conditional expectation and the density of X(t) (or Z(t) in Corollary 3.1)
is continuous.

We end this section specializing these results to the case where Z is a Gaus-
sian process, here, the hypothesis of continuity of the densities and of the con-
ditional expectation may be released since they follow from the conditions of
non-degeneracy of the distribution of Z(t), t ∈ [0, T ], and on the regularity of the
paths. Besides, the ingredients in the formulas are computable explicitly, see the
Appendix A in page 131.
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Corollary 3.2. Let Z be a Gaussian process with C1 paths such that for every
t the distribution of Z(t) is non-degenerated, assume further that J is a pure
jump process independent from Z with finite intensity of jumps. Then the result
of Theorem 3.1 holds true.

Corollary 3.3. Under the hypothesis of Corollary 3.2, if Z has constant variance,
then, the formula for the continuous crossings reduces to:

EN c
u = E |Z ′(0)|

∫ T

0

pX(t)(u)dt.

In particular, if X is a stationary process, last formula further reduces to

EN c
u = T E |Z ′(0)|pX(0)(u).

Proof. This follows from the well known fact that for a centered Gaussian pro-
cess, having constant variance implies the independence of the process and its
derivative at each point.

Remark 3.2. Under the hypothesis of Corollary 3.3, let us define p : R→ R by

p(u) :=
1

T

∫ T

0

pX(t)(u) dt.

It is easy to check that p is a probability density function. Thus, we can rewrite
the formula in Corollary 3.3 as

EN c
u = T E |Z ′(0)| p(u).

Thus, we recover the nice fact that the mean number of continuous crossings
through the level u by X is proportional to a probability density function evaluated
at u. This expression is similar to Rice’s original result, but it involves a (in
principle) different density function.

In particular, if X is a stationary process, the density p reduces to that of
X(0), just as in the original formula due to Rice. Nevertheless, the process is not
the same as in Rice’s original result.

Furthermore, observe that in general, the density p is a mixture of the densities
of the uni-dimensional laws of X(t) for t ∈ [0, T ]. Thus in the stationary case
appears the density of X at any given time, and in the general case appears a
mixture of these densities.
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3.3 Generalization of Borovkov-Last formula

In this section we move from the main line of the chapter and consider a dif-
ferent class of stochastic processes, namely, the Piecewise Deterministic Markov
Processes.

Borovkov & Last in [20] are interested in the continuous crossings through a
fixed level u by a stationary Piecewise Deterministic Markov Process. Roughly
speaking, a process X of this class, starts its evolution at a random position, then
jumps a random quantity at random times but moves deterministically between
jumps.

These processes are formally described by a general point process (τn, ξn)n,
as described in Appendix B, see page 135, and a (non-random) rate function
µ : R → R. More precisely, the process X has jumps at the epochs (τn), the
magnitude of the n-th jump is ξn and on the interval [τn, τn+1), X(t) follows the
integral curve of µ with initial condition X(τn) = X(τ−n ) + ξn.

Note that the jump part of the process is not independent from the continuous
one.

Let Dµ = {u : µ(u) = 0} be the set of critical levels. Observe that if µ(u) > 0
(resp. <), the continuous crossings through the level u can only be up-crossings
(resp. down-crossings).

Next theorem extends Borovkov-Last Formula to the non-stationary case.

Theorem 3.2. Let u 6∈ Dµ and assume that µ and pX(t) are continuous w.r.t. x
in a neighborhood of u and t ∈ [0, T ]. Then

EN c
u = |µ(u)|

∫ T

0

pX(t)(u)dt

Proof. For the levels u 6∈ Dµ we can apply Kac counting formula path wise for
almost all paths of X . In effect, the continuity of µ implies that the paths are of
class C1 between the jumps and that X ′(t) = µ(X(t)) for almost all t ∈ [0, T ].
Since X(t) has a density, the value u is not taken at the extremes of the interval
neither at the jump points almost surely. Furthermore, by the continuity of this
density, there are not tangencies at level u.

Now we take expectation on both sides of Kac Counting Formula and observe
that the number of continuous crossings of the level u 6∈ Dµ is bounded by the
number of jumps +1 of X in [0, T ]. In effect, the sign of µ(u) determines the
direction of the continuous crossings of u, so, between two continuous crossings
must be a discontinuous one in the opposite direction, thus there is at most one
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continuous crossing at each one of the intervals of the partition τ0, . . . , τνT , T .
Then, since νT in integrable, we may pass to the limit under the expectation
sign:

EN c
u = lim

δ↓0

1

2δ

∫ T

0

E
[
|X ′(t)|I{|X(t)−u|<δ}

]
dt.

Now, for each t ∈ [0, T ], with probability one t is not a jump epoch, then X ′(t)
is a deterministic function of X(t), namely X ′(t) = µ(X(t)), so the integrand is
simply the expectation of a function of X(t), therefore

EN c
u = lim

δ↓0

1

2δ

∫ T

0

∫ u+δ

u−δ
|µ(x)|pX(t)(x)dxdt.

By the continuity of the integrand and the compactness of the domain we can
pass the limit inside the integral w.r.t. t. Then, the result follows by the mean
value theorem.

As a corollary, when X is a stationary process, we obtain Borovkov-Last’s
Formula [20, Th. 3.1].

Corollary 3.4. If in addition to the conditions of Theorem 3.2, the process X is
stationary, then

EN c
u = |µ(u)|p(u),

where p = pX(0).

Remark 3.3. Note that on this case the (net) number of discontinuous crossings,
namely the difference of down and up crossings Dd

u−Ud
u , is related to the number

of continuous crossings, actually we have:

EDd
u − EUd

u = EN c
u + sgn(µ(u))(P(X(T ) < u)− P(X(0) < u))

3.4 Proofs of Theorem 3.1

In this section we present the proof of Theorem 3.1. Actually, since the gen-
eral hypothesis of the main theorem are quite restrictive, we present also an
alternative proof when the process Z is Gaussian by the arguments of polygonal
approximation.
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3.4.1 General proof

First, we prepare some auxiliary results.

Lemma 3.1. Let T,X, Y, Z be random variables, then

E (T | X = x, Y = y) =

∫ ∞
−∞

E (T | X = x, Y = y, Z = z)pZ|X=x,Y=y(z)dz.

and

E (T | X = x, Z = z)pX|Z=Z(x)

=

∫ ∞
−∞

E (T | X = x, Y = y, Z = z)pX,Y |Z=z(x, y)dy.

Proof. These equalities follow directly from the properties of conditional expec-
tation, see Petrov & Mordecki [64, page 215]. For example, for the first one take
F2 = (X, Y ) and F3 = (X, Y, Z).

Proof of Theorem 3.1. Let us start with the formula for the mean number of
continuous crossings.

In order to separate the different structures of the process, we compute the
expectation by conditioning on the paths of the pure-jump process J and make
use of the proof of Rice Formula on the non-Gaussian case on Azäıs & Wschebor
[12, Th. 3.4].

Then, we condition on the number of jumps, νT = n, on the jump instants,
τk = tk, thus

EN c
u = E

(
E [N c

u (X , [0, T ]) | νT = n; τ = t]
)

=
∞∑
n=0

pνT (n)

∫
[0,T ]n

pτ (t) E [N c
u (X , [0, T ]) | νT = n; τ = t] dt,

where we set τ = (τ1, . . . , τn) and t = (t1, . . . , tn).

Now, we look at the integrand, since the number of crossings is additive w.r.t.
the interval, we split the interval [0, T ] as the union of the intervals Ik := [tk−1, tk),
then

E [N c
u (X , [0, T ]) | νT = n; τ = t] =

n∑
k=1

E [N c
u (X , Ik) | νT = n; τ = t]
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Conditioning further on the values of the jump process at the jump epochs, each
term can be written, see Lemma (3.1), as∫ ∞

−∞
E [N c

u (X , Ik) | νT = n; τ = t; J(tk−1) = y] pJ(tk−1)|νT=n;τ=t(y)dy.

Now, conditionally on νT = n; τ = t and J(τk−1) = y, the process X can be
written as Z + y on Ik. Since Z verifies the conditions A1, A2, A3 and A4 on
Ik so does the process Z + y, therefore we may apply Rice Formula, see Azäıs &
Wschebor [12], on each interval under these conditions to obtain

E [N c
u (X , Ik) | νT = n; τ = t; J(tk−1) = y]

=

∫ τk

τk−1

E [|Z ′(t)| | X(t) = u, νT = n; τ = t, J(τk−1) = y]

· pX(t)|νT=n;τ=t,J(τk−1)=y(u)dt

Each one of these expressions should be replaced in the previous one.

Finally, we have to integrate (the conditions), for notational simplicity, let
us write g(n, t, y) = E [|Z ′(t)| | X(t) = u, νT = n; τ = t, J(τk−1) = y], g(n, t) =
E [|Z ′(t)| | X(t) = u, νT = n; τ = t] and g(n) = E [|Z ′(t)| | X(t) = u, νT = n].
Let us perform the integrals one by one, starting w.r.t. y, (use Fubini) then

∫
R
g(n, t, y)pX(t)|νT=n;τ=t,J(τk)=y(u)pJ(tk)|νT=n;τ=t(y)dy

=

∫
R
g(n, t, y)p(X(t),J(τk))|νT=n;τ=t(u, y)dy

= g(n, t)pX(t)|νT=n;τ=t(u),

Where we used Lemma (3.1). Now, we sum the integrals over k and integrate
w.r.t. t:

∫ T

0

dt

∫
[0,T ]n

g(n, t)pX(t)|νT=n;τ=t(u)pτ |νT=n(t)dt

=

∫ T

0

dt

∫
[0,T ]n

g(n, t)p(X(t),τ )|νT=n(u.t)dt

=

∫ T

0

g(n)pX(t)|νT=n(u)dt.

By the same arguments one can remove the condition on νT from the density in
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the last integral. In effect

∞∑
n=0

pνT (n)

∫ T

0

g(n)pX(t)|νT=n(u)dt

=

∫ T

0

∞∑
n=0

E [|Z ′(t)| | X(t) = u, νT = n] pX(t),νT (u, n)dt

=

∫ T

0

E [|Z ′(t)| | X(t) = u] pX(t)(u)dt

where we used that pX(t)|νT=n(u)pνT (n) = pX(t),νT (u, n). The result follows.

Now we proceed to the formula for the mean number of discontinuous crossings
through level u.

Clearly, the process X only can have a discontinuous crossing through the
level u at the jump epochs τn;n = 1, . . . , νT , and the magnitude of the jump of
X at each one of these points is ξn. Hence, we consider the marked point process
((τk, ξk) : k ≥ 0) associated to J on [0,∞)×R, which defines a random counting
measure µ(dt, dy), in terms of which we can write:

Nd
u =

νT∑
k=1

I{(X(τ−k )− u)(X(τ−k ) + ∆X(τk)− u) < 0}

=
∑

0≤t≤T

I{(X(t−)− u)(X(t−) + ξνt − u) < 0}

=

∫
[0,T ]×R

I{(X(t−)− u)(X(t−) + y − u) < 0}µ(dt, dy)

Is easy to see that this RCM has a compensating measure denoted by L(dt, dy),
see Jacobsen [42] or Appendix B in page 135. Taking expectations, conditional
w.r.t. the continuous process Z, on both sides we have

ENd
u = E

(
E [Nd

u | Z]
)

= E
(
E
[∫

[0,T ]×R
I{(X(t−)− u)(X(t−) + y − u) < 0}µ(dt, dy) | Z

])
= E

∫
[0,T ]×R

I{(X(t−)− u)(X(t−) + y − u) < 0}L(dt, dy)

where we used that, conditioned on Z, the integral is done w.r.t. the RCM µ
associated with J which coincides with the integral w.r.t. the compensating
measure L(dt, dy) since the integrand is predictable, in fact it is a function of t−.
Finally we integrate with respect to Z and the result follows.
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3.4.2 Alternative proof for Gaussian Z

As we have already mentioned, when Z is a Gaussian process things are easier,
see Appendix A in page 131.

For instance, we can adapt the proof of Rice Formula via the arguments of
polygonal approximation of the process in order to include the jumps. The only
care we need to take is to approximate in this form only the continuous process
Z, and not the total process X . Otherwise, each continuous or discontinuous
crossing of the original process X would generate a (continuous) crossings of the
polygonal approximating process.

The arguments of polygonal approximation have been used extensively by
Leadbetter & Spaniolo [55] and also by Azäıs & Wschebor [12].

We prepare some definitions and auxiliary results first.

For m ∈ N, let Zm be the dyadic polygonal approximation of Z on [0, T ], that
is, at the dyadic points k

m
T : k = 0, 1, . . . ,m the process Zm coincides with Z

Zm

(
k

m
T

)
= Z

(
k

m
T

)
,

and on the intervals
[
k
m
T, k+1

m
T
]

the paths of Zm are linear. It is easy to see
that the process Zm is also Gaussian.

Besides, define the approximating process Xm by

Xm(t) = Zm(t) + J(t)

for t ∈ [0, T ].

Lemma 3.2. We need the following facts.

1. Xm(t) has a density for each t,

2. the map
x 7→ E (Z ′+(t) | Z(t) = x)pZ(t)(x)

is bounded on R, actually it is bounded by (c1 +c2|x|)pZ(t)(x) with c1, c2 > 0.

Proof. 1. This follows from the convolution formula since Zm(t) and J(t) are
independent and have densities.

2. This follows from the Gaussian regression formula. In effect, for each t ∈
[0, T ] we have

E
[
Z ′+m (t) | Zm(t) = x

]
= E (ζ(t) + c(t)x)
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where ζ(t) is a centered Gaussian random variable with variance

var(ζ(t)) = var(Z ′+m (t))− cov2(Z ′+m (t), Zm(t))

var(Zm(t))

and c(t) = cov(Z ′+m (t), Zm(t))/var(Zm(t)). From the assumptions on non-
degeneracy of the 1-dimensional distributions and of smoothness of the
paths of the Gaussian process Z it follows that var(ζ(t)) and c(t) are
bounded functions on [0, T ] and thus the claim is proved.

We turn now to the second proof of Theorem 3.1 in the case of Gaussian
continuous part Z. This is Corollary 3.2.

Proof of Corollary 3.2. The proof has two parts.

Let us begin with the formula for the mean number of discontinuous crossings.
Observe that the same argument as in the proof of Theorem 3.1 carries on, note
that the process Z plays a secondary role in this part of the proof.

We turn to the mean number of continuous crossings through the level u by
the process X . We follow the proof of Rice Formula on the Gaussian case in
Azäıs & Wschebor [12, Th. 3.1].

Since the paths of the process Xm are almost surely piecewise C1 and Xm(t)
has a density for all t, we can apply Kac counting Formula to count the number
of continuous up-crossings of Xm, we have

U c
u(Xm) = lim

δ ↓ 0

1

2δ

∫
[0,T ]

X ′+m (t)I{|Xm(t)−u|<δ}dt.

Furthermore, since the paths of J are piecewise constant it follows that, for
almost every t ∈ [0, T ], X ′+m (t) = Z ′+m (t), then

U c
u(Xm) = lim

δ ↓ 0

1

2δ

∫
[0,T ]

Z ′+m (t)I{|Xm(t)−u|<δ}dt.

For each realization of Xm, the r.h.s. counts the number of up-crossings of the
level u. Since the paths of this process are linear between the points of the
partition formed by dyadic points and jump epochs, there can not be more than
one up-crossing on each interval of this partition. Therefore, the r.h.s. is not
larger than the number of points in the partition, namely, 2m + νT which is an
integrable function in Ω× [0, T ].
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Hence, we take expectation on both sides and apply the Dominated Conver-
gence Theorem to interchange limit and expectation signs. Thus

EU c
u(Xm) = lim

δ ↓ 0

1

2δ

∫
[0,T ]

E
[
Z ′+m (t)I{|Xm(t)−u|<δ}

]
dt.

Let us focus now on the expectation appearing in the integrand. Since
(Zm(t), Z ′m(t)) is a Gaussian random vector for each t and is independent from
J(t), the conditional expectation has a continuous version, defined via Gaussian
regression, Therefore we can write

EU c
u(Xm) = lim

δ ↓ 0

1

2δ

∫
[0,T ]

∫∫
R2

E
[
Z ′+m (t)I{|Xm(t)−u|<δ} | Zm(t) = x, J(t) = y

]
· pZm(t)(x)pJ(t)(y)dxdydt

= lim
δ ↓ 0

1

2δ

∫
[0,T ]

dt

∫
R
pJ(t)(y)dy

∫
{|x+y−u|<δ}

E
[
Z ′+m (t) | Zm(t) = x

]
pZm(t)(x)dx

= lim
δ↓0

∫
[0,T ]×R

fδ(t, y) · pJ(t)(dy)dt

where we use the independence of Z and J to remove the condition on J(t). In
the last line we denote

fδ(t, y) =
1

2δ

∫ u−y+δ

u−y−δ
E
[
Z ′+m (t) | Zm(t) = x

]
pZm(t)(x)dx.

Therefore, by Lemma 3.2 and since Zm(t) is a centered Gaussian random
variable for each t ∈ [0, T ], it follows that the integrand is bounded by a constant
(the first factor is bounded by c1 + c2|x| for some constants c1 and c2, but the
density function tends to zero very rapidly as |x| → ∞, hence, the integrand
tends to zero as |x| → ∞, as it is continuous we conclude that it is bounded by
a constant). hence, so is fδ.

Since, the measure pJ(t)(dy)dt is finite (in fact its total measure is T ), we can
apply Lebesgue’s Dominated Convergence Theorem and change the limit and
integral signs.

lim
δ↓0

fδ(t, y) = E
[
Z ′+m (t) | Zm(t) = u− y

]
pZm(t)(u− y)

Then, doing a change of variables

EU c
u(Xm) =

∫
[0,T ]

dt

∫
R
E
[
Z ′+m (t) | Zm(t) = v

]
pZm(t)(v)pJ(t)(u− v)dy
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We have obtained so far the result for the polygonal approximation Xm. Let
us take the limit m→∞.

In the first place, it is easy to see that U c
u(Xm) increases to U c

u(X ), then the
Monotone Convergence Theorem implies that EU c

u(Xm)→m EU c
u(X ).

On the other hand, the integrand is a continuous function of EZm(t) and
var(Zm(t)), which converge uniformly to the mean and variance of Z(t) respec-
tively, so we can pass to the limit inside the integral and the limit is the same
integral of the mean and variance of Z(t).

This proves the Corollary.
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Chapter 4

Examples and application to
the distribution of the

maximum

In this chapter we present two examples of actual computation of the formulas
introduced in the preceding chapter. Then we apply them to the study of the
distribution of the maximum of the process on a compact time interval as the level
grows to infinity. Furthermore, we compare which kind of crossings predominate
as the level u tends to infinity. Finally, we study the distribution of the maximum
as the level grows to infinity for a pure jump process.

4.1 Examples

In this section we present two examples. Remember that the process X is written
as the sum of two independent processes Z and J , representing the continuous
part and the jumps respectively.

4.1.1 Stationary processes with 1-dimensional Gaussian
distribution

In this example we assume that Z = (Z(t) : t ∈ [0, T ]) is a stationary, centered
Gaussian process with C1 paths. Such a process is completely described by its
covariance function, see Azäıs & Wschebor [12]. The covariance function of Z is
defined by r(τ) = EZ(0)Z(τ), without lose of generality, assume that r(0) = 1/2.

Let J = (J(t) : t ∈ [0, T ]) be a pure jump process constructed in the fol-
lowing way. Given a sequence of independent and identically distributed random
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variables (ξn : n ∈ N) with common centered Gaussian distribution with variance
1/2, and ρ ∈ R such that |ρ| < 1, set A0 = ξ0 and, for n ≥ 1, define

An = ρAn−1 +
√

1− ρ2 ξn.

It is easy to check that (An : n ∈ N) is a centered, stationary Gaussian sequence
with variance 1/2 and covariance between A0 and An given by ρn/2.

Further, consider a (simple) Poisson process ν = (νt : t > 0) with intensity
0 < λ < ∞, independent from (ξn : n ≥ 0) and from Z, that is, consider
(τn : n ≥ 0) such that τ0 = 0 and, for n ≥ 1, τn − τn−1 are i.i.d. exponential
random variables with intensity λ and let

νt = max{n : τn ≤ t}. (4.1)

Define

J(t) = Aνt .

Remark 4.1. To define the process J in terms of kernels, let P
(n)
xn−1,τn−1 be the

exponential distribution with intensity λ (regardless of xn−1, τn−1). Besides, let

π
(n)
xn−1,τn, representing the increments at the jump instant τn, be the normal dis-

tribution centered at (ρ− 1)xn−1 with variance (1− ρ2)/2.

We call such a process a Poisson-auto-regressive process (of order 1, covariance
ρ and intensity λ).

Proposition 4.1. A Poisson-auto-regressive process J is wide-sense stationary.
Besides, the random variable J(t) has a centered Gaussian distribution with vari-
ance 1/2 for every t. The covariance between J(t) and J(t + τ) is given by
eλ(1−ρ)τ/2.

Proof. We compute the distribution and the covariances of J(t) conditioning on
the number of jumps of J :

P(J(t) ≤ x) =
∞∑
n=0

pνt(n)P(An ≤ x) = P(A0 ≤ x),

since An has centered Gaussian distribution with variance 1/2 for each n, hence,
so does J(t) for all t. In particular, J(t) is centered for all t.
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For the second moments we have:

E J(t)J(t+ τ)

=
∞∑

n,k=0

pνt(n)P(ν(t, t+ τ ] = k)E (J(t)J(t+ τ) | νt = n, ν(t, t+ τ ] = k)

=
∞∑

n,k=0

pνt(n)pντ (k)E (AnAn+k) =
∞∑
n=0

e−λt
(λt)n

n!

∞∑
k=0

e−λτ
(λτ)k

k!

ρk

2

=
1

2
e−λτeλρτ ,

where ν(t, t+ τ ] denotes the number of jump epochs on the interval (t, t+ τ ].

Next theorem gives the mean number of continuous and discontinuous cross-
ings through the level u by the process X on the interval [0, T ]. For the sake
of notational simplicity we consider only the up-crossings, but the case of down-
crossings is completely analogous.

Theorem 4.1. Let X = Z + J with Z,J independent processes such that Z is
a stationary, centered Gaussian process with r(0) = 1/2 and C1 paths, and J a
Poisson-auto-regressive process. Then

EUu = T

√
λ2

2π
ϕ(u) + λT pρ(u),

where ϕ stands for the standard Gaussian density function, λ2 is the second spec-
tral moment of Z, and pρ(u) is the probability that a two dimensional, centered,
Gaussian vector with unit variances and covariance (1 + ρ)/2 belongs to the set
(−∞, u)× (u,∞).

Proof. We begin considering the mean number of continuous crossings, as Z is
a Gaussian and stationary process, we can apply Corollary 3.3. Besides, by
Proposition 4.1, the density pX(t) = pX(0) = ϕ for all t, therefore

EU c
u = T EZ ′+(0)ϕ(u).

Finally, an elementary computation shows that EZ ′+(0) =
√
λ2/2π. This gives

the first term of EUu.

Let us consider now the discontinuous up-crossings. The compensating mea-
sure of the point process (τn,∆An)n, ∆An = An−An−1, is λdt F (dy), where F is
the Gaussian distribution centered at (ρ− 1)Aνt− and with variance (1− ρ2)/2,
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see Jacobsen [42, eq. 4.64]. Hence

EUd
u = E

∫ T

0

∫
R
I{X(t−) < u,X(t−) + y > u}λdt F (dy)

= λE
∫ T

0

dt

∫
R
I{X(t−) < u,X(t−) + y > u}F (dy).

Actually F is the distribution of ∆Aνt conditioned on the random vector
(Z(t), Aνt− ), so

EUd
u = λE

∫ T

0

P
(
X(t−) < u,X(t−) + ∆Aνt > u | Z(t), Aνt−

)
dt

= λE
∫ T

0

∞∑
n=0

pνt(n)P (Z(t) + An < u,Z(t) + An + ∆An+1 > u | Z(t), An) dt

= λ

∫ T

0

∞∑
n=0

pνt(n)EP (Z(t) + An < u,Z(t) + An + ∆An+1 > u | Z(t), An) dt

= λ

∫ T

0

∞∑
n=0

pνt(n)P (Z(t) + An < u,Z(t) + An + ∆An+1 > u) dt

where we have conditioned on the number of jumps and used Fubini’s theorem.
By the stationarity of Z and J , the last probability does not depend on t and n,
hence

EUd
u = λP (Z(0) + A0 < u,Z(0) + A0 + ∆A1 > u)

∫ T

0

∞∑
n=0

pνt(n)dt

= λTP (Z(0) + A0 < u,Z(0) + A0 + ∆A1 > u) .

Now, observe that A0 + ∆A1 = A1 = ρξ0 +
√

1− ρ2ξ1 and that the vector
(Z(0)+A0, Z(0)+A1) has centered Gaussian distribution with variances one and
covariance (1+ρ)/2, therefore, the latter probability equals pρ(u). This gives the
second term and completes the proof.

After computing the mean number of continuous and discontinuous up-
crossings through the level u for this family of processes, we can ask which kind of
(up-)crossings predominate when the level grows to infinity. Next result answers
this question.

Corollary 4.1. As u→∞, we have

lim
EUd

u

EU c
u

= 0.
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In words, the continuous (up-)crossings predominate, on average, for high
levels.

Proof. Let (X, Y ) be a two dimensional centered Gaussian vector with EX2 =
EY 2 = 1/2 and EXY = (1 + ρ)/2, then

pρ(u) = P(X < u, Y > u) ≤ P(Y > u).

Then

pρ(u) ≤ 1− Φ(u) ≤ 1

u
ϕ(u) = o(ϕ(u)).

The result follows.

Remark 4.2. The processes Z and J contribute in 1/2 to the variance of X ,
more generally we can define

X = αZ +
√

1− α2J

for α ∈ [0, 1] and Z,J as above but normalized in order to have variance one,
namely, r(0) = 1 and ξn : n ≥ 0 are i.i.d. standard Gaussian random variables.
Hence,

EN c
u(X ) = T E |X ′(0)| pX(0)(u) = T

√
2λ2(αZ(0))

π
ϕ(u)

= αT

√
2λ2(Z(0))

π
ϕ(u) = αT E |Z ′(0)|ϕ(u)

= αEN c
u(Z).

Therefore, the mean number of continuous crossings of X is proportional to that
of the continuous process Z, the constant of proportionality being α, that is, the
standard deviation of the first summand αZ.

4.1.2 Stationary Gaussian continuous process plus CPP

In this example we consider a centered, stationary, Gaussian process Z with
r(0) = 1 and C1 paths and an independent Compound Poisson Process (CPP),
J with finite intensity λ and standard Gaussian jumps.

The process J is defined by the kernels P
(n)
xn−1,τn−1 , the exponential distribution

of intensity 0 < λ < ∞ and π
(n)
xn−1,τn , representing the increments, the standard

Gaussian distribution. We can also define J in terms of random variables as
follows, let (νt : t ≥ 0) be a simple Poisson Process with intensity λ > 0, as
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defined in Equation (4.1), and let (ξn)n∈N be independent standard Gaussian
random variables independent from (νt), then for t ≥ 0 define

J(t) :=
νt∑
n=1

ξn.

Thus, J(t) is the sum of a random number of standard Gaussian random variables.

It is well known, see Jacobsen [42] for instance, that the compensating measure
of the CPP is λdtΦ(dx), where Φ is the standard Gaussian distribution. In
particular, the compensating measure is deterministic.

Denote by ϕn the density function of a centered Gaussian random variable
with variance n, in particular, ϕ1 = ϕ is the standard Gaussian density. Recall
that ϕn ∗ ϕm = ϕn+m, where ∗ stands for the convolution.

Next theorem gives the mean number of up-crossings through u by X . The
mean number of down-crossings is analogue.

Theorem 4.2. For the process defined above we have

EU c
u = T

√
λ2

2π
p(u)

EUd
u = λT

∫ u

−∞
Φ(u− x) p(x)dx,

where Φ(u) = 1−Φ(u), λ2 is the second spectral moment of Z and p =
∑∞

n=1 pnϕn
with pn := 1

λT
P{νT ≥ n}.

Remark 4.3. In spite of the notation, the mean number of continuous up-
crossings, does depend on λ through the density function p, which has expectation
0 and variance λT/2.

Remark 4.4. Observe that the mean number of continuous crossings has the
usual form, that is, is proportional to a probability density function evaluated at
the level u; besides, the constant is the same as in the original Rice Formula. See
Remark 3.2.

Proof. We begin with the continuous crossings. Using the formula in Remark
3.1, we have

EU c
u =

∫ T

0

dt

∫ ∞
−∞

E
(
Z ′+(t) | Z(t) = v

)
pZ(t)(v)pJ(t)(u− v)dv

= EZ ′+(0)

∫ T

0

dt

∫ ∞
−∞

pZ(0)(v)pJ(t)(u− v)dv,
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where we used the stationarity of Z as in Corollary 3.3. Recall that EZ ′+(0) =√
λ2/2π. Now, by Lemma 4.1 we decompose pJ(t), so

EU c
u =

√
λ2

2π

∫ T

0

dt

∞∑
n=0

pνt(n)

∫ ∞
−∞

pZ(0)(v)ϕn(u− v)dv

=

√
λ2

2π

∫ T

0

dt

∞∑
n=0

pνt(n)(pZ(0) ∗ ϕn)(u)

=

√
λ2

2π

∞∑
n=0

ϕn+1(u)

∫ T

0

pνt(n)dt.

This integral is computed in the second item of Lemma 4.1, we get

EU c
u = T

√
λ2

2π

∞∑
n=0

1

λT
P (νT ≥ n+ 1)ϕn+1(u)

= T

√
λ2

2π

∞∑
n=0

pn+1ϕn+1(u) = T

√
λ2

2π

∞∑
n=1

pnϕn(u)

= T

√
λ2

2π
p(u)

which gives the first part of the result.

Now, we turn to the discontinuous crossings

EUd
u = E

∫ T

0

∫ ∞
−∞

I{X(t−) < u;X(t−) + y > u}L(dt, dy)

= E
∫ T

0

∫ ∞
−∞

I{X(t−) < u;X(t−) + y > u}λdtΦ(dy),

where, as we said before, Φ is the distribution of the jumps. Since the compen-
sating measure is deterministic we have

EUd
u = λ

∫ T

0

∫ ∞
−∞

E I{X(t−) < u;X(t−) + y > u}dtΦ(dy)

= λ

∫ T

0

∫ ∞
−∞

P
(
X(t−) < u;X(t−) + y > u

)
dtΦ(dy)

= λ

∫ T

0

P
(
X(t−) < u;X(t−) + ξ > u

)
dt,

being ξ a standard Gaussian random variable independent from X(t−). Now, we
condition on X(t−), since, for fixed, t almost surely J(t−) = J(t) we may use the
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same computations as in the computation of EN c
u:

EUd
u = λ

∫ T

0

∫ u

−∞
P
(
ξ > u− x | X(t−) = x

)
pX(t−)(x)dxdt

= λ

∫ u

−∞
Φ(u− x)dx

∫ T

0

pX(t−)(x)dt

= λT

∫ u

−∞
Φ(u− x)p(x)dx.

This completes the proof.

Next, we compare the mean numbers of continuous and discontinuous up-
crossings through the level u by X as u→∞.

Corollary 4.2. As u → ∞ the mean numbers of continuous and discontinuous
up-crossings through the level u are of the same order. More precisely

lim
u→∞

λ√
λ2

EU c
u ≤ lim

u→∞
EUd

u ≤ lim
u→∞

λ

√
2π

λ2

EU c
u

Proof. We bound from above and from below EUd
u . First, we have∫ u

−∞
Φ(u− y)p(y)dy =

∫ ∞
0

Φ(y)p(u− y)dy

=

∫ 2u

0

Φ(y)p(u− y)dy +

∫ ∞
2u

Φ(y)p(u− y)dy

≥
∫ 2u

0

Φ(y)p(u− y)dy ≥ p(u)

∫ 2u

0

Φ(y)dy,

where we used that p is a mixture of centered Gaussian densities and thus it is
an even function that decreases on [0,∞). Furthermore

lim
u→∞

∫ 2u

0

Φ(y)dy =

∫ ∞
0

Φ(y)dy = E ξ+ =

√
2

π

where we used the well known formula for the expectation of a non-negative
random variable in terms of its distribution.

Therefore

EUd
u ≥ λT p(u)

∫ ∞
0

Φ(y)dy ∼
u→∞

λT√
2π
p(u).

On the other hand,

EUd
u = λT

∞∑
n=1

pn

∫ ∞
0

Φ(u − y)ϕn(y)dy ≤ λT
∞∑
n=1

pn

∫ ∞
−∞

Φ(u − y)ϕn(y)dy.
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Note that the last integral can be seen as the convolution, for the tail of the
distribution function, of two (independent) random variables, say Z ∼ Φ and
Vn ∼ ϕn. Then we can write the last integral as P(Z + Vn > u). Furthermore,
since Φ is the Gaussian standard distribution and ϕn is the Gaussian density with
zero mean and variance n, this probability equals P(Vn+1 > u) = Φ(u/

√
n+ 1).

Thus

EUd
u ≤ λT

∞∑
n=1

pnΦ

(
u√
n+ 1

)
≤ λT

∞∑
n=1

pn(n+ 1)ϕn+1(u)

= λT (p(u) + δ(u)),

where δ(u) :=
∑∞

n=1 pn(n + 1)ϕn+1(u) − p(u). In order to obtain the desired
result, it suffices to prove that δ(u)→ 0 as u→∞. In effect

|δ(u)| ≤

∣∣∣∣∣
∞∑
n=1

[pn(n+ 1)− pn+1]ϕn+1(u)

∣∣∣∣∣+ |p1ϕ1(u)|

It is clear that the second term of the r.h.s tends to zero when u→∞.

Let us look at the first term, note that the sum
∑∞

n=1 pn(n+ 1) is finite since
it is, roughly speaking, the second factorial moment of the Poisson distribution.
In effect

∞∑
n=1

pn(n+ 1) = 1 +
1

λT

∞∑
n=1

nP(νT ≥ n) = 1 +
1

λT

∞∑
n=1

n
∞∑
k=n

pνT (k)

= 1 +
1

λT

∞∑
k=1

pνT (k)
k∑

n=1

n = 1 +
1

2λT

∞∑
k=1

k(k − 1)pνT (k)

where we used Lemma 4.1 in the first equality and standard computations in the
remaining ones.

Thus, the first term is a mixture of Gaussian densities ϕn (times a constant),
hence it tends to zero. Then δ(u)→ 0 as u→∞ and

EUd
u ≤ λT (p(u) + δ(u)) ∼

u→∞
λTp(u).

Now, putting together the two obtained bounds for EUd
u and using Theorem 4.2

the desired result follows.

Remark 4.5. Note that in this case the discontinuous crossings through the level
u are not negligible w.r.t. the continuous crossings when u tends to infinity, in
contrast with the situation in the example of the previous section.

We end with an auxiliary lemma.
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Lemma 4.1. Consider a CPP J = (J(t) : t ≥ 0) such that J(t) =
∑νt

n=0 ξn with
(νt) a simple Poisson Process with intensity λ and ξn standard Gaussian for all
n, then

1. the density of the CPP can be written as:

pJ(t)(x) =
∞∑
n=1

pνt(n)ϕn(x).

2. The integral of the density of νt w.r.t. t verifies∫ T

0

pνt(n)dt =
1

λ
P(νT ≥ n+ 1) =

1

λ
P(τn+1 ≤ T )

3. If pn = 1
λT

P(νT ≥ n), then
∑∞

n=1 pn = 1

As usual we denote the time epochs of J by τn, thus the number of jump epochs
in [0, t] is νt.

Proof. 1. Conditioning on the value of νt we have:

FJ(t)(x) = P(J(t) ≤ x) =
∞∑
n=0

pνt(n)P(J(t) ≤ x | νt = n).

Now, conditioned on the event νt = n, J(t) is the sum of n independent standard
Gaussian random variables, hence, the conditional probability in the r.h.s. of
the latter equation is the distribution of a centered normal random variable with
variance n. The result follows taking derivatives on both sides.

2. By definition, pνt(n), as a function of t, is equal to the density function of
the Gamma distribution, with parameters λ, n+ 1, divided by λ, furthermore, it
is well known, see Petrov & Mordecki [64], that this is the distribution of τn+1,
hence ∫ T

0

pνt(n)dt =
P(τn+1 ≤ T )

λ
.

The result follows since the events {τn+1 ≤ T} and {νT ≥ n+ 1} coincide.

3. It follows directly from the facts that νT has Poisson distribution with
mean λT and that for a non-negative integer valued random variable X: EX =∑∞

n=1 P(X ≥ n).
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4.2 Application to the distribution of the max-

imum on a compact time interval

As we mentioned in the Introduction and in the Preliminaries, the level crossing
counting problem is intimately related to that of studying the distribution of the
maximum of the process.

We now use Rice Formula to get upper and lower bounds, and an equivalence,
for the tail of the distribution of the maximum of the process X with Gaussian
stationary continuous part and Poisson-auto-regressive jump part introduced in
Section 3.1. Recall that for all t the variance of Z(t) and J(t) is a half, yielding
a total variance of one for X(t).

Thus, we consider the maximum random variable of X

M(T ) = max{X(s) : 0 ≤ s ≤ T}.

Our departing point is the elementary relation

{M(T ) > u} = {X(0) > u} ] {X(0) < u,Uu ≥ 1},

where ] denotes the disjoint union. The upper bound is obtained using Markov’s
Inequality, it follows that

P(M(T ) > u) ≤ P(X(0) > u) + P(Uu ≥ 1) ≤ P(X(0) > u) + EUu. (4.2)

On the other hand, since Uu is a non-negative integer valued random variable it
satisfies the inequality Uu ≥ Uu − 1

2
Uu(Uu − 1), thus

P(M(T ) > u) = P(X(0) > u) + P(Uu ≥ 1)− P(Uu ≥ 1, X(0) > u)

≥ P(X(0) > u) + EUu −
1

2
EUu.[2] − P(Uu ≥ 1, X(0) > u), (4.3)

where a[2] = a(a− 1) is the Pochammer symbol and Uu.[2] = (Uu)[2]

The following theorem contains the upper bound for the tail of the distribution
of the maximum of X on the interval [0, T ].

Theorem 4.3. The probability that the maximum exceeds the level u verifies

P(M(T ) > u) ≤ Φ(u) + T

√
λ2

2π
ϕ(u) + λTpρ(u), (4.4)

where Φ(u) = 1− Φ(u) and pρ(u) is defined in Theorem 4.1.
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Proof. This is a direct consequence of Theorem 4.1 and Formula (4.2).

Remark 4.6. Furthermore, if we denote the r.h.s. of Inequality (4.4) by rhs(u),
then, by Corollary 4.1 we have

rhs(u) ∼
u→∞

T

√
λ2

2π
ϕ(u).

The goal of the rest of this section is to show that this upper bound is sharp.
In order to do that, we use the lower bound given in Inequality (4.3) for the
tail of the distribution of the maximum M(T ). So, we have to deal with the
second moment of the number up-crossings, which amounts to say that we have
to deal with second order Rice Formula. In that sense, we give formulas for the
second moment of the continuous up-crossings and for the second moment of
discontinuous up-crossings.

Theorem 4.4. Let the processes Z,X and J be as in Corollary 3.3. If in addition
J is a Poisson-auto-regressive process, and Z verifies that r(τ) 6= ±1/2 for all τ
and the Geman condition:∫

θ′(τ)

τ 2
dτ converges at τ = 0, (4.5)

where θ is defined by

r(τ) = 1− λ2

2
τ 2 + θ(τ) (4.6)

Then

P(M(T ) > u) = Φ(u) + T

√
λ2

2π
ϕ(u) + o(ϕ(u))

where f(u) = o(ϕ(u)) means, as usual, that f(u)/ϕ(u)→ 0 as u→∞.

Remark 4.7. Geman condition was originally introduced in 1967 as a sufficient
condition for the finiteness of the second moment of the number of zero crossings
for a stationary Gaussian process by Cramér & Leadbetter [23]. In 1972 Geman
[36] proved that this condition is also a necessary condition. Recently, Kratz &
León [50] extended this result for the levels other than zero.

Proof. It suffices to show that the additional terms in Inequality (4.3) w.r.t.
Inequality (4.2) are o(ϕ(u)). Let us begin with the second factorial moment of
the number of up-crossings 1

2
EUu,[2].

Since
Uu,[2] = Uu(Uu − 1) = U c

u,[2] + Ud
u,[2] + 2U c

u U
d
u ,

the proof is divided in several parts, considering separately each one of the re-
sulting terms.
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Claim 4.1. We have EU c
u,[2] = o(ϕ(u)).

We prove the Claim in three steps.

Step 1. We begin with a Rice-type formula for the second moment of U c
u.

EU c
u.[2] =

∫ T

0

∫ T

0

∞∑
m,n=0

E
[
Z ′+(s)Z ′+(t) | X(s) = X(t) = u, νs = m, νt−s = n

]
· pX(s),X(t),νs,νt−s(u, u,m, n)dsdt. (4.7)

We adapt the proof of Rice Formula for the factorial moments in Azäıs & Wsche-
bor [12, Th. 3.1]. As usual the diagonal plays an important role.

Let Cu be the set of continuous up-crossings of X through the level u on the
interval [0, T ], C2

u = Cu × Cu and for any Borel set J in [0, T ]2 let

µ(J) = #(C2
u ∩ J).

It is easy to check that U c
u.[2] = µ([0, T ]2 \ ∆), where ∆ is the diagonal, that is,

∆ = {(s, t) ∈ [0, T ]2 : s = t}.

Take J1 and J2 disjoint intervals in [0, T ] and let J = J1 × J2, i.e: J ⊂
[0, T ]2 \∆, then

µ(J) = Uu(J1) · Uu(J2)

= lim
δ→0

1

(2δ)2

∫
J1

Z ′+(s)I{|X(s)− u| < δ}ds ·
∫
J2

Z ′+(t)I{|X(t)− u| < δ}dt

= lim
δ→0

1

(2δ)2

∫∫
J

Z ′+(s)Z ′+(t)I{|X(s)− u| < δ, |X(t)− u| < δ}dsdt,

where we applied Kac Formula on each interval, and noted that for δ small enough
the quantity in the limit becomes constant, so we can use the same mute variable
δ in both limits.

Now, the idea is to take expectation on both sides, but we have to proceed
with some care if we want to get an equality instead of just an upper bound,
the latter can readily be obtained using Fatou’s Lemma. To get the former,
we can approximate the process Z by the dyadic polygonal process as in the
proof of Theorem 3.1, the same arguments as in that proof give the necessary
dominations to pass the expectation inside the integral sign, and to show that
the expressions for the dyadic polygonal approximation converge to those of the
original process. In spite of this formal argument, we skip the details of the
polygonal approximation and write the conditioning for the original process.
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Then, let us condition on the number of jumps of the process in the intervals
[0, s], [0, t] with s ∈ J1, t ∈ J2 and on the values of the process X at these points,
that is (say that s < t)

EZ ′+(s)Z ′+(t)I{|X(s)− u| < δ, |X(t)− u| < δ} =∫ u+δ

u−δ

∫ u+δ

u−δ

∞∑
m,n=0

E
[
Z ′+(s)Z ′+(t) | X(s) = x,X(t) = y, νs = m, νt = m+ n

]
pX(s),X(t)|νs=m,νt−νs=n(x, y)pνs(m)pνt(m+ n)dxdy

Observe that, under these conditions X(s) = Z(s) + Am and X(t) = Z(t) +
Am+n are jointly Gaussian random variables, thus the conditional probability
and the conditional expectation are well defined, the latter may be computed via
Gaussian regression. Besides, this fact yields the regularity conditions needed for
the integrand. In fact, the conditional expectation and the density function are
continuous for s, t ∈ [0, T ] and x, y in a neighborhood of u. Hence, we can pass
to the limit w.r.t. u inside the integral sign

µ(J) =

∫∫
J

∞∑
m,n=0

E
[
Z ′+(s)Z ′+(t) | X(s) = X(t) = u, νs = m, νt = m+ n

]
pX(s),X(t)|νs=m,νt−νs=n(u, u)pνs(m)pνt(m+ n)dsdt.

So far we have stated that Eµ(J) equals the integral in the r.h.s. of Equation
(4.7) for any interval J = J1×J2 ⊂ [0, T ]2 \∆. As both sides represent measures
on [0, T ]2 \∆, the result follows by the standard extension arguments of Measure
Theory.

Step 2. Due to the stationarity, we can develop Formula (4.7) a little further:

EU c
u.[2] = 2

∫ T

0

(T − τ)
∞∑
n=0

E
[
Z ′+0 Z ′+τ | Y0(0) = Yn(τ) = u

]
·

· pY0(0),Yn(τ)(u, u)pντ (n)dτ,

where we set Yk(t) := Z(t) + Ak, for t ∈ [0, T ] and k ∈ N.

In effect, conditioned on νs = m, νt−s = n (if s < t; similarly on the other
case) we have X(s) = Z(s) + Am = Ym(s) and X(t) = Z(t) + Am+n = Ym+n(t).
It is easy to see that the vector (Ym(s), Ym+n(t)) is independent from ν and has
centered Gaussian distribution with variances 1 and covariance r(t−s)+ρn/2, in
particular, this law does not depend on s, t but on their difference t−s, neither it
depends on m. Therefore, the conditional expectation in Formula (4.7) reduces
to that in the r.h.s. of the claimed formula.
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Besides, for the densities functions we have

pX(s),X(t)|νs,νt−s(u, u)pνs(m)pνt−s(n) = pYm(s),Ym+n(t)(u, u)pνs(m)pνt−s(n)

= pY0(0),Yn(τ)(u, u)pνs(m)pντ (n).

There is only one factor that depends on m, and clearly
∑

m pνs(m) = 1, so the
integrand is independent from m.

Finally we make the change of variables (s, t) 7→ (s, τ = t−s), and obtain the
desired inequality.

In the next two steps we bound each factor in the integrand in the formula
given in Step 2.

Step 3. Assume that ντ = n. Let us perform the regression of Z ′(0) and Z ′(τ)
w.r.t. the event C = {X0(0) = Xn(τ) = u}. Therefore, we need α and β such
that the random variable Z ′(0)−αX0(0)−βXn(τ) is independent from X0(0) and
Xn(τ), analogous definition and conditions hold for Z ′(τ). Routine computations
show that α and β are the solutions of[

1 r(τ) + ρn/2
r(τ) + ρn/2 1

] [
α
β

]
=

[
0

r′(τ)

]

Therefore

E (Z ′(0) | C) = −E (Z ′(τ) | C) = − r ′(τ)u

1− (r(τ) + ρn/2)
.

and

var(Z ′(0) | C) = var(Z ′(τ) | C) = λ2 −
r ′(τ)2

1− (r(τ) + ρn/2)2
,

Therefore, using the well known inequalities a+b+ ≤ (a+ b)2/4 and (a+ b)2 ≤
2(a2 + b2), adding and subtracting E (Z ′(0) | C), it follows that

E (Z ′+(0)Z ′+(τ) | C) ≤ 1

2
(var(Z ′(0) | C) + var(Z ′(τ) | C))

Then, we have

E (Z ′+(0)Z ′+(τ) | C) ≤ λ2 −
r ′(τ)2

1− (r(τ) + ρn/2)2
.

Now, let us assume that n ≥ 1. Then, since ρ < 1, the denominator in last
formula is bounded away from zero as τ → 0, in effect 1 − (r(τ) + ρn/2) →
1/2− ρn/2 > 0. Therefore, it is trivially bounded above by λ2.
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To end this case, let us look at the density of the vector (Y0(0), Yn(τ)),
which has centered Gaussian distribution with variance matrix Σ =(

1 r(τ)+ρn/2
r(τ)+ρn/2 1

)
. Therefore, the denominator in the density is of the same

form than in the conditional expectation and the exponential is

exp

(
− 1

2| det(Σ)|
( u u )Σ−1

(
u
u

))
= exp

{
− u2

1 + r(τ) + ρn/2

}
.

Since n ≥ 1 we can bound ρn ≤ |ρ| < 1, hence

exp

{
− u2

1 + r(τ) + ρn/2

}
≤ exp

{
− u2

1 + r(τ) + |ρ|/2

}
= o(ϕ(u)).

Replacing in Inequality (4.7) of Step 1 we have that the sum starting at n = 1 is
bounded by

2T

·
∫ T

0

∞∑
n=1

pντ (n)
λ2(1− (r(τ) + ρn/2)2)− r ′(τ)2

(1− (r(τ) + ρn/2)2)3/2
exp

{
− u2

1 + r(τ) + |ρ|/2

}
dτ

≤ 2T 2 λ2√
1− ((1 + |ρ|)/2)2

exp

{
− u2

(3 + |ρ|)/2

}
= o(ϕ(u)).

Finally, it rest to consider the case n = 0, that is, when there are no jumps
in [0, T ]. Observe that the probability of νT = n = 0 is e−λT ,

We proceed as in Azäıs & Wschebor [12, Prop. 4.2], in particular, we need Ge-
man condition to ensure the convergence of the integral. In effect, the integrand
is (a constant times)

λ2(1/2− r2(τ))− r′ 2(τ)

(1/2− r2(τ))3/2
exp

(
− u2

1 + r(τ)

)
.

Here, the second factor is bounded by exp(−2u2/3) = o(ϕ(u)).

For the first one, we have to take care on a neighborhood of zero, we use the
expansion defining θ in Geman Condition (4.5). Further, we use the fact that
θ(τ), θ′(τ), θ′′(τ) ≥ 0. To prove this note that −r′′(τ)/

√
λ2 is the covariance func-

tion of the process (Z ′(t)/
√
λ2 : t ∈ [0, T ]), see for example Cramér & Leadbetter

[23, Sc. 9.3.], hence, taking derivatives on both sides of Equation (4.6) and using
Cauchy-Schwarz Inequality we deduce that

1 ≥ −r
′′(τ)√
λ2

= 1− θ′′(τ)√
λ2
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thus, θ′′(τ) ≥ 0 for τ in a neighborhood of zero, the inequalities for θ and θ′

follow from this one integrating w.r.t. τ .

Therefore

λ2(1/2− r2(τ))− r′ 2(τ) = 2λ2τθ
′(τ)−

[
λ2

2

4
τ 4 + θ′′(τ) + 2θ + θ′ 2

]
≤ 2λ2τθ

′(τ)

and
1/2− r2(τ) ∼ λ2τ

2.

Therefore, the first factor is bounded by (an equivalent of) 2τ−2θ′(τ). This show
that the integral is convergent.

Putting all this together, the second moment is o(ϕ(u)).

Claim 4.2. We have EUd
u,[2] = o(ϕ(u)).

By the arguments in Corollary 4.1 it suffices to show that

EUd
u,[2] ≤ c p|ρ|(u),

for some constant c and u large enough. We can write

Ud
u =

νT∑
n=0

n∑
k=0

I{X(τ−k ) < u,X(τk) > u},

hence, making the product and taking expectation, we have:

EUd
u,[2] =

∞∑
n=2

n−1∑
1=k<`

pνT (n)

· P(Z(τk) + Ak−1 < u;Z(τk) + Ak > u;Z(τ`) + A`−1 < u;Z(τ`) + A` > u)

≤
∞∑
n=2

n−1∑
k<`=1

pνT (n)P(Z(τk) + Ak−1 < u;Z(τ`) + A` > u). (4.8)

Besides,

P(Z(τk) + Ak−1 < u;Z(τ`) + A` > u)

=

∫ T

0

ds

∫ T

s

dtpτk,τ`|νT=n(s, t)P(Z(s) + Ak−1 < u;Z(t) + A` > u)

=

∫ T

0

ds

∫ T

s

dtpτk,τ`|νT=n(s, t)P(Z(0) + Ak−1 < u;Z(t− s) + A` > u),
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in the latter equality we used the stationarity of the process Z. The vector
(Z(0)+Ak−1;Z(t−s)+A`) is centered Gaussian with variances 1/2 and covariance
r(τ) + ρ`−k+1/2. It is easy to check that −r(τ) − ρ`−k+1/2 < 1/2(1 + |ρ|) which
is the covariance of the vectors Z + S and Z + |ρ|S +

√
1− ρ2V , therefore, by

the Plackett-Slepian Inequality, see Azäıs & Wschebor[12, Section 2.1], we have

P(Z(0)+Ak−1 < u;Z(t−s)+A` > u) ≤ P(Z+S < u;Z+ |ρ|S+
√

1− ρ2V > u).

This bound does not depend on s, t, hence

P(Z(τk) + Ak−1 < u;Z(τ`) + A` > u)

≤ P(Z + S < u;Z + |ρ|S +
√

1− ρ2V > u)

∫ T

0

ds

∫ T

s

dtpτk,τ`|νT=n(s, t)

= P(Z + S < u;Z + |ρ|S +
√

1− ρ2V > u)

= p|ρ|(u),

since τk, τ` | νT = n is concentrated on [0, T ]2. Finally, replacing in Equation
(4.8) we have

EUd
u,[2] ≤

∞∑
n=2

n−1∑
1=k<`

p|ρ|(u) =
(λT )2

2
p|ρ|(u),

and the result follows.

Claim 4.3. We have EUu,[2] = o(ϕ(u)).

In effect

EUu,[2] = E (U c
u + Ud

u)(U c
u + Ud

u − 1)

= EU c
u,[2] + EUd

u,[2] + 2EU c
uU

d
u

≤ EU c
u,[2] + EUd

u,[2] + 2
√
E (U c

u)
2E (Ud

u)2

= EU c
u,[2] + EUd

u,[2] + 2
√

(EU c
u,[2] + EU c

u)E (Ud
u,[2] + EUd

u),

where we used Cauchy-Schwarz inequality. The first two terms in the r.h.s. in
the last line are treated in the previous Claims, under the square root sign the
first factor is equivalent to ϕ(u) and the second one is o(ϕ(u)). Thus, EUu,[2] =
o(ϕ(u)).

Claim 4.4. We have P(X(0) > u,Uu ≥ 1) = o(ϕ(u)).

Again, we follow the proof of the analogue assertion in Azäıs & Wschebor [12,
Prop. 4.2].
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Let us express the probability in a more convenient way

P(X(0), Uu > 0) ≤ P(X(0) > u,X(T ) > u) + P(X(0) > u,X(T ) < u,Uu > 0))

≤ P(X(0) > u,X(T ) > u) + P(Du > 1)

For the first resulting term observe that the conditions X(0) > u,X(T ) > u
clearly imply X(0) + X(T ) > 2u. Now we proceed as in Step 3 of Claim 4.1.
For n ≥ 0, condition on the event νT = n. Observe that for n ≥ 1 the vector
(X(0), X(T )) is non-degenerated with centered Gaussian distribution with co-

variance matrix
(

1 r(0,T )+ρn/2
r(0,T )+ρn/2 1

)
. For n = 0, the condition r(0, T ) 6= ±1

2

(actually |r(0, T )| < 1
2
) ensures the non-degeneracy of (X(0), X(T )), now the

covariance matrix is
(

1 r(0,T )+1/2
r(0,T )+1/2 1

)
.

We show that one of this terms is o(ϕ(u)), the others are treated analogously.
Consider then the case n = 0. Let Y be a centered Gaussian random variable
with variance a half independent from X(0), thus, we can write

X(T ) = cX(0) +
√

1− c2Y

being c = r(0, T ), therefore X(0)+X(T ) = (1+c)X(0)+
√

1− c2Y has a centered
Gaussian distribution with variance 1

2
(1 + c)2 + 1

2
(1− c2) = 1 + c. So the desired

probability can be found as

P(X(0) > u,X(T ) > u | νT = 0)

=

∫ ∞
2u

1√
2π
√

1 + r(0, T )
exp

(
− x2

2(1 + r(0, T ))

)
dx

The result follows since 1 + r(0, T ) < 3/2, thus, we have proved that P(X(0) >
u,X(T ) > u | νT = 0) = o(ϕ(u)).

For the last term. The key fact is that the distribution of the process J
remains unchanged under time reversal t 7→ T − t.

In effect, let us condition on the number of jumps νT = n, then it is easy to
check that the (conditional) distribution of (A1, A2, . . . , An) | νT = n is the same
as the distribution of (An, An−1, . . . , A1) | νT = n, namely, the centered Gaussian
distribution with covariance matrix

1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ1 1 . . . ρn−3

...
...

...
. . .

...
ρn−1 ρn−2 ρn−3 . . . 1
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Besides, it is a very well known fact that the distribution of (τ1, τ2, . . . , τn) | νT =
n is that of an uniform (ordered) sample of size n, so it looks the same from 0
and from T . Since the construction of the process J depends on these elements
and there is no difference if we start at 0 or at T the claim follows.

By a similar reasoning to the one that lead to Inequality (4.3), observe that

I {Du > 1} =
1

u
Du(Du − 1)

Hence

P(Du > 1) ≤ 1

2
EDu,[2],

and by the invariance of the distribution of X under time reversal, we have
EDu,[2] = EUu,[2] and

P(Du > 1) ≤ 1

2
EUu,[2],

This term has been already treated in the previous claims.

In conclusion,

P(M(t) > u) ≥ 1− Φ(u) + T

√
λ2

2π
ϕ(u) + λT pρ(u) +O(ϕ((1 + δ)u))

= 1− Φ(u) + T

√
λ2

2π
ϕ(u) + o(ϕ(u)).

Taking into account Inequality (4.4), this completes the proof.

4.3 Maximum of a Compound Poisson Process

on a compact interval

On this section we consider the behavior of the tail of the distribution of the
maximum of a pure jump process, namely, the Compound Poisson Process (CPP)
with standard Gaussian jumps on a compact interval.

4.3.1 Introduction

To be more precise, we study the asymptotic probability that the maximum of the
process exceeds the level u on the interval [0, T ] as the level u grows to infinity;
in symbols

P
(

max
t∈[0,T ]

X(t) > u

)
, u→∞
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We give an upper bound for this probability, the leading term of the bound
is equivalent to P(X(T ) > u).

This behavior is consistent with the structure of the covariances of such pro-
cesses since the increments of the process on disjoint intervals are positive corre-
lated.

This result is interesting, since there are well known results which intimately
relate the probability that the maximum of the process exceeds certain level with
the probability that the process exceeds the same level at a fixed instant. at a
single point in the interval, namely, the point where the variance of the process
reaches its maximum. See Berman [15] for a sharp bound for a general smooth
Gaussian process or Berman [16] for an equivalence for a Gaussian processes
with stationary increments and convex covariance c(t) such that c(t) = o(t); this
include Fractional Brownian Motion. See also Albin [3] for an equivalence on the
case of a Compound Poisson Process with drift or a Lévy Process with light tails
and finite variation.

Consider a simple Poisson Process (νt : t ≥ 0) as defined in Equation (4.1).
Further, in order to define the Compound Poisson Process X , let (ξk : k ≥ 1) be
i.i.d. Standard Gaussian random variables, independent from (τk : k ≥ 0). Then,
the Process X = (X(t) : t ≥ 0) is defined by

X(t) =
νt∑
k=0

ξk

Therefore, X jumps the (random) quantity ξk at the (random) k-th jump epoch
τk.

Theorem 4.5. Let X be a CPP with standard Gaussian jumps, therefore, as
u→∞ we have

P
(

max
t∈[0,T ]

X(t) > u

)
≤ Φ

(√
2u
) ∞∑
n=1

pνT (n)Φ

(
u√
n

)

+ Φ(u)(1− Φ
(√

2u
)
pνT (1)) + Φ

(√
2u
) ∞∑
n=1

pνT (n)
n−1∑
k=1

Φ

(
u√
k

)

Moreover, the r.h.s. is equivalent to P(X(T ) > u).

In this proof we use Hermite polynomials and Mehler Formula, see Nualart
[65] and Peccati & Taqqu [67]. The reader is also referred to Chapter 6, where
we use these tools quite deeply.
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4.3.2 Proof

The Hermite polynomial of degree k is defined by

Hk(x) = (−1)kez
2/2 dk

dtk
e−t

2/2

∣∣∣∣
t=z

.

The family (Hk : k ≥ 0) is an orthogonal complete system in L2(ϕ(z)dz), see
Chapter 6 for details. In addition

〈Hk, H`〉 =

∫
R
Hk(z)H`(z)ϕ(z)dx

= E (Hk(Z)H`(Z))

= δk`k!

for Standard Gaussian Z. Therefore, we can compute the covariances (inner
products) in terms of these polynomials. More precisely.

Mehler’s Formula: Let f, g ∈ L2(ϕ(z)dz) and assume that f =
∑∞

k=1 fkHk,
g =

∑∞
k=1 gkHk and (Z,W ) ∼ N(0,Σ) with Σ =

(
1 ρ
ρ 1

)
, then

cov (f(Z), g(W )) =
∞∑
k=1

fkgkk!ρk.

We begin now with the proof.

Set S0 = 0 and for k ≥ 1 let

Sk =
k∑
j=0

ξj, p+
k (u) = P (Sk−1 < u, Sk ≥ u)

Note that, since the paths of the process X are piecewise constant and right-
continuous, there is an up-crossing through the level u at the k-th jump epoch if
and only if Sk−1 < u and Sk ≥ u. Besides, p+

k (u) is the probability of having an
up-crossing on the k-th jump epoch of X .

Let Uu = UXu ([0, T ]) be the number of up-crossings through the level u by
X on the interval [0, T ]. In order to get the result we use the simple inequality
P(maxX(t) > u) ≤ EUu.

Therefore, by the nesting property of conditional expectation

EUu = E [E (Uu | νT )]

=
∞∑
n=1

P(νT = n)
n∑
k=1

p+
k (u), (4.9)
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where we use that the number of crossings in the n jump epochs occurring on
[0, T ] is the sum of the indicators of the events “there is a crossing at the k-th
jump epoch”, k = 1, . . . , n.

Now, let us compute the probabilities p+
k (u). Suppose u > 0, then

p+
1 (u) = 1− Φ(u)

and for k > 1, we express p+
k (u) in terms of the covariances of the indicators

p+
k (u) = E I(−∞,u)(Sk−1)I[u,∞)(Sk)

= cov(I(−∞,u)(Sk−1), I[u,∞)(Sk)) + E I(−∞,u)(Sk−1)E I[u,∞)(Sk)

= cov(I(−∞,u)(Sk−1), I[u,∞)(Sk)) + P(Sk−1 < u)P(Sk ≥ u). (4.10)

This fact can be verified directly from the definition of covariance. It is clear,
from its definition, that Sk is a centered Gaussian random variable with variance
k, thus

P(Sk−1 < u) = Φ

(
u√
k − 1

)
, P(Sk ≥ u) = Φ

(
u√
k

)
where Φ(z) = 1− Φ(z).

The idea now is to compute these covariances using Hermite polynomials. We
need the following expansion for indicator (characteristic) functions. See Slud [77]
for a similar but more developed argument.

By Lemma 4.2, setting I{(−∞, a)} =
∑∞

k=0 fkHk and I{[a,∞)} =∑∞
k=0 gkHk, we have

fk = −gk = − 1

k!
Hk−1(a)ϕ(a).

Consider the standardized sums Sk−1√
k−1

, Sk√
k
, observe that they are jointly Gaussian

random variables with means zero, variances 1 and covariance ρ =
√

(k − 1)/k.
Therefore, Mehler’s Formula implies

p+
k (u) = Φ

(
u√
k − 1

)[
1− Φ

(
u√
k

)]
−
∞∑
m=1

1

m!
Hm−1

(
u√
k − 1

)
ϕ

(
u√
k − 1

)
Hm−1

(
u√
k

)
ϕ

(
u√
k

)[
k − 1

k

]m/2
= P

(
Z >

u√
k − 1

,W >
u√
k

)
=: F̄ρ

(
u√
k − 1

,
u√
k

)
, (4.11)

where we use Lemma 4.3. Here (Z,W ) a centered Gaussian vector with variances
1 and covariance ρ =

√
(k − 1)/k.
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Finally, we bound this probability in Lemma 4.4, we have

F̄ρ (a, b) ≥
√

1 + ρ · Φ

(
a√

1− ρ2

)
Φ

(
b√

1 + ρ

)

Specializing for a = u/
√
k − 1, b = u/

√
k and ρ =

√
(k − 1)/k we have

F̄√ k−1
k

(
u√
k − 1

,
u√
k

)
≥

√
1 +

√
k − 1

k
· Φ

 u√
k−1√

1− k−1
k

Φ

 u√
k√

1 +
√

k−1
k



Consequently, for k > 1

p+
k (u) ≤ Φ

(
u√
k − 1

)
Φ

(
u√
k

)

−

√
1 +

√
k − 1

k
· Φ

( √
ku√
k − 1

)
Φ

 u

√
k

√
1 +

√
k−1
k



Now, Φ(·) ≤ 1,
√
k/(k − 1) ≤

√
2, hence

Φ̄

(√
k

k − 1
u

)
≥ Φ̄

(√
2u
)

and

√
2 ≥

√
1 +

√
k − 1

k
≥ 1⇒ Φ̄

 u

√
k

√
1 +

√
k−1
k

 ≥ Φ̄

(
u√
k

)

Therefore

p+
k (u) ≤ Φ

(
u√
k

)
− Φ

(√
2u
)

Φ

(
u√
k

)

Putting this together with Equation (4.9) for the expectation, we obtain the
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desired result

EUu ≤ Φ(u) + Φ
(√

2u
) ∞∑
n=2

pνT (n)
n∑
k=2

Φ

(
u√
k

)
= Φ

(√
2u
) ∞∑
n=1

pνT (n)Φ

(
u√
n

)

+ Φ(u)(1− Φ
(√

2u
)
pνT (1)) + Φ

(√
2u
) ∞∑
n=1

pνT (n)
n−1∑
k=1

Φ

(
u√
k

)

Let us see that this result is in tune with Berman’s results. Note that the
CPP is a diffusive process, in particular the variance achieves its maximum value
at the point t = T . Actually, the first term in the r.h.s. is the leading term and is
equivalent to the tail of the distribution of X(T ). In effect, since Φ(

√
2u)→ 1 as

u→∞, conditioning on νT = n it is immediate that the first term is equivalent
to P(X(t) > u). To see that the first term is the leading one, just note that if
a > b, then Φ(u/b)/Φ(u/b)→ 0 as u→∞.

We end the section with some auxiliary results.

Lemma 4.2. Let f = I(−∞,a] and g = I[a,∞), Then, (after centering) the Hermite
coefficients fk and gk of f and g are given by f0 = g0 = 0 and for k ≥ 1

fk = − 1

k!
Hk−1(a)ϕ(a)

gk = −fk.

Proof. Consider a Standard Gaussian random variable Z. In order to apply
Mehler’s Formula we need to center the random variables, thus, let m = E f(Z) =
E I{Z≤a} = Φ(a). For k ≥ 1, we have

fk =
1

k!
E ((f(Z)−m)Hk(Z)) =

1

k!

[∫ a

−∞
Hk(z)ϕ(z)dz −m

∫ ∞
−∞

Hk(z)ϕ(z)dz

]
=

1

k!

(−1)k√
2π

∫ a

−∞

dk

dzk
e−z

2/2dz −mEHk(Z)

= − 1

k!
· (−1)k−1

√
2π

[
dk−1

dzk−1
e−z

2/2

]a
−∞

= − 1

k!
Hk−1(a)ϕ(a),

where we use that EHk(Z) = 0.

Now, observe that centering g we obtain

I{Z≥a} − (1− Φ(a)) = −([1− I{Z≥a}]− Φ(a)) = −(f −m)
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Thus gk = −fk.

Finally, since H0(z) = 1 for all z, f0 = E (f(Z)−m)H0(Z) = E (f(Z)−m) =
0.

Lemma 4.3. Let us prove the last equality in Equation (4.11).

Proof. Let ϕρ be the density function of the random vector (Z,W ) of the thesis
and gρ(z, w) = ϕρ(z, w)/ϕ(z)ϕ(w). Consider the Hermite polynomial expansion
gρ(z, w) =

∑
k,m a(k,m)Hk(z)Hm(w), with

a(k,m) =
1

k!m!

∫∫
R2

gρ(z, w)Hk(z)Hm(w)ϕ(z)ϕ(w)dzdw

=
1

k!m!

∫∫
R2

ϕρ(z, w)Hk(z)Hm(w)dzdw

=
1

k!m!
E [Hk(Z)Hm(W )],

being (Z,W ) as above. By Mehler’s Formula the expectation yields δkmk!ρk.
Hence

a(k,m) =
1

k!2
ρkδkm.

Therefore, the expansion of gρ is given by

gρ(z, w) =
∞∑
k=0

1

k!
ρkHk(z)Hm(w),

Thus

ϕρ(z, w) = ϕ(z)ϕ(w)
∞∑
k=0

1

k!
ρkHk(z)Hm(w),

Now, integrating this

P(Z > a,W > b) =

∫ ∞
a

∫ ∞
b

ϕρ(z, w)dzdw

=
1

2π

∞∑
k=1

ρk

k!

∫ ∞
a

∂k

∂zk
e−z

2/2dz

∫ ∞
b

∂k

∂wk
e−w

2/2dw

=
∞∑
k=1

ρk

k!
Hk−1(a)ϕ(a)Hk−1(b)ϕ(b).

Finally, specializing for a = u/
√
k − 1 and b = u/

√
k the result follows.
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Lemma 4.4.

F̄ρ (a, b) ≥
√

1 + ρ · Φ

(
a√

1− ρ2

)
Φ

(
b√

1 + ρ

)

Proof. The exponent in the integrand is − 1
2(1−ρ2)

(z2 − 2ρzw + w2), completing
the square we have

F̄ρ (a, b) =

∫ ∞
b

1√
2π
e
− 1

2(1−ρ2)
(1−ρ)w2

dw

∫ ∞
a

1
√

2π
√

1− ρ2
e
− 1

2(1−ρ2)
(z−ρw)2

dz

=

∫ ∞
b

Φ

(
a− ρw√

1− ρ2

)
1√
2π
e−

1
2(1+ρ)

w2

dw

≥
√

1 + ρ · Φ

(
a− ρb√
1− ρ2

)
Φ

(
b√

1 + ρ

)

>
√

1 + ρ · Φ

(
a√

1− ρ2

)
Φ

(
b√

1 + ρ

)
.

Where we use that Φ(t) decays when t grows.
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In this part of the thesis we apply classical Rice Formulas to some prob-
lems involving random polynomials including the number of zeros of the classical
trigonometric ensemble of random polynomials and the number of roots of a
square system of complex polynomial equations.

Part II is organized as follows.

In Chapter 5, we prove the conjecture that the variance of the number of
roots of the Classical trigonometric polynomials is asymptotically equivalent to
a constant times K as K → ∞. Besides, we state a Central Limit Theorem for
this number of roots.

See Dalmao & León [26].

In Chapter 6, we work on Bézout’s Theorem, which is a generalization of the
Fundamental Theorem of Algebra. We prove that for the case quadratic systems
of size m the number of roots is almost surely equal to 2m, and make some
progress in the general case.
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Chapter 5

CLT for Random
Trigonometric Polynomials

In this chapter we begin our study of the number of roots of random ensembles of
polynomials. More precisely, we study the asymptotic mean and variance and a
Central Limit Theorem (CLT) for the number of roots of Classical Trigonometric
Polynomials.

In addition to Rice Formulas, the main tool is Wiener - Hermite expansion.

5.1 Introduction and Main Result

Consider the classical random trigonometric polynomials, that is, the polynomials
defined, for K = 1, 2, . . . , by

TK(t) :=
1√
K

K∑
n=1

an cos(nt),

where the coefficients an are i.i.d. standard Gaussian random variables and t ∈
[0, π].

This ensemble of random polynomials appears frequently in Physics, for in-
stance in Nuclear Physics (Random Matrix Theory), Statistical Mechanics, Quan-
tum Mechanics, Theory of Noise, see Granville & Wigman [37] and references
therein.

One of the main questions about random polynomials concerns the random
variable: number of zeros (level crossings in general); in our case the number of
zeros of TK on the interval [0, π] (or on some other interval).

The distribution of this random variable remains unknown, and one way to
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approach it is to describe it not directly but through its moments. Let us com-
ment some of the known results about the distribution of the number of roots of
Classical Trigonometric Polynomials and related ensembles of random polynomi-
als.

The number of zeros of different ensembles of random polynomials have at-
tracted attention of physicists and mathematicians for at least seventy years.
Consequently, there is an extensive literature on the subject, starting with Lit-
tlewood & Offord [58, 57, 56] who studied algebraic polynomials, that is, poly-
nomials of the form

p(t) = a0 + a1t+ a2t
2 + . . . aKt

K ,

with random coefficients a0, a1, . . . , aK ; these works were complemented by those
of Erdös & Offord [30], Kac [44] and Ibragimov & Maslova [39, 40]. The final
result for the mean number of real roots of an algebraic polynomial of degree
K, is that, for i.i.d. coefficients in the domain of attraction of the Gaussian law,
the mean number of roots is equivalent to 2 log(K)/π for centered an and half
this quantity for non-centered an. Maslova [63, 62] established the asymptotic
variance, namely 4

π

(
1− 2

π

)
log(K), and a CLT for the number of real roots of

algebraic polynomials.

Classical trigonometric polynomials are intimately related with another en-
semble of random trigonometric polynomials defined by

XK(t) =
1√
K

K∑
n=1

(an cos(nt) + bn sin(nt)) ,

where an, bn are i.i.d. standard Gaussian random variables. The polynomials XK

have the great advantage of being stationary with respect to t. This fact (and
the Gaussianity) simplifies largely the treatment of the level crossing counting
problem.

For this ensemble of (stationary) trigonometric polynomials Granville & Wig-
man [37] gave a proof of the CLT for the number of zeros, using conditions on
moments of order higher than the second. After that, Azäıs & León [9] extended
this result to all levels and gave a simplified proof of the CLT lying on the Wiener
Chaos decomposition and Taqqu-Peccati’s method. In particular, Azäıs & León
[9] avoid conditions on higher moments than the second. Further, they show that
the asymptotic value of the variance differs whether the level is zero or non-zero.

In order to prove this CLT, they based on the well known fact that the number
of zeros, NX = NX([0, Kπ]), of the stationary, centered, Gaussian process X
whose covariance function is EX(s)X(t) = sin(t−s)/(t−s), verifies the following
CLT.
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Theorem 5.1. Let X be the stationary centered Gaussian process with covariance
function c(τ) = sin(τ)/τ . Then, the (standardized) number of zeros NX([0, Kπ])
converges in distribution towards a standard Gaussian random variable, more
precisely

NX [0, Kπ]− ENX [0, Kπ]√
Kπ

⇒ N(0, V 2)

with 0 < V <∞, see Azäıs & León [9].

The proof of such a result relies on the approximation of the covariance func-
tion c by compactly supported ones, more precisely, such an approximation is
obtained by convolution with a compactly supported kernel. This yields an M -
dependent stationary Gaussian process for which a CLT can be obtained. See
Diananda [28], Malevich [60], Cuzick [25].

In Azäıs & León [9] it is shown that this result implies a CLT for the number
of level crossings of the stationary trigonometric ensemble YK .

For Classical Trigonometric Polynomials, the asymptotic expectation of NTK

on [0, 2π] is known since Dunnage’s work [29] to be 2K/
√

3. Later, Wilkins [79]
proved that the error in the approximation of the asymptotic expectation of the
number of zeros is O(1), actually he approximates up to the third order

ENTK [0, 2π] =
1√
3

[
(2n+ 1) +D1 +

D2

2n+ 1
+

D3

(2n+ 1)2

]
+O

(
D3

(2n+ 1)3

)
with D1 = 0.23 . . . , etc.

The leading asymptotic term was proven to be the same for non-centered
coefficients and for dependent coefficients with constant correlation, see Farah-
mand [31] and references therein or see Bharucha-Reid & Sambandham [17] for
a review.

Recently, Farahmand & Li [32] considered the mean number of roots of TK
and XK allowing its coefficients to have different means and variances, but being
independent and Gaussian.

The variance was conjectured by Farahmand [31], Farahmand & Sambandham
[33] and Granville & Wigman [37] to be equivalent to V K, as K grows to infinity,
for some positive constant V , but was not proven to be so.

Finally, let us say that Classical trigonometric polynomials are eigenfunctions
of the Laplace operator with periodic conditions. Thus, one way to generalize
them to higher dimension is to consider Laplace eigenfunctions. Recently, Krish-
napur, Kurlberg & Wigman [52] studied the length of the zero level curves (nodal
domains) on the 2-torus of random Laplace eigenfunctions when the eigenvalue
(energy level) grows to infinity.

Federico Dalmao Artigas Rice Formula



70 5. CLT for Random Trigonometric Polynomials

In this chapter, we study the asymptotic behavior, as K tends to infinity,
of the variance of the number of zeros of TK on [0, π] and prove the conjecture
that the asymptotic main term of the variance is V K (V > 0). Furthermore, we
establish a Central Limit Theorem (CLT) for the number of zeros of TK . Our
main result is the following.

Denote the number of zeros of TK on the interval [0, π] by NTK = NTK [0, π].

Theorem 5.2. The normalized number of zeros of TK on the interval [0, π] con-
verges in distribution to a Gaussian random variable, more precisely

NTK [0, π]− ENTK [0, π]√
πK

⇒ N(0, V 2),

where 0 < V <∞ is given in Lemma 5.4.

5.2 Preliminaries

In the following lines we briefly describe the main tools that we use in the proof
of Theorem 5.2.

Stochastic Integration: See Peccati & Taqqu [67] and Hiu-Hsiung Kuo [53] for
details, see also Øksendal [66].

Consider a standard Brownian Motion (or Wiener Process) B = (Bλ : λ ∈
[0, 1]). Denote thee Lebesgue measure on Rd (d ≥ 1) by dλ, and the Borel σ-
algebra by B. The stochastic integral with respect to B is defined on L2([0, 1]) =
L2([0, 1],B, dλ), as follows: for a simple function

h =
n∑
k=1

akIAk,

where n ∈ N, ak ∈ R and the A′ks are pairwise disjoint intervals in [0, 1]; we set

IB1 (h) = B(h) =

∫ 1

0

h(λ)dBλ :=
n∑
k=1

ak∆B(Ak),

being ∆B(λ1, λ2) = Bλ2 −Bλ1 . One can verify directly that

E IB1 (g)IB1 (h) =

∫ 1

0

g(λ)h(λ)dλ.

Using this isometric property and the fact that the simple functions are dense in
L2([0, 1]), one can extend the definition of the stochastic integral with respect to
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B to every function in L2([0, 1]). Furthermore, the isometric property remains
valid in L2([0, 1]).

In order to define the q-fold multiple stochastic integral IBq with respect to
B, it is convenient to remove the diagonals. This is Itô’s idea and it results in
orthogonal random variables IBq (·) for different values of q, on the other hand, if
we do not remove diagonals, Wiener’s initial idea, the resulting integrals are not
orthogonal for different values of q. We follow Itô’s method.

The construction of the integral is done analogously to the unidimensional
case, but using indicator functions of rectangles whose “sides” are pairwise dis-
joint.

The key relations that we need are: the isometric property, see Peccati &
Taqqu [67, Eq. 5.5.62],

E IBp (gp)I
B
q (hq) = δpqq!

∫
[0,1]q

gp(λ)hq(λ)dλ. (5.1)

with δ the Kronecker’s delta, and the multiplication formula, see Peccati &
Taqqu [67, Eq. 6.4.17],

IBp (gp)I
B
q (hq) =

p∧q∑
n=0

n!

(
p

n

)(
q

n

)
IBp+q−2n(gp ⊗n hq), (5.2)

where gp ⊗n hq is the contraction of gp and hq defined by

gp ⊗n hq(x1, . . . , xp+q−2n)

=

∫
[0,1]n

gp(z1, . . . , zn, x1, . . . , xp−n)hq(z1, . . . , zn, xp−n+1, . . . , xp+q−2n)dz1 . . . dzn.

(5.3)

Remark 5.1. Assume that gp and hq are tensor products, gp = g⊗p and hq = h⊗q.
That is,

g⊗p(z1, . . . , zp) = g(z1) . . . g(zp),

h⊗p(z1, . . . , zq) = h(z1) . . . h(zq).

Then, if g and h are orthogonal, that is,
∫ 1

0
g(λ)h(λ)dλ = 0, then gp⊗n hq vanish

for all n ≥ 1. Consequently the multiplication formula (5.2) simplifies to

IBp (g⊗p)IBq (h⊗q) = IBp+q(g
⊗p ⊗ h⊗q). (5.4)

Thus in this case, the product of two stochastic integrals is a stochastic integral
(rather than a combination of them).
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Figure 5.1: Hermite polynomials Hq : q ≤ 5.

Hermite Polynomials and Wiener Chaos: The Hermite polynomial of degree
q is defined by

Hq(x) = (−1)qex
2/2 dq

dtq

∣∣∣∣
t=x

e−t
2/2.

For instance,

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

see Figure 5.2.

Alternatively, Hermite polynomials can be defined as the solutions of the
equation

exp

(
θx− θ2

2

)
=
∞∑
q=0

θq

q!
Hq(x) (5.5)

for all θ, x ∈ R.

Remark 5.2. One has to be careful, since some authors, for instance Nualart
[65], define Hq with other normalization constants.

A direct computation shows that for standard Gaussian X,

EHp(X)Hq(X) = δpqq!.

Rice Formula Federico Dalmao Artigas



5.2 Preliminaries 73

Moreover, the sequence
(
(q!)−1/2Hq : q ≥ 0

)
is an orthonormal basis of

L2(R, ϕ(dx)), where, as usual, ϕ stands for the standard Gaussian density func-
tion.

Now, consider a (standard) Brownian Motion Bλ on the interval [0, 1] defined
on a probability space (Ω,F ,P), and stochastic integrals as above. Thus, the
isometric property (5.1) implies that the map

h 7→ B(h) =

∫ 1

0

h(λ)dBλ,

defines an isometry between L2([0, 1]) and L2(Ω, σ(B),P), where σ(B) is the
filtration defined by the Brownian MotionB. The processB is called an isonormal
process, this definition can be extended to other processes trivially, see Peccati
& Taqqu [67, Chapter 8].

From Equation (5.5) and the properties of multiple stochastic integration it
can be proven that: for h ∈ L2([0, 1]) with unit norm, we have

IBq (h⊗q) = Hq(B(h)), (5.6)

That is, the Hermite polynomial of degree q applied to the (simple) stochastic
integral of h with respect to B equals the multiple stochastic integral of the tensor
product, h⊗q, of h with itself q times.

Combining Equations (5.5) and (5.6) it follows the fundamental Hermite ex-
pansion of any square integrable functional of the Brownian motion B, that is, if
F ∈ L2(Ω, σ(B),P), then there exists a unique sequence of symmetric functionals
(fq : q ≥ 1) with fq ∈ L2([0, 1]q, dλ), such that

F − EF =
∞∑
q=1

IBq (fq), (5.7)

where the equality holds in the L2 sense.

For q ≥ 1, the closed subspace of L2(Ω, σ(B),P) spanned by the collection of
all random variables of the form IBq (f) for symmetric square-integrable f ∈ [0, 1]q

is called the q-th Wiener Chaos associated with B and denoted by Hq, in addition
we define H0 as the space of constants. Observe that the isometric property
(5.1) implies the orthogonality of the Wiener Chaos for different values of q.
Furthermore, Equation (5.7) show that

L2(Ω, σ(B),P) =
∞⊕
q=0

Hq,

where ⊕ indicates an orthogonal sum.
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Besides, we say that a square integrable functional has Hermite rank τ if its
components in the Chaos Hq vanish for q < τ .

Mehler Formula: Mehler Formula enable us to compute the expectation of
the product of four Hermite polynomials. It is a particular case of the Diagram
Formula.

Let (X1, X2, X3, X4) be a centered Gaussian vector with variance matrix
1 0 ρ13 ρ14

0 1 ρ23 ρ24

ρ13 ρ23 1 0
ρ14 ρ24 0 1


Then, if r1 + r2 = r3 + r4:

E

[
4∏

k=1

Hrk(Xk)

]
=

∑
(d1,d2,d3,d4)∈J

r1!r2!r3!r4!

d1!d2!d3!d4!
ρd113ρ

d2
14ρ

d3
23ρ

d4
24,

where J is the set of indexes di ≥ 0 verifying

d1 + d2 = r1; d3 + d4 = r2; d1 + d3 = r3; d2 + d4 = r4.

If r1 + r2 6= r3 + r4, then the expectation vanish.

Arcones inequality: Arcones Inequality will help us with the covariances of
the terms involved in Wiener Itô expansions. See Arcones [5] and also Bardet &
Surgailis [14].

Let X = (X(1), . . . , X(d)) and Y = (Y (1), . . . , Y (d)) be two centered Gaussian
random vectors in Rd. Assume that

EX(j)X(k) = EY (j)Y (k) = δjk

for all 1 ≤ j, k ≤ d. Define

r(j,k) = EX(j)Y (k).

Let f be a function on Rd with finite second moment and rank τ (1 ≤ τ < ∞)
with respect to X. Suppose that

ψ := max

{
max
1≤j≤d

d∑
k=1

|r(j,k)|, max
1≤k≤d

d∑
k=1

|r(j,k)|

}
≤ 1

then ∣∣E (f(X)− E f(X))(f(Y )− E f(Y ))
∣∣ ≤ ψτE f 2(X).
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Note that the sums in the definition of Arcones coefficient ψ are operator
norms of the matrix of covariances (1 and ∞ norm respectively). Clearly, since
all the norms in a finite dimensional linear space are equivalent, one can choose
other norm with obvious changes in the formula.

Peccati-Tudor’s Theorems: On this item we recall two key theorems, see
Peccati & Tudor [68] and Peccati & Taqqu [67].

The first one involve sequences of chaotic variables.

Theorem 5.3. Fix an integer q ≥ 2. For any sequence (f (k))k of symmetric
functions in L2([0, 1]q) such that

lim
k→∞

q!‖f (k)‖2
2 = lim

k→∞
E
[
IBq
(
(f (k))2

)]
= 1,

the following conditions are equivalent:

1. for every n = 1, . . . , q − 1:

lim
k→∞
‖f (k) ⊗n f (k)‖2 = 0,

where ⊗n denotes the contraction as defined in Equation (5.3).

2. as k → ∞, the sequence
(
IBq
(
f (k)
))
k

converges in distribution towards a
standard Gaussian random variable.

Actually, another condition, involving cumulants, is given, but the cited one
are sufficient for our purposes.

The second theorem involve sequences of chaotic vectors.

Theorem 5.4. Assume that for q1 ≤ q2 ≤ · · · ≤ qm, we have functionals f
(k)
j

such that E
[
Iqj(f

(k)
j )
]2

→k σ
2
djj

, then, if E
[
Iqj(f

(k)
j ))Iq`(f

(k)
` )
]
→k 0 we have

(Iq1(f
(k)
1 ), . . . , Iqm(f (k)

m ))⇒k N(0, Dm),

if and only if Iqj(f
(k)
j ) converges in law towards a centered Gaussian random

variable with variance djj. Here Dm stands for a diagonal matrix with entries
djj.

One of the main features of this methods is that it does not need conditions
on moments higher than the second.
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5.3 Proof of the CLT

In order to obtain our results we make use of the techniques of Wiener Chaos
expansion, Peccati-Tudor’s method for obtaining CLTs and, of course, Rice For-
mulas.

More precisely, we obtain the Wiener Chaos expansion for the normalized
number of zeros of the normalized version of TK on the interval [0, π]. Then, we
use Rice Formulas to bound the second factorial moment (and, thus, the variance)
of the number of zero up-crossings in order to pass to the limit under the integral
sign and obtain the asymptotic variance.

A key fact, is that removing the extremes of the interval, the behavior of
(the covariance of the standardized version of) TK is asymptotically equivalent
to that of (the covariance of) its stationary counterpart YK , so the limit variances
of the respective number of zeros coincide. Our work closely follows Azäıs & León
[9], but the asymptotic Gaussianity is obtained through contractions rather than
through the L2 proximity to the limit process.

5.3.1 Scale change

Let us replace t by t/K, this permits us to look at the polynomials TK at a
convenient scale and to find a limit for them.

Thus, from now on we are concerned with the zeros on the interval [0, Kπ] of
the polynomials

TK(t) =
1√
K

K∑
n=1

an cos
( n
K
t
)
.

Let YK be the stationary counterpart of TK , that is

YK (t) := XK

(
t

K

)
=

1√
K

K∑
n=1

[
an cos

( n
K
t
)

+ bn sin
( n
K
t
)]

where the coefficients an and bn are independent and identically distributed stan-
dard Gaussian random variables. Clearly TK and YK are centered Gaussian
processes in t.

Denote by cK the covariance function of YK , it is well known, see Azäıs &
León [9, Eq. 1], Granville & Wigman[37, Eq. 13], etc, that

cK(t) =
1

K

K∑
n=1

cos
( n
K
t
)
. (5.8)
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Further, cK can be expressed in closed form using Fejér Kernel, namely

cK(t) =
1

K
cos

(
K + 1

2K
t

)
sin (t/2)

sin(t/2K)

A direct computation, shows that the covariance function of the classical
trigonometric polynomials, rK(s, t), is given by

rK(s, t) =
1

2
(cK(t− s) + cK(t+ s)).

Indeed,

rK(s, t) = ETK(s)TK(t) = E
1√
K

K∑
n=1

an cos
( n
K
s
)
· 1√

K

K∑
m=1

am cos
(m
K
t
)

=
1

K

K∑
n=1

cos
( n
K
s
)

cos
( n
K
t
)
,

where we use that the an are i.i.d. standard Gaussian and then E anam = δnm,
δ denotes Kronecker’s delta. Now, using the well known trigonometric formula
cos(a)+cos(b) = 2 cos((a+b)/2) cos((a−b)/2) for (a+b)/2 = ns/K and (a−b)/2 =
nt/K we obtain

rK(s, t) =
1

2K

K∑
n=1

[
cos
( n
K

(t− s)
)

+ cos
( n
K

(t+ s)
)]

=
1

2
(cK(t− s) + cK(t+ s)) (5.9)

as claimed.

This fact shows that TK is not stationary with respect to t, but its covariance
is half of the covariance of YK plus a term that goes to zero as s or/and t grows
to infinity. This is the key point, and it suggest that the number of zeros of these
processes have the same limit behavior.

In particular, the variance of TK(t) is

V 2
K(t) := rK(t, t) =

1

2
(1 + cK(2t)). (5.10)

Thus, the limit variance, as t→∞, is 1
2

and not 1 as in the stationary case. At
t = 0, TK and YK have the same variance.

Remark 5.3. Needless to say that the processes obtained from the TK’s replacing
the cosines by sines have also asymptotic variance 1

2
. Furthermore, these sines-

processes have covariance functions (cK(t−s)−cK(t+s))/2, thus for large values
of t+ s the behavior of sines and cosines processes are very similar.
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From now on, we work on the case s < t and denote τ := t− s and σ := t+ s.
The case s > t is analogous. It is convenient to use the standardized version of
TK , namely

TK(t) :=
TK(t)

VK(t)
, (5.11)

thus TK has unit variances and its covariance, rK , is given by

rK(s, t) =
cK(τ) + cK(σ)√

1 + cK(2s)
√

1 + cK(2t)
.

Remark 5.4. It is clear that the random variables NTK ([0, π]) and NTK ([0, π])
coincide.

5.3.2 Limit covariances

The r.h.s. in the first line of Equations (5.9), expresses rK as a Riemann sum
with partition {n/K : n = 0, 1, . . . , K} (s, t enter as parameters), thus, it follows
that

rK(s, t)→ r(s, t) :=
1

2
(sc(τ) + sc(σ)), (5.12)

as K →∞, where sc is the cardinal sine function, that is sc(x) = sin(x)/x.

x

sc(x)

Figure 5.2: Cardinal Sine

Besides, from the boundedness of the limit function, it is easy to see that
this convergence is uniform on off-diagonal compacts (compacts in [0, Kπ]2 not
containing points in the diagonal). Furthermore, the order one and order two
derivatives of rK converge in the same manner to the corresponding derivatives
of r and the following bounds hold: for τ, σ varying on compacts not containing
zero:

|rK(s, t)| ≤ π

τ
+
π

σ
, |∂irK(s, t)| ≤ π

2τ
+

π

2σ
+

π2

4τ 2
+

π2

4σ2
,

|∂ijrK(s, t)| ≤ c

(
1

τ
+

1

σ
+

1

τ 2
+

1

σ2
+

1

τ 3
+

1

σ3

)
, (5.13)
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where i, j = s, t and c is some constant; and

V 2
K(t) ≤ 1

2

[
1 +

π

2t

]
. (5.14)

Besides, the same convergences hold for TK , and for T
′
K at least for s, t vary-

ing on any compact interval contained in [t0,∞)2 (t0 large enough), see Lemma
5.6. This is enough for our purposes. Therefore, TK , TK converge to centered
Gaussian processes T and T on the positive real axis having covariances given by
(5.12) and

r(s, t) =
sc(τ) + sc(σ)√

1 + sc(2s)
√

1 + sc(2t)

respectively. See Azäıs & León [9] and also Granville & Wigman [37]

Remark 5.5. On the proof of the CLT we will be concerned with large values of
s and t, so σ will be large, thus r(s, t) ≈ sc(τ).

5.3.3 Chaining

In this item we write the processes TK and T on the same probability space.
Furthermore, we establish an isonormal framework.

Assume that B = (Bλ : 0 ≤ λ ≤ 1) is a Wiener process (Brownian Motion)
in a probability space (Ω,F ,P), and define the processes T̃K and T̃ by

T̃K(t) =

∫ 1

0

K∑
n=1

cos
( n
K
t
)
I
{[

n− 1

K
,
n

K

)}
(λ)dBλ

where IA is the indicator (or characteristic) function of the set A, and

T̃ (t) =

∫ 1

0

cos (λt) dBλ

It is easy to verify, using the isometric property of the stochastic integral with
respect to B, that these processes have the same distributions than the classical
trigonometric polynomial and its limit respectively. Indeed, for instance, for the
covariance function of T̃K we have

cov(T̃K(s), T̃K(t)) = E
∫ 1

0

K∑
n=1

cos
( n
K
s
)
I
{[

n− 1

K
,
n

K

)}
(λ)dBλ

·
∫ 1

0

K∑
m=1

cos
(m
K
t
)
I
{[

m− 1

K
,
m

K

)}
(λ′)dBλ′
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and by the isometric properties, this equals

∫ 1

0

K∑
n=1

cos
( n
K
s
)
I
{[

n− 1

K
,
n

K

)}
(λ)

·
K∑
m=1

cos
(m
K
t
)
I
{[

m− 1

K
,
m

K

)}
(λ)dλ

=

∫ 1

0

K∑
n=1

cos
( n
K
s
)

cos
( n
K
t
)
I
{[

n− 1

K
,
n

K

)}
(λ)dλ

=
1

K

K∑
n=1

cos
( n
K
s
)

cos
( n
K
t
)

= rK(s, t).

The other cases are analogous.

Hence, the processes T̃K , T̃ provide a joint representation of TK and T .

In this way, we have all the processes of interest defined on the same proba-
bility space (Ω,F ,P) associated with the Brownian Motion B. In particular, the
isonormal process is given by integration with respect to B, namely, the map

h 7→ B(h) :=

∫ 1

0

hdB,

defines an isometric between L2([0, 1]) and a Gaussian subspace of L2(Ω, σ(B),P).

We can also compute the covariances, and thus L2 distances., between TK and
its limit T . Indeed, the cross correlation between TK and T is given by

ρK(s, t) := ETK(s)T (t)

=
1

VK(s)V (t)
E
∫ 1

0

K∑
n=1

cos
( n
K
s
)
I
{[

n− 1

K
,
n

K

)}
(λ)dBλ ·

∫ 1

0

cos (λ′t) dBλ′

=
1

VK(s)V (t)

K∑
n=1

∫ n
K

n−1
K

cos
( n
K
s
)

cos(λt)dλ

=
1

VK(s)V (t)

1

2

K∑
n=1

∫ n
K

n−1
K

[
cos
( n
K
s− λt

)
+ cos

( n
K
s+ λt

)]
dλ

=
1√

1 + cK(2s)
√

1 + sc(2t)

K∑
n=1

∫ 1/K

0

[
cos
( n
K
τ − vt

)
+ cos

( n
K
σ − vt

)]
dv.

where we applied Equation (5.10) and the change of variable λ 7→ n
K
− λ in the

last equality. It follows that, see Azäıs & León [9], ρK(s, t) −→ r(s, t) uniformly
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on off-diagonal compacts and so happens with the derivatives of ρK(s, t) to the
respective derivatives of r(s, t). Further, these functions are bounded by c(1/τ +
1/σ).

5.3.4 Wiener Chaos decomposition

Following Kratz & León [49] we can establish the expansion of the number of
roots of trigonometric polynomials in the Wiener Chaos.

For α ∈ [0, 1/2], denote [0, Kπ]−α = [(Kπ)α, Kπ − (Kπ)α], see Lemma 5.1
below.

Theorem 5.5. The following expansion holds in L2

NTK
([0, Kπ]−α)− ENTK

([0, Kπ]−α)
√
Kπ

=
∞∑
q=1

ITKq ([0, Kπ]−α)

where

ITKq ([0, Kπ]−α) =
1√
Kπ

∫
[0,Kπ]−α

fq

(
TK(s), T

′
K(s)

)
vK(s)ds

where vK(s) :=

√
r

(11)
K (s, s) =

√
∂strK(s, s) is the standard deviation of T

′
K(s),

T
′
K(s) = T

′
K(s)/vK(s), and

fq(x, y) =

bq/2c∑
`=0

bq−2`a2`Hq−2`(x)H2`(y),

being a2` the Hermite coefficients of the absolute value function | · | and bq−2`

are obtained as limits of the Hermite coefficients of the Gaussian density as the
variance tends to zero.

Remark 5.6. It is well known that

bk =
1

k!
√

2π
Hk(0), a2` =

√
2

π

(−1)`+1

2``!(2`− 1)
.

Proof. First, since the zeros are isolated, formally, we can write Kac Formula for
the number of zeros

NTK = NTK
=

∫
[0,Kπ]−α

δ0

(
TK(s)

) ∣∣∣T ′K(s)
∣∣∣ vK(s)ds (5.15)
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Next, in order to give precise meaning to the last expression, we approximate
the delta mass at 0 by Gaussian kernels ϕη (centered, with variance η2), we obtain

Nη

TK
:=

∫
[0,Kπ]−α

ϕη(TK(s))
∣∣∣T ′K(s)

∣∣∣ vK(s)ds (5.16)

Since ϕη ∈ L2(ϕ(s)ds), Nη

TK
has the following chaotic expansion (see Part 4 of

Lemma 5.5)

Nη

TK
=
∞∑
q=0

bq/2c∑
`=0

bηq−2`a2`

∫
[0,Kπ]−α

Hq−2`

(
TK(s)

)
H2`

(
T
′
K(s)

)
vK(s)ds (5.17)

where bηk are the Hermite coefficients of ϕη.

Now, the idea is to pass to the limit, with η → 0 (K fixed), in this expansion
in order to obtain the expansion for NTK

.

Part 3 of Lemma 5.5 shows that Nη

TK
→ NTK

in L2, so we look at the L2

limit of the right hand side of Equation (5.17).

First, observe that bηk →η bk (non-random), and that this is the only ingredient
depending on η. Besides, the necessary domination is given by Fatou’s Lemma

Q∑
q=0

E

bq/2c∑
`=0

bq−2`a2`

∫
[0,Kπ]−α

Hq−2`(TK(s))H2`(T
′
K(s))vK(s)ds

2

≤ lim inf
η→0

E [Nη

TK
]2 = EN2

TK
.

Therefore, the right hand side has a limit, say N , in L2 (with bq−2` instead of
bηq−2`). It remains to show that this limit is, effectively, NTK

.

The result follows writing

‖NTK
−N‖2

L2 ≤ 2
[
‖NTK

−Nη

TK
‖2
L2 + ‖Nη

TK
−N‖2

L2

]
.

The first term in the right hand side tends to zero by Part 4 of Lemma 5.5. To
show that the second term tends to zero, consider its chaotic expansion

Nη

TK
−N =

∞∑
q=0

bq/2c∑
`=0

(
bηq−2` − bq−2`

)
a2` Jq

where we denote Jq =
∫

[0,Kπ]−α
Hq−2`(TK(s))H2`(T

′
K(s))vK(s)ds, note that Jq
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does not depend on η. Then, for each Q we have

‖Nη

TK
−N‖2

L2 ≤ 3

 Q∑
q=0

E

bq/2c∑
`=0

(bηq−2` − bq−2`)a2`Jq

2

+
∞∑

q=Q+1

E

bq/2c∑
`=0

bq−2`a2`Jq

2

+
∞∑

q=Q+1

E

bq/2c∑
`=0

bηq−2`a2`Jq

2
Now, take limit as η → 0, the first term tends to 0 since it is a finite sum
and bηq−2` →η bq−2`; the second one does not depend on η; the third term is
‖PQ(Nη

TK
)‖2, where PQ is the orthogonal projection of the L2 random variable

Nη

TK
on the subspace ⊕∞Q+1Hq, thus it converges with η → 0 to ‖PQ(NTK

)‖2 and

tends to 0 when Q→∞.

This proves the theorem.

Remark 5.7. As shown in the Section 5.3.3 , TK(t) and T
′
K(t) can be written

as B(h) and B(h′) for

h(s, λ,K) =
1

VK(s)

K∑
n=1

cos
( n
K
s
)
I
{[

n− 1

K
,
n

K

)}
(λ)

and h′ = ∂sh(s,K)/‖∂sh(s,K)‖2. Then

Hq−2`(TK(t))H2`(T
′
K(t)) = Hq−2`(B(h))H2`(B(h′)).

Since TK(t) and T
′
K(t) are orthogonal, so are by the isometric property h and

h′, that is,
∫ 1

0
h(λ)h′(λ)dλ = 0. Therefore, the multiplication formula (5.2) and

Remark 5.1 show that

Hq−2`(TK(t))H2`(T
′
K(t)) = IBq (h⊗q−2` ⊗ h′ ⊗2`) ∈ Hq.

Now, using the Stochastic Fubini’s Theorem, see Peccati & Taqqu [67, Section
5.13], we have

ITKq ([0, Kπ]−α) = IBq

 1√
Kπ

∫
[0,Kπ]−α

bq/2c∑
`=0

bq−2`a2`h
⊗q−2` ⊗ h′ ⊗2`vK(s)ds

 ∈ Hq.

Thus ITKq ([0, Kπ]−α) = IBq (gq) for gq ∈ L2([0, 1]q) given by

gq(λ, K) =
1√
Kπ

∫
[0,Kπ]−α

bq/2c∑
`=0

bq−2`a2`(h
⊗q−2` ⊗ h′ ⊗2`)(λ)vK(s)ds, (5.18)

with λ = (λ1, . . . , λq).

In conclusion, the random variable ITKq belongs to the q-th Wiener Chaos Hq.
In particular, they are orthogonal for different values of q.
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5.3.5 Asymptotic variance

The main idea is to take advantage of the fact that the covariances of TK and
YK are very similar one to each other for large values of s, t, even TK (and TK)
being non-stationary processes.

In fact, remember that the covariance of YK is cK(τ) and that of TK is (cK(τ)+
cK(σ))/

√
1 + cK(2s)

√
1 + cK(2t).

This idea is supported by the following lemma, where [0, Kπ]c−α = [0, Kπ] \
[0, Kπ]−α.

Lemma 5.1. For 0 < α < 1/2, we have

NTK

(
[0, Kπ]c−α

)
− ENTK

(
[0, Kπ]c−α

)
√
Kπ

−→ 0

in probability, as K →∞. The same result holds true also for T .

Proof. Let us look at the interval [0, (Kπ)α], the other one is analogous. First,
we use Markov inequality to bound the probability by an expression involving
the expectation of the number of roots, that is, for given ε > 0 we have

P
(∣∣∣∣NTK

− ENTK√
Kπ

∣∣∣∣ > ε

)
≤

E |NTK
− ENTK

|
ε
√
Kπ

≤
2ENTK

ε
√
Kπ

thus, it is enough to show that ENTK
([0, (Kπ)α])/

√
Kπ → 0.

With this aim, we use the first order Rice formula.

ENTK
([0, (Kπ)α]) =

∫ (Kπ)α

0

E
[
T
′
K(t) | TK(t) = 0

]
pTK(t)(0)dt

=
1

π

∫ (Kπ)α

0

[
c′′K(2t)− c′′K(0)− (c′K(2t)− c′K(0))2

1 + cK(2t)

]1/2
dsdt√

1 + cK(2t)

It is easy to see that the integrand is bounded: the covariances and its derivatives
are bounded by Equation (5.14), and the denominator is bounded away from zero
by Lemma 5.6. Hence, the result follows. The proof for the limit process T is
exactly the same, replacing cK by sc.

This Lemma shows that in order to obtain the desired CLT, it suffices to
prove that

NTK
([0, Kπ]−α)− ENTK

([0, Kπ]−α)
√
Kπ

⇒ N(0, V 2).
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Following the arguments in Azäıs & León [9] we obtain the asymptotic vari-
ance of the number of zeros of TK on [0, Kπ]−α as K →∞. Further, in Lemma
5.4 we show that the limit variance of NTK

([0, Kπ]−α) coincide with that of
NT ([0, Kπ]−α), and that both coincide with the limit variance of the number of
zeros of the stationary Gaussian process X, NX([0, Kπ]−α).

The two following lemmas give an uniform upper bound (on K) for these
variances. The first one deals with the difficult part: when integrating close to
the diagonal.

Lemma 5.2. For fixed a > 0, the variances of NTK
([t, t + a])/

√
Kπ remain

bounded uniformly on K for all t ∈ [t0, Kπ− t0] for t0 large enough. Besides, the
same result holds true also for T .

Proof. Let t0 be as in Lemma 5.6 to ensure that the standard deviation v, vK of
T
′
(t) and T

′
K(t) are bounded away from zero.

In the first place, note that, it suffices to bound the second factorial moment
of the number of zero up-crossings U = U ([t, t+ a]) of TK (resp. T ) on the
interval [t, t + a]. Indeed, by the continuity of the paths it is easy to see that
N ≤ 2U + 1, besides, similar computations as in the proof of Lemma 5.1 show
that EU/

√
Kπ tends to zero as K →∞.

Then, we consider the second order Rice Formula, see Proposition 4.1 in Azäıs
& Wschebor.

E
(
U[2]

)
= E (U(U − 1))

=

∫ t+a

t

∫ t+a

t

E
[
T
′+
K (s)T

′+
K (t) | TK(s) = TK(t) = 0

]
· pTK(s),TK(s)(0, 0)dsdt

=

∫ t+a

t

∫ t+a

t

E
[
Θ+(s)Θ+(t)

]
· pTK(s),TK(s)(0, 0)dsdt

where the Θ’s are the (Gaussian) regression variables, that is

Θ(s) = T
′
K(s)− α(s)TK(s)− β(s)TK(t)

where α(s), β(s) are chosen such that Θ(s) is independent from TK(s) and TK(t).
Thus, see Appendix 6.5.5,

α(s) = −rK(s, t)β(s), β(s) =
r

(10)
K (s, t)

1− r2
K(s, t)

.

Similar formulas hold true for Θ(t) and for T .

Since we are looking at the roots of the polynomials, we can use the arguments
in Azäıs & Wschebor [12, Eq. 4.14]. Indeed, the conditional expectations of
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TK(s) and TK(t) vanish, thus we can bound the expectation in the last equation
by the sum of the conditional variances, that is by the sum of the variances of
Θ(s) and of Θ(t). Indeed

E
[
Θ+(s)Θ+(t)

]
≤ 1

4
E [Θ(s) + Θ(t)]2

≤ 1

4
E [Θ(s) + Θ(t)− EΘ(s)− EΘ(t)]2

≤ 1

2
[var(Θ(s)) + var(Θ(t))] = var(Θ(s)).

Hence, the conditional variance of TK(s) is

var(Θ(s)) = r
(11)
K (s, s)− (r

(10)
K )2(s, t)

1− r2
K(s, t)

, (5.19)

which follows directly from its definition. Note that this expression is similar to
the one in the stationary case. So the integrand is

r
(11)
K (s, s)(1− r2

K(s, t))− (r
(10)
K )2(s, t)

1− r2
K(s, t)

· 1

π
√

1− r2
K(s, t)

,

and changing variables from (s, t) to (τ, σ), the domain of integration is [0, a] ×
[2t, 2t+ 2a].

Both, numerator and denominator tend to zero as τ → 0 (diagonal points).
Let us look them carefully.

Let us consider the denominator of Equation (5.19) (the first factor in the
r.h.s. of the latter equation) first, after simplifying the denominators (of the r’s),
we have that the denominator is

(1 + cK(2s))(1 + cK(2t))− (cK(τ) + cK(σ))2

= (1 + cK(σ − τ))(1 + cK(σ + τ))− (cK(τ) + cK(σ))2

= [1− c2
K(τ)] + [cK(2s)cK(2t)− c2

K(σ)] + [cK(2s) + cK(2t)− 2cK(τ)cK(σ)]

:= S1 + S2 + S3,

with self evident notation. As above, the same formula hold for T with cK
replaced by sc.

We take Taylor expansions at 0 and σ with increment τ .

S1 = 1−
(

1 + c′K(0)τ + c′′K(0)
τ 2

2
+ θK0(τ)

)2

= −c′′K(0)τ 2 − 2θK0(τ)− c′′ 2K (0)

4
τ 4 − θK0(τ)(θK0(τ) + c′′K(0)τ 2)
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where we used the fact that c′K(0) = 0.

S2 = cK(σ − τ)cK(σ + τ)− c2
K(σ)

=

[
cK(σ)− c′K(σ)τ + c′′K(σ)

τ 2

2
+ θKσ(−τ)

]
·
[
cK(σ) + c′K(σ)τ + c′′K(σ)

τ 2

2
+ θKσ(τ)

]
− c2

K(σ)

= τ 2
[
cK(σ)c′′K(σ)− c′ 2K(σ)

]
+ cK(σ)

(
θKσ(τ) + θKσ(−τ)

)
+
c′′ 2K (σ)

4
τ 4 + c′K(σ)τ

(
θKσ(τ) + θKσ(−τ)

)
+ c′′K(σ)

τ 2

2

(
θKσ(τ) + θKσ(−τ)

)
+ θKσ(−τ)θKσ(τ)

(the θ’s are of order three). Finally

S3 = cK(σ − τ)− cK(τ)cK(σ) + cK(σ + τ)− cK(τ)cK(σ)

= τ 2 [c′′K(σ)− cK(σ)c′′K(0)] + θKσ(−τ) + θKσ(τ) + cK(σ)θK0(τ).

Therefore, the denominator is

S1 + S2 + S3 = τ 2
[
(c′′K(σ)− c′′K(0))(1 + cK(σ))− c′ 2K(σ)

]
+ (cK(σ)− 2)θK0(τ) + (1 + cK(σ))

(
θKσ(τ) + θKσ(−τ)

)
+
τ 4

4

[
c′′ 2K (σ)− c′′ 2K (0)

]
+ o(τ 4). (5.20)

Let us look now at the numerator of Equation (5.19). We begin with the term

(r
(10)
K )2(s, t) = ET ′K(s)TK(t). After simplifying the denominator, we have

r
(10)
K (s, t) = c′K(σ)− c′K(τ)− c′K(2s)

1 + cK(2s)
(cK(τ) + cK(σ))

=
1

1 + cK(2s)

[
(c′K(σ)− c′K(τ))(1 + cK(σ − τ))− c′K(σ − τ)(cK(τ) + cK(σ))

]
We look at the factor in brackets, again by a Taylor expansion, for the first term,
recalling that c′K(0) = 0, we have

(c′K(σ)− c′′K(0)τ − θ′K0(τ))

[
1 + cK(σ)− c′K(σ)τ + c′′K(σ)

τ 2

2
+ θKσ(−τ)

]
= c′K(σ)(1 + cK(σ)) + τ

(
− c′′K(0)(1 + cK(σ))− c′ 2K(σ)

)
+ τ 2

[
c′K(σ)c′′K(σ)

2
+ c′′K(0)c′K(σ)

]
− θ′K0(τ)(1 + cK(σ))

− c′′K(0)c′′K(σ)
τ 3

2
+ c′K(σ)θKσ(−τ) + o(τ 3)
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For the second term(
c′K(σ)− c′′K(σ)τ + θ′Kσ(−τ)

)(
1 + c′K(0)τ + c′′K(0)

τ 2

2
+ θK0(τ) + cK(σ)

)
= c′K(σ)(1 + cK(σ)) + τ

(
− c′′K(σ)(1 + cK(σ))

)
+ τ 2 c

′
K(σ)c′′K(0)

2
+ θ′Kσ(−τ)(1 + cK(σ))

+ c′K(σ)θK0(τ)− c′′K(σ)c′′K(0)
τ 3

2
+ o(τ 3)

Subtracting the two previous formulas, the factor into brackets is

τ
(

(c′′K(σ)− c′′K(0))(1 + cK(σ))− c′ 2K(σ)
)

+
τ 2

2
[c′K(σ)c′′K(σ) + c′K(σ)c′′K(0)]

− (θ′K0(τ) + θ′Kσ(−τ)(1 + cK(σ)))

+ c′K(σ) (θKσ(−τ)− θK0(τ)) + o(τ 3) (5.21)

(the θs are of order three). Compare with (5.20).

It remains only to see r
(11)
K (s, t). From the Auxiliary Computations, see Equa-

tion (5.24), we have

r
(11)
K (s, t) =

1

1 + cK(2s)

[
c′′K(σ)− c′′(τ)− c′ 2K(2s)

1 + cK(2s)

]
=

1

(1 + cK(2s))2

[
(c′′K(σ)− c′′(τ))(1 + cK(σ − τ))− c′ 2K(σ − τ)

]
The first term of the factor in brackets is approximated by Taylor expansion by(

c′′K(σ)− c′′K(0)− θ′′K0(τ)
)(

1 + cK(σ)− c′K(σ)τ + c′′K(σ)
τ 2

2
+ θKσ(−τ)

)
= (c′′K(σ)− c′′K(0))(1 + cK(σ))− c′K(σ)(c′′K(σ)− c′′K(0))τ − θ′′K0(τ)(1 + cK(σ))

+ (c′′K(σ)− c′′K(0))c′′K(σ)
τ 2

2
+ c′K(σ)θ′′K0(τ)τ

+ (c′′K(σ)− c′′K(0))θKσ(−τ)− θ′′K0(τ)c′′K(σ)
τ 2

2
− θ′′K0(τ)θKσ(−τ)

The second term is(
c′K(σ)− c′′K(σ)τ + θ′Kσ(−τ)

)2

= c′ 2K(σ)− 2c′K(σ)c′′K(σ)τ + c′′ 2K (σ)τ 2 + 2c′K(σ)θ′Kσ(−τ)

− 2c′′K(σ)θ′Kσ(−τ)τ + θ′ 2Kσ(−τ)
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Therefore

r
(11)
K (s, s) =

1

1 + c2
K(2s)

[
(c′′K(σ)− c′′K(0))(1 + cK(σ))− c′ 2K(σ)

+c′K(σ)(c′′K(σ) + c′′K(0))τ − θ′′K0(τ)(1 + cK(σ)) + o(τ)] (5.22)

Finally, putting together Equations (5.21) and (5.22), the numerator is

1

(1 + c2
K(2s))2

[(
(c′′K(σ)− c′′K(0))(1 + cK(σ))− c′ 2K(σ)

+ c′K(σ)(c′′K(σ) + c′′K(0))τ − θ′′K0(τ)(1 + cK(σ)) + o(τ)
)
τ 2

·
(

(c′′K(σ)− c′′K(0))(1 + cK(σ))− c′ 2K(σ)
)

−τ 2
(

(c′′K(σ)− c′′K(0))(1 + cK(σ))− c′ 2K(σ)
)2

+ o(τ 3)

]
Simplifying

1

(1 + c2
K(2s))2

[(
c′K(σ)(c′′K(σ) + c′′K(0))τ − θ′′K0(τ)(1 + cK(σ)) + o(τ)

)
τ 2(

(c′′K(σ)− c′′K(0))(1 + cK(σ))− c′ 2K(σ)
)

+ o(τ 3)
]

This shows that the leading term in the numerator of Equation (5.19) is of order
three, the same as in the denominator, thus, the integral (EU[2]) is convergent.
Again, the same holds for T , note that the computations involve cK but not its
specific form.

The constants in the higher order terms depend on cK(0), cK(σ), θK0(τ),
θKσ(±τ) and their first and second order derivatives. Equation (5.13) shows
that cK(σ) and its derivatives are bounded uniformly on K; besides a direct
computation from Equation (5.8) shows that cK(0) = 1, c′K(0) = 0 and c′′K(0) =

− (K+1)(2K+1)
6K2 , therefore they are uniformly bounded on K.

Finally, the terms θK0 and θKσ are also bounded uniformly on K. Indeed,
θKσ(τ) is the remainder of second order Taylor’s formula, therefore it can be
written in the form (Lagrange’s form) θkσ(τ) = c′′K(ξ)τ 3/6 with ξ ∈ (σ, σ + τ), in
our case

θKσ(τ) =
1

N

(
−

K∑
n=1

[ n
N

]2

cos(nξ/N)

)
τ 3

6

Thus, |θKσ(τ)| ≤ τ 3/6. The remaining cases are analogous.

Lemma 5.3. There exists t0 > 0 such that the variances of the normalized num-
ber of roots of TK on the interval [t0, Kπ − t0]

var

(
NTK

− ENTK√
Kπ

)
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are uniformly bounded on K.

Proof. We follow the proof of the similar assertion in Azäıs & León [9]. Let us
denote J = [t0, Kπ − (Kπ)α], besides, C stands for an absolute constant whose
value may change from one line to another.

Consider Arcones coefficient ψ for (TK(s), T
′
K(s)) and (TK(t), T

′
K(t)). Recall

that ψ involve the covariances of these two vectors which are functions of τ and σ,
see the Preliminaries above 74, so ψ = ψ(τ, σ). The computations in the Auxiliary
Results, page 97, and Inequalities (5.13) show that, for a given 0 < ρ < 1, one
can choose a and t0 in order that for τ > a, σ > a (thus t0 > a/2) we have
ψ(τ, σ) ≤ (const)(1/τ + 1/σ) < ρ < 1.

Now, write J as the disjoint union of intervals J` of length greater than a.
Therefore var(NTK (J)) =

∑
`,`′ cov(NTK (J`), N

TK (J`′)). When ` = `′ or |`−`′| =
1 we apply Cauchy-Schwarz Inequality and Lemma 5.2 to show that each term is
uniformly bounded on K. Therefore the sum of these terms is O(K), and divided
by Kπ, it remains bounded uniformly on K.

For the remaining terms, consider the chaotic expansion

NTK
(J`)− ENTK

(J`)√
Kπ

=
∞∑
q=1

ITKq (J`),

being ITKq as in Theorem 5.5 replacing [0, Kπ]−α by J`. Note that the denomi-

nator Kπ is included in ITKq .

Therefore, for q ≥ 2∑
`,`′:|`−`′|>1

cov
(
NTK

(J`), NTK
(J`′)

)
=

1

Kπ

∞∑
q=1

∫∫
∪J`×J`′ :|`−`′|>1

fq(TK(s), T
′
K(s))fq(TK(t), T

′
K(t))vK(s)vK(dt)dsdt

≤ C

Kπ

∞∑
q=1

∫∫
|s−t|≥a

q2ρq−2

[
1

τ
+

1

σ

]2

dsdt

=
C

Kπ

∫∫
|s−t|≥a

[
1

τ
+

1

σ

]2

dsdt

≤ C

Kπ

∫ Kπ

a

∫ 2Kπ

2a

[
1

τ 2
+

1

σ2

]
dτdσ ≤ C

aKπ

where we use Arcones Inequality and the fact that the coefficients bq−2`, a2` ≤ 1
for the first inequality, see Remark 5.6, and we enlarge the domain of integration
and use the inequality (a+ b)2 ≤ 2(a2 + b2) for the second one.
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We have to consider separately the case q = 1. but note that b1 = ϕ(0)H1(0) =

0 since H1(x) = x, for all x. Thus ITK1 = 0 for all K.

The result follows.

We are ready to compare the limit variances of NTK
([0, Kπ]−α) /

√
Kπ,

NT ([0, Kπ]−α) /
√
Kπ. and NX ([0, Kπ]−α) /

√
Kπ.

Lemma 5.4 (Asymptotic variance). The variances of ITKq ([0, Kπ]−α),

ITq ([0, Kπ]−α) and IXq ([0, Kπ]−α) have the same limit, denoted by σ2
q (0), in par-

ticular, σ2
1(0) = 0. Consequently,

var

(
NTK

([0, Kπ]−α)− ENTK
([0, Kπ]−α)

√
Kπ

)
→K

∞∑
q=2

σ2
q (0),

Furthermore,

ITKq ([0, Kπ]−α)− ITq [([0, Kπ]−α)→ 0

in L2.

Proof. The variance of IqK := ITKq ([0, Kπ]−α) is

var(IqK) = E I2
qK

=
1

Kπ

∫ Kπ−(Kπ)α

(Kπ)α

∫ Kπ−(Kπ)α

(Kπ)α
E
[
fq(TK(s), T

′
K(s))fq(TK(t), T

′
K(t))

]
· vK(s)vK(t)dsdt

=
1

Kπ

∫ Kπ−(Kπ)α

0

∫ 2Kπ−2(Kπ)α+τ

2(Kπ)α+τ

E(τ, σ)vK((σ − τ)/2)vK((σ + τ)/2)dσdτ

where E(τ, σ) is the expectation written in terms of (τ, σ).

By Equation (5.24), vK(u)→
√
−sc′′(0) = 1/

√
3 as u→∞. By Mehler For-

mula, see the Preliminaries in page 74, E(τ, σ) is a polynomial on the covariances

of (TK(s), T
′
K(s)) and (TK(t), T

′
K(t)).

Now, the inner integral (w.r.t. σ) divided by Kπ is, applying the mean
value theorem, equivalent to the integrand in an intermediate value σ̃. Thus, as
K → ∞, σ̃ → ∞, cK(σ̃) → 0 and E(τ, σ) converges to the same polynomial on
the covariances of the stationary process X and its derivative X ′ evaluated at s
and t (which depend on τ = t − s). Indeed, recall that the covariance of TK is
(cK(τ)+cK(σ))/

√
(1 + cK(2s)(1 + cK(2t))), thus, this tends to sc(τ) as K →∞.

Using the domination of Lemma 5.3, the result follows.
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The second assertion:

‖IqK − Iq‖2
L2 = E (IqK − Iq)2 = E I2

qK + E I2
q − 2E IqKIq

The first part of this lemma says that the first two terms converge to the same
value. The last term, can be computed similarly, and since the cross correla-
tion ρK also converges to r, the limit coincides with the previous one. Thus
limK ‖IqK − Iq‖2

L2 = 0.

Remark 5.8. In spite of the asymptotic equality of their variances, the random
variables ITq ([0, Kπ]−α) and IXq ([0, Kπ]−α) do not approximate each other in L2

as K grows to infinity. Indeed, let us compute their cross correlation. Thus,
consider a second Brownian Motion W = (Wλ : λ ∈ [0, 1]) independent from B
(defined on the same probability space). We can represent X, see Azäıs & León
[9, Eq. 9], by

X(t) =

∫ 1

0

cos(λt)dBλ +

∫ 1

0

sin(λt)dWλ.

The cross correlation ρ of T and X is

ρ(s, t) := ET (s)X(t) =
1

V (s)
E
∫ 1

0

cos(λs)dBλ ·
∫ 1

0

cos (λ′t) dBλ′

=
1

V (s)

∫ 1

0

cos (λs) cos(λt)dλ =
1

V (s)

1

2

∫ 1

0

[cos (λτ) + cos(λσ)] dλ

=
1√

2
√

1 + sc(2s)
(sc(τ) + sc(σ))→K

sc(τ)√
2

where we used the independence of B and W in the first equality and the fact that
in the truncated interval, σ →∞.

Therefore, the covariance of ITq ([0, Kπ]−α) and IXq ([0, Kπ]−α) do not cancel
the sum of their variances when computing their L2 distance analogously to the
proof of the second assertion in the last theorem.

5.3.6 CLT

In this section we prove Theorem 1, the Central Limit Theorem for the number
of zeros of Classical Trigonometric Polynomials.

For q = 1, we saw in Lemma 5.3 that the random variables ITK1 vanish.
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Asymptotic Gaussianity of ITKq for q > 1

Now, Remark 5.8 implies that we can not use the L2 proximity with the
stationary process X as in Azäıs & León [9]. Instead, we proceed by the contrac-
tions argument, see Preliminaries, page 75, and Peccati & Tudor [68] or Peccati
& Taqqu [67].

By Equation (5.18) we know that ITKq = IBq (gq) with

gq(λ, K) =
1√
Kπ

∫
[0,Kπ]−α

bq/2c∑
`=0

bq−2`a2`(h(s)⊗q−2` ⊗ h′(s)⊗2`)(λ)vK(s)ds,

and λ = (λ1, . . . , λq).

In order to compute the contractions gq⊗n gq, n = 1, . . . , q−1, and the norms
‖gq(K)‖2

2 and ‖gq ⊗n gq(K)‖2
2 we have to perform the product of the integral

defining gq with itself two/four times and to integrate that with respect to the
λ’s.

As by the isometric property of stochastic integral∫ 1

0

h(s;λ)h(t, λ)dλ = rK(s, t)

we have h(s)⊗p ⊗n h(t)⊗p = rK(s, t)n · h(s)⊗p−n ⊗ h(t)⊗p−n. Indeed

h(s)⊗p ⊗n h(t)⊗p(x1, . . . , xp−n, y1, . . . , yp−n)

=

∫
[0,1]n

[
n∏
k=1

h(s; zk)

p−n∏
k=1

h(s;xk) ·
n∏
k=1

h(t; zk)

p−n∏
k=1

h(t; yk)

]
dz1 · · · dzn

=
n∏
k=1

[∫ 1

0

h(s; zk)h(t; zk)dzk

] p−n∏
k=1

h(xk)

p−n∏
k=1

h(yk)

= rK(s, t)n · h(s)⊗p−n(x1, . . . , xp−n)⊗ h(t)⊗p−n(y1, . . . , yp−n).

Similar formulas hold for the terms which include h′. More precisely, by the

isometric property, they give factors that are powers of cov(TK(s), T
′
K(t)) =:

r̃ ′K(s, t) or cov(T
′
K(s), T

′
K(t)) =: r̃ ′′K(s, t). These covariances are computed in the

Auxiliary Results, see page 97.

Therefore

‖gq(K)‖2
2 =

1

Kπ

∫
[0,Kπ]−α

∫
[0,Kπ]−α

vK(s)vK(t)

q/2∑
`=0

q/2∑
`′=0

bq−2`bq−2`′a2`a2`′

· rK(s, t)q−2`∨`′ r̃ ′′K(s, t)
2`∧`′

r̃ ′K(s, t)
2`∨`′−2`∧`′

dsdt
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It is quite tedious to write down the contractions and their norms, but the re-
sulting integrals are quite similar. Let us do it for the case n = 1 and q odd (so
that q − 2` > 0), we have

‖gq ⊗1 gq(K)‖2
2 ≤

1

(Kπ)2

∫
[0,Kπ]−α

∫
[0,Kπ]−α

∫
[0,Kπ]−α

∫
[0,Kπ]−α

dsdtds′dt′

vK(s)vK(t)vK(s′)vK(t′)

q/2∑
`,`′=0

q/2∑
k,k′=0

|bq−2`bq−2`′a2`a2`′||bq−2kbq−2k′a2ka2k′|

·
∣∣∣rK(s, t)rK(s′, t′)rK(s, s′)q−2`∨`′−1r̃ ′′K(s, s′)

2`∧`′
r̃ ′K(s, s′)

2`∨`′−2`∧`′
∣∣∣

·
∣∣∣rK(t, t′)q−2k∨k′−1r̃ ′′K(t, t′)

2k∧k′
r̃ ′K(t, t′)

2k∨k′−2k∧k′
∣∣∣

The inequality is due to the absolute values in the covariances. Observe that in
the general case, the exponent of rK(s, t) and rK(s′, t′) is n, but the sum of the
exponents in the factors involving (s, t), (s, s′), and in those involving (s′, t′), (t, t′),
is q (the total sum of the exponents is 2q).

In the case of ‖gq‖2
2, since IBq is an isometry, it follows that ‖gq‖2

2 =

var(ITKq )→K→∞ σ2
q (0) > 0.

Now, we have to take the limit as K → ∞. Since, the vK are bounded, the
sums have finite fix number of terms and the a, b are constant, the important
ingredients are the covariances. We split the domain of integration into two parts:
on a tubular neighborhood of radio η of the diagonal s = t and s = t = s′ = t′

respectively and its complement.

Therefore, we have:

the integral close to the diagonal: we assume that |t − s| < η, |t′ − s′| <
η, |t′ − t| < η and |s′ − s| < η.

The covariances are bounded, in absolute value, from above by constants, for
instance∣∣∣cov (TK(s), T

′
K(t)

)∣∣∣ =
1

VK(s)VK(t)vK(t)

∣∣∣∣∂trK(s, t)− c′K(2t)

2V 2
K(t)

rK(s, t)

∣∣∣∣
with rK(s, t) = 1

2
(cK(τ) + cK(σ)). At τ = 0 we have cK(0) = 1, c′K(0) = 0 and

c′′K(0) = − (K+1)(2K+1)
6K2 , thus, by continuity the terms involving τ are bounded.

The remaining quantities are easily seen to be bounded by Lemma 5.6 and In-
equalities (5.13) and (5.14).

Therefore, the integral is bounded by a constant times the volume of the
tubular neighborhood of the diagonal. Such volume is proportional to Kπ.
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In conclusion, the 1/(Kπ)2 is not compensated by the integral, so the upper
bound for the integral in the formula for the norm of the contraction (restricted
to the neighborhood of the diagonal) tends to zero.

the integral far from the diagonal: In the rest of the proof of the CLT, C
stands for some constant which actual value is meaningless, but not depending
on K,

We may assume that at least one of the following |t − s| > η, |t′ − s′| > η,
|t′ − t| > η, |s′ − s| > η holds true.

By Inequalities (5.13) and (5.14), the (absolute value of the) covariances r,
r̃ ′ and r̃ ′′ at x, y are bounded from above by C(1/|x − y| + 1/|x + y|) when
|x− y| > η. Therefore, the product in the integrand of ‖gq⊗n gq‖2

2 is bounded by
the product of 1/|t−s|+1/|t+s|, 1/|t′−s′|+1/|t′+s′|, 1/|s−s′|+1/|s+s′| and
1/|t−t′|+1/|t−t′|. Each one of these factors appears in the bound if the distance
between the corresponding variables is larger than η. Otherwise, we bound them
by constant as in the previous case.

Furthermore, the exponents of the covariances involving s, t and s′, t′ is n =
1, . . . , q − 1, the sum of the exponents in the factors involving s, s′ is q − n =
1, . . . q − 1 ≥ 1, and the sum of the exponents in the factors involving t, t′ also is
q − n ≥ 1.

Let us consider one of the possible cases, the others are similar. Say that
n = 1, |t − s| > η, |t′ − s′| < η, |t′ − t| < η and |s′ − s| < η, call A the set
of points verifying these inequalities. We bound the covariances involving the
variables t′, s′; t′, t; and s′, s in the integrand by constants. Then, the integrand
is bounded by

C

∫∫∫∫
A

[
1

τ
+

1

σ

]
dsdtds′dt′

= C

∫∫∫∫
A

1

τ
dτdtds′dt′ + C

∫∫∫∫
A

1

σ
dσdtds′dt′

≤ C log(Kπ)

∫∫∫
A−1

dtds′dt′

where τ = t−s, σ = t+s andA−1 = {(t, s′, t′) : |t′−s′| < η, |t′−t| < η, |s′−s| < η}.
Now, the volume of A−1 is bounded by the volume of the tubular neighborhood
of the diagonal of radius

√
3η, its volume is bounded by constant times Kπ, the

result follows. Thus, the integral is bounded by a constant times log(Kπ)Kπ,
divided by (Kπ)2, it tends to zero.

Putting together both parts we conclude that ‖gq ⊗n gq‖2
2 → 0 as K →∞ for

n = 1, . . . , q− 1. Therefore, ITKq converges in distribution to a Gaussian random
variable as K →∞ for all q.
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Asymptotic Gaussianity of the sum: Since, the ITKq ’s are orthogonal, by
Theorem 1 of Peccatti & Tudor [68] and Lemma 5.4, their Q-th partial sum
converges in distribution, as K grows to infinity, to a Gaussian random variable
with variance

∑Q
1 var

(
IXq ([0, Kπ]−α)

)
, therefore

NTK
− ENTK√
Kπ

=
∞∑
q=1

ITKq

converges in distribution to a Gaussian random variable with variance V 2 =∑∞
q=1 var

(
IXq ([0, Kπ]−α)

)
. (It is well known that if µn → µ∞, σn → σ∞, Xn ∼

N(µn, σ
2
n) then Xn ⇒ X∞.) Finally, reasoning as in Lemma 5.1, note that

var
(
IXq ([0, Kπ]−α)

)
= var

(
IXq ([0, Kπ])

)
= σ2

q (0). This proves the Theorem.

5.4 Auxiliary computations

In the proof of Theorem 5.5 we use the following auxiliary results.

Lemma 5.5. 1. The second moment of the number of roots of TK is finite,
that is, E (NTK

)2 <∞.

2. The second moment of the level crossings of TK is continuous with respect
to the level, that is, EN2

u is continuous in u.

3. The approximation Nη

TK
converges in L2 to NTK

.

4. The approximation Nη

TK
has a chaotic expansion.

Proof. 1. This is a consequence of Lemma 5.2, which bound the integral near
the diagonal (the difficult part), or of Corollary 3.7 of Azäıs & Wschebor
[12].

2. This is a consequence of Lemma 5.2 and Gaussianity, since it provides an
integral expression involving the joint density of TK at s and t and the
conditional expectation of its derivatives with respect to its values at s and
t. These quantities are continuous with respect to u and the necessary
domination is given by part 1.

3. First, note that Nη

TK
→ NTK

almost surely since ϕη approximates the unity

and NTK
is almost surely constant.

Therefore, it suffices to state the convergence of the second moment. Fatou’s
Lemma implies that

ENTK
= E lim

η
Nη

TK
≤ lim

η
ENη

TK
.
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On the other hand, Area-Formula, see Federer [34] applied for d = 1, B =
[0, t], g = ϕη and f = TK ∈ C1), almost surely, permits us to write

Nη

TK
=

∫ ∞
−∞

NTK
(u)ϕη(u)du = E Z(NTK

(Z)),

where Z has density ϕη. Thus, applying Jensen’s inequality in the inner
expectation and Tonelli’s Theorem, we have

EN2
TK

= E
(
(E Z(NTK

(Z)))2
)
≤ E

(
E Z(N2

TK
(Z))

)
=

∫ ∞
−∞

E
(
N2
TK

(u)
)
ϕη(u)du

Since, ϕη approximates the unity, since EN2
TK

(u) is continuous in u (part

2 of this lemma), passing to the limit, with η → 0, in the latter inequality
gives the desired result.

4. Since r
(11)
K is bounded, it follows from Lemma 2 in Kratz & León [49] with

minor changes.

Derivatives and covariances

Let us start computing the derivatives of VK and V (the variances of TK and
T respectively), it is immediate from Formula (5.10) that

V ′K(t) =
c′K(2t)

2VK(t)
, V ′(t) =

sc′(2t)

2V (t)
(5.23)

Now let us compute the covariances between TK and its derivatives. First,
observe that

T
′
K(t) =

1

VK(t)

(
T ′K(t)− V ′K(t)

VK(t)
TK(t)

)
and

T
′
(t) =

1

V (t)

(
T ′(t)− V ′(t)

V (t)
T (t)

)
Therefore (s < t)

ET (s)T
′
(t) = E

T (s)

V (s)

[
1

V (t)

(
T ′(t)− V ′(t)

V (t)
T (t)

)]
=

1

V (s)V (t)

[
∂tr(s, t)−

sc′(2t)

2V (t)2
r(s, t)

]
=

1√
1 + sc(2s)

√
1 + sc(2t)

[
sc′(τ) + sc′(σ)− sc′(2t)(sc(τ) + sc(σ))

1 + sc(2t)

]
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The covariance between T
′
(s) and T

′
(t) is

ET ′(s)T ′(t) =
1

V (s)V (t)
E
(
T ′(s)− V ′(s)

V (s)
T (s)

)(
T ′(t)− V ′(t)

V (t)
T (t)

)
=

1

V (s)V (t)

[
∂str(s, t)−

V ′(t)

V (t)
∂sr(s, t)−

V ′(s)

V (s)
∂tr(s, t) +

V ′(s)V ′(t)

V (s)V (t)
r(s, t)

]
The variance of T

′
(t) is

1

V 2(t)
E
(
T ′(t)− V ′(t)

V (t)
T (t)

)2

=
1

V 2(t)

[
var(T ′(t))− 2V ′(t)

V (t)
ET (t)T ′(t) + V ′(t)2

]
=

1

V 2(t)

[
var(T ′(t))− V ′(t)2

]
where we take into account that ET (t)T ′(t) = V ′(t)V (t), which follows from a
direct computation.

Therefore

v2
K(t) = var(T

′
(t)) =

1

1 + sc(2t)

[
sc′′(2t)− sc′′(0)− sc′(2t)2

1 + sc(2t)

]
(5.24)

Similar formulas hold true for TK replacing sc by cK .

Lemma 5.6. There exists t0 large enough, such that the variances of TK, T and
T
′
K, T

′
are bounded away from zero on the interval in [t0, Kπ − t0].

Proof. Let us start with the proof for T and T
′
.

In the case of T , it suffices to prove that sc(x) > −2/π. Observe that the
critical points of sc are the roots of the equation sc(x) = cos(x), then, it is easy
to see that in the interval [−π/2, π, 2] the only root of this equation is x = 0,
which is a maximum since sc(0) = 1. Thus, the minimum of sc lies outside this
interval, so, as |sc(x)| ≤ 1/|x| the minimum is greater than −π/2, thus the result
follows.

Let us look now at the variance of T
′
(t) which is given in Equation (5.24). It

is easy to see that

v2
K(t) ≥ 1

2

[
1

3
− sc′′(2t)− sc′(2t)2

1 + sc(2t)

]
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and from the Inequalities in (5.13), which hold since we are looking at compact
intervals not containing 0, it is easy to see that the latter expression is bounded
away from zero for large t.

Now, let us consider the variances of TK and T
′
K . By Equation (37) in [37],

we know that
c

(j)
K (2s) = sc(j)(2s) +O(1/N j),

where j = 0, 1, 2 stands for functional value, first or second derivative respectively,
from this asymptotic and the result for T and T

′
, the result follows also for TK

and T
′
K .
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Chapter 6

A probabilistic approach to
Bézout’s Theorem

In this chapter we consider a random square system of complex polynomial equa-
tions and apply the classical multivariate Rice Formula to the problem of com-
puting the number of zeros of such a system. In this sense, we give a probabilistic
approach to the proof of Bézout’s Theorem about the number of roots of a system
of m complex variables and m equations with complex coefficients. Actually we
give the proof in some particular cases as quadratic systems.

Bézout’s Theorem is a generalization to the multidimensional case of the
Fundamental Theorem of Algebra. It is worth to remark that it is a classic
(well known) result. But the known proofs rely on very different techniques
than ours, such as integral and algebraic geometry and elimination theory. For
example, in Blum, Cucker, Shub & Smale [19] a proof is given relying on the
Homotopy Method, which construct a continuous path of solutions departing
from the solution of a particular simple known system and ending at the solution
of the given system. One of the remarkable facts about this method is that it
can be combined with Newton’s Method in order to obtain a numeric algorithm
to find the solution of the system. Our aim is to provide a new point of view for
this result.

It is worth to say, that the study of random polynomials and random systems
of polynomial equations is inspired by the average approach to the complexity of
algorithms. In that respect, originally, people used to study the best and worse
cases, but since the eighties and in particular in Smale [78], it was proposed a
probabilistic analysis of complexity.

This problem was originally proposed by Mario Wschebor.

We now begin with some preliminaries, in particular we set the notations for
the involved systems of equations and define the randomization we use for them,
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102 6. A probabilistic approach to Bézout’s Theorem

then, we adapt Rice Formula for this context.

6.1 Introduction

Consider m polynomial equations on m complex variables t1, . . . , tm and complex
coefficients a

(`)
j , where the index ` stands for the equation and the multi-index j

stands for the term (monomial) in which the coefficient appears.

We denote the system in vector form f = 0, being f = (f1. . . . , fm). Then,
we can write

f`(t) =
∑
‖j‖≤d`

a
(`)
j t

j, ` = 1, . . . ,m, (6.1)

where d` is the degree of the polynomial f`, j = (j1. . . . , jm) ∈ Nm is a multi-index
of non-negative integers, t = (t1. . . . , tm) ∈ Cm, ‖j‖ =

∑m
k=1 jk and tj :=

∏m
k=1 t

jk
k .

It is convenient to deal with the homogenized version of the system, which
is denoted (for a while) by f (0). In order to get that version, we introduce an
auxiliary complex variable t0 and redefine the system f so that all the monomials
have the same degree, that is, in the j-th term of the `-th equation, t0 has
exponent d` − ‖j‖. In other words, we replace the original system given by
Equation (6.1) by the new one

f
(0)
` (t) =

∑
‖j‖=d`

a
(`)
j t

j, ` = 1, . . . ,m,

where now j = (j0, j1. . . . , jm) ∈ Nm+1 and t = (t0, t1. . . . , tm) ∈ Cm+1.

Since all the monomials of f
(0)
` have the same degree d` it follows that

f
(0)
` (λt) = λd`f

(0)
` (t) for all λ ∈ C and t ∈ Cm+1.

Now, let us describe the relation between the roots of the original and the
homogenized systems. Suppose that s ∈ Cm is a root of f , that is f(s) = 0,
then f (0)(λs) = 0 for all λ ∈ C. Conversely, if t ∈ Cm+1 is a root of f (0), then,
for t0 6= 0, so is (1, t1

t0
, . . . , tn

t0
) and 1

t0
(t1, . . . , tn) is a root of f . If t0 = 0 we

say that t is a root at infinity, see Blum et al. [19] for details. In conclusion,
individual roots of the original system correspond to complex lines of solutions
of the homogenized system.

From now on, we drop the super-index in f (0), there is no risk of confusion.

One of the main questions about polynomial systems of equations is to know
its number of roots, we take the approach of randomizing the coefficients of the
system and to study the random variable N defined as the number of roots of
the system.
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Now, we enunciate informally, the theorem that we consider in this chapter,
after that, we define the concepts we need to precise and prove it.

Theorem 6.1. Let f be a complex polynomial system with m variables and m
equations. If the coefficients of f are randomized, then, the number of roots of f
on Cm is almost surely equal to

N = D

being D =
∏m

`=1 d` Bézout’s number.

This theorem is weaker than Bézout’s Theorem since it does not give infor-
mation about the set where the equality fails to hold true.

As we mentioned at the beginning of this chapter, Bézout’s Theorem is a well
known result, nevertheless, its proof is based on very different arguments of alge-
braic and differential geometry, in particular it uses the Fundamental Theorem
of Elimination. On this chapter, we pretend to give a different point of view to
this problem to help in its understanding.

It is worth to recall that in the case of polynomials with real variables and
coefficients, Shub & Smale [76] proved that the mean number of real roots of such
a system is the square root of Bézout’s number. After that, Azäıs and Wschebor
[11], see also [12], gave a proof of that result relying on Rice Formula. Besides,
Wschebor [80] gave some asymptotics for the variance as m tends to infinity, see
also Azäıs & Wschebor [12, Section 12.1.2].

This work is inspired on these seminal papers.

6.2 Preliminaries

In this section we describe the randomization used for the coefficients and adapt
Rice formula to the complex case. We start with some basic issues.

6.2.1 Algebraic Structure

In the sequel we identify the complex line C with the real plane R2 by the map

s = x+ iy 7→ (x, y) (6.2)

This map induces an identification on the operations of these linear spaces,
namely: for λ = a+ ib ∈ C, s = xs + iys and t = xt + iyt the maps (s, t) 7→ s+ t
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104 6. A probabilistic approach to Bézout’s Theorem

and s 7→ λ · s may be seen, respectively, as

((xs, ys), (xt, yt)) 7→ (xs + xt, ys + yt)(
x
y

)
7→
(
a −b
b a

)
·
(
x
y

)

Similarly, Cm+1 is identified with R2m+2 by

(s0, . . . , sm) 7→ (x0, . . . , xm, y0, . . . , ym)

where we have denoted sj = xj + iyj, for 0 ≤ j ≤ m. Briefly: s 7→ (x, y),
s ∈ Cm+1, x, y ∈ Rm+1. In particular, the complex sphere in Cm+1 is identified
with the real sphere , S2m+1, in R2m+2.

If s ∈ Cm+1 is a complex vector with real and imaginary parts x, y ∈ Rm+1

respectively then, for λ ∈ C, the map s 7→ λ ·s is represented by the same formula
of the case m = 1 if we let the 2× 2 matrix act on R2m+2 by(

a −b
b a

)
·
(
x
y

)
=

(
ax− by
bx+ ay

)
where ax denotes the product of the scalar a ∈ R with the vector x ∈ Rm+1 and
so on.

Lemma 6.1. With the identifications induced by the map (6.2), if s = xs+iys, t =
xt + iyt ∈ Cm+1, we have

< 〈s, t〉Cm+1 =

〈(
xs
ys

)
,

(
xt
yt

)〉
R2m+2

,

where < denotes the real part, 〈·, ·〉Cm+1 is the usual Hermitian inner product in
Cm+1 and 〈·, ·〉R2m+2 is the usual inner product in R2m+2.

Proof. For m = 0, we have

(xs + iys)(xt + iyt) = xsxt + ysyt + i(xtys − xsyt),

the desired result follows taking real parts on both sides.

For m ≥ 1, by definition 〈s, t〉Cm+1 =
∑m

k=0 sktk, then, the result follows from
the preceding one for each term and the additivity of the real part.

Let us see how to interpret the action of the unitary group of Cm+1 in
R2m+2. Let U ∈ U(Cm+1) an unitary operator, then we define its counterpart
O ∈ O(R2m+2) by

O =

(
Ur −Uim
Uim Ur

)
,
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where Ur = Re(U) and Uim = Im(U) are the real and imaginary parts of the
matrix U respectively. Indeed, let s = x+ iy, hence

O

(
x
y

)
=

(
Ur −Uim
Uim Ur

)(
x
y

)
=

(
Urx− Uimy
Uimx+ Ury

)
,

and on the other hand (Ur + iUim)(x+ iy) = Urx−Uimy+ i(Uimx+Ury). Hence

U(x+ iy) 7→ O(x, y).

Namely, we obtain the same result by applying U and then changing to the real
set up than by changing to the real set up and then applying O. As a consequence,
we have

Lemma 6.2. The operator family

O′ =
{
O =

(
Ur −Uim
Uim Ur

)
: U ∈ U(Cm+1)

}
acts transitively on S2m+1 ⊂ R2m+2 by isometries.

Proof. Let s = (x, y) and t = (x′, y′) ∈ S2m+1. Since U(Cm+1) acts transitively
on the unit sphere on Cm+1, there exists an unitary map U ∈ U(Cm+1) such that
U(s) = t. Hence, by the arguments preceding this Lemma, the real part O of U
maps s into t on S2m+1.

Let us verify that O ∈ O(R2m+2), by Lemma 6.1〈
O

(
xs
ys

)
, O

(
xt
yt

)〉
= Re 〈Us, Ut〉Cm+1 = Re 〈s, t〉Cm+1

=

〈(
xs
ys

)
,

(
xt
yt

)〉
.

This concludes the proof.

To end the Preliminaries, let us say how to relate the derivatives (Jacobian
matrices) of real and complex expressions of an holomorphic function f : Cm+1 →
Cm+1.

Denote f = (f1, . . . , fm+1), and fk = uk + ivk the real and imaginary parts of
fk. The complex derivative f ′ is represented by the (m + 1) × (m + 1) complex
matrix 

∂f1
∂z1

∂f1
∂z2

. . . ∂f1
∂zm+1

∂f2
∂z1

∂f2
∂z2

. . . ∂f2
∂zm+1

...
...

. . .
...

∂fm+1

∂z1

∂fm+1

∂z2
. . . ∂fm+1

∂zm+1
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106 6. A probabilistic approach to Bézout’s Theorem

and the real counterpart, that is the differential, Df , of f viewed as a function
from R2m+2 into R2m+2, is represented by the (2m+ 2)× (2m+ 2) real matrix

J(f) =



∂u1
∂x1

. . . ∂u1
∂xm+1

∂u1
∂y1

. . . ∂u1
∂ym+1

...
. . .

...
...

. . .
...

∂um+1

∂x1
. . . ∂um+1

∂xm+1

∂um+1

∂y1
. . . ∂um+1

∂ym+1

∂v1
∂x1

. . . ∂v1
∂xm+1

∂v1
∂y1

. . . ∂v1
∂ym+1

...
. . .

...
...

. . .
...

∂vm+1

∂x1
. . . ∂vm+1

∂xm+1

∂vm+1

∂y1
. . . ∂vm+1

∂ym+1


with zk = xk + iyk.

The following Lemma is a well known result from Complex Analysis, see for
instance Range [72, Lm. 2.1].

Lemma 6.3. If f : Cm+1 → Cm+1 is an holomorphic function, then

det(J(f)(z)) = | det f ′(z)|2

for all z in its domain of holomorphy.

6.2.2 Complex random variables

We turn now to the Gaussian distribution on the complex plane, actually, we only
need a simplified version which can be expressed in terms of t (rather than in
terms of t and t as in the general case, see Ben Hough et al. [38] for the simplified
version or Picinbono [70] for the complete one).

A complex random variable T : Ω→ C can be written in the form T = X+iY ,
where X and Y are real random variables, called the real and imaginary parts of
T respectively. We say that T = X + iY has the complex Gaussian distribution
if the random vector (X, Y ) has joint real Gaussian distribution in R2.

More precisely, T = X + iY has standard complex Gaussian distribution,
written T ∼ NC(0, 1), see Ben Hough et al. [38], if its real and imaginary parts
are (real) independent centered Gaussian random variables with variance 1/2,
that is, (X, Y ) ∼ N (0, (1/2) · I), being I the identity matrix. Thus, its density
with respect to the Lebesgue measure on the plane is

p(t) =
1

π
e−|t|

2

. (6.3)
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Generally, the Gaussian distribution with mean µ ∈ C and variance σ2 > 0
has the density

p(s) =
1

πσ
e−
|s−µ|2

σ2 . (6.4)

It is easy to check that ET := EX + iEY = µ, E
[
(T − µ)(T − µ)

]
= σ2 and

E [(T − µ)(T − µ)] = 0.

Analogously, we say that the complex random vector T = X + iY in Cm+1

has the complex Gaussian distribution if the corresponding real vector (X, Y ) in
R2m+2 has Gaussian distribution.

We say that the complex random variables S, T are independent if their re-
spective real and imaginary parts are so. The following Lemma gives a practical
criterion to check the independence of two complex Gaussian random variables.

Lemma 6.4. Let S, T be complex Gaussian random variables with µS := ES and
µT := ET , then, S and T are independent if and only if

E
[
(S − µS)(T − µT )

]
= 0, E [(S − µS)(T − µT )] = 0

Remark 6.1. Actually, more generally we can say that the complex Gaussian
distribution is determined by two parameters, namely, its mean and its variance
matrix. In other words, it is a second order distribution.

Proof. Without lose of generality, assume that S and T are centered. Denote
by Sr, Tr and Sim, Tim the real and imaginary parts of S and T respectively.
Therefore,

EST = (ESrTr − ESimTim) + i(ESrTim + ESimTr)
EST = (ESrTr + ESimTim) + i(−ESrTim + ESimTr)

A bit of linear algebra establish the result.

The covariance between two complex random variables is defined by

cov(S, T ) = E
[
(S − ES)(T − ET )

]
On our case, the expectation of the product of two centered random variables
vanishes since we assume (as we can do so by Corollary 6.1) that the real and
imaginary parts of each one are independent. Therefore, the density function of
a centered Gaussian vector with variance matrix Σ is given by

p(s) =
1

(2π)m
√
| det(Σr)|

exp

{
−1

2
(s− µ)tΣ−1(s− µ)

}
(6.5)
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6.3 Weyl distribution

We are now ready to introduce the randomization that we use for the coeffi-
cients of the system f of random complex polynomial equations, namely, Weyl
distribution.

This distribution was used in 1992 by Shub & Smale [76] to get the first
important result on the number of roots of systems of equations, later it was
extended to some extent, see Armentano [6] and references therein.

As we shall see, this law has the key property of being invariant under isome-
tries, in Kostlan [47] are classified all Gaussian distributions over the coefficients
of the system that yield this geometric property.

We say that the homogeneous polynomial system f = (f1, . . . , fm) on m + 1

complex variables has the Weyl distribution if the coefficients a
(`)
j are independent

complex centered Gaussian random variables with variances(
d`
j

)
=

d`
j0! . . . jm!

.

That is, a
(`)
j ∼ NC

(
0,
(
d`
j

))
. It is immediate that

E
(
a

(`)
j

)2

= 0, E a(`)
j a

(`)
j =

(
d`
j

)
. (6.6)

The following Lemma contains the first remarkable properties of the Weyl
distribution, in particular, the invariance under the action of the unitary group.

Lemma 6.5. Let f be a system with the Weyl distribution, then, f = (f(s) : s ∈
Cm+1) is a centered complex Gaussian process such that for every s, t ∈ Cm+1

E f`(s)f`(t) = 〈s, t〉d`Cm+1 ,

E f`(s)f`(t) = 0.

where 〈·, ·〉 is the usual Hermitian inner product in Cm+1.

Proof. First observe that f is a centered complex Gaussian process since it is a
linear combination of the centered complex Gaussian random variables a

(`)
j , for

` = 1, . . . ,m and j ∈ Nm+1.

Let us compute its covariance and relation (see Picinbono [70]). For the sake
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of simplicity we omit the sub-index.

E
(
f(s)f(t)

)
= E

∑
‖j‖=d

ajs
j ·
∑
‖j′‖=d

aj′tj
′


=

∑
‖j‖=d

∑
‖j′‖=d

E (ajaj′)s
jtj′ .

Since the aj are independent and centered, for j 6= j′ we have E (ajaj′) =
E ajE aj′ = 0. If j = j′, from Equation (6.6) we have E (|aj|2) =

(
d
j

)
, hence

E
(
f(s)f(t)

)
=

∑
‖j‖=d

E (|aj|2)sjtj =
∑
‖j‖=d

(
d

j

)
sjtj

= 〈s, t〉dCm+1 ,

where we use Newton’s binomial theorem.

For the second assertion of this lemma note that

E f(s)f(t) =
∑
‖j‖=d

E (a2
j)s

jtj.

Then, the second assertion follows from Equation (6.6).

As consequence we can establish the following key fact.

Corollary 6.1. Let f be a complex Weyl polynomial system, denote f(t) = u(t)+
iv(t), being u(t) and v(t) the real and imaginary parts of f respectively, then, for
each t, the random variables u(t) and v(t) are independent, further, they have
real centered Gaussian law with variance ‖t‖2

Cm+1/2.

Proof. Using the previous Lemma we have

0 = E f(s)f(t) = E (u(s) + iv(s)) (u(t) + iv(t))

= E (u(s)u(t)− v(s)v(t)) + iE (v(s)u(t) + u(s)v(t))

Therefore, from the real part we obtain

Eu(s)u(t) = E v(s)v(t),

since the real and imaginary part of f are centered (real) Gaussian processes and
last equation show that their covariances coincide, we conclude that the processes
u and v have the same law. In particular, since |f |2 = u2 + v2 the variance of
u(t) and v(t) is E (|f |2)/2.

Furthermore, for s = t, since the imaginary part also vanish we have in
addition

Eu(t)v(t) = −Eu(t)v(t).

It follows that u(t) and v(t) are independent for each t.
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6.4 Toward a probabilistic proof of Bézout’s

Theorem

We enunciate (the probabilistic version of) Bézout’s Theorem. Recall that the
Bézout’s number D of the system is defined as the product of the degrees of its
equations.

Theorem 6.2 (Bézout’s Theorem). If the random, complex polynomial system
f has the Weyl distribution, then, almost surely, it has D roots counted without
multiplicity.

We include the complete proof for the cases of one equation and one variable
m = 1 (the Fundamental Theorem of Algebra), and the case of quadratic systems
m > 1, d` = 2. In the general case, the computations of the second moment get
quite involved and we can not preform them.

6.4.1 The roots of f on the projective space and on the
sphere

Let f = (f1, . . . , fm) be a complex homogeneous system on m equations and
m+ 1 complex variables.

As mentioned above, if t0 ∈ Cm+1 is a root of the system, that is f(t0) = 0,
then f`(λz0) = λd`f`(z0) = 0 for all λ ∈ C, hence, the roots of f are complex lines
through the origin in Cm+1.

Clearly, this fact suggests to work on the projective space P(Cm+1) or on the
complex sphere in Cm+1, S2m+1 = {t ∈ Cm+1 : ‖t‖ = 1}.

On the sphere S2m+1, if f(t0) = 0, then, f(λt0) = 0 for all λ ∈ C of modulus
one, therefore, the roots of f are complex circumferences (i.e: one-dimensional
spheres) in S2m+1.

Let us express these facts in terms of R2m+2. Each projective root t0 =
x0 + iy0 ∈ P(C2m+1) is associated with the set of roots{

eiθ ·
(
x0

y0

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x0

y0

)
: θ ∈ [0, 2π)

}
on the sphere S2m+1 in R2m+1, these sets are circumferences (dimension one),
then, the length of each one of them is 2π.

Besides, the intersection of each pair of these circumferences has almost surely
zero Lebesgue measure, see Blum et al. [19]. Therefore, the number of complex
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projective roots of f is equal to 1/(2π) times the geometric measure (σ(d·)) of
the union of the images of the roots through the identification via the map (6.2)
with R2m+2. That is

N =
1

2π
σ−1

1 (f−1(0) ∩ S2m+1). (6.7)

The proof of Bézout’s Theorem is divided into two parts, the first one is to
prove that the mean number of roots equals Bézout’s number, that is EN = D,
and the second one is to prove that the variance of the number of roots vanish,
that is var(N) = 0. We turn into these computations.

6.4.2 Computation of the first moment, the general case

These computations are general, that is, we obtain the mean number of roots of
a Weyl system for all m, and d.

We use the identification induced by the map (6.2) described above, in order
to write the Rice Formula for the number of roots of the system f . Denote
by σ2m+1 the geometric 2m + 1-dimensional measure on the sphere S2m+1. By
Equation (6.7)

EN =
1

2π
σ1(f−1(0))

=
1

2π

∫
S2m+1

E
[
| det(Df(t) ·Df(t)′)|1/2

∣∣f(t) = 0
]
pf(t)(0)σ2m+1(dt).

Here Df stands for the real derivative of f(x, y) along the manifold S2m+1, and
pf(s) stands for the real density of f(x, y).

Nevertheless, as we shall see soon, sometimes is convenient to use the complex
expressions of these quantities rather than the real ones in order to simplify the
computations. But before passing to that task, we can also simplify the integral
due to the invariance of the Weyl law.

In fact, since

O′ =
{
O =

(
Ur −Uim
Uim Ur

)
: U ∈ U(Cm+1)

}
acts transitively on S2m+1 by isometries, it follows that the random vectors f(t) :
t ∈ S2m+1 have the same distribution and, hence, the integrand is constant, then

EN =
σ2m+1(S2m+1)

2π
E
[
| det(Df(t0) ·Df(t0)′)|1/2

∣∣f(t0) = 0
]
pf(t0)(0) (6.8)

where t0 is, say, the East Pole (e0, 0) of S2m+1.
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In order to clarify the notation, let us recall that the first component of the
vectors in R2m+2 stands for the real part and the second for the imaginary part
of the corresponding original point in Cm+1. That is, the point t0 = (e0, 0) with
e0, 0 ∈ Rm+1 correspond, through the map (6.2), to the point eC0 := e0 + 0 i ∈
Cm+1. In the rest of the proof we drop the super-index C, but the vectors are all
in Cm+1.

Now, we compute separately the ingredients in Equation (6.8).

The density of f(e0) and the volume of the sphere

It is well known that the volume of the sphere is given by

σ2m+1(S2m+1) =
2π(2m+1+1)/2

Γ((2m+ 1 + 1)/2)
=

2πm+1

Γ(m+ 1)

We turn now to the computation of the density f(e0). We proceed using the
complex formula, but the same result is obtained via the real one.

By Lemma 6.5 and the fact that ‖e0‖Cm+1 = 1, each one of the polynomials
f` has standard complex Gaussian distribution. Further, the polynomials f` are
independent for different values of `, therefore

pf(e0)(0) =
1

πm
.

Determinant: Since, for each `, f`(t) has constant variance along the sphere, it
follows that f`(t) and f ′`(t) are independent for each t, see Corollary 6.1, therefore,
f and Df are also independent for each t and we can drop the condition in the
conditional expectation appearing in Equation (6.8), that is

E
[
| det(Df(e0) ·Df(e0)′)|1/2

∣∣f(e0) = 0
]

= E | det(Df(e0) ·Df(e0)′)|1/2.

Now, since this is an ordinary expectation, we can compute it directly. We
need first to know the structure of the matrix Df(e0), this is pursued in the
following lemma.

Lemma 6.6. We have

E | det(Df(e0) ·Df(e0)′)|1/2 = D E | det(Gm)|2,

where Gm is an m×m matrix whose entries are i.i.d. standard, complex, Gaussian
random variables and D is Bézout’s number.

Proof. Let us express the derivatives in their complex versions.
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In the first place, by Lemma 6.3, we have

| det(Df(e0) ·Df(e0)′)|1/2 = | det f ′(e0)|

The selection of e0 as the East Pole, permits us to write the matrix f ′(e0) re-
stricted to the tangent space Te0S

2m+1 in terms of the canonical basis {e1, . . . , em}
of Te0S

2m+1. By Lemma 6.5, we know that (f`(s), f`(t)) is centered Gaussian with
covariance 〈s, t〉d` . Then, it follows that the derivatives ∂kf`(e0) are centered com-
plex Gaussian random variables, and taking derivatives of the covariances of f`
we have

E ∂hf`(s)∂kf`(t) = d` 〈s, t〉d`−1 δhk + d`(d` − 1) 〈s, t〉d`−2 tk,

where δ is Kronecker delta and tk is the k-th component of the vector t. Evalu-
ating at s = t = e0

E ∂hf`(s)∂kf`(t) = d`δhk,

We conclude that the entries of f ′(e0) are independent, centered complex Gaus-
sian random variables with variances d`.

Therefore, by the properties of the Gaussian distribution, we can write
∂kf`(e0) =

√
d`gk`, being gk` a standard complex Gaussian random variable inde-

pendent from the rest. The properties of determinants do the rest. The lemma
follows.

In the following lemma we compute the determinant of the matrix Gm, at
this point it is evident the simplification in the computations, at the end of the
chapter we include another proof of this facts via the real arguments.

Lemma 6.7. Let Gm be an m×m matrix with i.i.d. standard complex Gaussian
entries, then

E | det(Gm)|2 = m!.

Proof. Let us compute E | det(Gm)|2 by its very definition, for that, denote by
Sm the symmetric group (on m elements). Then

E | det(Gm)|2 = E det(Gm) det(Gm)

=
∑

π,π′∈Sm

(−1)π(−1)π
′E (g1π(1) . . . gmπ(m)g1π′(1) . . . gmπ′(m))

=
∑
π∈Sm

E |g1π(1)|2 . . .E |gmπ(m)|2 = m!

In the second equality we use the independence and, in the last one, that
E |gkπ(k)|2 = 1 for all k and that the cardinality of Sm is m!.
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Therefore, putting all this together, we have

EN =
1

2π
σ2m+1(S2m+1)Dm!

1

πm
=

1

2π

2πm+1

Γ(m+ 1)
Dm!

1

πm
= D

as claimed.

6.4.3 Computation of the second moment

We compute now EN2, with N the number of projective roots of the system f .
As in the previous computations, on S2m+1 each of these roots corresponds to a
circumference, hence, σ1(f−1(0)) = 2πN .

Next lemma gives the formula for the second moment, note that the diagonal
is relevant.

Lemma 6.8. The second moment of the number of roots verifies

4π2E (N2)− 4π2D

=

∫∫
S2m+1×S2m+1

E
[
| det(f ′(s))|2| det(f ′(t))|2 | f(s) = f(t) = 0

]
· pf(s),f(t)(0, 0)dsdt,

Proof. Following Azais & Wschebor [12], let F : S2m+1 × S2m+1 → R2m be the
map given by F (s, t) = (f(s), f(t)) and let ∆δ ⊂ S2m+1×S2m+1 be the set defined
by ∆δ = {(s, t) ∈ S2m+1 × S2m+1 : ‖s − t‖ > δ}. Then, applying Rice Formula
for the geometric measure of F−1(0, 0) we get:

Eσ2(F−1(0, 0) ∩∆δ) =

∫∫
∆δ

E
[
| det(f ′(s))|2| det(f ′(t))|2 | f(s) = f(t) = 0

]
· pf(s),f(t)(0, 0)dsdt.

Taking limit δ ↓ 0 we observe that

E (σ2(F−1(0, 0) ∩∆δ)) ↑ E (σ2(F−1(0, 0)))− E (σ2(F−1(0, 0) ∩∆))

where ∆ = S2m+1 × S2m+1 −∆0 is the diagonal set.

Now, F−1(0, 0) = {(s, t) : f(s) = f(t) = 0} ⊂ S2m+1 × S2m+1, hence, since
the roots are circumferences in S2m+1, each pair of roots sh, tk : h, k = 1, . . . , N
add (2π)2 to the geometric measure of F−1(0, 0), thus, σ2(F−1(0, 0)) = (2π)2N2.
Similarly, each root sk : k = 1, . . . , N add (2π)2 to the geometric measure of
F−1((0, 0) ∩∆), thus, σ2(F−1(0, 0)) = (2π)2N . Putting this together

lim
δ↓0

E (σ1(F−1(0, 0) ∩∆δ)) = 4π2E (N2)− 4π2D
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Moreover, since ∆0 has zero Lebesgue measure on S2m+1 × S2m+1 we conclude
the lemma.

We can simplify the integral in the same manner as we did for the first mo-
ment, but on this case we can fix just one point, not both. Let U be an unitary
map on Cm+1, then (f(s), f(t)) and (f(Us), f(Ut)) have the same distribution.
Therefore, we can fix s, say at e0, in the integral, hence

4π2E (N2)− 4π2D = vol(S2m+1)

·
∫
S2m+1

E
[
| det(f ′(e0))|2| det(f ′(t))|2 | f(e0) = f(t) = 0

]
pf(e0),f(t)(0, 0)dt.

Let us compute the ingredients of this formula separately.

Joint density: Since the different rows of the system are independent we have

pf(s),f(t)(0, 0) =
m∏
`=1

pf`(s),f`(t)(0, 0).

Routine manipulations of determinants show that we can use the complex covari-
ance matrix, more precisely that det Σr = | det Σc|2, with Σr and Σc the 4 × 4
real covariance matrix of uk, vk and the 2 × 2 complex covariance matrix of fk
(k = 1, 2) respectively.

Furthermore, the covariance matrix of (f`(s), f`(t)) is, by Lemma 6.5, Σ =[
1 〈s,t〉d`

〈t,s〉d` 1

]
. Therefore pf`(s),f`(t)(0, 0) = 1

π2(1−|〈s,t〉|2d` ) . Hence

pf(s),f(t)(0, 0) =
1

π2m

m∏
`=1

1

1− | 〈s, t〉 |2d`
.

Conditional Expectation: In order to deal with an ordinary expectation rather
than with a conditional one we proceed by Gaussian Regression, see Appendix A
in page 131.

Regression of f ′(t) on f(s) = f(t) = 0

Choose αt`, βt` such that ∂tf(t)− αf(t)− βf(s) is independent of f(s), f(t).
That is, α, β are the solution of the system:{

α + 〈s, t〉d` β = 0

〈t, s〉d` α + β = d` 〈t, s〉d`−1 〈s, vt〉

Then

αt` = −〈s, t〉d` βt` βt` = d`
〈t, s〉d`−1 〈s, vt〉
1− | 〈s, t〉 |2d`

.
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The remaining αk`, βk` (k ≥ 2) vanish.

Regression of f ′(s) on f(s) = f(t) = 0

The same arguments show that

α1` = −〈t, s〉d` β1` β1` = d`
〈s.t〉d`−1 〈t, vs〉
1− | 〈s, t〉 |2d`

.

The remaining αk`, βk` (k ≥ 2) vanish.

In conclusion

E
[
| det(f ′(s))|2| det(f ′(t))|2 | f(s) = f(t) = 0

]
= E

[
| det(M(s))|2| det(M(t))|2

]
,

(6.9)
where M(s) = (ζs`k)`k and M(t) = (ζt`k)`k are matrices with independent entries
such that

E ζs`kζs`k = E ζt`kζt`k =

{
d2
` k 6= 1

d2
`σ

2
` k = 1

E ζs`kζt`k =

{
d2
` 〈s, t〉

d`−1 k 6= 1

d2
`τ` k = 1

where

σ2
` = 1− d`| 〈s, t〉 |2d`−2

1 + | 〈s, t〉 |2 + · · ·+ | 〈s, t〉 |2d`−2

τ` = 〈s, t〉d`−2

[
1− d`

1 + | 〈s, t〉 |2 + · · ·+ | 〈s, t〉 |2d`−2

]
See the Auxiliary results.

The computations made above are general, they are valid for every m and
d`. But, the computation of the determinant happens to be very difficult in that
generality. Therefore, in the rest of the chapter we concentrate in some particular
cases that allow to compute it.

Case m = 1

In this case we have that the conditional expectation is E (|ζ|2|ζ ′|2), where ζ, ζ ′

are complex centered Gaussian random variables with variance σ2 and covariance
τ . Applying Lemma 6.9 for S = ζ/σ, T = ζ ′/σ we deduce that

E (|ζ|2|ζ ′|2) = σ4 + |τ |2.
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Thus, by Lemma 6.8, we have

4π2EN 2 − 4π2D =

∫
S3×S3

σ4 + |τ |2

π2(1− | 〈s, t〉 |2d)
dsdt

=
vol(S3)

π2

∫
S3

σ4 + |τ |2

(1− | 〈e0, t〉 |2d)
dt

Here, as points of S3, e0 = (1, 0, 0, 0) and t = (t0, t1, t2, t3), corresponding to
e0 = (1, 0) and t = (t0 + it1, t2 + it3) ∈ C2.

Observe that the integrand depends only on the modulus of the Hermitian
inner product of e0 and t, so we may apply the Co-Area Formula, see for instance
Blum et al. [19, Ch.13 Th. 4], for the map ψ : S3 → D, being D the unitary
disc in C, such that (e0, t) 7→ 〈e0, t〉. Then, the Normal Jacobian is

√
1− |x|2,

therefore

4π2EN 2 − 4π2D =
vol(S3)

π2

∫
D

σ4(x) + |τ(x)|2

1− |x|2d
dx

∫
S
(√

1−|x|2
) 1√

1− |x|2
dθ

=
vol(S3)vol(S1)

π2

∫
D

σ4 + |τ |2

1− |x|2d
dx,

where S
(√

1− |x|2
)

the (one dimensional) sphere with radius
√

1− |x|2, whose

one dimensional geometric measure (length) is
√

1− |x|2 · 2π.

Finally, changing to polar coordinates

4π2EN 2 − 4π2D =
vol(S3)(vol(S1))2

π2

∫ 1

0

ρ
σ4 + |τ |2

(1− ρ2d)
dρ

= 2
π2(2π)2

π2

1

2
· d2d− 1

d
= 4π2d(d− 1).

Hence EN2 = D2 and thus var(N) = 0 as claimed.

Case m > 1, d` = 2

We compute the conditional expectation in Equation (6.9), in this case the struc-
ture of the matrices simplify, we have

D = 2m, σ2 = −τ =
1− x2

1 + x2
; E ζs`kζt`k = 〈s, t〉 , (k > 1)

where x = | 〈s, t〉 |
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Since the first column is different from the other ones, we expand the deter-
minants in Laplace manner

E | detM(s)|2| detM(t)|2 = E
(

detM(s)M(s)M(t)M(t)
)

=
m∑

i,j,k,`=1

(−1)i+j++k+`E
(
ζsi1ζ

s
j1ζ

t
k1ζ

t
`1

)
· E
(

detMi1(s)Mj1(s)Mk1(t)M`1(t)
)

(6.10)

Note that we can factorize the expectation since each entry only is not indepen-
dent from the entry in the same position in the other matrix.

Now, using Lemma 6.9, we see that

E
(
ζsi1ζ

s
j1ζ

t
k1ζ

t
`1

)
=


σ4 + |τ |2 = 2σ4, if i = j = k = `, (case i)

σ2σ2 = σ4, if i = j 6= k = `, (case ii)

|τ |2 = σ4, if i = ` 6= j = k, (case iii)

0, otherwise

In case i, we have

E
(

detMi1(s)Mj1(s)Mk1(t)M`1(t)
)

= E
(
det |Mi1(s)|2|Mi1(t)|2

)
= E

(
det |Mm1(s)|2|Mm1(t)|2

)
=: Am−1

That is, we define Am as the expectation of the determinant of the product of the
squared modulus of two m × m matrices, whose entries are standard Gaussian
but each entry is only not independent from the same entry of the other matrix
with covariance x.

In case ii, for i 6= k

E
(

detMi1(s)Mj1(s)Mk1(t)M`1(t)
)

= E
(
det |Mi1(s)|2|Mk1(t)|2

)
= E

(
det |Mm1(s)|2|Mm−1,1(t)|2

)
=: Bm−1

That is, in Bm the rows from 1 to m− 1 have the same law than in Am, but the
last rows of both matrices are independent.

Finally, in case iii, for i 6= k:

E
(

detMi1(s)Mj1(s)Mk1(t)M`1(t)
)

= E
(

detMi1(s)Mi1(t)Mk1(s)Mk1(t)
)

= E
(

detMm1(s)Mm1(t)Mm−1,1(s)Mm−1,1(t)
)

=: Cm−1
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The matrices in Cm have the same law as in Bm; the difference lies in which
matrices are conjugated.

Therefore, (i 6= k = 1, . . . ,m),

E
(
| detM(s)|2| detM(t)|2

)
= mσ4 (2Am−1 + (m− 1)Bm−1 + (m− 1)Cm−1)

= m(m+ 1)σ4Am−1

= (m+ 1)!(m− 1)!σ4 1− x2m

1− x2
, (6.11)

where we used Lemma 6.12, see the Auxiliary Results.

Finally, we substitute all this in Formula (6.8). Note that the integrand
depends only on x. Therefore:

4π2E (N2)− 4π2(2m)

= (2m)2 · vol
(
S2m+1

)
vol
(
S2m−1

) (m+ 1)!(m− 1)!

π2m

= (2π)

∫ 1

0

(1− x2)2

(1 + x2)2

1− x2m

1− x2

1

(1− x4)m
(1− x2)m−1xdx.

We then have

4π2E (N2)− 4π2(2m) = (2m)2 2πm+1

m!

2πm

(m− 1)!

(m+ 1)!(m− 1)!

π2m

· (2π)

∫ 1

0

(1− x2)2

(1 + x2)2

1− x2m

1− x2

1

(1− x4)m
(1− x2)m−1(xdx)

= 4π2 · (2m)2(m+ 1)

∫ 1

0

1− x2m

(1 + x2)m+2
(2xdx)

Making the change of variables 1 + x2 7→ u in the integral we obtain:∫ 1

0

x2m

(1 + x2)m+2
(2xdx) =

∫ 2

1

(u− 1)m

um+2
du

=

∫ 2

1

(
1− 1

u

)m
1

u2
du =

1

m+ 1

(
1− 1

u

)m+1
∣∣∣∣∣
2

1

=
1

m+ 1

1

2m+1

Thus∫ 1

0

1− x2m

(1 + x2)m+2
(2xdx) =

1

m+ 1

[
1− 1

2m+1

]
− 1

m+ 1

1

2m+1
=

2m − 1

2m(m+ 1)
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EN2 = (2m) [1 + (2m − 1)] = (2m)2

as claimed. Thus var(N) = 0.

6.4.4 Equal degrees, d` = d for all `

The same arguments as in the quadratic case (d = 2) should allow us to state
the case of equal degrees.

The difference in the determinant is that the quantities σ2 and −τ do not
coincide anymore. Therefore, with the same notations as above, the determinant
is

E | detM(s)|2| detM(t)|2 = σ4Bm +
|τ |2

x2d−2
Cm

where x = | 〈s, t〉 |, and on the factors Bm and Cm the x is replaced by xd−1.

Unfortunately, this gets very involved.

6.5 Auxiliary computations

For the sake of readability, we write down here some computations needed in the
previous sections.

6.5.1 About the Gaussian distribution

Lemma 6.9. Let (S, T ) be jointly centered, complex Gaussian random variables
with variance 1 and covariance ρ. Denote Sr, Tr and Sim, Tim for the real and
imaginary parts of S and T respectively, denote ρi,j = E (SiTj) for i, j = r, im.
Then

ρr,r = ρim,im =
1

2
Re(ρ)

ρr,im = −ρim,r = −1

2
Im(ρ)

This follows directly from the definition.

Lemma 6.10. Let (S, T ) be jointly centered, Gaussian random variables with
variance 1 and covariance ρ. Then
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1. on the real case E (|S|2|T |2) = 1 + 2ρ2.

2. on the complex case E (|S|2|T |2) = 1 + |ρ|2.

Proof. Real case: Let S,W be two real independent, centered, Gaussian random
variables and write T = ρS +

√
1− ρ2W , then

E (S2T 2) = ρ2ES4 + 2ρ
√

1− ρ2ESW + (1− ρ2)EW 2 = 1 + 2ρ2.

Complex case: Use the real case for the real and imaginary parts, taking into
account that these random variables have half of the variance than the real ones.

6.5.2 Computation of the covariances of the derivatives

Fix s, t ∈ Cm+1. Let {v2, . . . , vm} be an orthonormal set in Cm+1 such that
vk ⊥ s, t, (k ≥ 2). Define

vs =
t− 〈t, s〉 s√
1− | 〈s, t〉 |2

, vt =
s− 〈s, t〉 t√
1− | 〈s, t〉 |2

.

Then Bs := {vs, v2, . . . , vm} and Bt := {vt, v2, . . . , vm} are orthonormal basis of
TsS

m and TtS
m respectively.

It is easy to see that

〈s, vt〉 = 〈t, vs〉 =
√

1− | 〈s, t〉 |2, 〈vs, vt〉 = −〈t, s〉 .

Denote ∂kf(w) for ∂f
∂vk

(w), k = s, t, 2, . . . ,m. and express all the derivatives
on these basis, that is

f ′(s) =


∂sf1(s) ∂2f1(s) . . . ∂mf1(s)
∂sf2(s) ∂2f2(s) . . . ∂mf2(s)

...
...

. . .
...

∂sfm(s) ∂2fm(s) . . . ∂mf(s)

 ,

f ′(t) =


∂tf1(t) ∂2f1(t) . . . ∂mf1(t)
∂tf2(t) ∂2f2(t) . . . ∂mf2(t)

...
...

. . .
...

∂tfm(t) ∂2fm(t) . . . ∂mf(t)
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Lemma 6.11. For the sake of simplicity, we omit the sub index `. Let s, t ∈ Cm+1

be such that ‖s‖ = ‖t‖ = 1, then

k = s k = t k ≥ 2

E ∂kf`(t)f`(t) 0 0

E ∂kf`(t)f`(s) d` 〈t, s〉d`−1
√

1− | 〈s, t〉 |2 0

E ∂kf`(s)f`(s) 0 0

E ∂kf`(s)f`(t) d` 〈s, t〉d`−1
√

1− | 〈s, t〉 |2 0

Furthermore

E ∂sf`(s)∂tf`(t) = d`(d` − 1) 〈s, t〉d`−2 (1− | 〈s, t〉 |2)− d` 〈s, t〉d`

Proof. We start with the first row. Since E f(s)f(s) ≡ 1 on the sphere and
we take derivatives on the tangent space, these derivatives (w.r.t. vs, v2, . . . , vm)
vanish. The third row is analogous.

Let us prove now the second row, the fourth one is analogous. Since 〈t, vk〉 = 0
for k ≥ 2, we have that E ∂kf`(t)f`(s) = 0. Besides

E f(s)∂tf(t) = ∂t 〈t, s〉d

= d 〈t, s〉d−1 ∂

∂vt
〈t, s〉 = d 〈s, t〉d−1 〈s, vt〉

= d 〈s, t〉d−1
√

1− | 〈s, t〉 |2.

Now, we move to the final formula. Taking derivative with respect to vs we have

E ∂sf(s)∂tf(t) =
∂

∂vs

(
d 〈s, t〉d−1 〈s, vt〉

)
= d(d− 1) 〈s, t〉d−2 (1− | 〈s, t〉 |2)− d 〈s, t〉d .

This concludes the proof.

6.5.3 Computation of τ and σ2

By definition, after Equation (6.9), τ equals

τ = E (∂sf(s)− αsf(s)− βsf(t)) ∂tf(t)
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Then, by Lemma 6.11

τ = d(d− 1) 〈s, t〉d−2 (1− | 〈s, t〉 |2)− d 〈s, t〉d−2 | 〈s, t〉 |2

+d2 〈s, t〉d−2 | 〈s, t〉 |2d 1− | 〈s, t〉 |2

1− | 〈s, t〉 |2d

= d 〈s, t〉d−2

[
(d− 1)(1− | 〈s, t〉 |2)− | 〈s, t〉 |2 + d| 〈s, t〉 |2d 1− | 〈s, t〉 |2

1− | 〈s, t〉 |2d

]
= d 〈s, t〉d−2

[
−1 + d(1− | 〈s, t〉 |2)

(
1 +

| 〈s, t〉 |2d

1− | 〈s, t〉 |2d

)]
= d 〈s, t〉d−2

[
−1 + d

1− | 〈s, t〉 |2

1− | 〈s, t〉 |2d

]

On the other hand, also by its definition

σ2 = E (∂sf(s)− αsf(s)− βsf(t)) ∂sf(s)

Again by Lemma 6.11

σ2 = d

[
1− d| 〈s, t〉 |2d−2 (1− | 〈s, t〉 |2)

1− | 〈s, t〉 |2d

]

6.5.4 Recurrence for the expectation of the determinant

We present here for the sake of readability, as an auxiliary result the recurrence
for the computation of the expectation of the determinant.

Lemma 6.12. We have Am = Bm + Cm and

Am = (m!)2 1− x2m

1− x2
.

Proof. We expand the determinants in Laplace manner in order to obtain re-
currence equations for the quantities Am, Bm and Cm. For simplicity denote
M = (aij), N = (bij) with aij and (bij) i.i.d. standard Gaussian random variables
such that cov(aij, bij) = x, the rest being independent, i.e: cov(aij, bi′j′) = 0 for
(i, j) 6= (i′, j′).

Then

Am =
m∑

i,j,k,`=1

(−1)i+j+k+`E amiamjbmkbm` E detMmiMmjNmkNm`
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Now

E amiamjbmkbm` =


1 + x2, if i = j = k = `, (case i)

1, if i = j 6= k = `, (case ii)

x2, if i = ` 6= j = k, (case iii)

0, otherwise

Hence

Am = (1 + x2)
m∑
i=1

E | detMmi|2| detNmi|2

+
m∑

i 6=k=1

E | detMmi|2| detNmk|2 + x2

m∑
i 6=k=1

E detMmiMmkNmkNmi

= m(1 + x2)Am−1 +m(m− 1)Bm−1 +m(m− 1)x2Bm−1

For Bm we assume that the last row in M is independent from the last row
in N , then:

Bm =
m∑

i,j,k,`=1

(−1)i+j+k+`E amiamjbmkbm` E detMmiMmjNmkNm`

Now

E amiamjbmkbm` = E amiamj E bmkbm`

=

{
1, if i = j and k = `

0, otherwise

Then

Bm =
m∑

i,k=1

E | detMmi|2| detNmk|2

=
m∑
i=1

E | detMmi|2| detNmi|2 +
m∑

i 6=k=1

E | detMmi|2| detNmk|2

= mE | detMm1|2| detNm1|2 +m(m− 1)E | detMm1|2| detNm2|2

= mAm−1 +m(m− 1)Bm−1.

With the same assumptions as in the case of Bm, we expand the determinant
in Laplace manner along row m− 1 for the first two factors and along row m for
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the remaining two. Then

Cm−1 = E detMm1(s)Mm1(t)Mm−1,1(s)Mm−1,1(t)

=
m∑

i,j,k,`=2

(−1)i+j+k+`E am−1,ibm−1,jamkbm`

· E detM(s){m−1,m}×{1,i}M(t){m−1,m}×{1,j}

· detM(s){m−1,m}×{1,k}M(t){m−1,m}×{1,`}

Now

E am−1,ibm−1,jamkbm` = E am−1,ibm−1,jE amkbm`

=

{
x2, if i = j and k = `

0, otherwise

Therefore

Cm−1 = x2

m∑
i,k=2

E detM(s){m−1,m}×{1,i}M(t){m−1,m}×{1,i}

· E detM(s){m−1,m}×{1,k}M(t){m−1,m}×{1,k}

= x2

m∑
i=2

E | detM{m−1,m}×{1,i}(s)|2| detM{m−1,m}×{1,i}(t)|2

+ x2

m∑
i 6=k=2

E detM(s){m−1,m}×{1,i}M(t){m−1,m}×{1,i}

· E detM(s){m−1,m}×{1,k}M(t){m−1,m}×{1,k}

Since, all the terms in each sum involve matrices with the same distribution

Cm−1 = (m− 1)x2E | detM{m−1,m}×{1,2}(s)|2| detM{m−1,m}×{1,2}(t)|2

+ (m− 1)(m− 2)x2E detM(s){m−1,m}×{1,i}M(t){m−1,m}×{1,i}

· E detM(s){m−1,m}×{1,k}M(t){m−1,m}×{1,k}

= (m− 1)x2Am−2 + (m− 1)(m− 2)x2Cm−2

Hence
Cm = mx2Am−1 +m(m− 1)x2Cm−1

Therefore, we have the system Am
Bm

Cm

 =

 m(1 + x2) m(m− 1) m(m− 1)x2

m m(m− 1) 0
mx2 0 m(m− 1)x2

 Am−1

Bm−1

Cm−1
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It follows that Am = Bm + Cm and that the recurrence for the pair Am, Bm is(
Am
Bm

)
=

(
m(1 +mx2) m(m− 1)(1− x2)

m m(m− 1)

)(
Am−1

Bm−1

)
(6.12)

The solution for this system is:

Am = (m!)2 1− x2m

1− x2

Bm =
m!(m− 1)!

1− x2

(
m− 1− x2m+2

1− x2

)
This claim can be directly checked.

6.5.5 Alternative proof for the expectation

We include this section for comparison of the real and complex frameworks.

Lemma 6.13. The random variables

∂u`
∂xh

(e0, 0),
∂u`
∂yk

(e0, 0),
∂v`
∂xh

(e0, 0) and
∂v`
∂xk

(e0, 0)

with 1 ≤ h ≤ m, 0 ≤ k ≤ m are independent centered Gaussian with variances
d`/2.

Proof. From E (u`(t))
2 = E (v`(t))

2 = ‖t‖2/2, taking derivatives it follows the
claimed independence and variances.

The rows of Df(e0, 0) corresponding to u`(e0, 0) and v`(e0, 0) are vectors of
independent centered Gaussian variables with variance d`/2,

It follows that

E | det(Df(t0) ·Df(t0)′)|1/2 =
D
2m

E | det(G2m,2m+1 ·G′2m,2m+1))|1/2.

where D is Bézout number and G is a (2m)×(2m+1) matrix with i.i.d. standard
Gaussian entries.

The modulus of the determinant is the square of the volume generated by
the 2m rows of G in R2m+1, hence we can apply the computations in A¡äıs &
Wschebor [12, page 305] with 2m + 1 instead of m and starting at k = 2 since
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when projecting the first vector the co-dimension of the linear space spanned by
the remaining rows is 2:

E | det(G2m,2m+1 ·G′2m,2m+1))|1/2 = E |vol2m(G)2|1/2

=
2m+1∏
k=2

E ‖ηk‖(k)

where ηk ∼ N(0, Idk). elementary computations show that

2m+1∏
k=2

E ‖ηk‖(k) =
2m+1∏
k=2

[√
2

Γ((k + 1)/2)

Γ(k/2)

]
= 2mΓ (m+ 1)

In conclusion:

EN =
1

2π

2πm+1

Γ(m+ 1)
· 1

πm
· E | det(Df(t0) ·Df(t0)′)|1/2

=
1

2π

2πm+1

Γ(m+ 1)
· 1

πm
· D

2m
· E | det(G2m,2m+1 ·G′2m,2m+1))|1/2

=
1

2π

2πm+1

Γ(m+ 1)
· 1

πm
· D

2m
· 2mΓ(m+ 1)

=

D.

This concludes the proof.
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Appendix A: Gaussian Processes

Definition

Let (Ω,M,P) be a probability space, we say that a random vector X : Ω → Rd

has the normal, or Gaussian, distribution if its distribution PX := P◦X−1 : Bd →
R, where Bd is Borel sigma - algebra, has the density function, with respect to
Lebesgue measure given by:

p(x) =
1

(2π)d/2
√

det(Σ)
exp

[
−1

2
(x− µ)tΣ−1(x− µ)

]
,

where µ ∈ Rd is the mean of X, and Σ = (σij) is a d × d non-negative definite
matrix, called the matrix of variances of X. When µ = 0 and Σ = Id we say that
X is a standard Gaussian vector.

It is easy to check that EX = µ and cov(Xi, Xj) = σij. It is possible to
extend the definition to the degenerated case, that is when Σ is singular, using
the characteristic function, but we will not need such an extension on this work.

It follows from the definition that the Gaussian distribution depends only on
two parameters, namely the mean µ and the variance matrix Σ. Thus, we say
that this law is of second order.

This distribution has very peculiar properties that make it special, we mention
some of them needed in the thesis below.

Gaussian regression

Let (X, Y ) be a Gaussian vector in Rd+d′ with mean (µX , µY ), then, in order
to show that X and Y are independent it suffices to show that their covariance
vanish, that is, cov(X, Y ) = E [(X − µX)(Y − µY )] = 0. On the other hand, any
linear (affine) combination of Gaussian vectors is again a Gaussian vector whose
parameters are linear (affine) combinations of those of (X, Y ).
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One fundamental consequence of these properties is that they permit to define
a natural version of the conditional expectation of X w.r.t. Y . At this point it
is worth to say that in the general situation the computation of the conditional
expectation is a very demanding problem.

Let f : Rd → R a bounded function, then

E [f(X) | Y = y] = E f(ζ + Cy),

where ζ is a Gaussian random variable with mean µX − CµY and variance
var(X) + C · cov(X, Y ), being C = cov(X, Y )var(Y )−1.

In general, the idea is to choose the deterministic matrix C such that the
vectors be non-correlated, and thus independent.

Continuity of moments and paths

We say that an stochastic process (or field) X : (Ω×)T → Rd is a Gaussian
process (or field) if the finite-dimensional distributions are Gaussian. Kolmogorov
Extension Theorem show that the distribution of the process is determined by
order one and order two moments, that is, by the mean function µ : T → Rd and
the covariance function r : T × T → Rd×d.

The paths of the process are the functions obtained by fixing ω ∈ Ω, that is,
the paths of X are the functions X(ω, ·) : T → Rd for ω ∈ Ω.

It is a remarkable fact that on the Gaussian case the regularity of these func-
tions (mean, covariance and paths) are intimately related, see Azäıs & Wschebor
[12, Chapter 2] or Cramér & Leadbetter [23] for detailed treatment. Roughly
speaking, to Ck paths correspond C2k covariance function and vice versa.

Spectral representation

We say that the centered Gaussian process X is stationary if the covariance
function r(s, t) depends on s, t only through their difference t− s.

On this case, since r is positive definite, by Bochner’s Theorem, it can be
represented as

r(τ) =

∫
R
eiτxµ(dx),

for some Borel measure µ, called the spectral measure of X.
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The second spectral moment of X at t = 0 is defined as

λ2 = λ2(X(0)) =

∫
R
λ2µ(dλ).

It is well known from Spectral Analysis that λ2 measures, to some extent, the
roughness of the paths of X, that is, to larger values of λ2 more cusps appear
in the paths. In other words, as the value of λ2 increases the paths have more
components of higher frequencies, see Adler & Taylor [1, Chapter 11].

Besides, if the process centered stationary Gaussian process X has paths of
class C1, it follows that

λ2 = −r′′(0).

In words, the second spectral moment coincides with the variance of the process
X ′ at t = 0.

Invariance

When the dimension of the parameter space T is larger than one, the property
of stationarity is replaced by that of being invariant under the action of the
orthogonal (or unitary) group of transformations of T .

In practice, this condition deals to important simplifications in the integrals,
conditional expectations, etc.
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Appendix B: Point Processes

In order to describe the jump structure of an stochastic process it is convenient
to introduce the so called Point Processes. in the following lines we write down
some of their main properties, we follow the book by Jacobsen [42], another very
well known reference for the subject is the book by Jacod & Shiryaev [43].

A marked point process (MPP for short) is a sequence (τn, ξn)n∈N, where
τn < τn+1 for all n. Here τn ∈ [0,∞], n ∈ N, represents the n-the jump epoch of
the process and ξn ∈ E, n ∈ N, with (E, E), represents the mark corresponding
to the jump epoch τn. Here E is R (or R2) and E the Borel σ-algebra.

This kind of stochastic processes model the occurrence through time of events
of different nature. The main example of a MPP is the Compound Poisson
Process (CPP for short), on this case the intervals between two consecutive
jump epochs (inter arrival intervals) are independent and with identically dis-
tributed exponential length; besides, the marks are also independent identically
distributed random variables independent from the jump epochs.

Construction

In order to construct such a process, we need two families of stochastic Markov
kernels P

(n)
x,t and π

(n)
x,t , with n ∈ N, x ∈ En y t ∈ [0,∞]n. The kernels specify

the (conditional) distributions of the jump epochs and marks, conditioned to the
previous times and marks.

For notational convenience, sometimes, we will write only the relevant com-
ponents of the conditions.

set τ0 = 0 and draw ξ0 according to the initial distribution π0, then, condi-
tioned on the resulting value of ξ0, say x0, draw τ1 with (conditional) distribution

P (τ1 ∈ · | ξ0 = x0) = P (1)
x0

(·).

Similarly, conditioned on the values of ξ0, τ1, say x0, t1 respectively, draw ξ1 with

Federico Dalmao Artigas Rice Formula



136 APPENDICES

distribution π
(1)
x0,t1(·). That is

P (ξ1 ∈ · | ξ0 = x0, τ1 = t1) = π
(1)
x0,t1(·).

Then, conditioned on the preceding values and on ξ1 = x1 draw τ2 with distribu-
tion P

(2)
(x0,x1),t1

(·) and so on.

Finally, for τn ≤ t < τn+1 let νt = n and

J(t) =
νt∑
k=0

ξk.

Hence, τn represents the n-th jump instant and ξn represents the n-th jump
magnitude (or increment) of the process J .

Counting Processes and Random Counting Measures

Departing from the point process (τn, ξn)n we define the following counting pro-
cesses

νt = max{n : τn ≤ t} = #{n : τn ≤ t}
νt(A) = #{n : τn ≤ t, ξn ∈ A}, A ∈ E .

Therefore, νt represents the number of jumps epochs occurring before t, that is
the jump epochs on the interval [0, t], and νt(A) represents the number of these
jump epochs whose marks belong to the set A.

It is easy to see that {νt ≥ n} = {τn ≤ t} and τn = inf{t : νt ≤ n}.

A point process defines also a random counting measure (RCM) on [0,∞]×E
by

µ =
∑
n

δ(τn,ξn),

where δx is Dirac Delta measure concentrated at the point x.

The basic properties of the RCM are

µ({0} × E) = 0

µ({t} × E) ≤ 1

µ((0, t]× E) <∞, (6.13)

for all t.
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Adapted and predictables processes

Let M be the space of counting measures satisfying the conditions in Equations
(6.13), in M define the filtration

Ht = σ (νs(A) : 0 ≤ s ≤ t, A ∈ E) .

In this framework, an stochastic process is a function X : [0,∞] ×M → R
measurable w.r.t. B⊗H∞. besides, an adapted process X is a process such that
X(t) is Ht-measurable and an predictable process X is a process such that X(t)
is Ht−-measurable.

Roughly speaking, a process is adapted if its value at time t depend upon the
observed jump epochs and marks occurred until time t inclusive; while a process
is predictable if its value at time t can be predicted from the observed jump
epochs and marks occurring in [0, t), but not those occurring at time t.

Compensators

The counting processes (νt)t and νt(A) are non-decreasing adapted processes,
therefore, they are sub martingales. One of the fundamental consequences of
this fact is Doob-Meyer decomposition, see Jacobsen [42, Th. 4.6.1]. This result
states that these counting processes can be represented as the sum of a (local)
martingale and an increasing predictable process.

The predictable process appearing in this decomposition is called the com-
pensator of the counting process, see Jacobsen [42, Def. 4..3.2].

Integrals and Martingales

As the RCM and the compensating measures are measures, we can integrate with
respect to them.

It is a fundamental result that the difference of these integrals is a martingale
under very mild conditions.
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21(1):47–57, 1985.

[16] Simeon M. Berman. An asymptotic formula for the distribution of the max-
imum of a Gaussian process with stationary increments. J. Appl. Probab.,
22(2):454–460, 1985.

[17] A. T. Bharucha-Reid and M. Sambandham. Random polynomials. Proba-
bility and Mathematical Statistics. Academic Press Inc., Orlando, FL, 1986.
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