
Modeling and Algorithmic Advances for
Random Dot Product Graphs

Bernardo Marenco

Doctorate program in Mathematics

Programa de Desarrollo de las Ciencias Básicas

Universidad de la República

Montevideo – Uruguay

October of 2025

Modeling and Algorithmic Advances for
Random Dot Product Graphs

Bernardo Marenco

Doctorate’s Thesis submitted to the Doctorate

Program in Mathematics, Programa de Desarrollo

de las Ciencias Básicas of the Universidad de la

República, as part of the necessary requirements for

obtaining the title of Doctor in Mathematics.

Directors:

Ph.D. Prof. Paola Bermolen

Ph.D. Prof. Gonzalo Mateos

Academic director:

Ph.D. Prof. Paola Bermolen

Montevideo – Uruguay

October of 2025

Marenco, Bernardo

Modeling and Algorithmic Advances for Random Dot

Product Graphs / Bernardo Marenco. - Montevideo:

Programa de Desarrollo de las Ciencias Básicas, 2025.

XX, 142 p.: il.; 29, 7cm.

Directors:

Paola Bermolen

Gonzalo Mateos

Academic director:

Paola Bermolen

Doctorate’s Thesis – Programa de Desarrollo de las

Ciencias Básicas, Doctorate Program in Mathematics,

2025.

Bibliography: p. 136 – 142.

1. Modelos de redes, 2. Random Dot Product

Graphs (RDPGs), 3. Aprendizaje de representaciones de

grafos, 4. Grafos con pesos, 5. Optimización no convexa.

I. Bermolen, Paola. Mateos, Gonzalo. II. Programa

de Desarrollo de las Ciencias Básicas, Doctorate Program

in Mathematics. III. Title: Modeling and Algorithmic

Advances for Random Dot Product Graphs

MEMBERS OF THE THESIS DEFENSE COURT

Ph.D. Prof. Joaqúın Fontbona

Ph.D. Prof. Florencia Leonardi

Ph.D Prof. Vince Lyzinski

Ph.D. Prof. Santiago Segarra (Revisor Externo)

Ph.D. Prof. Mauricio Velasco (Revisor Externo)

Montevideo – Uruguay

October of 2025

iv

Agradecimientos

A Euge. A Quin y Guille. A Quique y Rosannita. A Santi.

A Paola y Gonchi. A Fede y Fiori.

A Tortoise, Los Olimareños, MF DOOM y Power Chocolat́ın Experimento.

v

Desde esta milonga se da las gracias

A toda persona que sea capaz

De estar dos minutos ensimismada

Tratando aplicada de mejorar

Fernando Cabrera, Décimas porteñas

vi

RESUMEN

Las redes constituyen una herramienta natural para representar sistemas com-

plejos, desde interacciones sociales hasta conexiones biológicas y tecnológicas. Un

modelo estad́ıstico fundamental para este tipo de datos es el Random Dot Product

Graph (RDPG), en el cual cada nodo se asocia con un vector latente en un espacio

de baja dimensión, y la probabilidad de que exista una arista depende del producto

interno entre dichos vectores. Esta tesis estudia tanto los fundamentos teóricos

como los aspectos algoŕıtmicos de la inferencia bajo el modelo RDPG, con especial

énfasis en avanzar el aprendizaje de representaciones en grafos (graph representation

learning).

Comenzamos revisando el problema clásico de embedding y mostramos que

puede reformularse como una tarea de factorización matricial con restricciones.

Basándonos en avances recientes en optimización no convexa, llevamos a cabo

un nuevo análisis del paisaje de optimización asociado al objetivo factorizado del

RDPG. Demostramos que, bajo la geometŕıa Riemanniana cociente inducida por la

invarianza ortogonal del modelo, el paisaje es benigno: todo punto estacionario es

un mı́nimo global o un punto silla estricto. Esto constituye la primera garant́ıa rig-

urosa de que los algoritmos basados en descenso por gradiente pueden recuperar de

manera confiable embeddings del RDPG. Extendemos además el análisis a un obje-

tivo enmascarado que descarta la diagonal y acomoda datos faltantes, estableciendo

propiedades de convexidad fuerte restringida y suavidad bajo el modelo RDPG.

Posteriormente, generalizamos el modelo para redes con pesos introduciendo el

Weighted RDPG (WRDPG). El WRDPG ofrece un marco no paramétrico que cap-

tura momentos de orden superior de las distribuciones de pesos de las aristas más allá

de la media, al mismo tiempo que admite un estimador consistente y asintóticamente

normal. Asimismo, proponemos un mecanismo generativo que reproduce tanto la

estructura como la distribución de pesos observada en redes reales.

Finalmente, exploramos aplicaciones en la detección en tiempo real de puntos

de cambio en redes dinámicas. Al combinar embeddings RDPG con métodos es-

tad́ısticos secuenciales, desarrollamos un marco liviano e interpretable capaz de de-

tectar, en tiempo real, cambios estructurales en grafos en evolución.

En conjunto, esta tesis conecta métodos espectrales, teoŕıa de la optimización e

inferencia estad́ıstica para avanzar en el uso de embeddings basados en RDPG como

base para el aprendizaje de representaciones en grafos.

Palabras claves:

Modelos de redes, Random Dot Product Graphs (RDPGs), Aprendizaje de

representaciones de grafos, Grafos con pesos, Optimización no convexa.

vii

ABSTRACT

The Random Dot Product Graph (RDPG) model has emerged as a fundamental

tool for representing network data through latent position embeddings. In this

framework, each node is associated with a low-dimensional vector, and edges are

formed with probabilities given by the inner products of these latent positions.

This thesis investigates both the theoretical foundations and algorithmic aspects of

inference under the RDPG model, with a focus on advancing graph representation

learning for statistical network analysis.

We begin by revisiting the classical embedding problem and showing that it

can be reformulated as a constrained matrix factorization task. Leveraging recent

advances in nonconvex optimization, we conduct a novel landscape analysis of the

factored RDPG objective. We prove that, under the natural quotient Riemannian

geometry induced by the model’s orthogonal invariance, the optimization landscape

is benign: every stationary point is either a global minimizer or a strict saddle. This

provides the first rigorous guarantees that gradient-based algorithms can reliably

recover RDPG embeddings. We further extend the analysis to a masked objec-

tive that naturally discards diagonals and accommodates missing data, establishing

restricted strong convexity and smoothness properties under the RDPG model.

We then generalize the model to weighted networks by introducing the Weighted

RDPG (WRDPG). The WRDPG offers a nonparametric framework that captures

higher-order moments of edge-weight distributions beyond the mean, while admit-

ting a consistent and asymptotically normal estimator. We also propose a generative

mechanism that reproduces both the structure and weight distribution of real net-

works.

Finally, we explore applications in online change-point detection for dynamic

networks. By coupling RDPG embeddings with sequential statistical methods, we

develop a lightweight and interpretable framework capable of detecting structural

changes in evolving graphs in real time.

Overall, this thesis bridges spectral methods, optimization theory, and statistical

inference to advance the use of RDPG-based embeddings as a substrate for graph

representation learning.

Keywords:

Network models, Random Dot Product Graphs (RDPGs), Graph Representation

Learning, Weighted networks, Nonconvex optimization.

viii

List of Figures

2.1 Scree plot for the adjacency matrix of Zachary’s karate club graph

(left) and polar plot of first two dimensions of nodes’ embeddings

obtained via ASE (right). 12

2.2 Pairwise scatter plots of the top-d = 3 generalized RDPG embeddings

of the karate club network, with the third coordinate sign-reversed to

account for the (p, q) = (2, 1) signature. Node colors indicate the

true communities from the original dataset. The second dimension

remains the most informative for separating the two communities. . . 16

3.1 Execution time for embedding SBM graphs with up to N = 24000

nodes. As N grows, BCD exhibits competitive scaling to the state-

of-the-art ASE algorithm implemented in the Graspologic package. . 34

3.2 Bipartisan senate example. ASE (left) and GD (right). Since ASE

implicitly imposes equally normed orthogonal columns (as it is derived

from an SVD), it produces interpretable embeddings. On the other

hand, GD may result in laws and parties that are not aligned, and

thus loses interpretability if no further constrains are imposed in the

formulation. 38

3.3 Solution to the embedding problem (3.17) for the bipartisan senate ex-

ample. ASE (left) and Riemannian GD (right). Notice how both so-

lutions are nearly identical [cf. unconstrained GD in Fig. 3.2 (right)],

underscoring the importance of the orthogonality constraints. 46

3.4 The evolution of f(Xl
k,X

r
k) =

1
2

∥∥M ◦ (A−Xl
k(X

r
k)

⊤)
∥∥2
F
using Algo-

rithm 3 to embed an LFR graph, starting from 75 different random

initializations. The first 5 iterations are omitted for clarity. Note

how the algorithm systematically produces estimates of the embed-

dings with a lower cost than ASE, and marginal variability regardless

of the initialization. 47

ix

3.5 UN General Assembly voting data for 1955. ASE (left) and Rieman-

nian GD (i.e., Algorithm 3) with mask matrix encoding present and

absent (or abstained) voters (right). Our approach is able to assign

the absent voters to the correct group (e.g., South Africa) and offers

a more clear clustering of roll calls. 48

3.6 Embeddings of two SBM graph realizations, where communities 1 and

2 merge, while community 4 keeps the connection probabilities with

other groups. Observe how the BCD approach (far right) manages

to capture this behaviour, while providing the best representation

for each graph individually (quantified by the smallest cost function

values). Example adapted from Gallagher et al. (2021). 51

3.7 Two-block dynamic SBM in which a single node changes affiliation at

each t. Comparison between online GD and recursive SVD (Brand,

2006). (top) Embeddings for the first two time-steps (d = 2); the

node that changed communities is highlighted in green. Best viewed

in a color display. Note how the change of a single node produces

markedly different results for Brand (2006), whereas online GD offers

stable estimates. (bottom) Evolution of ∥X̂tX̂
⊤
t − Pt∥F . Solid line

indicates median across ten realizations, with the range between first

and third quartiles shown in a lighter color. Online GD exhibits

uniformly bounded error, whereas Brand (2006) accumulates error as

t grows. 53

3.8 A diagram of the proposed tracking system. The entry-wise filter

F(z) implements an averaging operator, e.g., a fixed-length moving

average. 53

3.9 Embeddings X̂l
t (left) and X̂r

t (right) for the RSSI digraph (d = 2).

Color palettes distinguish the APs and a lighter tone indicates larger

values of t. Best viewed in a color display. The network’s change at

t ≈ 310 is apparent. AP 4 was moved (i = 4) closer to the upper

cluster of APs. 54

3.10 Dynamic Erdös-Rényi graph in which a single node is added at each

t. Comparison between online GD and out-of-sample LS embed-

ding Levin et al. (2018). Evolution of ∥X̂tX̂
⊤
t − Pt∥F/

√
Nt. Solid

line indicates median across ten realizations, with range between first

and third quartiles shown in a lighter color. Once more, online GD

exhibits uniformly bounded error, whereas the baseline method Levin

et al. (2018) accumulates error as t grows. 56

x

3.11 UN General Assembly voting data from 1955 to 2015. Evolution of

nodal positions for the USA, Israel, Cuba, and the USSR (or, after

1991, the Russian Federation) estimated via online Riemannian GD.

Color palettes distinguish the countries and a lighter tone indicates

later years. Best viewed in a color display. Note how the USA and

Israel remain strongly aligned over the entire span, with Cuba and

the USSR shifting alignments depending of their political views. . . . 57

4.1 Latent position estimation. Given an adjacency matrixA we compute

its k-th entry-wise power A(k). The ASE of A(k) yields the estimates

X̂[k]; see also Section 4.3.2. 63

4.2 Graph generation. Given the latent positions of each vertex

{X[k]}k≥0, we estimate a weight distribution whose sequence of mo-

ments is given by the corresponding dot products. Edge weights are

then sampled from this estimated distribution; see also Section 4.5. . 64

4.3 True (dashed vertical line) and estimated (histograms) latent posi-

tions for an Erdös-Rényi model with N (1, 0.01) weights. Pdf for lim-

iting Gaussians, as given by Corollary 4.4.4, are plotted with dashed

lines in each panel. 67

4.4 Estimated (blue and red circles) and true latent positions (black

crosses) for a two-block SBM with N (1, 0.01) weights. The 95% con-

fidence level sets for the limiting normal distributions, as given by

Corollary 4.4.4, are shown as dashed lines. 69

4.5 Theoretical latent positions (black crosses) and ASE embeddings of

W(k) for Gaussian (µ = 5 and σ = 0.1; in red) and Poisson (λ = 5.1;

in blue) distributed weights for d = 2 and k = 1 (left), k = 2 (center),

and k = 3 (right). Nodes with different weight distributions are

clearly revealed for k = 3, but they overlap for k = 1. The 95%

confidence level sets for the limiting normal distributions, as given by

Theorem 4.4.2, are shown as dashed lines. 71

4.6 Inference results for a two-class SBM with Gaussian weights and N =

2000 nodes (first and second columns) and N = 200 nodes (third

and fourth columns). The plots on the second and fourth columns

show histograms of the estimated M̂[k] and the vertical lines indicate

the true moments. For N = 2000 embeddings and moments are

accurately estimated up to order k = 4, while accuracy degrades in

the N = 200 setting. Also, for fixed sample size performance degrades

as the order increases from k = 1 (top row) to k = 4 (bottom row). . 72

xi

4.7 Comparisons between two-blocks SBMs generated from the base

model (blue line) and from the discrete density estimated from la-

tent positions (histograms and boxplots). 91

4.8 Box plots of Lagrange multipliers for maximum entropy estimation

of an exponential rv distribution via our dual approach (red) and

the method from Saad and Ruai (2019) (PyMaxEnt, green) for 100

random initializations. Our approach always converges to the true

value, while PyMaxEnt does not. 96

4.9 Comparisons between two-block SBMs generated from the base model

(blue line) and from the pdf estimated with our method for solving

the maximum entropy problem from latent positions (histogram and

boxplot). Since in this setup graphs are fully connected, we do not

report results for betweenness centrality. 98

4.10 Graph generation metrics the football dataset Li and Mateos (2022).

Metrics for the true graph are shown with a blue solid line, while a

histogram or a boxplot shows the results for the corresponding metric

for 100 synthetic graphs generated using the estimated mixed densities.100

4.11 Result of applying the Louvain algorithm Blondel et al. (2008) to the

network of international football matches. Nodes with the same color

belong to the same community. 101

4.12 Comparisons between community structure of the real football

matches network and its synthetic replicates. Left: histogram of

number of communities in the largest connected component (lcc)

for synthetic graphs. Right: Boxplot for three metrics of clustering

agreement between real and synthetic networks: V-measure, Adjusted

Rand Index (ARI) and Adjusted Mutual Information (AMI). 102

5.1 Evolution of ω[k]Γ[m, k], its mean and the estimated mean, for sim-

ulated data. Two thresholds are shown: the 0.99-quantile of the

distribution in (5.11) and three standard deviations away from the

mean; those thresholds are very close and the latter is preferred due

to its reduced complexity. The solid vertical line indicates the actual

change-point, while the dashed one is the detection. A change in

background color indicates a change-point detected by the offline al-

gorithm (Madrid Padilla et al., 2022). Our approach is able to detect

the change with a relatively small delay, while operating in an online

fashion. 120

xii

5.2 Evolution of ω[k]Γ[m, k] for residual (top) and projection (bottom)

monitoring functions, using the MOSUM sliding window statistic.

After the change-point there is a discernible change in trend for the

residual; the projection does not exhibit such desirable behavior. . . . 121

5.3 Evolution of ω[k]Γ[m, k] and five possible thresholds: cα[k] (for 1 −
α ∈ {0.9, 0.95, 0.99}) and th[k] equal to the mean plus two and three

standard deviations. The setting is the same as in Fig. 5.1 except

that N = 20 to increase the variance of ω[k]Γ[m, k]. Using 1 − α =

0.99 is preferred as it provides more robustness to false positives.

Both choices of th[k] are reasonable, although using three standard

deviations is consistently above c0.01[k] (see the first time-steps). . . . 122

5.4 Detection result for a network transitioning from an ER model with

p = 0.3 to a two-block SBM with q1 = 0.275 and q2 = 0.325. Algo-

rithm 4 is able to detect the change in this setup, while the approach

proposed in Chen (2019) fails to do so. 124

5.5 Estimated detection delay and empirical delays for different change-

point locations kc. Empirical delay is well predicted by the estimated

curve. For the adopted CUSUM statistic, as expected the delay grows

with kc. 125

5.6 Empirical delays for different change-point locations kc, using the

CUSUM, MOSUM (with L = 10), and mMOSUM (with h = 0.4)

statistics. Delays behave as expected given the different effective

observation intervals: roughly constant delay for MOSUM, growing

delays with kc for both CUSUM and mMOSUM, but at a slower rate

for the latter. 126

5.7 Estimated detection delay and empirical delays for different train-

ing set sizes m, for the CUSUM statistic. The delay is lower as m

increases, but there is no significant improvement after m = 25. . . . 127

5.8 Online CPD for the RSSI dataset. Top: MOSUM statistic. A change

in background color indicates a change-point detected by the offline

algorithm Madrid Padilla et al. (2022). The dashed vertical line shows

the detected change-point for the online algorithm. Algorithm 4 suc-

cessfully detects that an AP was moved. Bottom, left: X̂l
1 (blue) and

X̂l
2 (orange) latent vectors for d = 2 corresponding to Ā1 and Ā2

respectively. Vectors corresponding to the same node are joined by

an arrow. Bottom, right: Id. but with X̂r
1 (blue) and X̂r

2 (orange).

Node 4 corresponds to the AP that was moved, which together with

node 3 are the ones whose embeddings change more prominently. . . 128

xiii

5.9 Online CPD for the South American football matches. Top: evolu-

tion of MOSUM statistic. The dashed vertical line shows the detected

change-point, that can be traced to a change in the Copa América or-

ganization format. A change in background color indicates a change-

point detected by the offline algorithm (Madrid Padilla et al., 2022).

Bottom: embeddings corresponding to the averaged historic set (blue)

and the last 10 graphs of the observation period (orange). There are

two distinct communities (northern and southern countries), and an

increase of the number of matches played by the northern countries

(with relatively less football tradition at the time) is clear by the

changes in its embeddings. 130

5.10 Online CPD for the MIT proximity dataset (using the MOSUM win-

dow). A change in background color indicates a change-point detected

by the offline algorithm of Madrid Padilla et al. (2022). The dashed

vertical line shows the detected change-point for the online algorithm.

Dotted vertical lines indicate the beginning of the semester and the

“sponsor week”. The offline algorithm misses the first change-point. 131

xiv

Notational conventions

Throughout this document we use the following notation. Real numbers are denoted

by plain symbols (either upper or lowercase), such as i, j, N ∈ R. Vectors in a

Euclidean space Rd are denoted in bold, lowercase, e.g., x ∈ Rd, and are assumed

to be column vectors. We reserve bold uppercase letters for matrices, such as A ∈
Rn×m, with In denoting the n × n identity matrix, and 1m×n,0m×n the m× n all-

ones and all-zeros matrices, respectively. We will drop the subscripts when the

dimensions are clear from context. The symbol A(k) stands for the k-fold Hadamard

(i.e., entry-wise) product of matrix A with itself, that is:

A(k) := A ◦A ◦ · · · ◦A︸ ︷︷ ︸
k times

.

The group of orthogonal matrices of dimension d is denoted by O(d), i.e., Q ∈ O(d)

iff Q ∈ Rd×d and QQ⊤ = I, where (·)⊤ stands for transposition.

For any two indexes i, j ∈ N, δij will denote Kronecker’s delta, i.e., δij = 1 if

i = j and δij = 0 otherwise.

The dot product between x,y ∈ Rd is denoted by x⊤y, whereas ∥x∥2 and ∥x∥∞
denote the Euclidean (i.e., L2) and maximum (i.e., L∞) norm of vector x. When

dealing with matrices, ∥A∥F, ∥A∥∞, ∥A∥2 and ∥A∥2→∞ denote the Frobenius, in-

finity (i.e. maximum row sum or ∥A∥∞ := maxi
∑

j |Aij|), spectral (i.e., largest
singular value) and 2 → ∞ norm of matrix A ∈ Rn×m, respectively. The latter is

defined as

∥A∥2→∞ := sup
∥x∥2=1

∥Ax∥∞,

see (Cape et al., 2019). The 2→∞ norm is thus the operator norm of A acting as

A(·) : Rm 7→ Rn, when Rm is endowed with the Euclidean norm and Rn with the

∞ norm.

We repeatedly make use of the following relations between the 2→∞, spectral,

and Frobenius norms of any matrix A ∈ Rn×m:

∥A∥2→∞ ≤∥A∥2 ≤ ∥A∥F,
∥A∥2 ≤min

{√
n∥A∥2→∞ ,

√
m
∥∥A⊤∥∥

2→∞

}
.

xv

The 2→∞ norm is not submultiplicative; however, the following relations hold for

any matrices A,B,C of suitable dimensions:

∥AB∥2→∞ ≤∥A∥2→∞∥B∥2 ≤ ∥A∥2∥B∥2,
∥CA∥2→∞ ≤∥C∥∞∥A∥2→∞ ≤

√
n∥C∥2∥A∥2.

For a function f : N→ R+, we say that a random variable Y ∈ R is OP (f(N)) if,

for every α > 0, there exist constants N0 ∈ N and C > 0 such that for all N ≥ N0,

it holds that

P {|Y | < Cf(N)} ≥ 1−N−α.

In this case, we write Y = OP (f(N)). We will sometimes express this informally by

saying that |Y | < Cf(N) holds with high probability.

Furthermore, we say that Y is ΘP (f(N)) if for each α > 0 there exists N0 ∈ N
and c, C > 0 such that for all N ≥ N0 it holds that:

P {cf(N) < Y < Cf(N)} ≥ 1−N−α.

In that case we write Y = ΘP (f(N)); we will sometimes informally express this as

Y being of order f(N) with high probability.

xvi

Acronyms

The following acronyms are used throughout the manuscript:

ASE Adjacency Spectral Embedding 10

BCD block-coordinate descent 18, 32

CPD change-point detection 105

GD gradient descent 18

GRL graph representation learning 1, 18

IIR infinite impulse response 52

PSD positive semi-definite 7

RDPG Random Dot Product Graph 1, 4, 7

SBM Stochastic Block Model 2, 4, 5

SVD singular-value decomposition 13

mgf moment generating function 74

pdf probability density function 67

rvs random variables 73

xvii

Contents

List of Figures ix

Notational conventions xv

Acronyms xvii

1 Introduction and thesis outline 1

2 Preliminaries and related work 4

2.1 Latent position network models . 5

2.2 The Random Dot Product Graph (RDPG) model 7

2.2.1 The RDPG model for directed graphs 12

2.2.2 The Generalized RDPG model 13

3 Algorithmic advances for the inference problem in RDPGs 17

3.1 Challenges facing the Adjacency Spectral Embedding 17

3.2 Contributions and chapter outline . 18

3.3 Problem statement and related work 19

3.3.1 Related work . 20

3.4 Embedding algorithms for undirected graphs 21

3.4.1 Back to basics: Estimation via gradient descent 22

3.4.2 Landscape analysis of the embedding problem 23

3.4.3 A local convergence result for general masks 31

3.4.4 Block coordinate descent . 32

3.4.5 Complexity and execution time analyses 33

3.5 Embedding algorithms for digraphs 35

3.5.1 On the interpretability of the directed RDPG 36

3.5.2 Optimizing on a manifold . 39

3.6 Numerical experiments and applications 45

3.6.1 Robustness to initialization 46

3.6.2 Inference with missing data 47

3.6.3 Embedding multiple graphs: the batch case 49

xviii

3.6.4 Model tracking for graph streams 50

3.7 Concluding remarks . 58

Appendix 3.A: Critical points for the unmasked objective 58

4 A weighted RDPG model 61

4.1 Related work . 61

4.2 Contributions and chapter outline . 62

4.3 Weighted RDPG model . 64

4.3.1 Model specification . 64

4.3.2 Estimation of latent positions 66

4.3.3 Examples . 66

4.3.4 Discriminative power of higher-order spectral embeddings . . . 69

4.3.5 Accuracy of moment recovery with varying number of nodes . 71

4.4 Asymptotic results . 72

4.4.1 Asymptotic consistency . 73

4.4.2 Asymptotic Normality . 85

4.5 Graph generation . 88

4.5.1 Discrete weights distribution 89

4.5.2 Continuous weights distribution 93

4.5.3 Mixed weights distribution . 98

4.6 Concluding remarks . 102

Appendix 4.A: Consequences of Assumptions 2 and 3 regarding the largest

eigenvalues of Mk and Wk . 103

5 Online change point detection for network data 105

5.1 Relation to prior work on online CPD for network data 105

5.2 Contributions and chapter outline . 106

5.3 Proposed approach . 107

5.3.1 Problem statement . 107

5.3.2 General algorithmic framework 108

5.3.3 Statistical analysis of the null distribution 111

5.3.4 Change detectability analysis 114

5.3.5 Implementation details . 117

5.3.6 Handling weighted and directed networks 118

5.4 Numerical Experiments . 119

5.4.1 Simulated data . 119

5.4.2 Real data experiments . 127

5.5 Concluding remarks . 132

xix

6 Conclusions and future work 133

6.1 Future work . 134

6.1.1 Theoretical directions . 134

6.1.2 Algorithmic and computational enhancements 134

6.1.3 Application-oriented extensions 135

6.1.4 Modeling directions . 135

Bibliography 136

xx

Chapter 1

Introduction and thesis outline

The study of network-structured data has become central to modern data science,

driven by the need to model, understand, and predict interactions in complex sys-

tems. From social networks and biological systems to technological and financial

infrastructures, graphs offer a natural and expressive language for describing pair-

wise relationships among entities. Formally, a graph G = (V,E) comprises a set of

nodes V , representing entities, and a set of edges E, denoting interactions. However,

as the complexity and scale of real-world networks grow, traditional graph-theoretic

tools often fall short in providing scalable and flexible representations. This gap has

led to the emergence of graph representation learning (GRL) as a powerful paradigm

for encoding network data into low-dimensional vector spaces amenable to modern

machine (Hamilton, 2020).

At its core, GRL seeks to learn embeddings–vector representations of nodes,

edges, or entire graphs–that preserve meaningful structural and relational informa-

tion. These embeddings serve as a foundation for downstream tasks such as clus-

tering, classification, link prediction, and anomaly detection. Unlike hand-crafted

network statistics or manually curated features, GRL offers a data-driven approach

that adapts to the geometry and semantics of specific domains. Methods in GRL

range from neural approaches such as graph neural networks (GNNs) and random-

walk-based techniques like node2vec (Grover & Leskovec, 2016), to latent position

models rooted in statistical theory. This thesis adopts the latter perspective, focus-

ing on models that offer interpretability and principled inference guarantees.

Latent position models posit that the connectivity pattern in a graph is governed

by unobserved node-level variables residing in a latent space. One particularly el-

egant and analytically tractable instance of this class is the Random Dot Product

Graph (RDPG) model (Athreya et al., 2017; Scheinerman & Tucker, 2010). In an

RDPG, each node is associated with a latent vector in a low-dimensional Euclidean

space, and the probability of an edge between two nodes is given by the dot product

of their latent vectors. This formulation provides a continuous relaxation of discrete

1

models like the Stochastic Block Model (SBM), naturally capturing phenomena such

as transitivity, homophily, and community structure.

Despite its flexibility and mathematical appeal, the RDPG model exhibits a

number of practical and theoretical limitations that restrict its utility in real-world

applications:

• It traditionally assumes binary (unweighted) and undirected edges, which fails

to account for the rich information conveyed by weighted or directed interac-

tions.

• The standard inference procedure–Adjacency Spectral Embedding (ASE)–

relies on a spectral decomposition that ignores modeling details such as missing

data or known edge uncertainty.

• Its orthogonal invariance introduces identifiability issues in the estimated em-

beddings, complicating tasks like tracking nodes over time or comparing mul-

tiple networks.

• Its standard formulation does not naturally extend to dynamic or online set-

tings, which are increasingly relevant in streaming data environments.

This thesis is motivated by the need to bridge the gap between the theoretical

elegance of the RDPG model and the practical demands of modern GRL applica-

tions. We approach this goal by revisiting the embedding problem: given an observed

adjacency matrix drawn from an RDPG, recover the latent positions of the nodes in

a way that is both statistically consistent and computationally efficient. We demon-

strate how rethinking this estimation problem–through the lens of optimization,

generalization, and algorithm design–allows us to overcome several of the RDPG

model’s inherent shortcomings.

Our contributions are threefold:

1. By identifying structural mismatches between the model and traditional spec-

tral methods, we propose a reformulated optimization problem that better

reflects the model’s latent geometry and allows for greater algorithmic flexibil-

ity and robustness. We develop gradient-based algorithms that efficiently solve

the embedding problem of the RDPG, and present a novel landscape analysis

which characterizes the behavior of our method under the appropriate quo-

tient Riemannian geometry. We also introduce a Riemannian optimization

framework for the embedding problem of the directed variant of the RDPG,

where additional identifiability issues arise due to the asymmetric nature of

the adjacency matrix. In this setting, the inherent ambiguities extend beyond

global rotations, potentially degrading both the quality and interpretability

2

of the embeddings. To address this, we show that imposing some orthogo-

nality constraints yields a novel GRL formulation for digraphs that preserves

interpretability while enabling efficient optimization.

2. We generalize the RDPG model to handle weighted networks, where edge

weights are positive real values rather than binary indicators. This leads to

the Weighted RDPG (WRDPG), a nonparametric framework that captures

higher-order moments of the edge-weight distribution beyond the mean. We

develop a corresponding estimation procedure, providing statistical guaran-

tees for the associated estimator, and establish theoretical consistency results.

These guarantees are derived through a combination of random matrix con-

centration inequalities and perturbation bounds for eigendecompositions. In

addition, we introduce a data-driven generative mechanism that can reproduce

both the structural patterns and the empirical weight distribution observed in

real networks, despite the WRDPG not being generative by construction.

3. We develop a lightweight and scalable framework for change-point detection

in evolving networks that leverages the RDPG model without requiring re-

peated embeddings of successive observations. By sidestepping the need for

full latent position estimation at each time step, our method remains compu-

tationally efficient and suitable for true online operation, while still providing

interpretable and timely detection of structural changes in network dynamics.

Taken together, these advances extend the RDPG model’s reach beyond its original

scope, embedding it firmly within the broader paradigm of GRL. Rather than treat-

ing the RDPG as a fixed generative model, we promote a view in which it serves as

a flexible modeling scaffold–one that can be adapted, optimized, and applied to a

wide variety of settings where structure matters.

The remainder of the thesis is structured as follows. Chapter 2 introduces foun-

dational concepts from statistical network analysis and latent position models, with

an emphasis on the RDPG and its connections to other frameworks. Chapter 3

develops novel formulations and optimization strategies for the embedding problem,

supported by a theoretical landscape analysis. Chapter 4 presents the WRDPG

model and its inference guarantees. Chapter 5 illustrates how the RDPG frame-

work can be leveraged for sequential change-point detection in temporal networks.

Finally, Chapter 6 summarizes our findings and discusses open questions and avenues

for future work.

3

Chapter 2

Preliminaries and related work

In this chapter, we present a class of probabilistic models for network data that rely

on the notion of latent positions, with particular emphasis on the Stochastic Block

Model (SBM) and the Random Dot Product Graph (RDPG) model. These models

provide flexible frameworks for capturing the underlying generative mechanisms of

observed graphs, and serve as foundations for a wide array of statistical inference

procedures on network data.

As mentioned in Chapter 1, we model a network as a graph G = (V,E), where

V is the set of nodes (or vertices) and E ⊆ V × V is the set of edges. Throughout

the chapter, we consider graphs with N = |V | nodes, indexed as V = {1, 2, . . . , N}.
An edge (i, j) ∈ E represents the presence of a relationship between nodes i and j.

While we begin our exposition with undirected and unweighted graphs–meaning that

(i, j) ∈ E implies (j, i) ∈ E, and that edges do not carry weights–we later present an

extension of the RDPG model to accommodate directed graphs. In Chapter 4, we

also introduce an extension of the RDPG model that accommodates weighted edges.

In what follows, we denote by A ∈ RN×N the adjacency matrix of an unweighted

graph; that is, Aij = 1 if (i, j) ∈ E, and 0 otherwise.

Latent position models posit that each node i ∈ V is associated with an un-

observed vector xi ∈ Rd, called its latent position, and that the probability of an

edge between two nodes depends on their respective latent positions. Under the

SBM, nodes are partitioned into discrete communities, and edge probabilities are

determined solely by the community memberships. In contrast, the RDPG model

assumes that edge probabilities arise from the inner products of continuous-valued

latent vectors.

We will carefully introduce both models and explain how the SBM can be viewed

as a special case of the RDPG, under suitable choices of latent positions. This unify-

ing perspective reveals how both community structure and more general geometric

relationships can be modeled within a single latent position framework.

The remainder of the chapter is structured as follows. We begin by formally

4

defining the SBM and reviewing its probabilistic structure. We then introduce the

RDPG model and show how it can be viewed as a generalization of the SBM. Next,

we explore the properties of the RDPG, discuss estimation techniques, and examine

its applications in network inference tasks. We then present an extension of the

RDPG model to accommodate directed graphs, and introduce a further generaliza-

tion that captures heterophilous network structures.

2.1 Latent position network models

A powerful approach within the domain of statistical analysis of network data is the

use of latent variable models (Hoff et al., 2002), where each vertex is endowed with an

unobserved feature vector that encapsulates its propensity to establish relational ties.

This general class of models offers a probabilistic lens through which the observed

network structure can be understood in terms of latent geometric or probabilistic

constructs (see e.g., Kolaczyk (2017, Ch. 2.2) and Izenman, 2023, Ch. 10.7).

A prominent example of latent variable models is the Stochastic Block Model

(SBM), in which each vertex belongs to one of C latent communities (Holland et

al., 1983). Formally, each vertex i is assigned a community label zi ∈ {1, . . . , C},
and the probability of an edge between vertices i and j depends solely on their

community memberships. That is,

P (Aij = 1 | zi = r, zj = s) = brs,

where B = (brs) ∈ [0, 1]C×C is the so-called block probability matrix–that is, the

matrix that encodes the connection probabilities between (and within) communi-

ties. This induces a block-constant expectation matrix P = E (A), where each

block corresponds to a pair of communities and has constant entries given by the

corresponding entry in the matrix B. The SBM thus models networks exhibit-

ing community structure–a common feature in social, biological, and technological

networks–and offers a tractable framework for statistical inference.

While the community labels z1, . . . , zN can be treated as fixed, a common and

often more realistic formulation treats them as random variables. Under this prob-

abilistic version of the SBM, each zi is drawn independently from a categorical

distribution over C classes with mixing proportions π = (π1, . . . , πC)
⊤, i.e.,

P (zi = c) = πc, for each c = 1, . . . , C, with
C∑
c=1

πc = 1.

This random labeling introduces an additional layer of variability into the model and

allows for a Bayesian interpretation of the community structure. It also facilitates

5

statistical inference, as it models heterogeneity in community membership across

different network realizations.

Although SBMs involve discrete latent variables, they are closely linked to con-

tinuous latent variable models. In latent variable models, each node i is associated

with a continuous latent position xi ∈ Rd, and the probability of an edge between

nodes i and j is given by κ(xi,xj) for some function κ : Rd × Rd → [0, 1], which

typically encapsulates some measure of proximity–often the Euclidean distance or

the inner product between latent vectors. Notably, the SBM can be viewed as a de-

generate latent space model where all vertices within the same block share identical

latent positions. This equivalence reveals that latent space models generalize SBMs

and offers a unified geometric perspective for representing network data.

This connection is rigorously formalized through the theory of graph limits and

graphons (Borgs et al., 2008; Lovász & Szegedy, 2006). A graphon W : [0, 1]2 →
[0, 1] is a symmetric, measurable function which can be thought of as a continuous

analogue of the adjacency matrix for graphs with infinitely many vertices. Given a

graphon W , one generates a random graph by first sampling independent uniform

variables U1, . . . , UN ∼ Uniform[0, 1], then connecting each pair (i, j) independently

with probability W (Ui, Uj).

The cut distance between two graphons W and W ′ is defined as

δ□(W,W ′) = inf
φ

sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

(
W (x, y)−W ′(φ(x), φ(y))

)
dx dy

∣∣∣∣ ,
where the infimum is over all measure-preserving bijections φ of [0, 1]. This metric

captures how closely two graphons approximate each other under relabelings of the

vertices. A key analytic result in this theory is the graphon analogue of Szemerédi’s

Regularity Lemma (Lovász & Szegedy, 2007), which states that any graphon can be

approximated arbitrarily well in the cut norm by a step-function graphon–that is, a

graphon corresponding to an SBM with finitely many blocks:

Theorem (Lovász and Szegedy (2007), Theorem 3.1). For any graphon W

and any ε > 0, there exists a step-function graphon W ′ such that

δ□(W,W ′) ≤ ε.

This result implies that SBMs serve as universal approximators for the space of

graphons under the cut distance, meaning any complex network structure can, in

principle, be captured by an SBM with a sufficiently large number of blocks. How-

ever, the number of blocks required to achieve a given approximation accuracy can

scale exponentially with the complexity of the underlying structure, making such

approximations impractical in many settings. Despite this, SBMs remain useful

6

both as direct models for networks exhibiting community structure and as founda-

tional tools for approximating more intricate latent variable models. For instance,

a graphon arising from a latent space model with continuous latent positions can be

approximated by a step-function graphon, effectively discretizing the latent space

into regions corresponding to block memberships.

These insights have deep practical and theoretical ramifications. Highly com-

plex latent structures inherent in continuous latent space frameworks can be closely

approximated by SBMs, facilitating scalable inference and parameter estimation for

large networks. Moreover, they unify disparate modeling approaches –ranging from

community detection in SBMs to geometric embeddings in latent space models–

under a common analytical framework rooted in graph limits. This connection un-

derscores the SBM’s dual role as both a practical modeling tool and a fundamental

building block for approximating the limits of large network sequences. As we will

shortly see, the SBM can be cast as a particular case of the central model addressed

in this thesis–that is, the Random Dot Product Graph model.

2.2 The RDPG model

An especially compelling instantiation of the idea of latent position models is to

define the edge probability between two nodes as a function of the inner product of

their latent vectors. This is not merely an arbitrary choice: by Mercer’s theorem, any

positive semi-definite (PSD) kernel function can be approximated (in an L2 sense)

by inner products in a suitably chosen Hilbert space. Thus, modeling connectivity

via inner products aligns naturally with the theory of kernel methods, ensuring both

mathematical tractability and expressive power. It provides a principled way to cap-

ture a wide range of network structures while retaining computational efficiency. In

the following, we delve into the Random Dot Product Graph (RDPG) model, which

formalizes this notion and serves as a foundational building block for latent space

modeling in network analysis. This model stands out for its interpretability and

theoretical tractability, providing a bridge between latent geometry and observed

connectivity patterns.

In the standard RDPG model, we consider a simple undirected and unweighted

random graph G = (V,E) with N vertices, where each vertex i ∈ V is associated

with a latent position xi ∈ Rd. Typically, the dimensionality of the embedding space

d is such that d≪ N . The RDPG model posits that for any pair of vertices i and j,

the presence of an edge is determined by a Bernoulli random variable Aij ∈ {0, 1}
with success probability given by the dot product of the latent positions, that is,

Aij ∼ Bernoulli(x⊤
i xj), for i > j,

7

where the Aij’s are mutually independent. Since self loops are excluded, Aii ≡ 0

for all i ∈ V . Here, A ∈ {0, 1}N×N is the graph’s symmetric adjacency matrix, and

the inner product x⊤
i xj must lie in the interval [0, 1] to yield a valid probability. In

other words, the RDPG model specifies

P
(
A
∣∣X) =∏

i<j

(x⊤
i xj)

Aij(1− x⊤
i xj)

1−Aij , (2.1)

where the matrix X = [x1, . . . ,xN]
⊤ ∈ RN×d has all the nodes’ latent position

vectors as its rows. Note that under this model, the edge-formation probabilities

are given by the off-diagonal entries Pij = x⊤
i xj of the PSD matrix P = XX⊤.

RDPGs can also incorporate random latent positions by defining a distribution

F supported on a subset X ⊂ Rd, such that x⊤y ∈ [0, 1] for all x,y ∈ X . Under

appropriate assumptions on the distribution F , it is possible to establish asymptotic

results for estimators of the latent positions; see the ASE formulation discussed

below.

Remark 2.2.1 (Identifiability of latent positions). The RDPG model is iden-

tifiable up to orthogonal transformations of X. To see this, consider an orthogonal

matrix Q ∈ O(d), and note that the matrix Y = XQ will produce the same proba-

bility matrix P, since:

YY⊤ = XQ(XQ)⊤ = XQQ⊤X = XX⊤ = P.

Example 2.2.1 (Erdös-Rényi graphs and SBMs as RDPGs). The RDPG

model is a tractable yet expressive family of random graphs that subsume Erdös-

Rényi (ER) ensembles as particular cases. Indeed, if xi =
√
p ∀ i, we obtain an ER

graph with edge probability p.

SBMs with a PSD block probability matrix B ∈ RC×C can also be naturally cast

as instances of the RDPG model. To see this, let C ∈ RN×C be the one-hot encoding

matrix of community assignments, where the i-th row of C has a 1 in position c if

node i belongs to community c, and 0 elsewhere. Note that under the SBM the edge-

formation probabilities are given by the off-diagonal entries of matrix P = CBC⊤.

Now, let d = rank(B), and consider the spectral decomposition B = UBDBU
⊤
B,

where UB ∈ RC×d and DB ∈ Rd×d. Since B is PSD, we can define the matrix

Z = UBD
1/2
B ∈ RC×d, whose rows encode the latent positions corresponding to each

community. Therefore B = ZZ⊤ and:

P = CBC⊤ = CZZ⊤C⊤ = XX⊤,

8

where we have defined the latent position matrix X := CZ ∈ RN×d. This shows

that any SBM with a PSD block matrix B can be represented as an RDPG, with

embedding dimension equal to rank(B).

If the community assignments are random–i.e., each node belongs to community

c independently with probability πc–then the RDPG distribution F can be defined

over the finite set X = {z1, . . . , zC}, where zc is the c-th row of Z, with F given by

a categorical distribution on X with probabilities π = (π1, . . . , πC).

In light of the approximation result for SBMs discussed in Section 2.1, the RDPG

possesses an expressiveness that has been a major driver behind the model’s popu-

larity. Moreover, the RDPG definition provides a natural geometric interpretation

of connectivity: angles between latent position vectors indicate affinity between ver-

tices, and their magnitudes indicate how well connected they are. For d ≤ 3, visual

inspection of the nodes’ vector representations can reveal community structure. For

higher dimensions or more complex scenarios, angle-based clustering of nodal em-

beddings can also be used (Lyzinski et al., 2017; Scheinerman & Tucker, 2010).

The associated RDPG inference problem of estimating latent positions from

graph observations enjoys strong asymptotic properties, facilitating statistical in-

ference tasks by bringing to bear tools of geometrical data analysis in latent

space (Athreya et al., 2017). Let us describe the inference method in such a setup.

Given an observed adjacency matrix A and a prescribed embedding dimension d–

typically obtained using an elbow rule on A’s eigenvalue scree plot, using e.g., (M.

Zhu & Ghodsi, 2006)–, the goal is to estimate X. If one were to seek a maximum

likelihood estimator (MLE), then under the model in (2.1) this would involve solving

the following optimization problem:

X̂MLE = argmax
X∈RN×d

∑
i<j

[
Aij log(x

⊤
i xj) + (1− Aij) log(1− x⊤

i xj)
]
.

Although the RDPG model assumes that the inner products x⊤
i xj lie in the interval

[0, 1], in practice this constraint is typically relaxed when estimating the latent

positions. This relaxation simplifies the optimization landscape and, as we will

shortly see, makes spectral methods viable. Nonetheless, the MLE objective remains

non-convex and computationally intensive, requiring a sum over all
(
N
2

)
node pairs

and involving a non-linear, non-concave likelihood function. Solving this directly has

computational complexity on the order of N2, which is prohibitive for large-scale

graphs.

Furthermore, as pointed out by Xie and Xu (2023), the model (2.1) belongs to

the curved exponential family, rather than to the more tractable canonical expo-

nential family. As a consequence, standard results guaranteeing the existence and

9

uniqueness of the MLE do not readily apply. This distinction is significant, since,

as highlighted by Bickel and Doksum (2015), the theoretical analysis of MLEs in

curved exponential families presents greater challenges compared to their canonical

counterparts.

In contrast, the Adjacency Spectral Embedding (ASE) estimator provides a scal-

able and effective alternative based on the spectral decomposition of the adjacency

matrix. This estimator solves the following least-squares approximation (Scheiner-

man & Tucker, 2010) to obtain

X̂ ∈ argmin
X∈RN×d

∥∥A−XX⊤∥∥2
F
. (2.2)

In other words, P̂ = X̂X̂⊤ is the best rank-d PSD approximation to the adjacency

matrix A, in the Frobenius-norm sense. The rationale behind the estimator (2.2) is

that, since E (A) = P = XX⊤, the approximation P̂ should be close to P, provided

that one can control the deviations of A from its mean under the RDPG model.

This is the standard pathway used in the literature to establish statistical guarantees

for the ASE estimator, as in (Athreya et al., 2016; Lyzinski et al., 2017; Sussman

et al., 2014).

Note that, due to a classic result by Eckart and Young (1936), a solution to (2.2)

is readily given by X̂ = ÛD̂1/2, where A = UADAU
⊤
A is the eigendecomposition

of A, D̂ ∈ Rd×d is a diagonal matrix with the d largest-magnitude eigenvalues of

A, and Û ∈ RN×d are the associated eigenvectors from UA.
1 Also note that, due

to the orthogonal ambiguity discussed in Remark 2.2.1, Ŷ := X̂Q is also a solution

to (2.2) for any Q ∈ O(d).

Asymptotic (N → ∞) consistency and normality results for ASE are available;

see e.g., (Athreya et al., 2017). These results formalize the intuition that, under the

RDPG model, the adjacency spectral embedding X̂ approximates the true latent

positions X increasingly well as the number of nodes grows. In particular, the con-

sistency result provides uniform consistency of the adjacency spectral embedding in

the maximum row-wise Euclidean norm. It implies that every estimated latent posi-

tion converges almost surely to the corresponding true position (up to an orthogonal

transformation), as the number of nodes grows.

Theorem (Athreya et al. (2017), Theorem 26). Let X̂ be the ASE of A, and

let X ∈ RN×d be the matrix of true latent positions in an RDPG. Provided d is

1Under mild assumptions on the latent positions distribution F it is possible to show that the
top d eigenvalues of A are nonnegative with probability tending to 1 as N → ∞, so X̂ is well
defined, see (Athreya et al., 2017) for details.

10

known, there exists a sequence of orthogonal matrices {QN}N∈N such that:

max
1≤i≤N

∥∥∥QNX̂i −Xi

∥∥∥
2
−→
N

0 almost surely,

where Xi and X̂i are the ith rows of X and X̂, respectively.

The asymptotic normality result further refines this by showing that, after suit-

able alignment and rescaling, the rows of X̂ are approximately multivariate normal

centered at the true latent positions.

Theorem (Athreya et al. (2017), Theorem 27). Let x1, . . . ,xN be i.i.d. sam-

ples from a distribution F on X ⊂ Rd, and let X̂ be the ASE of the corresponding

RDPG. Fix a vertex i and assume the second moment matrix for F has full rank.

Then there exists a sequence of orthogonal matrices {QN}N∈N such that for each

fixed i, √
N
(
QNX̂i − xi

)
L−→ N (0,Σ(xi)),

where Σ(xi) is an explicit covariance matrix depending on the latent position xi and

the distribution F .

These results rely on a combination of tools from matrix perturbation theory

(notably the Davis–Kahan sinΘ theorem), concentration inequalities for random

graphs (e.g., matrix Bernstein inequalities), and probabilistic limit theorems. As

pointed before, the key insight is that the adjacency matrix A concentrates around

its expectation P = XX⊤, and so its leading eigenvectors and eigenvalues also con-

centrate, which allows for control over the quality of the low-rank approximation

produced by the spectral decomposition. We will follow the same rationale in Chap-

ter 4, where we prove analogous results for an extension of the RDPG model that

accommodates weighted graphs.

Example 2.2.2 (RDPG inference on the karate club network). As a way to

illustrate the inference procedure on a real graph, consider the well-known karate

club network, also known as Zachary’s karate club. In (Zachary, 1977), Wayne

W. Zachary introduced a social network representing the interpersonal relationships

among 34 members of a university karate club. The data was collected over a

two-year period through direct observation and questionnaires, and the network is

represented as an undirected graph where each node corresponds to a club member,

and an edge indicates if the connected members have a reported social interaction

outside the club.

During the observation period, a dispute between the club’s administrator and its

instructor escalated to the point of splitting the club into two factions. This division

provides a natural ground truth for evaluating community detection algorithms. In

11

0 10 20 30
Eigenvalue index

0

1

2

3

4

5

6

7

E
ig

en
va

lu
e

m
ag

ni
tu

de

0°

45°

90°

135°

180°

225°

270°

315°

Figure 2.1: Scree plot for the adjacency matrix of Zachary’s karate club graph (left) and
polar plot of first two dimensions of nodes’ embeddings obtained via ASE (right).

the context of the RDPG model, one can apply the ASE to the network’s adjacency

matrix to estimate latent positions for each node. In Figure 2.1, we display the

scree plot of the adjacency matrix. Note the sharp elbow observed after the third

eigenvalue, which motivates the choice of embedding dimension d = 3. This choice

is consistent with the dimension selected using the elbow method proposed by M.

Zhu and Ghodsi (2006), as implemented in Python’s Graspologic library (Chung

et al., 2019).

Figure 2.1 also shows the result of applying ASE, where we plot the first two

dimensions of the embedding. We present the embeddings in polar coordinates, as

angular alignment under the RDPG model is likely to reflect an underlying com-

munity structure. Notably, when projected onto two dimensions, the scatter plot

reveals a clear separation between two groups, allowing for a visual identification of

the emergent communities.

2.2.1 The RDPG model for directed graphs

As previously introduced, the RDPG model is only suitable for undirected graphs.

Indeed, XX⊤ = P is always symmetric. For directed graphs (digraphs), edges are

defined as ordered pairs (i, j), with i, j ∈ V . Since edges (i, j) and (j, i) are different

objects, so could be the probabilities Pij and Pji. By convention, we say (i, j) starts

from i and points to j.

Digraphs then require an adaptation to the RDPG model, where each node

i ∈ V has an associated column vector xi–now in R2d (Priebe et al., 2017). Let

us denote by xl
i and xr

i the first and last d entries of xi, respectively. Likewise, let

12

Xl,Xr ∈ RN×d be the matrices stacking the transposed nodal vectors as their rows.

In direct analogy to the undirected case, we define the directed RDPG (DRDPG)

model as

P
(
A
∣∣X) =∏

i ̸=j

[(xl
i)
⊤xr

j]
Aij [1− (xl

i)
⊤xr

j]
1−Aij

[cf. the product over all i ̸= j here versus i < j in (2.1)], and the asymmetric matrix

of connection probabilities now becomes

P = Xl(Xr)⊤.

Intuitively, we say xl
i models node i’s outgoing connectivity and xr

i its incoming one.

The probability of existence of the edge (i, j) is given by (xl
i)
⊤xr

j .

Let us now discuss how to estimate the matrices Xl and Xr from a graph ob-

servation. Since P = E [A] still holds, we seek a pair {X̂l, X̂r} such that X̂l(X̂r)⊤

is the best rank-d approximant of A. Letting A = UADAV
⊤
A be the singular-value

decomposition (SVD) of A, we set

X̂l = ÛD̂1/2 and X̂r = V̂D̂1/2, (2.3)

where, as before, D̂ ∈ Rd×d is a diagonal matrix with the d largest singular values

of Â in its diagonal, and Û, V̂ ∈ RN×d are the matrices with the corresponding left

and right singular vectors as columns, respectively. This procedure is also known as

ASE.

While this extension of the model has been known for over a decade, to the

best of our knowledge, the only available asymptotic result concerns the consistency

of the ASE, as established in the work of Sussman et al. (2012). Although we do

not explore this direction further in the present work, it is worth noting that a full

characterization of the asymptotic distribution of the ASE in the directed setting

remains an open problem in the field.

2.2.2 The Generalized RDPG model

While the RDPG model has proven useful for analyzing network data with latent

geometric structure, its formulation inherently restricts the edge probability matrix

to be PSD. This restriction limits the class of networks the model can represent–

most notably, those exhibiting homophily, also known as assortative mixing in the

social network literature. As described by Newman (2018), homophily refers to

the tendency of vertices to form edges preferentially with others that are similar in

some way–an idea often summarized by the adage “birds of a feather flock together”.

For example, in a social network of high school students, one often observes that

13

friendships form more frequently between students in the same grade level, club, or

extracurricular group, illustrating a homophilic pattern.

In contrast, heterophily (or disassortative mixing) refers to the tendency of nodes

to connect with others who are dissimilar–a pattern observed in, for example, bi-

partite networks like customer-product or author-paper graphs. Since the RDPG

model cannot produce non-PSD edge probability matrices, it fails to capture such

heterophilic structure.

To understand why the RDPG model inherently captures homophilic behavior,

remember that under this model the probability of an edge between nodes i and j

is given by the inner product x⊤
i xj between latent positions. This implies that high

connection probabilities arise when xi and xj are close–that is, when the latent vec-

tors are similar. Thus, nodes that are “similar” in the latent space (i.e., have nearby

or aligned latent vectors) are more likely to be connected. This alignment captures

the essence of homophily: the more alike two nodes are, the higher the chance they

are linked. Since the model does not permit negative entries in P, it cannot naturally

express cases where dissimilarity increases the likelihood of connection–a hallmark

of heterophily.

To overcome this limitation, Rubin-Delanchy et al. (2022) introduced the Gen-

eralized RDPG (GRDPG) model. This extension retains the idea of associating

each node with a latent vector, but generalizes the dot product by introducing an

indefinite inner product. In the GRDPG, the probability of an edge between nodes

i and j is given by

P (Aij = 1) = x⊤
i Ip,qxj,

where xi,xj ∈ Rd, and Ip,q is a signature matrix of size d× d that defines the inner

product. This matrix is diagonal, with the first p diagonal entries equal to +1 and

the remaining q entries equal to −1, so that d = p+q. This construction enables the

GRDPG to model both assortative and disassortative connectivity patterns within

the same framework.

The dimension d, as well as the values of p and q, can be estimated directly from

data. A common approach is similar to the one used in the standard RDPG setting–

that is, the elbow method proposed by M. Zhu and Ghodsi (2006). This method

identifies the embedding dimension d by locating a sharp change (or “elbow”) in the

scree plot of the adjacency matrix’s eigenvalues. Once d is determined, the number

of positive and negative eigenvalues among the largest d is used to estimate p and

q, respectively. This provides a practical, data-driven way to specify the signature

matrix used in the GRDPG model.

Inference under the GRDPG model requires a slight modification of the ASE

14

of the observed adjacency matrix A. As before, let Û ∈ RN×d and D̂ ∈ RN×d

denote the eigenvectors and eigenvalues associated with the d largest (in magnitude)

eigenvalues of A. The estimated latent positions are given by X̂ = Û|D̂|1/2, where
the square root is applied elementwise to the absolute values of the eigenvalues. This

embedding is well-defined even when some of the top d eigenvalues are negative,

as is the case in the GRDPG. Under the standard RDPG model (and suitable

assumptions on the distribution F of latent positions), these leading eigenvalues are

all positive with high probability, so the ASE simplifies to the usual form ÛD̂1/2.

The modification in the GRDPG setup allows the ASE to accommodate indefinite

structure.

Example 2.2.3 (Back to the karate club). Revisiting the karate club network,

recall that the scree plot in Figure 2.1 suggested an embedding dimension of d = 3.

However, inspection of the top three eigenvalues in magnitude reveals that the third

is negative. Following the discussion above, we therefore set p = 2 and q = 1,

yielding a signature matrix Ip,q with diagonal entries (1, 1,−1)⊤. This implies that,

when visualizing the embeddings, the third coordinate must be “reversed”, i.e., its

sign flipped when plotting. Figure 2.2 presents the resulting pairwise scatter plots of

the embeddings, accounting for this reversal. As observed, even accounting for this

reversal in the third dimension yields little improvement, with the second dimension

remaining the most informative for distinguishing the two communities. The node

colors in the figure correspond to the true communities provided with the dataset,

not the outcome of any community detection procedure applied to the embeddings.

One notable drawback of the GRDPG model is that the identifiability of the

latent positions is weaker than in the RDPG case. While latent positions in an

RDPG are identifiable up to an orthogonal transformation (which preserves Eu-

clidean distances), the GRDPG admits indefinite orthogonal transformations, which

may distort pairwise distances. As a result, geometric relationships–such as close-

ness between nodes in the latent space–may not be preserved, complicating tasks

like clustering or visualization that rely on distance-based structure.

Nonetheless, the GRDPG model retains favorable asymptotic properties similar

to those of the RDPG. In (Rubin-Delanchy et al., 2022) a central limit theorem for

the ASE under the GRDPG model is established. Specifically, they show that if

A ∼ GRDPG(F), where F is a distribution over Rd such that x⊤Ip,qy ∈ [0, 1] for

all x,y in its support, then the ASE X̂ satisfies a pointwise asymptotic normality

result. That is, for each fixed node i, the embedding x̂i converges in distribution

to a mixture of Gaussians centered around the true latent position, up to an indef-

inite orthogonal transformation. This result provides theoretical support for using

15

D
im

en
si

on
1

D
im

en
si

on
2

Dimension 1

D
im

en
si

on
3

Dimension 2 Dimension 3

Type

Community 1

Community 2

Figure 2.2: Pairwise scatter plots of the top-d = 3 generalized RDPG embeddings of the
karate club network, with the third coordinate sign-reversed to account for the (p, q) =
(2, 1) signature. Node colors indicate the true communities from the original dataset. The
second dimension remains the most informative for separating the two communities.

spectral methods in inference tasks, such as clustering or classification, even in the

presence of heterophilic or mixed network structures.

By allowing for indefinite inner products, the GRDPG expands the scope of

latent position models and enables spectral embedding methods to accommodate

a wider variety of network topologies, including those with disassortative or mixed

connectivity structures.

While in this thesis we restrict our attention to the standard RDPG model,

it is possible to extend many of the results presented here to the broader context

of the GRDPG model. In particular, the analysis of spectral embedding meth-

ods, consistency results, and inference procedures can be adapted to accommodate

the indefinite inner product structure that defines the GRDPG. This typically in-

volves modifying the theoretical analysis to account for the geometry induced by

the signature matrix, and carefully handling the model’s invariance under indefinite

orthogonal transformations.

16

Chapter 3

Algorithmic advances for the

inference problem in RDPGs

3.1 Challenges facing the ASE

Although the ASE is widely adopted and its statistical properties are well docu-

mented, it does present drawbacks which we seek to overcome.

Large data. The first challenge pertains to scalability. Computing the spectrum

of a large adjacency matrix A, even only the d dominant components, is compu-

tationally intensive and constitutes a bottleneck of state-of-the-art ASE implemen-

tations (Chung et al., 2019), especially when multiple graphs are to be embedded.

Recent work explicitly comments on the difficulty of scaling spectral-based inference

of RDPGs to large graph settings (Gallagher et al., 2021).

Missing data. A second drawback of ASE is its inability to properly account

for missing data, meaning unobserved entries in A. On a related note, the ASE

neglects the all-zeros diagonal in the adjacency matrix. These limitations were

recognized more than a decade ago by Scheinerman and Tucker (2010), yet to the

best of our knowledge they have not been satisfactorily addressed in the RDPG

literature. Indeed, repeated ASE computation to iteratively impute the unknown

entries of A using the inner-product of the embeddings estimated in the previous

step lacks convergence guarantees, and multiplies the ASE complexity by the number

of iterations (Scheinerman & Tucker, 2010).

Streaming data. A third scenario that ASE cannot address satisfactorily arises

with streaming data from a dynamic network; i.e., when we observe a sequence

of graphs over time and would like to track the evolution of the corresponding

embeddings, ideally without having to store past observations. Network dynamics

may include changes in the edges between a fixed set of nodes (e.g., monitoring a

wireless network), the addition of new information (e.g., a user that ranks an item

17

in a recommender system), or the deletion/addition of nodes (e.g., a new user in a

social network). Especially for large graphs, re-computing the ASE from scratch each

time step is computationally demanding. Given the rotational ambiguity inherent to

RDPGs, independently obtaining the ASE after each modification to the graph will

likely result in misaligned embeddings that can hinder the assessment of changes.

3.2 Contributions and chapter outline

We seek to address these limitations by (i) re-considering the underlying optimiza-

tion problem of which ASE is a solution (Section 3.3); and (ii) developing iterative

embedding algorithms for the refined formulations (Sections 3.4 and 3.5).

Unlike the traditional ASE approach, which relies on spectral decomposition of

A, we adopt a modern perspective inspired by recent advances in low-rank matrix

factorization and propose solving the non-convex embedding problem directly via

gradient descent (GD) (Luo & Garcia Trillos, 2022; Z. Zhu et al., 2021). Rather

than treating the optimization landscape as an obstacle, we contribute a novel and

tailored landscape analysis of the embedding objective, detailed in Section 3.4.2.

This result is, to our knowledge, new in the context of the RDPG model. It rigor-

ously establishes that the masked objective admits a benign optimization landscape

when viewed through the natural quotient Riemannian geometry induced by the

problem’s orthogonal invariance. While this does not in itself constitute a full proof

of global convergence of GD, it provides the key geometric guarantees that underlie

such results and marks the first step toward global convergence guarantees in this

setting.

Explicitly solving the optimization problem enables more precise and flexible

graph representation learning (GRL); for instance, unobserved edges can be eas-

ily handled through the inclusion of a mask matrix. The iterative nature of GD

also permits warm restarts for newly added or previously seen nodes, allowing for

consistent embeddings of multiple–possibly streaming–graphs, with alignment be-

tween successive embeddings emerging naturally. Finally, by discarding the diagonal

residuals of A, we obtain improved nodal representations and exploit the resulting

structure in Section 3.4.4 to derive efficient block-coordinate descent (BCD) updates

tailored to the undirected RDPG setting.

Applying GD to embed digraph nodes requires special care. As we argue in Sec-

tion 3.5.1, inherent ambiguities in the directed RDPG model extend beyond a global

rotation, and they may compromise representation quality and the interpretability

benefits discussed earlier. We show that an effective way of retaining these desir-

able features is to impose orthogonality constraints on the matrix factors in the

decomposition of A–a novel GRL formulation for digraphs. This constraint in turn

18

defines a smooth manifold, over which we optimize using a custom-made feasible

method. We stress this is not the well-known Stiefel manifold, where matrices are

constrained to be orthonormal (and not just orthogonal as here1). This is no minor

point. Algorithm construction thus requires careful definition of the tangent space,

the Riemannian gradient and the retraction (Absil et al., 2009; Boumal, 2023), all of

which we derive in Section 3.5.2. Comprehensive synthetic and real-world (wireless

network and United Nations voting) data experiments in Section 3.6 demonstrate

the interpretability, robustness, and versatility of the novel GRL framework. In the

interest of reproducible research, the code and datasets used to generate all figures

in this chapter is publicly available at https://github.com/marfiori/efficient-ASE.

All in all, relative to prior art our RDPG embedding framework offers a better

representation at a competitive computational cost, and it is applicable to more

general settings. This chapter is based on joint work previously published in (Fiori

et al., 2023).

3.3 Problem statement and related work

Recalling the definition of the RDPG model, the edge-wise formation probabilities

are the entries Pij = x⊤
i xj of the rank-d, PSD matrix P = XX⊤. Since we do

not allow for self-loops, the diagonal entries in the adjacency matrix A should be

zero. Therefore, under the RDPG model have E
[
A
∣∣X] = M ◦ P, where ◦ is the

entry-wise or Hadamard product and M = 1N1
⊤
N − IN is a mask matrix with ones

everywhere except in the diagonal, where it is zero. Revisiting and adapting the

legacy ASE, we propose to estimate the latent positions matrix by solving

X̂ ∈ argmin
X∈RN×d

∥∥M ◦ (A−XX⊤)
∥∥2
F
. (3.1)

Note that entry-wise multiplication with M = 1N1
⊤
N − IN effectively discards the

residuals corresponding to the diagonal entries of A.

It is typical in the literature to ignore the mask M, and even to impute non-zero

values to the diagonal ofA (Athreya et al., 2017; Marchette et al., 2011; Scheinerman

& Tucker, 2010). This has the advantage of yielding a closed-form solution for X̂

–that is, the ASE. However, the formulation in (3.1) is the correct one under the

RDPG model, although it does not admit a closed-form solution. We therefore

develop efficient gradient-based iterative solvers for the embedding problem (3.1),

which will also allow us to overcome the scalability limitations of the ASE outlined

1We will henceforth use the term orthonormal matrix to refer to any matrix T ∈ Rn×m such
that T⊤T = Im (i.e., the columns of T are orthonormal vectors). The term orthogonal matrix will
be reserved for those matrices whose columns are mutually orthogonal, but not necessarily of unit
norm.

19

https://github.com/marfiori/efficient-ASE

in Section 3.1.

Incorporating the binary mask M has another advantage: if suitably redefined,

it can be used for other purposes, such as modeling unknown edges when data are

missing. For instance, in a recommender system we typically have the rating of each

user over a limited number of items. This (dis)information can be captured in (3.1)

by zeroing out the entries of M corresponding to the unknown edges.

Beyond scalability, the flexibility of our algorithmic framework and the ability

to encode missing or uncertain connections via the mask M also offers a natural

pathway to facilitate embedding graph sequences. In the applications we study in

Section 3.6, such dynamic network data may be only partially observed, may be

acquired in a streaming fashion, and can exhibit variation in both the number of

nodes and edges over time.

Remark 3.3.1 (Recovering ASE). If the maskM is ignored (which is standard in

the literature), then a solution to (3.1) is given by the standard ASE from Section 2.2.

3.3.1 Related work

The low-rank matrix factorization problem (3.1) has a long history, with applications

to recommender systems–where the objective is to complete a matrix of user-item

ratings which is assumed to have low rank (Koren et al., 2009)–; or, in sensor local-

ization from pairwise distances–the so-called Euclidean distance matrix (Dokmanic

et al., 2015)–, just to name a couple of examples. Solution methods typically rely

on spectral decomposition of the full data matrix (as in ASE), or by considering

a convex relaxation via nuclear-norm minimization (Davenport & Romberg, 2016).

The latter is not best suited for our problem, where we are interested in the actual

factors (not in P), and their dimensionality could change with time due to e.g., node

additions. Alternatively, over the last few years we have witnessed increased interest

in non-convex optimization approaches for matrix factorization problems (Chi et al.,

2019). Our work may be seen as an effort in this direction. In particular, we bring

to bear recent advances in first-order methods for matrix factorization problems and

demonstrate impact to GRL (specifically, RDPG inference). The formulation (3.17),

introduced later to embed directed graphs, is novel to the best of our knowledge.

To solve it we derive GD iterations over the manifold of orthogonal matrices, which

is different from the Stiefel manifold and thus requires careful treatment given the

unique geometric properties of our problem.

The scalability of ASE, or any other spectral embedding method for that mat-

ter, has long been considered an issue (Brand, 2006). This challenge is compounded

20

when multiple graphs are to be embedded, especially in batch settings where all

graphs in the sequence are stored in memory (Gallagher et al., 2021). Existing

approaches seeking aligned embeddings rely on the spectral decomposition of some

matrix whose dimension(s) grow linearly with the number of graphs (Gallagher et

al., 2021; Jones & Rubin-Delanchy, 2020; Levin et al., 2017). In addition to increas-

ing the computation cost of ASE, these methods are not applicable in streaming

scenarios, where a possibly infinite sequence of graphs {At} is observed and we

want to recursively update the embeddings ‘on-the-fly’ as new graphs are acquired.

There is an extensive collection of numerical linear algebra approaches to re-

cursively update an eigendecomposition or SVD when the (adjacency) matrix is

perturbed; e.g., (Brand, 2006). However, these do not offer major computational

savings except for specific types of changes (e.g., rank-1 updates), and they may

be prone to error accumulation as t increases (Z. Zhang et al., 2018). Moreover,

they can yield misaligned embeddings due to the rotational ambiguity of RDPGs.

The sketching literature offers highly-scalable randomized algorithms (Halko et al.,

2011). Other than to initialize our iterative methods we do not consider those here,

because we are interested in exact solutions to (3.1).

In dynamic environments, not only does At change over time, but new nodes

may be added to the graph and current ones removed. Embedding previously unseen

nodes corresponds to an inductive learning setting, generally regarded as beyond

the capabilities of shallow embeddings as the one we are discussing here (Hamilton

(2020, Ch. 3.4), Chami et al. (2022)). Previous efforts in this direction (that avoid

re-computing eigendecompositions from scratch) either assume that the connections

between the existing nodes, or, their current embeddings, do not change (Kalantzis

& Traganitis, 2023; Levin et al., 2018). In the latter case, a projection scheme onto

the space of current embeddings produces an asymptotically (N → ∞) consistent

ASE for the new node (Levin et al., 2018). However, even if latent positions were

time invariant, the estimation error of current nodes’ embeddings propagates to the

new estimates. We will use the projection-based estimate from Levin et al. (2018)

as initialization for new nodes in our GD algorithms, demonstrating benefits in

accuracy and stability especially as several nodes are added, while at the same time

refining previous nodes’ embeddings.

3.4 Embedding algorithms for undirected graphs

We start with the embedding problem for undirected graphs. Recognizing limita-

tions of state-of-the-art ASE implementations, here we first review a GD algorithm

with well-documented merits for symmetric matrix completion, yet so far unexplored

in RDPG inference. GD offers flexible computation of embeddings and a pathway

21

Algorithm 1 Gradient Descent (GD)

Require: Initial estimate X← X0, tolerance ε > 0
1: repeat
2: Compute gradient: ∇f(X) = 4[M ◦ (XX⊤ −A)]X
3: Choose step size α (e.g., via Armijo rule)
4: Update: X← X− α∇f(X)
5: until stopping criterion satisfied (e.g., ∥∇f(X)∥F ≤ ε)
6: return X

towards tracking nodal representations in a streaming graph setting. We then show

that the particular structure of the problem lends itself naturally to more efficient

BCD iterations, and discuss the relative merits of the different approaches in terms

of convergence properties, complexity, and empirical execution time.

3.4.1 Back to basics: Estimation via gradient descent

Recall the embedding problem for undirected graphs in (3.1), and denote by f :

RN×d → R its smooth objective function f(X) = ∥M ◦ (A − XX⊤)∥2F . Although

the problem is not convex with respect to X, it is convex with respect to P = XX⊤.

In the broad context of matrix factorization problems where the objective function

depends on the product XX⊤, the GD approach is often referred to as factored

GD (Bhojanapalli et al., 2016).

The workhorse GD algorithm generates embedding updates via

Xk+1 = Xk − αk∇f(Xk), k = 0, 1, 2, . . . (3.2)

where αk > 0 is the step size, which may be fixed or selected adaptively–for instance,

using the Armijo backtracking rule. The gradient of the objective is given by

∇f(X) = 4
[
M ◦ (XX⊤ −A)

]
X,

where A and M are known symmetric matrices that specify the problem instance.

A summary of the GD procedure is given in Algorithm 1.

There have been several noteworthy advances in the study of GD’s convergence

(including rates) for this non-convex setting, as well as accelerated variants (Chi

et al., 2019; Luo & Garcia Trillos, 2022; Vu & Raich, 2021; L. Wang et al., 2017;

Zhou et al., 2020; Z. Zhu et al., 2021). Building on that literature, we analyze

the optimization landscape of our RDPG embedding, first by analyzing it for the

unmasked problem (2.2), and then extending that analysis to the more general

masked setting (3.1).

22

3.4.2 Landscape analysis of the embedding problem

In this section, we discuss the landscape of the optimization problem under con-

sideration. We begin by analyzing the ASE optimization problem (2.2)–that is,

problem (3.1) without the mask M–and then consider efforts to generalize the re-

sults to the masked problem (3.1).

3.4.2.1 Unmasked objective

For now we consider the unmasked the objective

f(X) =
1

4

∥∥A−XX⊤∥∥2
F
, (3.3)

where the factor 1
4
is included so that the gradient of f is simply (XX⊤ − A)X.

We will assume A is a PSD matrix, a requirement fullfilled under the RDPG model

with high probability (Sussman et al., 2014). The goal is to minimize f(X) over all

matrices X ∈ RN×d with rank d.

Understanding the stationary points of this function helps characterize the op-

timization landscape–particularly whether spurious local minima or saddle points

exist. In that sense, in Appendix 3.A we prove that any critical point of the objec-

tive (3.3) is of the form:

X̃ = ŨD̃1/2Q,

where Ũ contains any d orthonormal eigenvectors of A as columns, D̃ holds the

corresponding eigenvalues in its diagonal, and Q ∈ O(d).

Since we have identified all critical points, we next show that the objective (3.3)

has no spurious local minima. That is, the only global minimizers are those corre-

sponding to the ASE, up to an orthogonal transformation, and all other stationary

points are strict saddle points. This result underscores the effectiveness of GD algo-

rithms for solving the RDPG embedding problem–at least in the unmasked setting.

Proposition 3.4.1. The global minimizers of the objective (3.3) are precisely the

matrices of the form

X =
d∑

i=1

√
λiuiv

⊤
i = ÛD̂1/2Q,

where λ1 ≥ λ2 ≥ · · · ≥ λd are the top d eigenvalues of A, Û contains the corre-

sponding eigenvectors as columns, D̂ = diag(λ1, . . . , λd), and Q ∈ O(d).

Furthermore, any other stationary point of f that is not of the form above is a

strict saddle point; that is, the Hessian of f at those points has at least one negative

eigenvalue and therefore there exists an escaping direction.

Proof. That X̂ := ÛD̂1/2, is the best rank-d approximation to A in Frobenius norm

23

is a consequence of the Eckart-Young theorem (Eckart & Young, 1936). Since for

any matrix of the form Ŷ := X̂Q, Q ∈ O(d), it holds ŶŶ⊤ = X̂X̂⊤, it follows that

Ŷ also minimizes f , which proves the first part of the proposition.

Let X̃ be a stationary point of f that is not a global minimizer. So

X̃ =
∑
j∈J

√
λjujv

⊤
j ,

for some index set J ̸= {1, . . . , d} with |J | = d; that is, X̃ does not use the top d

eigenvectors of A. Therefore, we can choose k ∈ {1, . . . , d} \ J , corresponding to

one of the top d eigenvalues that is not represented in X̃. Since |J | = d, there must

exist some i ∈ J such that λi < λk; in other words, we pick k to be the index of an

unused top eigenvalue and i to be any index currently used by X̃ whose eigenvalue

is smaller than λk. Now, define

Z :=
√
λkukv

⊤
i .

We will compute the second-order directional derivative of f at X̃ in the direction

Z. To that end, define the quadratic form

∇2f(X̃)[Z,Z] =
〈
∇2f(X̃)Z,Z

〉
, (3.4)

where ∇2f(X̃) denotes the Euclidean Hessian of f at X̃, and ⟨B,C⟩ = Tr(B⊤C) is

the Frobenius inner product.

To compute the Euclidean Hessian, observe that

∇2f(X̃)[Z] =
d

dt

(
∇f(X̃+ tZ)

) ∣∣∣
t=0

.

Using the expression ∇f(X̃) = (X̃X̃⊤ −A)X̃, we differentiate to obtain

∇2f(X̃)[Z] = (X̃X̃⊤ −A)Z+ (X̃Z⊤ + ZX̃⊤)X̃.

Substituting this into (3.4), we obtain

∇2f(X̃)[Z,Z] =
〈
X̃X̃⊤ −A,ZZ⊤

〉
+
〈
X̃Z⊤ + ZX̃⊤,ZX̃⊤

〉
,

due to the cyclic property of the trace.

For the first term, we have

〈
X̃X̃⊤ −A,ZZ⊤

〉
=

〈∑
j∈J

λjuju
⊤
j −

N∑
j=1

λjuju
⊤
j , λkuku

⊤
k

〉

24

= −
〈∑

j /∈J

λjuju
⊤
j , λkuku

⊤
k

〉
= −λ2

k.

As for the second term, note that:

X̃Z⊤ =
∑
j∈J

√
λjujv

⊤
j

(√
λkviu

⊤
k

)
=
√

λiλkuiu
⊤
k ,

since v⊤
j vi = δij. Similarly,

ZX̃⊤ =
√
λiλkuku

⊤
i ,

and hence 〈
X̃Z⊤ + ZX̃⊤,ZX̃⊤

〉
= λiλk

〈
uiu

⊤
k + uku

⊤
i ,uku

⊤
i

〉
.

Using the definition of the Frobenius inner product:

〈
uiu

⊤
k ,uku

⊤
i

〉
= Tr

(
uiu

⊤
k uiu

⊤
k

)
= Tr

(
u⊤
k uiu

⊤
k ui

)
= (u⊤

k ui)
2 = 0,

because ui and uk are orthogonal. Similarly,

〈
uku

⊤
i ,uku

⊤
i

〉
= Tr(uiu

⊤
k uku

⊤
i) = Tr(u⊤

k uku
⊤
i ui) = ∥ui∥22∥uk∥22 = 1.

Thus, 〈
X̃Z⊤ + ZX̃⊤,ZX̃⊤

〉
= λiλk.

Combining both terms, we have

∇2f(X̃)[Z,Z] = −λ2
k + λiλk = −λk(λk − λi) < 0,

which shows that X̃ is a strict saddle.

3.4.2.2 Masked objective

We now turn to the problem (3.1), and define the masked objective as

fM(X) =
1

4

∥∥M ◦ (A−XX⊤)∥∥2
F
, (3.5)

where M = 1N1
⊤
N − IN masks out the diagonal. To analyze the optimization land-

scape of this formulation, we build on the work of Luo and Garcia Trillos (2022) and

Z. Zhu et al. (2021), who study a broad class of optimization problems expressible

via the Burer–Monteiro factorization (Burer & Monteiro, 2005). These are problems

involving PSD matrix variables P with rank constraints, which are reparameterized

25

as factorizations of the form P = XX⊤. Notably, our problem (3.1) is already

naturally expressed in this factored form.

In particular, Luo and Garcia Trillos (2022), building upon the machinery devel-

oped by Z. Zhu et al. (2021), analyze the global landscape of optimization problems

of the form:

min
P∈RN×N

g(P) s. to rank(P) = d ≤ N and P is symmetric and PSD. (3.6)

Since P is symmetric and PSD, it admits a factorization of the form P = XX⊤–

this is the so-called Burer–Monteiro factorization. Therefore, problem (3.6) can be

expressed as the factored problem:

min
X∈RN×d

∗

h̄(X) (3.7)

where h̄(X) := h(XX⊤) and RN×d
∗ denotes the space of N×d matrices with full col-

umn rank. The choice of notation in terms of P and X here is intentional: our prob-

lem (3.1) can be cast within this framework, but in the reverse direction: whereas

Burer-Monteiro methods typically begin with a problem formulated in terms of P

and factor it into X, we start with an objective in X and consider its interpretation

in terms of P = XX⊤.

What is particularly interesting about the work of Luo and Garcia Trillos (2022)

is that they analyze the landscape of such problems using the Riemannian quotient

geometry that arises from the inherent orthogonal ambiguity in the factorization.

As in the case of inference under the RDPG model, if X is a solution to the factored

problem (3.7), then so is XQ for any orthogonal matrix Q ∈ O(d). This symmetry

implies that the problem (3.7) is inherently nonconvex in the neighborhood of any

stationary point. To overcome this issue, Luo and Garcia Trillos (2022) analyze the

landscape of the problem

min
[X]∈MN

d+

h([X]) (3.8)

where [X] := {XQ : Q ∈ O(d)} is the equivalence class of X modulo orthogonal

transformations,MN
d+ is the quotient manifoldMN

d+ := RN×d
∗ /O(d), and h([X]) :=

h̄(X). Under certain regularity conditions on the unfactored objective g (made

explicit below), they show that the landscape of (3.8) is benign–meaning that, for

any X ∈ RN×d
∗ , at least one of the following properties hold [see (Luo & Garcia

Trillos, 2022, Theorem 1)]:

(a) the Riemannian gradient of h([X]) has large magnitude;

(b) the Riemannian Hessian of h([X]) has a large negative eigenvalue, and there

exists an explicit direction of negative curvature;

26

(c) if XX⊤ is sufficiently close to the target matrix P∗, then h([X]) is smooth and

geodesically convex.

This has strong implications for the convergence of the GD algorithm when ap-

plied to the factored problem (3.7), because the horizontal lift of the Riemannian

gradient of h([X]) coincides with the Euclidean gradient of h̄(X) (Luo & Garcia Tril-

los, 2022, Lemma 3).1 As a result, performing GD under the Riemannian quotient

geometry is computationally equivalent to applying standard GD to the factored

objective. This equivalence provides a foundational guarantee that our GD-based

approach yields good estimates when solving the ASE problem (3.1).

In order to use Theorem 1 from Luo and Garcia Trillos (2022) we first define the

unfactored function associated with our masked objective fM as:

gM(P) :=
1

4
∥M ◦ (A−P)∥2F. (3.9)

For that theorem to hold we require that gM is twice continuously differentiable in

the usual sense (which it is), and that it satisfies the restricted strong convexity and

smoothness properties defined below.

Definition 3.4.1. A function g : RN×N → R is said to satisfy the (2r, 4r)-restricted

strong convexity and smoothness properties if there exist a δ ∈ [0, 1) such that for

all P,G ∈ RN×N with rank(P) ≤ 2r and rank(G) ≤ 4r the following holds:

(1− δ)∥G∥2F ≤ ∇2g(P)[G,G] ≤ (1 + δ)∥G∥2F, (3.10)

where ∇2g(P)[G,G] := ⟨∇2g(P)G,G⟩, ∇2g(P) is the Euclidean Hessian of g, and

⟨·, ·⟩ is the Frobenius inner product.

To show that gM satisfies these properties, note that, by standard computations–

similar to those carried out in the proof of Proposition 3.4.1–we have:

∇2gM(P)G = M ◦G⇒ ∇2gM(P)[G,G] = ∥M ◦G∥2F.

Using the definition of our mask M yields

∥M ◦G∥2F =
∑
i ̸=j

G2
ij = ∥G∥2F −

N∑
i=1

G2
ii ≤ ∥G∥2F,

1Under the Riemannian quotient geometry, the tangent space at any point [X] can be decom-
posed as the direct sum of two spaces: a vertical space–which leaves the equivalence class of X
unchanged–and a horizontal one. Any vector in the tangent space of [X] can be uniquely identified
with its horizontal component; that component is what is called the horizonal lift. See (Luo &
Garcia Trillos, 2022, Section 1.4) for a more formal discussion on the matter.

27

where Gij is the (i, j) entry of G. This implies that for any δ ∈ [0, 1) the upper

bound in (3.10) trivially holds for gM.

Regarding the lower bound, note that a general function gM of the form (3.9)

can never satisfy it. Indeed, for any r > 0 pick as G any diagonal matrix with

rank(G) ≤ 2r. Then:

∇2gM(P)[G,G] = ∥M ◦G∥2F = 0.

It is worth emphasizing that this behavior is consistent with our problem (3.1):

for any matrix P, a perturbation in a diagonal direction G does not affect the

objective (3.9), since the mask M effectively discards the diagonal residuals. We

must therefore show that, given any feasible point X of the factored problem (3.1),

GD updates never move in such a direction, unless we are already at a stationary

point.

To that end, we analyze the structure of the gradient ∇fM(X) =[
M ◦ (XX⊤ −A)

]
X. Picking a direction Z ∈ RN×d, the first-order approximation

of how XX⊤ changes in the direction Z is:

(X+ ηZ)(X+ ηZ)⊤ = XX⊤ + η(XZ⊤ +ZX⊤) + η2ZZ⊤ ≈ XX⊤ + η(XZ⊤ +ZX⊤).

So, to only affect the diagonal of XX⊤, the symmetric matrix XZ⊤+ZX⊤ must be

diagonal. Note that the function fM(X) is invariant to such small perturbations in

X, i.e., if Z is such that XZ⊤ + ZX⊤ is diagonal, then fM(X + ηZ) = fM(X) for

small enough η. Indeed, the directional derivative of f in the direction of Z vanishes,

that is:
d

dη
fM(X+ ηZ)

∣∣∣∣
η=0

= 0.

To see that, let us define Xη := X+ ηZ. Then

fM(Xη) =
1

4

∥∥M ◦ (XX⊤ −A+ η(XZ⊤ + ZX⊤) + η2ZZ⊤)∥∥2
F
.

Defining R := XX⊤−A,S := XZ⊤+ZX⊤, T := ZZ⊤, and F(η) := M◦ (R+ ηS+

η2T) we have

fM(Xη) =
1

4
∥F(η)∥2F.

Therefore

d

dη
fM(X+ ηZ) =

1

2

〈
F(η),

d

dη
F(η)

〉
⇒ d

dη
fM(X+ ηZ)

∣∣∣∣
η=0

=
1

2
⟨M ◦R,M ◦ S⟩ .

Since for the chosen Z, S = XZ⊤+ZX⊤ is diagonal, and M is zero on the diagonal,

28

we have M ◦ S = 0 and:
d

dη
fM(X+ ηZ)

∣∣∣∣
η=0

= 0.

So any such direction Z must lie in the nullspace of the differential of f . But the

gradient of f is always orthogonal to the nullspace of the differential, meaning that

⟨∇fM(X),Z⟩ = 0 for all directions Z such that XZ⊤ + ZX⊤ is diagonal.

Therefore, GD will never produce updates in those directions. We will next show

that, outside of this degenerate subspace, the function gM does satisfy the required

curvature properties (3.10).

In particular, to establish restricted strong convexity and smoothness for gM

under the RDPG model, we assume that the latent positions are sampled i.i.d. from

a distribution F whose second moment matrix is full rank. This assumption is

standard in the RDPG literature (see, for instance, (Athreya et al., 2017; Sussman

et al., 2014)) and is necessary for the asymptotic consistency and normality of the

ASE embeddings.

Assumption 1. Let F be a probability distribution in Rd such that x⊤y ∈ [0, 1] for

all x,y in its support. Then, for any x ∼ F , the second moment matrix∆ = E
[
xx⊤]

has full rank d.

If the adjacency matrix A is sampled from an RDPG model whose latent po-

sitions are drawn i.i.d. from a distribution F satisfying Assumption 1, then the

nonzero eigenvalues of P = XX⊤ are, with high probability, of order N .1 This re-

sult was first established by Sussman et al. (2014, Proposition 4.3); we also provide

an analogous proof for a weighted extension of the RDPG model in Appendix 4.A.

Since under the RDPG model we have that X = UPD
1/2
P Q for some Q ∈ O(d),

and the entries in the diagonal of DP are nonzero with high probability, we have

UP = XQ⊤D
−1/2
P

(a)⇒ ∥UP∥2→∞ ≤ ∥X∥2→∞

∥∥∥Q⊤D
−1/2
P

∥∥∥
2

(b)

≤ ∥X∥2→∞

∥∥Q⊤∥∥
2

∥∥∥D−1/2
P

∥∥∥
2

(c)

≤ ∥X∥2→∞

∥∥∥D−1/2
P

∥∥∥
2
, (3.11)

where (a) is due to the property ∥AB∥2→∞ ≤ ∥A∥2→∞∥B∥2, (b) is due to the

fact that the matrix spectral norm is submultiplicative, and (c) follows because

Q ∈ O(d), so
∥∥Q⊤

∥∥
2
= ∥Q∥2 = 1. Since the nonzero eigenvalues of P are ΘP (N),

we have
∥∥∥D−1/2

P

∥∥∥
2
= ΘP

(
N−1/2

)
. Recalling that the ∥X∥2→∞ norm is the maximum

1Remember that by this we mean that λi(P) = ΘP (N) for all i = 1, . . . , d, where λ1(P) ≥
λ2(P) ≥ . . . λd(P) ≥ 0 are the largest d eigenvalues of P.

29

Euclidean norm of the rows of X, and noting that these must be bounded by 1 to

ensure that all inner products between latent positions lie in [0, 1], (3.11) then yields

∥UP∥2→∞ = OP
(
N−1/2

)
.

We will use this to show that our masked unfactored function gM in (3.9) satis-

fies the lower bound on the restricted strong convexity and smoothness properties

definition (3.10). Recall that we had:

∇2gM(P)[G,G] = ∥M ◦G∥2F = ∥G∥2F −
N∑
i=1

G2
ii. (3.12)

Since any perturbation in the feasible space G is a symmetric matrix, we can spec-

trally decompose it as G = UGDGU
⊤
G. Therefore:

Gii = e⊤i Gei = e⊤i UGDGUGei =
N∑
l=1

λl(u
⊤
l ei)

2

where ei is the i-th vector in the standard basis of Rd, λl is the l-th eigenvalue of

G, and {ul} are the corresponding orthonormal eigenvectors. Letting λ1 denote the

largest eigenvalue, we get

Gii ≤ λ1

N∑
l=1

(u⊤
l ei)

2 = λ1

∥∥U⊤
Gei
∥∥2
2
≤ λ1∥UG∥22→∞,

where the last inequality is because U⊤
Gei equals the i-th row of UG. Now, if G

stems from an RDPG model, we have that ∥UG∥2→∞ = OP
(
N−1/2

)
, so with high

probability |Gii| ≤ Cλ1N
−1 for some C > 0, and therefore

N∑
i=1

G2
ii ≤ Cλ2

1N
−1, (3.13)

with high probability. Now, since ∥G∥2F =
∑N

i=1 λ
2
i , we have λ

2
1 ≤ ∥G∥2F, so combin-

ing (3.12) and (3.13) yields:

∇2gM(P)[G,G] ≤ ∥G∥2F
(
1− C

N

)
with high probability.

Therefore, provided N is sufficiently large, we can choose δ = C
N
∈ [0, 1) so that

gM satisfies the restricted strong convexity and smoothness properties (3.10). This,

combined with the result of Luo and Garcia Trillos (2022, Theorem 1), guarantees

a benign optimization landscape for our problem (3.1), thereby justifying the use of

GD to solve it.

30

3.4.3 A local convergence result for general masks

Our previous analysis relies on the mask matrix having the specific form M =

1N1
⊤
N − IN . As mentioned earlier, redefining M also enables us to handle missing

data in the observed adjacency matrix. In this more general setting, however, the

benign landscape guarantees for the GD algorithm no longer apply. Nevertheless,

by building on prior work, we can still ensure local convergence of the resulting

estimates.

The next proposition asserts that if the initial conditionX0 is close to the solution

of (3.1), the GD iteration (3.2) converges linearly to X̂; see (Bhojanapalli et al., 2016,

Corollary 7), (Vu & Raich, 2021, Theorem 1), as well as (Chi et al., 2019, Lemma

4) and references therein for a similar version of this proposition.

Proposition 3.4.2. Let X̂ be a solution of (3.1). Then there exist δ > 0 and

0 < κ < 1 such that, if d(X0, X̂) ≤ δ, we have

d(Xk, X̂) ≤ δκk, ∀ k > 0 (3.14)

where {Xk} are GD iterates (3.2) with appropriate constant stepsize, and d(X, X̂) :=

minQ

∥∥∥XQ− X̂
∥∥∥2
F
s. to Q ∈ O(d) is a matrix distance accounting for the rotational

invariance.

Although there are specific X0 which correspond to sub-optimal stationary

points, in our experience GD converges to the global optimum when initialized

randomly. For further details on the initialization of factored GD, strong convexity

assumptions, and the choice of the stepsize α, see e.g., (Bhojanapalli et al., 2016,

Section 5).

Remark 3.4.1 (Warm restarts to embed multiple graphs). On top of being

flexible to handle missing data encoded in M, this approach also allows to track

the latent positions of a graph sequence {At} using warm restarts. That is, after

computing the embeddings Xt of the graph with adjacency matrix At, we initialize

the GD iterations (3.2) with Xt to compute Xt+1 corresponding to At+1. This way,

unless the graphs at times t and t + 1 are uncorrelated, the embedding of each

node will transition smoothly to its new position (up to noise). Moreover, if the

embeddings of the graph at time t + 1 are sufficiently close to the embeddings at

time t, say for slowly time-varying graphs where d(Xt,Xt+1) ≤ δ, then the GD

iterates for computing Xt+1 also have the same convergence guarantees and rates

(δκk), by virtue of Proposition 3.4.2. This was also observed empirically; indeed,

experiments demonstrating this so-called longitudinal stability property (Gallagher

et al., 2021) are presented in Sections 3.6.3 and 3.6.4.

31

3.4.4 Block coordinate descent

Here we develop a block-coordinate descent (BCD) method for updating GD iter-

ates (3.2) for our problem (3.1), an alternative to GD which turns out to be quite

efficient. The algorithm updates one row of X at a time in a cyclic fashion, by mini-

mizing the objective function fM with respect to the corresponding row (treating all

other entries of X as constants, evaluated at their most recent updates). In general,

this row-wise sub-problem may not admit a simple solution; however, we show that

due to the structure of the mask matrix M the updates are given in closed form.

Dropping the subscript, let f(X) = ∥M ◦ (A−XX⊤)∥2F and recall x⊤
i is the i-th

row of X. The gradient ∇if of f with respect to xi is

∇if(X) =
(
−(M ◦A)iX+ ((M ◦XX⊤)X)i

)⊤
= −X⊤(M ◦A)⊤i +X⊤(M ◦XX⊤)⊤i , (3.15)

where (·)i stands for the i-th row of the matrix argument.

Note that since the graph has no self-loops (i.e., the diagonal entries of A are

zero), then the entry-wise product of A with M is vacuous over the diagonal. Also

because Aii = 0, the term X⊤(M ◦ A)⊤i = X⊤(A)⊤i in (3.15) does not depend on

xi. More importantly, XX⊤ clearly depends on xi, and this would challenge solving

∇if(X) = 0d to obtain a minimizer [due to the trilinear form of the second term in

(3.15)]. However, a close re-examination of X⊤(M◦XX⊤)⊤i suggests this purported

challenge can be overcome. First, observe that

(M ◦XX⊤)i = x⊤
i X

⊤ − r⊤i ,

where ri ∈ RN is a column vector with zeros everywhere except in entry i, where it

takes the value x⊤
i xi. Hence,

X⊤(M ◦XX⊤)⊤i = X⊤(Xxi − ri) = (X⊤X− xix
⊤
i)xi.

All in all, we have a simplified expression for the gradient

∇if(X) = −X⊤(Ai)
⊤ + (X⊤X− xix

⊤
i)xi. (3.16)

Now, define R = X⊤X − xix
⊤
i and notice this matrix does not depend on xi.

Therefore, from (3.16) it follows that the equation ∇if(xi) = 0d is linear in xi,

namely Rxi = X⊤(Ai)
⊤. The pseudo-code of the algorithm is tabulated under

Algorithm 2.

32

Algorithm 2 Block coordinate descent (BCD)

Require: Initial X← X0, tolerance ε > 0
1: Compute R = X⊤X
2: repeat
3: for i = 1 : N do
4: R← R− xix

⊤
i

5: b← X⊤(Ai)
⊤

6: xi ← solution of Rx = b
7: R← R+ xix

⊤
i

8: end for
9: until stopping criterion satisfied (e.g., ∥∇f(X)∥F ≤ ε)
10: return X.

The d× d matrix R is invertible provided that X has rank d. This also implies

that the row-wise sub-problem has a unique minimizer, which is key to establish

convergence of BCD to a stationary point (Bertsekas, 1999, Prop. 2.7.1). It is

worth reiterating that this favorable linear structure is lost in the absence of a mask

matrix M (cf. ASE in (2.2)). Since in RDPG embeddings we typically have d≪ N ,

solving multiple d × d linear systems is affordable; especially when compared to

matrix-vector operations of order Θ(Nγ), γ > 1, like in GD.

3.4.5 Complexity and execution time analyses

We compare four computational methods to obtain RDPG embeddings of undirected

graphs: the ASE based on (i) full eigendecomposition, and (ii) truncated SVD as

implemented in Python’s Graspologic (Chung et al., 2019); (iii) GD initialized with

the randomized-SVD (RSVD) (Halko et al., 2011) (we account for the RSVD in the

execution time); and (iv) randomly initialized BCD as in Algorithm 2.

The full eigendecomposition of A has worst-case Θ(N3) complexity, while for

sparse graphs the d-dominant components can be obtained with Θ(Nd) per-iteration

cost. For GD, the per-iteration computational cost incurred to evaluate ∇f(X) is

dominated by the matrix multiplications, which is Θ(N2d) for a näıve implementa-

tion. The number of iterations depends on X0, but even with a favorable initial-

ization the runtime is still higher than the Θ(Nd) of truncated SVD-based ASE.

A refined convergence-rate analysis of GD for the symmetric matrix completion

problem is presented in (Vu & Raich, 2021).

Although in general it is tricky to compare the complexity of GD against BCD

approaches, we can evaluate the per-iteration computational cost of both methods

(for BCD this means a whole cycle over the rows of X is completed). In both

cases, each entry of the matrix X is updated exactly once. Each cycle consist of N

instances of d × d linear systems, so this is Θ(Nd3) in the worst case. In addition,

33

5000 10000 15000 20000 25000
Graph size

0

2000

4000

6000

8000

10000

tim
e

(s
)

5000 15000 25000

100

300

500

ASE - SVD
ASE - trunc. SVD
BCD
GD - RSVD init

Figure 3.1: Execution time for embedding SBM graphs with up to N = 24000 nodes.
As N grows, BCD exhibits competitive scaling to the state-of-the-art ASE algorithm
implemented in the Graspologic package.

in our experience Algorithm 2 converges in fewer iterations than the GD method.

In Fig. 3.1 we compare the execution times of methods (i)-(iv) as a function of N ,

all the way to N = 24000. For ASE, we use the SciPY optimized implementation of

the eigendecomposition in Python, as in state-of-the-art RDPG inference packages

such as Graspologic. Our GD and BCD implementations are in pure Python, not

optimized for performance. For each N , we sampled several 2-block SBM graphs,

with connection probabilities of p = 0.5 (within block) and q = 0.2 (across blocks).

Community sizes are N/3 and 2N/3. We let d = 2 in all cases. Results are averaged

over 10 Monte Carlo replicates, and corresponding standard deviations are depicted

in Fig. 3.1. In all cases, the methods converge to a solution of (3.1). The obtained

cost function is very similar for each run, with slightly lower values for the GD

and BCD methods because they are solving the problem with the zero-diagonal

restriction. As expected, BCD exhibits competitive scaling with the truncated SVD-

based ASE, and can embed graphs with N = 20000 nodes in just over a minute.

A moderately large graph, such as the one with N = 24000, is ideal to assess the

effect of d on the computation time. Graphs of this scale are expected to have several

communities, and thus values larger than d = 2 (as before) will likely be required.

We thus explore this scenario in more detail, embedding a d-block SBM graph us-

ing d dimensions, and measure the execution time of BCD (Algorithm 2) and the

truncated SVD methods as d increases. Results are reported in Table 3.1. Interest-

ingly, BCD yields faster results than truncated SVD when d ≥ 50, gracefully scaling

with the embedding dimension. As we mentioned before, in our experience BCD

converges in very few iterations and offers competitive computation performance.

34

d = 10 d = 50 d = 100

BCD - Algorithm 2 67± 4 98± 9 154± 32
ASE - Truncated SVD 14± 1 247± 21 466± 47

Table 3.1: Execution time (in seconds) as a function of the embedding dimension d, for
d-block SBM graphs with N = 24000 nodes.

3.5 Embedding algorithms for digraphs

Shifting gears to embedding nodes in digraphs, we start with a close examination

of the ambiguities inherent to the directed RDPG model and justify the need for

orthogonality constraints on the factors’ columns. To compute the desired nodal

representations, we then develop a first-order feasible optimization method in the

manifold of matrices with orthogonal columns.

Recall that we now embed each node with two vectors, xl
i,x

r
i ∈ X ⊂ Rd. Exis-

tence of a directed edge from node i to j is modeled as the outcome of a Bernoulli

trial with success probability (xl
i)
⊤xr

j (Athreya et al., 2017). Again, vertically stack-

ing the embeddings into two matrices Xl,Xr ∈ RN×d, we introduce the probability

matrix P = Xl(Xr)⊤ such that the expected value of the random adjacency matrix

is E
[
A
∣∣Xl,Xr

]
= M ◦P.

If we ignore the mask M, the embedding problem boils down to finding the best

rank-d approximation to the (possibly asymmetric) adjacency matrix. Recall that

one such solution may be obtained via the SVD of A; i.e., A = UADAV
⊤
A. We

thus have that X̂l = ÛD̂1/2 and X̂r = V̂D̂1/2, with D̂ containing only the d largest

singular values, and Û and V̂ the associated singular vectors.

Remark 3.5.1 (Identifiability of directed RDPGs). As noted in Marenco et

al. (2022), ambiguities with directed RDPGs can be more problematic than in the

undirected case. Now given any invertible matrix T (not necessarily orthonormal),

the embeddings Yl = XlT and Yr = XrT−⊤ generate the same probability ma-

trix as before; i.e., Yl(Yr)⊤ = XlT(XrT−⊤)⊤ = Xl(Xr)⊤ = P. As we show in

Section 3.5.1, constraining matrices Xl and Xr to being orthogonal and having the

same column-wise norms1 effectively limits this ambiguity without compromising the

model’s expressivity (now an admissible T may only be orthonormal; see Proposi-

tion 3.5.1), all while preserving its interpretability. Given these considerations, our

approach to embedding digraphs is to solve the following manifold-constrained op-

1Let x̄l
i, x̄

r
i ∈ RN be the i-th columns of Xl and Xr, respectively. When we say Xl and Xr

have the same column-wise norms we mean that ∥x̄l
i∥2 = ∥x̄r

i ∥2 holds for all i = 1, . . . , d.

35

timization problem

{X̂l, X̂r} ∈ argmin
{Xl,Xr}∈RN×d

∥∥M ◦ (A−Xl(Xr)⊤)
∥∥2
F

s. to (Xl)⊤Xl = (Xr)⊤Xr diagonal. (3.17)

In the absence of a mask, a solution of (3.17) is the legacy ASE. Indeed, X̂l and

X̂r are obtained from orthonormal singular vectors and have the same column-wise

norms because both Û and V̂ are right-multiplied by D̂1/2. To tackle the general

case, a novel Riemannian GD method over the manifold of matrices with orthogonal

columns is developed in Section 3.5.2.

3.5.1 On the interpretability of the directed RDPG

Let us now discuss why Xl and Xr should be constrained to be orthogonal and have

the same column-wise norms–in other words, why do we need the constraints in

(3.17) to obtain useful embeddings when the graph is directed.

To gain some insights, suppose we ignore these constraints altogether and use GD

to minimize f(Xl,Xr). Similar to (3.2), at iteration k + 1 we update {Xl
k+1,X

r
k+1}

as follows

Xl
k+1 = Xl

k − α∇Xlf(Xl
k,X

r
k), (3.18)

Xr
k+1 = Xr

k − α∇Xrf(Xl
k,X

r
k), (3.19)

where ∇fXl(Xl,Xr) = 4
[
M ◦ (Xl(Xr)⊤ −A)

]
Xl and a similar expression holds for

∇fXr(Xl,Xr).

The ASE offers an alternative baseline, which requires to discard the mask M.

ASE estimates {X̂l, X̂r} have orthogonal columns because they are derived from the

SVD of A. Same index columns in X̂l and X̂r have the same norm as well, since

the orthonormal matrices Û and V̂ are both right-multiplied by D̂1/2. However, if

we minimize f(Xl,Xr) iteratively as in (3.18)-(3.19) to accommodate missing and

streaming data, we may loose column-wise orthogonality with detrimental conse-

quences we illustrate in the following example.

Example 3.5.1 (Bipartisan senate). Consider a synthetic political dataset of

votes cast by senators in support of laws, over a certain period of time. This may

be regarded as a bipartite digraph where nodes correspond to senators and laws,

and the fact that senator i has voted affirmatively for law j is indicated by the

existence of edge (i, j). We examine a polarized scenario, where two political parties

36

put forth laws for voting. Affirmative votes are more likely for senators from the

party that introduced the law, and less likely for senators from the opposing party.

There are also a few bipartisan laws, for which affirmative votes tend to be more

balanced across parties. We simulated such a graph with 50 senators of each party,

where Party 1 proposed 50 laws and Party 2 proposed 200 laws, and there were 40

additional bipartisan laws under consideration (i.e., N = 390 in total). Furthermore,

the inter-community block probability matrix is

B =


0 0 0.9 0.01 0.2

0 0 0.1 0.8 0.3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

where communities are ordered as Party 1 senator, Party 2 senator, Party 1 law,

Party 2 law, and finally bipartisan law. In other words, senators of Party 1 are very

supportive of their own laws and unlikely to vote for those introduced in the other

side of aisle, whereas Party 2 senators are more moderate.

We compare the embeddings estimated through ASE and by GD [i.e., iterating

(3.18) and (3.19) until convergence]. Recall that interpretation of these results

should rely on the geometry induced by the RDPG model. Similarity among nodes

is captured by their colinearity in latent space, not by their Euclidean distance

being small –as it is the case with e.g., Laplacian eigenmaps (Belkin & Niyogi,

2001). Accordingly, in this particular example we expect that the embeddings of

Party 1 senators and laws will be almost perfectly aligned, while slightly less so for

Party 2. ASE results using d = 2 are shown in Figure 3.2 (left). As expected, the

outward embeddings for laws and inward embeddings for senators are zero (since

the former do not vote and the latter are not voted). Furthermore, the outward

embeddings corresponding to senators of each party are close and roughly orthogonal

to senators of the other party, reflecting the polarized landscape. Finally, the inward

embeddings of laws submitted by each party are aligned with the corresponding

cluster of senators, whereas bipartisan laws lie somewhere between both groups.

The difference in magnitude between embeddings of senators and laws is due to the

different number of such nodes in the graph, and the column-wise norm constraint

imposed to the embeddings.

On the other hand, inspection of Fig. 3.2 (right) reveals that GD converges

to a solution where laws are not aligned with the corresponding party senators.

Accordingly, the affinity of parties to their laws is less evident than before. In

fact, it appears as if Party 1 is not as supportive of its laws as in the ASE-based

visualization which, as we discussed before, is the opposite of what we expected.

37

0.00 0.25 0.50 0.75 1.00 1.25

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ASE

0.00 0.25 0.50 0.75 1.00 1.25

GD

X̂l - Party 1 senators

X̂l - Party 2 senators

X̂r - Party 1 laws

X̂r - Party 2 laws

X̂r - Bipartisan laws

X̂r - All senators

X̂l - All laws

Figure 3.2: Bipartisan senate example. ASE (left) and GD (right). Since ASE implicitly
imposes equally normed orthogonal columns (as it is derived from an SVD), it produces
interpretable embeddings. On the other hand, GD may result in laws and parties that
are not aligned, and thus loses interpretability if no further constrains are imposed in the
formulation.

While the input graph is the same for both methods and the total cost f(X̂l, X̂r)

is smaller for the GD method, interpretability is hindered because of the larger

ambiguity set in the absence of additional constraints.

Example 3.5.2 (Digraph with symmetric expectation). To further justify

why orthogonality constraints are essential, consider a digraph sampled from a sym-

metric P (i.e., the probability of both edge directions is the same, but each arc is

independently sampled). It would be desirable that in this case the model enforced

Xl = Xr, since the outgoing and incoming behaviour of the nodes is the same. The

general directed model should recover the subsumed undirected one and, naturally,

the same should hold for the embedding method.

However, these desiderata are not necessarily met. As stated earlier, given an

invertible matrix T, the embeddings Yl = XlT and Yr = XrT−⊤ yield the same

probability matrix P = Xl(Xr)⊤. This impies that unless T = T−⊤ (meaning T

is an orthonormal matrix corresponding to a rotation), we could apply different

transformations to the inward and outward embeddings and still obtain the same

RDPG.

Given these observations, consider a directed RDPG model where the embedding

matrices Xl and Xr are constrained to be orthogonal and of the same column-wise

norm. The following result asserts that this suffices to ensure an admissible T is

38

orthonormal, hence reducing the model’s ambiguity to a global rotation–just like in

the undirected case.

Proposition 3.5.1. Let P = Xl(Xr)⊤ be the probability matrix of a directed RDPG

model, where {Xl,Xr} are N × d matrices with rank d such that (Xl)⊤Xl =

(Xr)⊤Xr = DX is diagonal. Let T ∈ Rd×d be an invertible matrix such that

Yl = XlT and Yr = XrT−⊤ are also orthogonal with the same column-wise norms;

i.e., (Yl)⊤Yl = (Yr)⊤Yr = DY is diagonal. Then, T is an orthonormal matrix.

Proof. Combining Yr = XrT−⊤ with (Xr)⊤Xr = DX and (Yr)⊤Yr = DY we

find that DX = TDYT
⊤. Proceeding analogously with Yl we further obtain that

DX = T−⊤DYT
−1. Multiplying both identities results in D2

X = TD2
YT

−1. Thus,

the columns of T are linearly independent eigenvectors of a diagonal matrix. Fur-

thermore, given DX = TDYT
⊤ it follows that the above eigendecomposition is

necessarily one with orthonormal eigenvectors.

The constraints in (3.17) do not limit the expressiveness of the model, since

they are compatible with those ASE implicitly imposes. Next, we develop a feasible

first-order method that enforces the orthogonality constraint at all iterations. After

convergence it is straightforward to equalize the resulting column-wise norms so

that they are the same for both X̂l and X̂r, without affecting the generated P; see

Remark 3.5.3.

3.5.2 Optimizing on a manifold

We have concluded that for the sake of interpretability and quality of the representa-

tion, it is prudent to impose the matrices Xl and Xr have orthogonal columns. One

classical way to tackle this is by adding these constraints to the optimization prob-

lem as in (3.17), and solve it via Lagrangian-based methods. For some constraints

with geometric properties, a more suitable and timely approach is to pose the opti-

mization problem on a smooth manifold. One can then resort to feasible methods

that search exclusively over the manifold, i.e., the constraints are satisfied from the

start and throughout the entire iterative minimization process (Absil et al., 2009;

Boumal, 2023). This way, we can think of the optimization as being unconstrained

because the manifold is all there is. In the sequel we explore this last idea.

Interestingly, the space of matrices having orthogonal columns does not form any

known and well-studied manifold. Yet, we show the required geometric structure is

present in our problem and thus we have to define several objects as well as compute

various operators to facilitate optimization (Absil et al., 2009; Boumal, 2023). The

conceptual roadmap is as follows. Recall that a smooth manifoldM can be locally

approximated by a linear space, the so-called tangent space. If we consider the

39

objective function f :M→ R defined from the (Riemannian) manifold to R, then
the Riemannian gradient of the function is an element of the tangent space. This

Riemaninann gradient, which will be denoted as grad f , can be computed as the

projection of the Euclidean gradient ∇f to the tangent space. Having computed

the gradient, a classical descent method consists of taking a certain step in the

opposite direction. However, this step typically leads to a point outside the manifold.

Therefore, it is necessary to map the result back onto the manifold, which is achieved

through a so-called retraction map.

Next, we formally define our manifold, derive its tangent space, characterize

the projection to that space, and derive a useful retraction. The manifold that

resembles ours the most is the so-called Stiefel manifold, which consist of matrices

with orthogonal and unit-norm (i.e., orthonormal) columns

St(d,N) := {X ∈ RN×d : X⊤X = Id}. (3.20)

The key difference is that in our setup we do not require unit-norm columns. Thus,

let RN
∗ = RN \ {0N} be the set of N dimensional vectors without the null vector,

and let RN×d
∗ be the product of d copies of RN

∗ . This open set is the set of N ×
d matrices without null columns. We are interested in matrices with orthogonal

columns, namely

M(d,N) := {X ∈ RN×d
∗ : X⊤X is diagonal} (3.21)

= {X ∈ RN×d
∗ : M ◦ (X⊤X) = 0d×d},

where once more M = 1d1
⊤
d − Id is a particular mask matrix, with zeros in the

diagonal and ones everywhere else.

The following proposition establishes thatM(d,N) is actually a differential man-

ifold (for notational convenience, we henceforth use M instead of M(d,N) since

both d and N are fixed throughout). Moreover,M is a Riemannian manifold since

M⊂ RN×d is a vector space equipped with the usual trace inner product.

Proposition 3.5.2. The setM in (3.21) is a differential manifold and its dimen-

sion is Nd− d(d− 1)/2. Furthermore, the tangent space at X ∈M is given by

TXM = {ζ ∈ RN×d : M ◦
(
ζ⊤X+X⊤ζ

)
= 0N×d}.

Proof. In order to show that M is a manifold and to further understand its dif-

ferential structure, consider the function F : RN×d
∗ → Sd defined as F (X) =

M ◦ (X⊤X − Id). Observe that M is defined as the preimage of zero through

F , so we will prove that this is a regular value.

For ζ ∈ RN×d, the derivative of F in X ∈ F−1(0d×d) along ζ is DF (X)ζ =

40

M ◦ (ζ⊤X + X⊤ζ). Next we establish that DF (X) is onto. Indeed, let η be a

matrix in the orthogonal complement of the image, i.e., η ∈ ImDF (X)⊥ ⊂ Sd.
Then

⟨η,M ◦ (ζ⊤X+X⊤ζ)⟩ = 0, ∀ζ ∈ RN×d.

Now, since the diagonal of η is null, we may drop the Hadamard product with M

and obtain

⟨η,M ◦ (ζ⊤X+X⊤ζ)⟩ = ⟨η, ζ⊤X+X⊤ζ⟩ = 0, ∀ζ ∈ RN×d.

So we have tr
(
ηζ⊤X

)
+ tr

(
ηX⊤ζ

)
= 0 and these two summands are equal to each

other by virtue of the circular property of the trace operator. Hence, we obtain

2tr
(
ηX⊤ζ

)
= 0, ∀ ζ ∈ RN×d, and since this trace vanishes for all ζ, we have that

ηX⊤ = 0d×N .Multiplying byX we obtain ηX⊤X = 0d×d. BecasueX
⊤X is diagonal,

necessarily η = 0d×d and therefore DF (X) is onto. The conclusion is thatM is a

differential manifold, of dimension Nd− d(d−1)
2

.

The tangent space at X can be obtained as the kernel of DF (X), so we have

TXM = {ζ ∈ RN×d : M ◦
(
ζ⊤X+X⊤ζ

)
= 0d×d}, (3.22)

completing the proof.

To perform a manifold GD step, one needs to compute the Riemmanian gradient

of the function defined inM. We obtain grad f as the projection of the Euclidean

gradient [cf. (3.18)-(3.19)] onto the tangent space. A natural way to compute said

projection is to first characterize and compute the projection to the normal space.

Given X ∈M, the normal space at X is

TXM⊥ = {N ∈ RN×d : ⟨N, ζ⟩ = tr(N⊤ζ) = 0,∀ ζ ∈ TXM}.

A useful alternative characterization is given next.

Lemma 3.5.3. The normal space at X is

TXM⊥ = {XΛ ∈ RN×d : Λ ∈ Sd},

where Sd = {X ∈ Rd×d : X = X⊤, diag(X) = 0d×d} is the set of d × d symmetric

matrices with null diagonal.

Proof. Consider a matrix of the form XΛ with Λ ∈ Sd, and let us show that it

is orthogonal to a matrix of the tangent space. Now, observe that tr
(
(XΛ)⊤ζ

)
=

41

tr
(
Λζ⊤X

)
. Therefore,

tr
(
(XΛ)⊤ζ

)
=

1

2
tr
(
Λ(X⊤ζ + ζ⊤X)

)
= 0.

The last trace is zero since Λ ∈ Sd and X⊤ζ + ζ⊤X is diagonal, because ζ ∈ TXM.

Note that, as expected, the dimension of the normal space is d(d−1)
2

, which is the

dimension of Sd.

Computing the projection to the normal space requires some work due to

the null diagonal constraint in Sd, which is not present in the normal space to

St(d,N) (Boumal, 2023, p. 161). The result is given in the next lemma.

Lemma 3.5.4. Let X ∈ M and let π⊥
X : RN×d → TXM⊥ be the projection to the

normal space. Then

π⊥
X(Z) = Xs(2DL), (3.23)

where s : Rd×d → Sd is the symmetrizing function s(Z) = Z+Z⊤

2
− diag(Z), D =(

X⊤X
)1/2

and L =
(
D−1X⊤Z

)
◦F, where E = 1d1

⊤
d D

2+D21d1
⊤
d and F has entries

Fij = E−1
ij .

Remark 3.5.2. Note that (3.23) is of the form XΛ, with Λ ∈ Sd. It thus

belongs to the normal space by virtue of the characterization in Lemma 3.5.3.

The calculations to show it is indeed the projection boil down to proving that

Z − π⊥
X(Z) lives in the tangent space. Specifically, to establish (3.23) we take XΛ

and derive conditions that Λ has to verify when imposing that Z −XΛ ∈ TXM.

Proof. To compute the projection to the normal space, recall note that matrices D

and E above defined allow us to re-write the operation φ(A) = AD2 + D2A as

φ(A) = A ◦ E. In particular, this allows us to obtain an expression for the inverse

operation, which will be needed. Indeed, if F is the matrix with entries Fij = E−1
ij ,

then (AD2 +D2A) ◦F = A, for all A ∈ Rd×d. We can now prove the expression of

the projection as follows.

From the characterization of Lemma 3.5.3, it is clear that Xs(2DL) ∈ TXM⊥,

since s(2DL) ∈ Sd. Let us see that Z−Xs(2DL) ∈ TXM. From (3.22), we have to

show that

(Z−Xs(2DL))⊤X+X⊤ (Z−Xs(2DL)) is diagonal.

Indeed,

(Z−Xs(2DL))⊤X+X⊤ (Z−Xs(2DL)) =

42

= Z⊤X− (s(2DL))⊤X⊤X+X⊤Z−X⊤Xs(2DL) =

= Z⊤X+X⊤Z− 1

2

[
2DL+ 2(DL)⊤

]
X⊤X+ diag(2DL)X⊤X+

+X⊤Xdiag(2DL)− 1

2
X⊤X

[
2DL+ 2(DL)⊤

]
.

Now, since diag(2DL) and X⊤X are diagonal matrices, they commute, and their

product is diagonal. So we can forget those two terms in the expression, and continue

with the rest. We will use the expression of L and the fact that X⊤X = D2. Hence,

Z⊤X+X⊤Z− 1

2

[
2DL+ 2(DL)⊤

]
X⊤X− 1

2
X⊤X

[
2DL+ 2(DL)⊤

]
=

= Z⊤X+X⊤Z−
[
D
(
LD2 +D2L

)
+
(
L⊤D2 +D2L⊤)D] =

= Z⊤X+X⊤Z−
[
D (L ◦ E) +

(
L⊤ ◦ E

)
D
]
.

Now, observe that L◦E =
((
D−1X⊤Z

)
◦ F
)
◦E = D−1X⊤Z, and the same happens

with L⊤. We end up with

Z⊤X+X⊤Z−
[
D
(
D−1X⊤Z

)
+
(
Z⊤XD−1

)
D
]
= 0d×d,

which in particular is diagonal. Therefore, Z−Xs(2DL) ∈ TXM, which completes

the proof.

Once we have characterized the projection onto the normal space, the projection

onto the tangent space is simply given by πX(Z) = Z−π⊥
X(Z). For ease of reference,

we state this fact as the following proposition.

Proposition 3.5.5. Let X ∈M. The projection to the tangent space πX : RN×d →
TXM can be computed as:

πX(Z) = Z− π⊥
X(Z) = Z−Xs(2DL).

When we take a small step in the opposite direction of grad f , we generally end

up outsideM. We therefore need a way to map points in the tangent bundle of the

manifold back to the manifold itself. Informally, this is the role of a retraction.

Given a full rank matrix Z ∈ RN×d, consider its decomposition Z = Q̃R̃, where

Q̃ is a matrix with orthogonal columns and R̃ is upper triangular with ones in the

diagonal. This decomposition is unique. Indeed, one may obtain Q̃ by a Gram-

Schmidt process, but skipping the normalization steps. A more efficient approach

is to consider the classical QR decomposition (Z = QR, with Q orthonormal and

R upper triangular), and compute Q̃ = QDR, where DR = diag(R) is the diagonal

matrix with the diagonal entries of R. In a way, this modification of the QR decom-

position shifts the “normalization” of the columns from the upper triangular factor

43

towards the orthogonal factor.

Note that Q̃ ∈ M and this decomposition will serve to define a retraction to

the manifold in the next proposition. Again, this procedure differs from the popular

Q-factor retraction to the Stiefel manifold (Boumal, 2023, p. 160).

Proposition 3.5.6. Let X ∈ M and ζ ∈ TXM a tangent vector. Then, the

mapping

RX(ζ) = q̃f(X+ ζ)

is a retraction, where q̃f(A) denotes the Q̃ factor of the modified QR decomposition

described above, and the sum X + ζ stands for the usual abuse of notation for

embedded manifolds on vector spaces.

Proof. Denoting by RN×d
fr the set of N×d full-rank matrices, and by Supp1(d) the set

of upper triangular matrices with ones in the diagonal, let us consider the mapping

ϕ :M× Supp1(d)→ RN×d
fr , with ϕ(Q̃, R̃) = Q̃R̃.

From the discussion above we have that ϕ is bijective. Furthermore, ϕ is smooth

since its the restriction of the matrix multiplication to a submanifold. Now, given

a full rank matrix M, the first component of ϕ−1 can be obtained as the result of a

modified Gram-Schmidt process, which is is differentiable. The second component

can then be obtained as R̃ = Q̃−1M, and therefore it is also differentiable. It follows

that ϕ is a diffeomorphism.

We also have that ϕ(Q̃, Id) = Q̃. Following Absil et al. (Proposition 4.1.2 from

2009) we have that the projection onto the first component of ϕ−1 is a retraction,

which is exactly the q̃f mapping.

We now have all the ingredients for the GD method to minimize f(Xl,Xr) =

∥M ◦ (A −Xl(Xr)⊤)∥2F over M, which is tabulated under Algorithm 3. The con-

vergence rate of Riemannian GD is the same as the unconstrained counterpart (i.e.,

producing points with grad f smaller than ε in O(1/ε2) iterations) (Boumal et al.,

2018). The computational complexity of each iteration is dominated by the QR

decomposition in the retraction.

We extended the Pymanopt package (Townsend et al., 2016) with a class for the

manifoldM defined in Proposition 3.5.2, which forms part of the code available at

https://github.com/marfiori/efficient-ASE.

Remark 3.5.3 (Rescaling the factors’ columns). Algorithm 3 does not quite

solve (3.17). While both {Xl
k,X

r
k} belong to M, the constraint (Xl

k)
⊤Xl

k =

44

https://github.com/marfiori/efficient-ASE

Algorithm 3 Riemannian Gradient Descent (GD) onM
Require: Initial Xl

0 and Xr
0

1: repeat
2: Compute Euclidean gradients

∇fXl(Xl
k,X

r
k) and ∇fXr(Xl

k,X
r
k)

3: Compute Riemannian gradients as
grad fXl(Xl

k,X
r
k) = πXl

k
(∇fXl(Xl

k,X
r
k))

grad fXr(Xl
k,X

r
k) = πXr

k
(∇fXr(Xl

k,X
r
k))

4: Compute retraction with α chosen via the Armijo rule
Xl

k+1 = RXl
k

(
−α grad fXl(Xl

k,X
r
k)
)
,

Xr
k+1 = RXr

k

(
−α grad fXr(Xl

k,X
r
k)
)

5: until convergence
6: return {Xl

k,X
r
k}.

(Xr
k)

⊤Xr
k will in general not be satisfied upon convergence. Dropping the iteration

index for simplicity, let x̄l
i, x̄

r
i ∈ RN be the i-th columns of Xl and Xr, respectively.

To obtain a feasible solution from the output of Algorithm 3, for each dimension

i = 1, . . . , d we define scaling factors si = ∥x̄l
i∥2/∥x̄r

i∥2 and collect them in the di-

agonal matrix S = diag(s1, . . . , sd). We then rescale the columns of the embedding

matrices via Xl
k ← Xl

kS
−1/2 and Xr

k ← Xr
kS

1/2, without affecting the value of the

objective function but now satisfying the constraint in (3.17).

Example 3.5.3 (Bipartisan senate revisited). Going back to the bipartisan

senate from Example 3.5.1, Fig. 3.3 depicts the solution of (3.17) for the same

simulated bipartite senator-law digraph (imposing the orthogonality constraints and

rescaling in Remark 3.5.3). Unlike in Example 3.5.1, the Riemannian GD algorithm

on the manifold M is able to recover the same structure as the ASE. Laws are

now correctly aligned with their corresponding party, thus faithfully revealing the

structure in the data.

3.6 Numerical experiments and applications

In this section we illustrate our embedding algorithms’ ability to produce accurate

and informative estimates of nodal latent position vectors. We explore a variety of

GRL applications and consider synthetic and real network data. Our test cases are

designed to target ASE challenges outlined in Section 3.1, namely: i) missing data; ii)

embedding multiple networks; and iii) graph streams (with fixed and varying number

of nodes). For each case we assess the results with respect to estimation accuracy,

interpretability, and stability/alignment in dynamic environments. The suitability of

45

0.00 0.25 0.50 0.75 1.00 1.25
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ASE

0.00 0.25 0.50 0.75 1.00 1.25

Riemannian GD

X̂l - Party 1 senators

X̂l - Party 2 senators

X̂r - Party 1 laws

X̂r - Party 2 laws

X̂r - Bipartisan laws

X̂r - All senators

X̂l - All laws

Figure 3.3: Solution to the embedding problem (3.17) for the bipartisan senate example.
ASE (left) and Riemannian GD (right). Notice how both solutions are nearly identical [cf.
unconstrained GD in Fig. 3.2 (right)], underscoring the importance of the orthogonality
constraints.

spectral embeddings (rooted in the RDPG model) for downstream tasks has already

been well-documented (Athreya et al., 2017; Levin et al., 2018). For this reason,

the goal here is to demonstrate the effectiveness of our algorithms in generating

node embeddings that faithfully represent network structure in novel settings i)-

iii). Additional results exploring algorithm sensitivity to random initialization are

in Section 3.6.1. The code for all these experiments is publicly available at our

GitHub repository.

3.6.1 Robustness to initialization

Since the objective functions we optimize are non-convex and convergence guaran-

tees provided for general mask matrices are to stationary solutions, it is prudent to

study the algorithms’ sensitivity to the initialization. As discussed in Section 3.4.1,

except for specific problematic initializations corresponding to sub-optimal station-

ary points, in our experience all algorithms converge to the optimum when they are

initialized at random. The following experiment illustrates this desirable property,

in particular for the Riemannian GD (i.e., Algorithm 3) method developed to embed

digraphs. Similar results are obtained for the other algorithms, but not included

here to avoid repetition.

We consider a Lancichinetti–Fortunato–Radicchi (LFR) (Lancichinetti et al.,

2008) benchmark graph with N = 1000 nodes, randomly initialize Algorithm 3

and plot the evolution of the cost function f(Xl
k,X

r
k) in (3.17). The LFR model

46

101 102 103

k

1.6× 103

1.7× 103

1.8× 103

1.9× 103

2× 103

2.1× 103

1 2
||M
◦(

A
−

X
l k
(X

r k
)>

)||
2 F Riemannian GD

ASE

Figure 3.4: The evolution of f(Xl
k,X

r
k) =

1
2

∥∥M ◦ (A−Xl
k(X

r
k)

⊤)
∥∥2
F
using Algorithm 3

to embed an LFR graph, starting from 75 different random initializations. The first 5 iter-
ations are omitted for clarity. Note how the algorithm systematically produces estimates
of the embeddings with a lower cost than ASE, and marginal variability regardless of the
initialization.

is a widely adopted benchmark that produces graphs with properties observed in

real-world networks, particularly in terms of the resulting degree distribution and

community sizes. Here, the LFR graph was generated using parameters τ1 = 3 and

τ2 = 2 as exponents of the power law distributions for the degree and community

size, respectively, and mixing parameter µ = 0.1. The resulting graph has 16 com-

munities, the larger one with 142 nodes, and the smaller one with 30 nodes. The

largest hub has 157 neighbors, and there are several nodes with degree 2. Fig. 3.4

shows the results over 75 randomly initialized runs where d = 16, and also the

cost function value 1676.49 obtained by ASE. Regardless of the initialization, the

limiting objective values obtained via Riemannian GD exhibit marginal variability

(mean = 1635.66, std = 6.52) and always outperform ASE. In terms of timing,

embedding each of these LFR graphs with N = 1000 nodes takes 40 seconds on

average.

3.6.2 Inference with missing data

Next we illustrate how GD-based inference can be useful for GRL with missing

data. The setup is similar to that of Example 3.5.1, but here we rely on real

United Nations (UN) General Assembly voting data (Voeten et al., 2009). For

each roll call and country, the dataset includes if the country was present and if

so the corresponding vote (either ‘Yes’, ‘No’, or ‘Abstain’) for each proposal. We

analyze the associated bipartite digraph pertaining to a particular year, where nodes

47

0.0 0.5 1.0 1.5 2.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

10035
10036

10037

United States of America

South Africa

Russian Federation

France

ASE

0.0 0.5 1.0 1.5 2.0

10035

10036

10037

United States of AmericaSouth Africa

Russian Federation

France

Riemannian GD

Figure 3.5: UN General Assembly voting data for 1955. ASE (left) and Riemannian GD
(i.e., Algorithm 3) with mask matrix encoding present and absent (or abstained) voters
(right). Our approach is able to assign the absent voters to the correct group (e.g., South
Africa) and offers a more clear clustering of roll calls.

correspond to countries and roll calls, and an edge from a country to a roll call exists

if it voted affirmatively. If the country was absent or abstained, we will tag that

edge as unknown (Mij = 0).

Fig. 3.5 depicts the node embeddings (d = 2) of the graph from 1955, estimated

by ASE (naively assuming unknown edges do not exist, Aij = 0) and Riemannian

GD (i.e. Algorithm 3). Consider the countries, which are displayed as circles. We

highlight four interesting cases: Russia, USA, France, and South Africa. At the

time, the first two represented two poles of the world, and are naturally almost

orthogonal to each other for both methods. Note furthermore how the ASE seems

to indicate that South Africa is less likely to vote in agreement with Russia than

(even) the USA, whereas the opposite is true for France.

The problem comes from equating an absence or abstention to a negative vote.

For instance, South Africa was only present in roughly one third of the roll calls,

and it voted almost identically to the USA. The Riemannian GD method, which

acknowledges unknown edges via the mask M, provides an embedding that reflects

this agreement. Something similar happens with France, which differed from the

USA only in six roll calls. Four correspond to USA abstentions and France voting

‘Yes’, another one where the opposite happened (and thus both cases should not

be accounted for in the optimization problem), and finally the roll call 10036 where

France was one of only two countries to vote ‘No’ (the USA voted ‘Yes’).

Regarding the embeddings of roll calls marked with a cross in Fig. 3.5, note

how 10036 is aligned with the Russian block of countries by ASE, but it is better

48

placed as an intermediate proposal in Fig. 3.5 (right)–equally likely to be voted by

all countries. Something similar occurs with roll call 10035, which dealt with the

same subject of 10036, but met resistance from more countries (roughly a dozen,

including the USA and France). In both cases several countries were not present

or abstained during the voting. Incorrectly assuming these votes as negative by

ASE leads to biased results. Much more can be said about the roll calls and their

associated UN resolutions, but let us conclude the discussion by noting that roll call

embeddings generated by Algorithm 3 form three clusters reflecting the geopolitical

landscape at the time. There is a cluster for each pole (American and Russian), plus

an intermediate one where both poles tend to vote similarly. On the other hand,

ASE generates roll call embeddings that are incorrectly aligned (e.g., 10036), and a

loose grouping of intermediate roll calls with shared voting from both poles.

3.6.3 Embedding multiple graphs: the batch case

Suppose now that we observe m > 1 graphs {At}mt=1 and we are interested, for

instance, in testing whether they are drawn from the same RDPG model, or, in

tracking the embeddings over time. Assume that we can identify nodes across dif-

ferent observations; e.g., they correspond to labeled users in a social network and

so a matching algorithm is not needed. Independently obtaining the ASE for each

graph is undesirable because it yields arbitrarily rotated embeddings, a challenge

that has motivated several recent research efforts.

Indeed, a hypothesis test which involves solving a Procrustes problem to align

the embeddings was put forth in M. Tang et al. (2017). An alignment alternative

is to jointly embed all m graphs via a single ‘super-matrix’ decomposition. The so-

called Omnibus embedding first forms anmN×mN matrix derived from all {At}mt=1,

and then computes its ASE which enjoys asymptotic normality (Levin et al., 2017).

The Unfolded ASE (UASE) also constructs an auxiliary matrix, but by horizontally

stacking all {At}mt=1 (Gallagher et al., 2021; Jones & Rubin-Delanchy, 2020). Nodal

representations are then extracted from the SVD of this N × mN matrix. Under

some technical assumptions, the UASE provably offers desirable longitudinal and

cross-sectional stability (defined below; see also Gallagher et al. (2021)). However,

the complexity and memory footprint of these batch approaches grow linearly with

m, and they are only applicable to undirected graphs.

In the context of the algorithms proposed in this paper, we may leverage their

iterative nature and initialize them using the estimated embeddings of another re-

lated (e.g., contiguous in time) graph. Unless radical changes take place from one

graph to the other, this so-called warm restart is expected to produce embeddings

that are closely aligned, with the added benefit of converging in few iterations.

49

Example 3.6.1 (Stability of GD estimates). Let us illustrate this (desirable)

behaviour through a numerical example. We borrow the setting and code from Gal-

lagher et al. (2021). Consider two graph samples drawn from a dynamic SBM with

inter-community probability matrices

Π1 =


0.08 0.02 0.18 0.10

0.02 0.20 0.04 0.10

0.18 0.04 0.02 0.02

0.10 0.10 0.02 0.06

 , Π2 =


0.16 0.16 0.04 0.10

0.16 0.16 0.04 0.10

0.04 0.04 0.09 0.02

0.10 0.10 0.02 0.06


Initially there are four communities. At time 2, the first two communities merge,

community 3 moves, and community 4 has its connection probabilities unchanged.

Ideally, when embedding both graphs: i) the representations of nodes in com-

munity 4 should not change (longitudinal stability); and ii) the time 2 embeddings

of members of communities 1 and 2 should be similar, up to noise (cross-sectional

stability). Fig. 3.6 displays the results for UASE (Gallagher et al., 2021), Omnibus

embedding (Levin et al., 2017), independent ASE for each graph, and BCD (i.e.,

Algorithm 2 warm-restarted at time 2 with the result of time 1). As expected,

independent ASE lacks longitudinal stability, and the Omnibus embedding fails to

exhibit cross-sectional stability. Note how the time 2 Omnibus estimates of com-

munities 1 and 2 remain separate, due to time 1 ‘interference’ affecting this joint

embedding.

UASE and BCD produce embeddings that fulfill both stability requirements i)

and ii). However, BCD yields a better overall representation for both graphs. This

is quantified via the cost function (3.1) evaluated at each solution; see above each

plot for the numerical values. Unlike the batch UASE, gradient descent methods as

the ones we present here offer a pathway towards tracking nodal representations in

a streaming graph setting –the subject dealt with next.

3.6.4 Model tracking for graph streams

Consider now a monitoring scenario, where we observe a stream of time-indexed

graphs {At} and the goal is to track the underlying model. Different from the batch

setting of the previous section, we are now unable to jointly process the entire graph

sequence. This may be due to memory constraints or stringent delay requirements.

We will still assume that nodes are identifiable across time, but the algorithm’s

computational cost and memory footprint may not increase with t.

50

Figure 3.6: Embeddings of two SBM graph realizations, where communities 1 and 2
merge, while community 4 keeps the connection probabilities with other groups. Observe
how the BCD approach (far right) manages to capture this behaviour, while providing the
best representation for each graph individually (quantified by the smallest cost function
values). Example adapted from Gallagher et al. (2021).

3.6.4.1 Fixed vertex set

We first consider the setting where N is fixed and we would like to track the latent

vectors Xt ∈ RN×d.1 Previous efforts in this direction have been mainly motivated

by the change-point detection problem; i.e., detecting if and when the generative

model of the observed graph sequence changes (Chen, 2019; Marenco et al., 2022; Yu

et al., 2021; M. Zhang et al., 2020). Our focus is on the related problem of estimating

the embeddings’ evolution. A couple noteworthy applications include recommender

systems (where rankings are revealed, or even change, over time) (Campos et al.,

2014) or, as we discuss below, monitoring wireless networks (Mateos & Rajawat,

2013).

Independent ASE computation for each At suffers from the alignment issue al-

ready discussed. Instead, and supposing for now that the mask M can be ignored,

it may well be the case that recursive methods to update the SVD of a perturbed

matrix At = At−1+∆t suffice (Brand, 2006). However, as we show in the following

synthetic example, these approaches may also produce arbitrarily rotated estimates

from one time-step to the next, and suffer from catastrophic error accumulation (Z.

1We stick to undirected graphs for ease of exposition, but extensions to digraphs are straight-
forward and presented in the numerical experiments.

51

Zhang et al., 2018).

Tracking of a dynamic SBM. Our idea is instead to proceed as in Remark

3.4.1, and warm-restart the GD iterations with the previous time-step’s estimate

X̂t−1 (analogously to the example in Fig. 3.6). Consider a dynamic SBM graph

with N = 200 nodes and two communities. At each time-step t = 0, 1, 2, . . . a

single randomly chosen node changes its community affiliation. We compare the

tracking performance of warm-restarted GD [i.e., several iterations of GD in (3.2)

initialized with the previous time-step’s estimate] and the fast, recursive SVD algo-

rithm in Brand (2006). The nodal embeddings for t = 0 and 1 (i.e., a single node

changed affiliation) are depicted in Fig. 3.7 (top). Notice how online GD produces

stable results, with a single vector moving from one cluster to the other. The rest of

the nodes’ embeddings remain virtually unchanged. On the other hand, the recur-

sive SVD in Brand (2006) fails to preserve a common angular reference for X̂0 and

X̂1. Another well-documented drawback of these incremental SVD methods is that,

since they update only the d most significant components, the error ∥X̂tX̂
⊤
t −Pt∥F

increases with t (Z. Zhang et al., 2018). Fig. 3.7 (bottom) illustrates this error-

accumulation behavior, to be contrasted with online GD that keeps the error in

check for all t ≥ 0.

Wireless network monitoring. We may further leverage the fact that Xt is

typically correlated with Xt−1 in order to improve the embeddings’ accuracy over

time. For example, suppose Xt−m = . . . = Xt = X over some interval of length

m. It is then prudent to estimate X by solving (3.1), but using the average Āt =

1/m
∑t

k=t−m Ak instead (R. Tang et al., 2017). Note that Āt may be interpreted

as the adjacency matrix of a weighted graph. Edge weights can also be modeled

by an RDPG, where now the embeddings are such that XX⊤ = E [A]. Unlike the

unweighted case, E [A] are not probabilities. Still, under mild assumptions on the

weights’ distribution, the solution of (3.1) for weighted A is a consistent estimator

of X as N →∞; see Theorem 4.4.1.

These observations motivate well the two-stage tracking system depicted in Fig.

3.8. The stream of adjacency matrices {At} is fed to the entry-wise filter F(z), which

outputs {Bt}. For instance, F(z) may be a moving average of fixed length m as

before. If memory is at a premium, we may use a single-pole infinite impulse response

(IIR) filter instead so that {Bt} is an exponentially-weighted moving average of the

input adjacency matrices. We may even drop the filtering stage altogether (setting

m = 1) to yield a least mean squares (LMS)-type online GD algorithm.

We now empirically demonstrate this simple tracking system yields accurate and

stable embeddings of dynamic RDPG graphs. Consider a Wi-Fi network from which

a monitoring system periodically acquires the Received Signal Strength Indicator

(RSSI) between Access Points (APs) – a feature typically available in enterprise-

52

−1.0 −0.5 0.0 0.5 1.0
−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

GD at t = 0

GD at t = 1

Brand, 2006 at t = 0

Brand, 2006 at t = 1

Figure 3.7: Two-block dynamic SBM in which a single node changes affiliation at each
t. Comparison between online GD and recursive SVD (Brand, 2006). (top) Embeddings
for the first two time-steps (d = 2); the node that changed communities is highlighted
in green. Best viewed in a color display. Note how the change of a single node produces
markedly different results for Brand (2006), whereas online GD offers stable estimates.
(bottom) Evolution of ∥X̂tX̂

⊤
t −Pt∥F . Solid line indicates median across ten realizations,

with the range between first and third quartiles shown in a lighter color. Online GD
exhibits uniformly bounded error, whereas Brand (2006) accumulates error as t grows.

Figure 3.8: A diagram of the proposed tracking system. The entry-wise filter F(z)
implements an averaging operator, e.g., a fixed-length moving average.

53

0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

6

2

46

0.0 2.5 5.0
−6

−4

−2

0

2

4

6

1

3

5

Figure 3.9: Embeddings X̂l
t (left) and X̂r

t (right) for the RSSI digraph (d = 2). Color
palettes distinguish the APs and a lighter tone indicates larger values of t. Best viewed
in a color display. The network’s change at t ≈ 310 is apparent. AP 4 was moved (i = 4)
closer to the upper cluster of APs.

level deployments. We will use our GRL framework to flag network changes and

eventually diagnose them. We analyze graphs At whose nodes are the APs and

the edge weights are the measured RSSI values (plus a constant offset so that all

values are positive). Since these measurements are typically not symmetric, we

have a digraph sequence. We rely on the dataset described in Capdehourat et al.

(2020), which consists of hourly measurements between N = 6 APs at a Uruguayan

school, over almost four weeks (m = 655 graphs). During the monitoring period,

the network administrator moved an AP (i = 4) at t ≈ 310.

To track the AP embeddings, we run an online version of Algorithm 3 as schemat-

ically shown in the diagram of Fig. 3.8, but adapted to digraphs. This entails a

retraction after the Riemannian GD step, not shown in the diagram. We use an IIR

filter F(z) with a pole at 0.9. Furthermore, we adopt a fix stepsize α = 0.01 instead

of choosing it via the Armijo rule.

The evolution of the online Riemannian GD estimates X̂l
t and X̂r

t for d = 2

54

is shown in Fig. 3.9. Different color palettes are used to distinguish the nodes,

and as t increases the colors become lighter. Note how at all times there are two

(almost) orthogonal cluster of nodes: c1) APs 1 and 2 (in the lower part of the

plots); and c2) APs 3, 5 and (to a lesser extent) 6. AP 4 is embedded between

both communities for all t. Moreover, note how the trajectory of each AP can be

split into a couple clear states, discernable as the colors transition from darker to

lighter. This is indicative of the change in AP 4’s position at roughly the middle of

the monitoring period. Finally, movement within both AP clusters is mostly radial,

hence dot products between cluster members are preserved. On the other hand,

AP 4 moves tranversally closer to c2, consistent with the information provided by

the network administrator. It appears as if it was moved closer to AP 5, and AP 1

remains its closest member from c1.

3.6.4.2 Time-varying node set

In dynamic environments it is not uncommon for nodes to join or leave the network.

Going back to the wireless network test case, the question remains on how to proceed

should an AP fail, or if the administrator decides to add a new one to improve

coverage. Dealing with the former case is straightforward; if a node leaves the

network at time t, we simply drop the corresponding row in X̂t−1 and re-run the

GD algorithm (warm-restarted from there).

Node additions require more thought. Suppose that a single node i = N + 1

joins the network at time t. Let aN+1 = [A1,N+1, . . . , AN,N+1]
⊤ ∈ {0, 1}N be the

(N + 1)-th column of At ∈ {0, 1}N+1×N+1, excluding AN+1,N+1 = 0 and dropping

the subindex t for notational convenience. Then given X̂t−1 ∈ RN×d, we can embed

node i by solving

x̂N+1 = argmin
θ∈Rd

∥aN+1 − X̂t−1θ∥22. (3.24)

This simple but intuitive out-of-sample embedding procedure was studied in Levin

et al. (2018), and shown to recover the true latent positions as N → ∞. If several

nodes are added at a given time-step, they can all be embedded by solving multiple

LS problems like (3.24). However, this procedure disregards the information from

the connections between new nodes. Furthermore, if the embeddings of existing

nodes are not updated, their growing inaccuracies as At evolves will negatively

impact future nodes’ representations.

As we show in the following numerical experiments, these drawbacks can be

overcome by running our online GD-based algorithms to update all embeddings X̂t,

initializing existing nodes with X̂t−1 and new one(s) with x̂N+1 as in (3.24).

Dynamic random graph with growing vertex set. Consider an Erdös-Rényi

graph with a fixed connection probability p = 0.1, and initial number of nodes

55

Figure 3.10: Dynamic Erdös-Rényi graph in which a single node is added at each t.
Comparison between online GD and out-of-sample LS embedding Levin et al. (2018).
Evolution of ∥X̂tX̂

⊤
t − Pt∥F /

√
Nt. Solid line indicates median across ten realizations,

with range between first and third quartiles shown in a lighter color. Once more, online
GD exhibits uniformly bounded error, whereas the baseline method Levin et al. (2018)
accumulates error as t grows.

N0 = 100. At each time-step t we add a single node so that Nt = Nt−1 + 1. The

evolution of the error ∥X̂tX̂
⊤
t −Pt∥F/

√
Nt is shown in Fig. 3.10. Note how (carefully

warm-restarted) online GD exhibits bounded error behavior, in stark contrast with

repeated LS-based embeddings as in Levin et al. (2018). Admittedly, this gain in

accuracy comes with a modest increase in computation (few GD steps), and identi-

cal memory footprint (i.e., storing the current embeddings and the new adjacency

matrix) as the baseline in Levin et al. (2018).

Tracking international relations from UN voting data. Here we revisit the

UN General Assembly voting data from Section 3.6.2. Following the same bipartite

digraph construction procedure, we study all yearly graphs from 1955 to 2015. In

this dynamic network we have a time-varying node set. Roll calls change from

one year to the next, and also several countries joined the UN later (while others

have ceased to exist). We embed the first graph from 1955 using Riemannian GD

initialized at random (as before, using d = 2). For each successive year, we warm-

restart Algorithm 3 with the embeddings from the previous year, while new nodes

are initialized using the LS solution (3.24).

Fig. 3.11 depicts the embeddings of four countries: USA, Israel, Cuba, and the

USSR (later, the Russian Federation). We use a similar visualization style as in Fig.

3.9, with different color palettes used to distinguish among countries, and lighter

tones indicating more recent years. Observe how the representations for the USA

and Israel remain strongly aligned over the entire time horizon, which is consistent

56

0.0 0.2 0.4 0.6 0.8 1.01.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

RUS, 1991

CUB, 1959

USA ISR RUS CUB

Figure 3.11: UN General Assembly voting data from 1955 to 2015. Evolution of nodal
positions for the USA, Israel, Cuba, and the USSR (or, after 1991, the Russian Federation)
estimated via online Riemannian GD. Color palettes distinguish the countries and a lighter
tone indicates later years. Best viewed in a color display. Note how the USA and Israel
remain strongly aligned over the entire span, with Cuba and the USSR shifting alignments
depending of their political views.

with their longstanding agreement on UN resolution matters. The embedding for

the USSR is initially (nearly) orthogonal to the USA and Israel, with Cuba initially

showing a greater affinity to the USA/Israel block. This is consistent with Cold War

geopolitics of the time. Then, after 1959, Cuba’s position shifts to the lower half-

plane, becoming more aligned with the USSR. This is expected given Cuba’s sharp

shift in foreign policy as a result of the Cuban revolution, with its ideology being in

agreement with that of the USSR. This polarized scenario remained unchanged until

1991. That year the embedding for the USSR (now the Russian Federation) moves

closer to the USA/Israel block, which reflects the politics of the Russian Federation

in the aftermath of USSR’s dissolution. Cuba remains at an (almost) orthogonal

position from the USA/Israel block, with Russia eventually shifting to a middle

ground after the mid-2000’s.

57

3.7 Concluding remarks

We developed a gradient-based spectral-embedding framework to estimate latent

positions of RDPGs. Relative to prior art our algorithmic approaches offer better

representation at a competitive computational cost, and they are more broadly

applicable to settings with incomplete, dynamic, and directed network data. We

motivated and proposed a novel manifold-constrained formulation to embed directed

RDPGs, and developed novel Riemannian GD iterations to estimate interpretable

latent nodal positions. The effectiveness of the GRL framework is demonstrated via

reproducible experiments with both synthetic and real (wireless network and United

Nations voting) data. We made all our codes publicly available.

Appendix 3.A: Critical points for the unmasked

objective

In this appendix we provide a proposition that describes all stationary points of the

unmasked objective (3.3). To that end, we appeal to the eigendecomposition of A.

In that proposition we prove that any such critical point is of the form:

X̃ = ŨD̃1/2Q,

where Ũ contains any d orthonormal eigenvectors of A, D̃ holds the corresponding

eigenvalues as columns, and Q ∈ O(d).

Proposition 3.A.1. Let A ∈ RN×N be a symmetric positive semidefinite matrix

with eigendecomposition

A =
N∑
i=1

λiuiu
⊤
i ,

where λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 and {ui}Ni=1,u ∈ RN is an orthonormal basis of

eigenvectors.

Then X̃ ∈ RN×d is a stationary point of (3.3) if and only if there exists an index

set J ⊆ {1, . . . , N} with |J | = d and an orthonormal set {vj}j∈J ,vj ∈ Rd, such that

X̃ =
∑
j∈J

√
λj ujv

⊤
j .

Proof. We proceed in two directions:

(⇐) If X̃ is of the given form, computing X̃X̃⊤ yields

X̃X̃⊤ =
∑
j,k∈J

√
λjλk ujv

⊤
j vku

⊤
k =

∑
j∈J

λjuju
⊤
j ,

58

because v⊤
j vk = δjk by orthonormality. Thus,

X̃X̃⊤ −A =
∑
j∈J

λjuju
⊤
j −

N∑
i=1

λiuiu
⊤
i = −

∑
i/∈J

λiuiu
⊤
i .

Remember the gradient of our objective is ∇f(X) = (XX⊤ −A)X. Therefore

∇f(X̃) =

(
−
∑
i/∈J

λiuiu
⊤
i

)(∑
j∈J

√
λjujv

⊤
j

)
= −

∑
i/∈J,j∈J

λi

√
λjuiu

⊤
i ujv

⊤
j .

Now, for any i /∈ J and j ∈ J , we have u⊤
i uj = 0, so each term in the above sum

vanishes, and thus (X̃X̃⊤ −A)X̃ = 0. Therefore, X̃ is a stationary point.

(⇒) Assume that X̃ ∈ RN×d is a stationary point of f , so

∇f(X̃) = (X̃X̃⊤ −A)X̃ = 0. (3.25)

Since rank(X̃) = d, W := Im(X̃) is a d-dimensional subspace of RN . Let w ∈ W .

Then w = X̃v for some v ∈ Rd. Multiplying both sides of (3.25) by v, we get

(X̃X̃⊤ −A) X̃v = 0⇒ X̃X̃⊤w = Aw. (3.26)

Hence, W is invariant under A. So we can choose an orthonormal basis of V

consisting of eigenvectors of A, i.e., there exist indices J ⊂ {1, . . . , N} with |J | = d

such that:

W = span{ui : i ∈ J}.

Note that X̃ has rank d, so we can write

X̃X̃⊤ =
∑
i∈J

µi uiu
⊤
i ,

where the µi > 0 are the nonzero eigenvalues of X̃X̃⊤. Equation (3.26) then implies

that for w = ui

X̃X̃⊤ui = µiui = Aui = λiui ⇒ µi = λi.

Hence

X̃X̃⊤ =
∑
i∈J

λi uiu
⊤
i . (3.27)

But since W = Im(X̃), we can write:

X̃ =
∑
i∈J

ui c
⊤
i ,

59

for some ci ∈ Rd. Then

X̃X̃⊤ =
∑
i,j∈J

ui c
⊤
i cj u

⊤
j .

Comparing to (3.27) we see that c⊤i cj = 0 for i ̸= j and ∥ci∥22 = λi. Hence ci =
√
λivi

for some orthonormal vectors vi ∈ Rd. Thus:

X̃ =
∑
j∈J

√
λj ujv

⊤
j ,

as desired.

60

Chapter 4

A weighted RDPG model

In this chapter we extend the RDPG model to account for weighted graphs, endowed

with a weight map w : E 7→ R+ that assigns a nonnegative value to each edge. The

adjacency matrix entries for the weighted graph are Wij = Wji = w(i, j) for all

(i, j) ∈ E, while the absence of an edge is represented as Wij = Wji = 0. This

formulation naturally encompasses unweighted graphs as a special case, where edge

weights are constrained to binary values (i.e., w ≡ 1).

This chapter is adapted from the paper Marenco et al. (2025).

4.1 Related work

Several extensions of the standard (or vanilla) RDPG model have been developed

to incorporate edge weights. A common approach is to introduce a parametric

distribution Fθ with parameter θ ∈ RL to model weighted adjacency entries (see

DeFord & Rockmore, 2016; R. Tang et al., 2017). In this formulation, each node

i ∈ V is assigned a collection of latent vectors xi[l] ∈ Rd for l = 1, . . . , L, such that

the weight of an edge between nodes i and j follows the distribution

Wij ∼ F(x⊤
i [1]xj [1],...,x⊤

i [L]xj [L])
,

independently across edges. To model sparse graphs, this distribution may include

a point mass at zero. The classic RDPG model is recovered by setting Fθ as a

Bernoulli distribution with success probability θ ∈ [0, 1]. Despite its flexibility, this

approach has some noteworthy limitations. A key drawback is that all edges must

share the same parametric family of weight distributions, differing only in their pa-

rameters. While mixture models can introduce some heterogeneity, they still require

an explicit assumption about the underlying distribution families. This requirement

significantly restricts the model’s applicability, particularly if edges follow heteroge-

neous, unknown, or multimodal weight distributions.

61

To address this shortcoming, recent work by Gallagher et al. (2023) proposes

a nonparametric alternative. Therein each node has a single associated latent po-

sition zi ∈ Z, which is endowed with a probability distribution F . It is postu-

lated that, given a family {H(z1, z2) : z1, z2 ∈ Z} of symmetric real-valued dis-

tributions, there exists a map ϕ : Z 7→ Rd such that if Wij ∼ H(zi, zj), then

E [Wij] = ϕ⊤(zi)Ip,qϕ(zj), where Ip,q is a diagonal matrix of p ones and q minus

ones, such that p + q = d. This diagonal matrix facilitates modeling heterophilic

(or disassortative) behavior, as in Rubin-Delanchy et al. (2022). Interestingly, one

can consistently recover xi = ϕ(zi) via the ASE of W, and the estimated x̂i’s are

asymptotically normal. While this method improves flexibility and avoids restrictive

parametric assumptions, it can only recover ϕ(zi), i.e., the latent positions for the

mean adjacency matrix E [W]. Consequently, the model is unable to differentiate

between pairs of edges that stem from distinct distributions sharing an identical

mean. These challenges highlight the ongoing need for more expressive, discrimina-

tive, and robust latent space models for weighted graphs.

4.2 Contributions and chapter outline

Instead, we propose that the sequence of nodal vectors be related to the weight dis-

tribution’s moment-generating function (MGF). Assume each node has a sequence

of latent positions {xi[k]}k≥0 such that the inner products {x⊤
i [k]xj[k]}k≥0 form an

admissible moment sequence. Our weighted (W)RDPG model specifies the k-th or-

der moments of the random entries in the adjacency matrix W ∈ RN×N are given

by E
[
W k

ij

]
= x⊤

i [k]xj[k], for all k ≥ 0 (see Section 4.3.1).

The WRDPG model offers several key advantages: (i) it is nonparametric; (ii)

it considers higher-order moments beyond the mean; while providing (iii) statistical

guarantees for the associated estimator; and (iv) a generative mechanism that can

reproduce both the structure and the weights’ distribution of real networks. Next,

we elaborate on these attractive features to better position our technical contribu-

tions in context. Unlike DeFord and Rockmore (2016) and R. Tang et al. (2017), the

nonparametric WRDPG graph modeling framework does not require prior assump-

tions about a specific weight distribution. Nodal vectors can be used to describe

high-order moments of said distribution, thus enhancing the model’s representation

and discriminative power. For example, different from Gallagher et al. (2023) the

WRDPG model can distinguish between distributions with the same mean but dif-

fering standard deviations; see also Section 4.3.4 and Figure 4.5 for an illustrative

example.

Furthermore, framing our model in terms of (symmetric) adjacency matrices

allows us to define latent position estimators based on their spectral decomposition;

62

ENTRY-WISE
POWER

ADJACENCY
SPECTRAL

EMBEDDING

LATENT POSITION ESTIMATION

Figure 4.1: Latent position estimation. Given an adjacency matrix A we compute its
k-th entry-wise power A(k). The ASE of A(k) yields the estimates X̂[k]; see also Section
4.3.2.

see Section 4.3.2. Statistical guarantees can be derived using tools to control the

matrix spectrum under perturbations. As shown in Marenco et al. (2022), for each

fixed moment index k, the latent position matrix X[k] can be consistently recovered

(up to an orthogonal transformation) via the ASE of W(k), the matrix of entry-

wise k-th powers of W; see Figure 4.1 for a schematic diagram of the latent position

estimation procedure. In Section 4.4 we generalize the result in Marenco et al. (2022)

by proving that asymptotic consistency holds for a stronger convergence metric that

ensures uniform convergence for all x̂i’s. We also establish that the estimator is

asymptotically normal as N →∞, a result that is novel in our WRDPG setup.

In Section 4.5 we show how one can generate graphs adhering to the proposed

WRDPG model, which is non-trivial in a nonparameteric setting and was not con-

sidered in Gallagher et al. (2023). We develop a methodology to sample random

weighted graphs whose edge weight distribution is defined by a sequence of mo-

ments given by inner products of connected nodes’ latent positions. Depending

on the characteristics of the weight distribution–whether discrete, continuous, or a

mixture–we can solve for the latent position sequence to ensure their inner prod-

ucts match the prescribed moments. For real-valued (continuous) weights, we rely

on the maximum entropy principle subject to moment constraints. We introduce a

primal-dual approach to find a probability density function that maximizes entropy,

offering improved numerical stability relative to previous algorithms (Saad & Ruai,

2019). Results for mixture distributions allow us to generate graphs that simultane-

ously replicate the sparsity pattern of the network and the edge weights. In Figure

4.2 we present a schematic diagram for the graph generation pipeline.

Moreover, given an observed weighted network (instead of the ground-truth la-

tent position sequence as in Figure 4.2), we show how we can use this generative

procedure to sample graphs that are similar to the original one, in a well-defined

statistical sense. This can be useful for several statistical inference tasks involving

network data. If, for instance, one would like to assess the significance of some ob-

served graph characteristic, this procedure allows to generate several ‘comparable’

graphs and construct judicious reference distributions (see Kolaczyk, 2009, Section

6.2). In a related use case, one could perform hypothesis testing to determine if a

63

PDF/PMF
ESTIMATION

EDGE
SAMPLING

GRAPH GENERATION

Figure 4.2: Graph generation. Given the latent positions of each vertex {X[k]}k≥0, we
estimate a weight distribution whose sequence of moments is given by the corresponding
dot products. Edge weights are then sampled from this estimated distribution; see also
Section 4.5.

given graph adheres to the WRDPG model.

The rest of this chapter is organized as follows. In Section 4.3 we formally

define the WRDPG model, describe the embedding method, and present several

illustrative examples. The estimation problem is addressed in Section 4.4, and

the proofs of the asymptotic statistical guarantees are presented in detail. Finally,

in Section 4.5, we present our methodology for generating WRDPG graphs. We

include several reproducible examples to demonstrate the ability of the generative

framework to produce weighted graphs with desired characteristics. All figures in

the remainder of this chapter can be reproduced using the code available at https:

//github.com/bmarenco/wrdpg.

4.3 Weighted RDPG model

Here we define the WRDPG model and the ASE-based latent position estimator.

Illustrative examples are presented to ground these concepts. Furthermore, we show

the discriminative power for community detection inherited from considering higher-

order moments beyond the mean. Finally, we discuss the impact of the number of

nodes on the accuracy of the moment sequence reconstruction.

4.3.1 Model specification

In this section, we formally define our WRDPGmodel. We follow the rationale of the

vanilla RDPG and define the model in terms of random latent position sequences

per node. As previewed in Section 4.2, the inner product of the latent positions

will be related to the MGF of the edge weights’ distribution, thus requiring some

preliminary definitions.

64

https://github.com/bmarenco/wrdpg
https://github.com/bmarenco/wrdpg

Definition 4.3.1 (Admissible moment sequence). A sequence {m[k]}k≥0 of real

numbers is an admissible moment sequence if m[0] = 1 and for all p ≥ 0 the matrix

M =



m[0] m[1] m[2] . . . m[p]

m[1] m[2] m[3] . . . m[p+ 1]

m[2] m[3] m[4] . . . m[p+ 2]
...

...
...

. . .
...

m[p] m[p+ 1] m[p+ 2] . . . m[2p]


∈ R(p+1)×(p+1)

whose entries are Mij = m[i+ j − 2] is PSD.

Remark 4.3.1. Definition 4.3.1 is enough to guarantee that there exists

a probability measure µ in R such that m[k] is the k-th moment of µ.

Definition 4.3.2 (Weighted inner-product distribution). Let F be a probability

distribution with support suppF = X ⊂ (Rd)∞. We say that F is a weighted inner-

product distribution if for all {x[k]}k≥0, {y[k]}k≥0 ∈ X , the sequence {x⊤[k]y[k]}k≥0

is an admisible moment sequence.

Definition 4.3.3 (WRDPG). Let F be a weighted inner-product distribution and

let {x1[k]}k≥0, {x2[k]}k≥0, . . . , {xN [k]}k≥0 be i.i.d. with distribution F . Given the

sequence Xk := {X[k]}k, with X[k] = [x1[k], . . . ,xN [k]]
⊤ ∈ RN×d, the weighted

(W)RDPG model specifies the MGF of a random adjacency matrix W ∈ RN×N as

E
[
etWij |Xk

]
=

∞∑
k=0

tkE
[
W k

ij

]
k!

=
∞∑
k=0

tkx⊤
i [k]xj[k]

k!
(4.1)

and the entries Wij are independent, i.e., edge independent. In such a case, we write

(W,Xk) ∼WRDPG(F).

Remark 4.3.2 (Nonidentifiability of latent positions). As is the case for

the vanilla RDPG model, latent positions are invariant to orthogonal transfor-

mations, since for any Q ∈ O(d), X[k]X⊤[k] = X[k]Q (X[k]Q)⊤. This implies

that given a latent position sequence Xk, for each index k one may choose a

matrix Qk ∈ O(d) (which may vary with k) and construct a sequence Yk :=

{X[k]Qk}k, which will result in the same distribution of graphs as that given by Xk.

65

4.3.2 Estimation of latent positions

The vectors xi[k] can be estimated via an ASE of the matrix W(k), the entry-

wise k-th power of an observed symmetric weighted adjacency matrix W. In-

deed, for each index k, we stack the latent positions of all nodes into the ma-

trix X[k] = [x1[k], . . . ,xN [k]]
⊤ ∈ RN×d. If one had access to the moment matrix

Mk := X[k]X⊤[k], it would be straightforward to recover X[k] (up to an orthogonal

transformation) from the eigendecomposition of Mk. However, since Mk is typi-

cally unobserved, we instead rely on the observed weighted adjacency matrix W.

Because each entry of W(k) has expectation equal to the corresponding entry of Mk,

we approximate X[k] by solving [cf. (2.2)]

X̂[k] ∈ argmin
X∈RN×d

∥∥W(k) −XX⊤∥∥2
F
,

for all k ≥ 0. A solution is readily obtained by setting X̂[k] = ÛkD̂
1/2
k , where

W(k) = UWk
DWk

U⊤
Wk

is the eigendecomposition of W(k), D̂k ∈ Rd×d is the diagonal

matrix of the d largest-magnitude eigenvalues, and the columns of Ûk ∈ RN×d

contain the corresponding eigenvectors. In Appendix 4.A, we show that, under mild

assumptions on the weighted inner-product distribution F (Assumptions 2 and 3 in

Section 4.4), the top d eigenvalues of W(k) are nonnegative, ensuring that X̂[k] is

well-defined. We refer to this estimator as the ASE of X[k].

4.3.3 Examples

Next, we derive expressions for the latent position vectors in some simple, yet classi-

cal, models. We also simulate such WRDPG instances and show that latent position

estimation via the ASE yields satisfactory results. We will derive statistical guar-

antees for ASE in Section 4.4, justifying our empirical findings.

4.3.3.1 Erdös-Rényi graph with Gaussian weights

Consider a graph with N = 1000 nodes. We first sample the presence or absence

of each edge independently as Bernoulli(p). Then, for each edge we independently

sample its weight from a N (µ, σ2) distribution. This means that Wij is either 0

with probability 1− p or follows a N (µ, σ2) distribution with probability p. In this

setup, it is enough to choose d = 1, and the latent position sequence for every node

is x[0] = 1 and x[k] =
√
pmN [k] for k ≥ 1, where mN [k] is the k-th moment of the

normal distribution with parameters µ and σ2.

Figure 4.3 shows a histogram of the recovered latent positions up to order k = 6,

with p = 0.5, µ = 1 and σ = 0.1. The red dashed line indicates the true latent

66

0.6 0.8
0

10

X̂[1]

0.6 0.8
0

10

X̂[2]

0.6 0.8
0

10

X̂[3]

0.6 0.8
0

10

X̂[4]

0.7 0.8
0

10

X̂[5]

0.7 0.8
0

5

10

X̂[6]

Figure 4.3: True (dashed vertical line) and estimated (histograms) latent positions for
an Erdös-Rényi model with N (1, 0.01) weights. Pdf for limiting Gaussians, as given by
Corollary 4.4.4, are plotted with dashed lines in each panel.

positions in each case. Apparently, for each k the estimated positions follow a nor-

mal distribution centered around the ground-truth value x[k]. This observation is

supported by plotting the probability density function (pdf) of the limiting Gaus-

sian distribution–that is, the distribution the estimated embeddings are expected to

follow as N →∞, according to Theorem 4.4.2, which is proven later in this chapter;

see also Corollary 4.4.4.

4.3.3.2 Two-block SBM with arbitrary weights’ distribution

In this case, the setup is similar as before; only now is the presence or absence of

an edge given by a 2-block SBM. That is, each node belongs to exactly one of two

communities, and an edge is formed between two nodes with probability p1 if both

belong to community 1, with probability p2 if both belong to community 2, and with

probability q if they belong to different communities. So, conditioned on individual

node assignments to communities, the presence or absence of edges is given by the

block probability matrix:

B =

(
p1 q

q p2

)
. (4.2)

After sampling edges, all weights are independently sampled from the same arbitrary

edge-weight distribution.

Let xC1 ,xC2 ∈ (R2)∞ denote the latent position sequence for each community.

To compute the analytical latent positions for this model, we begin by looking at the

mean, i.e., xC1 [1],xC2 [1] ∈ R2. If two nodes belong to community 1, then an edge

67

is formed between them with probability p1, and its weight follows the prescribed

distribution. This implies that

x⊤
C1
[1]xC1 [1] = p1md[1]⇒ ∥xC1 [1]∥ =

√
p1md[1],

where md[1] is the first moment (the mean) of the chosen weights’ distribution.

Due to the nonidentifiability of latent positions, we can arbitrarily place the latent

positions for community 1 along the x-axis, and therefore choose:

xC1 [1] = (
√
p1md[1], 0)

⊤. (4.3)

Similarly, we conclude that for community 2 we must have ∥xC2 [1]∥ =
√

p2md[1].

Also, an edge between two nodes in different communities is present with probability

q and its weight follows the prescribed distribution, so

x⊤
C1
[1]xC2 [1] = qmd[1].

From these two constraints, using (4.3) we conclude that

xC2 [1] =

(
q

√
md[1]

p1
,

√
md[1]

(
p2 −

q2

p1

))⊤

.

Following the analysis above, one can derive the higher-order terms in the per-

community sequences. Indeed, if md[k] is the k-th moment for the chosen weights’

distribution, imposing that the inner products between latent positions equals the

moments of inter- and intra-communities connections leads to:

∥xC1 [k]∥2 = p1md[k]

∥xC2 [k]∥2 = p2md[k]

x⊤
C1
[k]xC2 [k] = qmd[k].

Again, arbitrarily placing the latent positions for community 1 along the x-axis we

can find the latent positions for each community:

xC1 [k] =
(√

p1md[k], 0
)⊤

xC2 [k] =

(
q

√
md[k]

p1
,

√
md[k]

(
p2 −

q2

p1

))⊤

.

(4.4)

Note that (4.4) is valid for k ≥ 1. For k = 0 we can arbitrarily set xCi
[0] = (1, 0)⊤

for i = 1, 2 in order to: a) maintain the dimensionality of the embeddings; and b)

68

0.25 0.50 0.75

0.00

0.25

0.50

0.75
X̂[1]

0.25 0.50 0.75

0.00

0.25

0.50

0.75
X̂[2]

0.25 0.50 0.75

0.00

0.25

0.50

0.75
X̂[3]

0.25 0.50 0.75

0.00

0.25

0.50

0.75

X̂[4]

0.25 0.50 0.75 1.00

0.0

0.5

X̂[5]

0.5 1.0

0.0

0.5

X̂[6]

Figure 4.4: Estimated (blue and red circles) and true latent positions (black crosses) for
a two-block SBM with N (1, 0.01) weights. The 95% confidence level sets for the limiting
normal distributions, as given by Corollary 4.4.4, are shown as dashed lines.

force the 0-th moment of each edge to be equal to 1 [cf. Definition 4.3.1].

We simulated the above setup for a network with N = 1000 nodes (700 in

community 1 and 300 in community 2), block probability matrix

B =

(
0.7 0.1

0.1 0.3

)
,

and weights sampled from a N (µ, σ2) distribution, with µ = 1 and σ = 0.1. Results

for the ASE of W(k) up to order k = 6 are shown in Figure 4.4. As expected,

the estimated embeddings for each community are centered around the analytically

derived ones in (4.4), with an ellipse-like outline that suggests an approximately

normal distribution. As with the previous example, this is corroborated by plotting

the 95% confidence level sets for the limiting Gaussians for each community, as given

by Corollary 4.4.4.

4.3.4 Discriminative power of higher-order spectral embed-

dings

To demonstrate the ability of our model to distinguish between communities, we

simulate a two-block weighted SBM consisting of N = 2000 nodes. Edges are

established independently with probability p = 0.5. Edge weights follow a Gaussian

distribution with mean µ = 5 and standard deviation σ = 0.1, except for those

between the second block of nodes, indexed i = 1001, . . . , 2000, where the weights

instead follow a Poisson distribution with rate parameter λ = 5.1.

69

For the same reasons as in the previous example, in this setting the matrix X[k]

has at most two distinct columns for each k. Figure 4.5 displays the estimated

embeddings x̂i[k] obtained via the ASE of W(k) for k = 1, 2, 3 with embedding

dimension d = 2, where nodes are color-coded by community membership. The 95%

confidence level sets for the limiting normal distributions, as given by Corollary 4.4.4,

are shown in Figure 4.5 as dashed lines. Notably, for each value of k, the simulated

points closely follow the normal distribution predicted by the theorem in the large-N

limit, providing further empirical support for the asymptotic result.

Observe that for k = 1, the node embeddings are nearly indistinguishable across

the two communities. This is expected, as the vectors x̂i[1] cluster around the points

(
√
µp, 0)⊤ ≈ (1.58, 0)⊤ for the gaussian community, and (

√
µp,
√

p(λ− µ))⊤ ≈
(1.58, 0, 22)⊤ for the Poisson community, reflecting the almost identical expected

weight of edges in both distributions. When k = 2, the embeddings begin to reveal

community structure, as shown in the center panel of Figure 4.5. In this simplified

example, closed-form expressions for higher-order embeddings can be readily derived

as well. Assuming, without loss of generality, that the embeddings xi[k] lie along

the x-axis for i = 1, . . . , 1000, we obtain:

xi[k] =


(√

pmN
k , 0

)⊤
, i ≤ 1000,(√

pmN
k ,
√

p(mP
k −mN

k)
)⊤

, i > 1000,

where mN
k and mP

k are the k-th moments of the univariate N (µ, σ2) and Poisson

distributions, respectively. For k = 2, these correspond to the approximate coordi-

nates (3.54, 0)⊤ and (3.54, 1.75)⊤ for the two groups. However, since the confidence

sets of the limiting multivariate Gaussians are still close, the separation between the

communities is not yet clearly pronounced. At k = 3, the confidence sets no longer

intersect, and the embeddings exhibit a clear separation between the two blocks, as

shown in the right panel of Figure 4.5.

Recall that the model proposed in Gallagher et al. (2023) is limited to embed-

dings derived solely from the mean of the weight distribution, specifically, the ASE

of the matrix W(1) = W. In the weighted SBM described above, both blocks are

constructed to have almost identical expected edge weights. As a consequence, the

embeddings x̂i[1] obtained via an ASE of W are concentrated around the same

point in latent space regardless of the underlyingblock membership, and meaningful

separation between the two blocks begins to emerge only when considering higher-

order embeddings. Therefore, approaches restricted to first-order information, such

as Gallagher et al. (2023), are inherently incapable of discriminating between com-

munities whose structure is encoded in the higher-order moments of edge weights.

70

1.5 1.6 1.7

−1

0

1

X̂[1]

3.5 4.0
−1

0

1

2

3

4

X̂[2]

7 8 9

0.0

2.5

5.0

7.5

10.0

X̂[3]

Figure 4.5: Theoretical latent positions (black crosses) and ASE embeddings of W(k)

for Gaussian (µ = 5 and σ = 0.1; in red) and Poisson (λ = 5.1; in blue) distributed
weights for d = 2 and k = 1 (left), k = 2 (center), and k = 3 (right). Nodes with different
weight distributions are clearly revealed for k = 3, but they overlap for k = 1. The 95%
confidence level sets for the limiting normal distributions, as given by Theorem 4.4.2, are
shown as dashed lines.

4.3.5 Accuracy of moment recovery with varying number of

nodes

Accurate estimation of higher-order moments is known to be highly sensitive to the

amount of data available. In particular, the variance of moment estimators tends to

grow rapidly with the order of the moment, requiring markedly larger sample sizes

to obtain stable estimates (Bourin & Bondon, 1998). This is because higher-order

moments are dominated by extreme values in the data, making them especially

prone to noise and outliers. Admittedly, this a challenge facing the proposed model.

To illustrate how this behavior affects the WRDPG model, we simulate a two-

block weighted SBM with N = 2000 nodes, where 70% of them are assigned to

community 1. The interconnection probabilities are given by the matrix

B =

(
0.7 0.3

0.3 0.5

)
,

and edge weights are sampled from a Gaussian distribution with mean µ = 1 and

standard deviation σ = 0.5.

Figure 4.6 depicts the estimated latent position matrices X̂[k] corresponding to

moments k = 1 and k = 4. To assess the quality of the embeddings, we compare

the entries of the empirical moment matrices M̂[k] = X̂[k]X̂⊤[k] with the true

moments. The results, shown in the first two columns of Figure 4.6, indicate that

the embeddings closely follow a mixture of multivariate Gaussian distributions and

that, as expected, the accuracy of M̂[k] degrades as the moment order increases.

This observation is further reinforced in a second experiment presented in the

third and fourth columns of Figure 4.6, where the number of nodes (i.e., the sample

71

0.50 0.75

0.0

0.2

0.4

0.6

0.8
X̂[1]

0.25 0.50 0.75
0

2

4

6

8
M̂[1]

0.5 1.0 1.5

0.0

0.5

1.0

1.5
X̂[4]

0 1 2
0.0

0.5

1.0

M̂[4]

0.5 1.0

0.0

0.5

1.0

X̂[1]

0 1
0

1

2

M̂[1]

1 2
−1

0

1

X̂[4]

0 1 2 3
0.0

0.2

0.4

0.6

M̂[4]

Figure 4.6: Inference results for a two-class SBM with Gaussian weights and N = 2000
nodes (first and second columns) and N = 200 nodes (third and fourth columns). The
plots on the second and fourth columns show histograms of the estimated M̂[k] and the
vertical lines indicate the true moments. For N = 2000 embeddings and moments are
accurately estimated up to order k = 4, while accuracy degrades in the N = 200 setting.
Also, for fixed sample size performance degrades as the order increases from k = 1 (top
row) to k = 4 (bottom row).

size) is reduced to N = 200. Although the embeddings corresponding to k = 1

remain fairly accurate, the limited sample size noticeably impairs the estimation

for k = 4, illustrating the practical limitations imposed by high-order moment esti-

mation. These examples underscore the importance of accounting for finite-sample

effects when working with moment-based estimators in network models such as

WRDPG.

4.4 Asymptotic results

Recall the ASE estimator introduced in Section 4.3.2. Here we establish the asymp-

totic results that, for a fixed index k, characterize the behavior of the estimated

latent positions X̂[k] when the number of nodes N goes to infinity. Given the in-

herent rotational ambiguity in the WRDPG model, the latent position sequence is

estimable up to an unknown orthogonal transformation. Thus, our main results

(consistency and asymptotic normality) are stated in terms of a sequence of orthog-

onal matrices Qk ∈ O(d).

For these results to hold, we make the following two assumptions. Here, F is

a weighted inner-product distribution as in Definition 4.3.2, Xk := {X[k]}k≥0 is a

sequence of latent positions matrices, and W is the adjacency matrix of a WRDPG

graph, i.e., (W,Xk) ∼WRDPG(F) as in Definition 4.3.3.

72

Assumption 2. Let {x[k]}k≥0 ∼ F . Then for each k, the second moment matrix

∆k = E
[
x[k]x⊤[k]

]
has full rank d.

Remark 4.4.1. As mentioned in Chapter 3, Assumption 2 is standard in the RDPG

literature (cf. Assumption 1) and is necessary to ensure a separation between the

top d eigenvectors and the trailing ones of an observed adjacency matrix following

any RDPG model. See Appendix 4.A for a more formal discussion of this topic

within the WRDPG model setup.

Assumption 3 (Sub-Weibull weights). There exists a constant θ > 0 such that for

each pair 1 ≤ i < j ≤ N , there is a constant Cij > 0 satisfying:

P {|Wij| ≥ t|Xk} ≤ 2 exp

(
−
(

t

Cij

)1/θ
)

for all t ≥ 0.

Remark 4.4.2. Since the class of sub-Weibull random variables (rvs) is closed under

multiplication (Vladimirova et al., 2020, Proposition 2.3), it follows that W k
ij is also

sub-Weibull, with parameter kθ. This will allow us to establish our asymptotic

results by invoking a concentration bound for sums of sub-Weibull variables, which

is proven in Proposition 4.4.2.

4.4.1 Asymptotic consistency

We first establish the asymptotic consistency of the estimated latent positions (up

to an unknown orthogonal transformation).

Theorem 4.4.1. Let F be a weighted inner-product distribution satisfying Assump-

tion 2 and consider (W,Xk) ∼ WRDPG(F) satisfying Assumption 3. Then, for

each index k there exists a matrix Qk ∈ O(d) such that∥∥∥X̂[k]Qk −X[k]
∥∥∥
2→∞

= OP
(
N−1/2 logkθ N

)
.

Theorem 4.4.1 generalizes a previous consistency result for the WRDPG

model (Marenco et al., 2022, Theorem 1) in two key aspects. First, it extends

the result to accommodate unbounded edge weights. Second, it provides a bound

on the difference between the estimated and actual latent positions (up to an un-

known orthogonal transformation) in terms of the 2 → ∞ norm rather than the

73

Frobenius norm. As noted in Cape et al. (2019), the 2 → ∞ norm offers tighter

control over the estimation error. This can be seen from the identity

∥A∥2→∞ = max
1≤i≤n

∥∥a⊤
i

∥∥
2
,

where a⊤
i denotes the i-th row of A ∈ Rn×m. This means that the 2 → ∞ norm

corresponds to the maximum Euclidean norm of the rows of A, so Theorem 4.4.1

bounds the maximum error between the estimated and true latent vectors for any

node in a WRDPG graph. In contrast, controlling the Frobenius norm does not

guarantee such a uniform bound.

Our consistency result aligns with previous findings for the vanilla RDPG

model (see Athreya et al., 2017; Lyzinski et al., 2017), in that we provide a bound

for the 2 → ∞ norm. It also generalizes the consistency result in Gallagher et al.

(2023), as their theorem applies only to X̂[1], meaning they establish consistency

solely for the estimated latent positions associated with the mean. Nevertheless, our

proof follows their methodology, adapting the necessary arguments to accommodate

our more general setup. We note that their proof scheme closely follows that of the

RDPG model, as first established in Lyzinski et al. (Theorem 15 of 2017). Addi-

tionally, it is worth mentioning that a more general result on matrix perturbations

can be obtained using similar techniques; see Cape et al. (2019).

As in the unweighted case, the proof of Theorem 4.4.1 relies on expressing the

difference between X̂[k]Qk and X[k] as the sum of a dominant term and a series of

remainder terms. Proposition 4.4.8 shows that these remainders are of a lower order

than the dominant term. Its proof will be based on some technical results, which

are stated and proven next.

We begin with a lemma that establishes a bound on the moment generating

function of a sub-Weibull random variable near the origin.

Lemma 4.4.1. Let Y be a sub-Weibull random variable with parameter θ > 1; that

is, there exists a constant C > 0 such that

P {|Y | ≥ t} ≤ 2 exp

(
−
(

t

C

)1/θ
)

for all t ≥ 0.

Then there exist T > 1 and C1 > 0, depending only on θ and C, such that:

E
(
eλ|Y |) ≤ exp

(
−C1λ

1/(1−θ)
)
for all λ ∈ [0, λ0],

where

λ0 =
1

θC1/θ
T (1−θ)/θ.

74

Proof. By Fubini’s theorem, we can write:

E
(
eλ|Y |) = ∫ ∞

0

λeλtP {|Y | ≥ t} dt.

Using the sub-Weibull tail bound, we obtain:

E
(
eλ|Y |) ≤ 2λ

∫ ∞

0

exp

(
λt−

(
t

C

)1/θ
)
dt.

Let ϕλ(t) = λt−
(

t

C

)1/θ

, and define:

I(λ) =

∫ ∞

0

exp (ϕλ(t)) dt.

The function ϕλ(t) attains its unique maximum at

tλ =
(
λθC1/θ

)θ/(1−θ)
.

To apply Laplace’s method (see De Bruijn (2014, Chapter 4)), we require tλ ≥ T for

some large enough T > 1, so that the integrand is sharply peaked near tλ. Solving

tλ ≥ T yields:

λ ≤ λ0 =
1

θC1/θ
T (1−θ)/θ.

Under this condition, Laplace’s method gives:

I(λ) ≤ K exp (ϕλ(tλ)) ,

for some constant K > 0 depending only on θ and C. Evaluating ϕλ(tλ), we find:

ϕλ(tλ) =

(
1

θ
− 1

)
(θC)1/(1−θ)λ1/(1−θ).

Since θ > 1, we define

C1 = −
(
1

θ
− 1

)
(θC)1/(1−θ) > 0,

so that

ϕλ(tλ) = −C1λ
1/(1−θ).

Putting everything together,

E
(
eλ|Y |) ≤ 2λI(λ) ≤ 2λK exp

(
−C1λ

1/(1−θ)
)
.

75

Since λ0 → 0 as T → ∞, we can choose a T large enough so that 2λ0K ≤ 1.

Therefore, for all λ ∈ [0, λ0] we have:

E
(
eλ|Y |) ≤ 2λ0K exp

(
−C1λ

1/(1−θ)
)
≤ exp

(
−C1λ

1/(1−θ)
)
,

as claimed.

We next present a concentration result for the sum of independent, centered

sub-Weibull rvs with a common parameter θ. The proof follows standard arguments

used in analogous concentration results for sub-Gaussian and sub-exponential rvs

(see Theorems 2.6.3 and 2.8.1 in Vershynin (2018)).

Proposition 4.4.2. Let Y1, . . . , YN be independent, mean-zero, sub-Weibull random

variables with parameter θ > 1. That is, for each i = 1, . . . , N , there exists a

constant Ci > 0 such that

P {|Yi| ≥ t} ≤ 2 exp

(
−
(

t

Ci

)1/θ
)

for all t ≥ 0.

For any T > 0, define λmin = 1

θC
1/θ
max

T (1−θ)/θ, where Cmax = max
i=1,...,N

Ci.

Then there exists a large enough T such that for all t ≥ 0, it holds that

P

{∣∣∣∣∣
N∑
i=1

Yi

∣∣∣∣∣ ≥ t

}
≤ 2exp

(
−min

{
λmint+NK1λ

1/(1−θ)
min ,

(
t

K2

)1/θ

N (θ−1)/θ

})
,

where K1, K2 > 0 are constants depending only on θ.

Proof. Let S :=
∑N

i=1 Yi. By Markov’s inequality and independence:

P {S ≥ t} = P
{
eλS ≥ eλt

}
≤ e−λt

N∏
i=1

E
(
eλYi

)
.

Now, using Lemma 4.4.1, there exists a large enough T > 1 such that for every

i = 1, . . . , N there exists a constant C1,i > 0 (depending only on Ci and θ) such that

for all λ ∈ [0, λmin]:

E
(
eλ|Yi|

)
≤ exp

(
−C1,iλ

1/(1−θ)
)
.

Using the fact that Yi is mean-zero, we have:

E
(
eλYi

)
≤ E

(
eλ|Yi|

)
≤ exp

(
−C1,iλ

1/(1−θ)
)
.

Hence,

P {S ≥ t} ≤ exp

(
−λt−

N∑
i=1

C1,iλ
1/(1−θ)

)
.

76

Let K1 = miniC1,i. Then K1 depends only on θ, since the C1,i’s depend only on

θ. Therefore:

P {S ≥ t} ≤ exp
(
−λt−NK1λ

1/(1−θ)
)
. (4.5)

Minimizing the exponent over λ ∈ [0, λmin], the optimal choice is:

λ∗ = min

{
λmin,

(
t(θ − 1)

NK1

)(1−θ)/θ
}
.

Substituting into (4.5), we obtain:

P {S ≥ t} ≤ exp

(
−min

{
λmint+NK1λ

1/(1−θ)
min ,

(
t

K2

)1/θ

N (θ−1)/θ

})
,

where K2 =
θθ

(θ−1)θ−1 (K
(θ−1)/θ
1) depends only on θ.

A symmetric argument for −S gives the same bound for P {−S ≥ t}, and the

result follows.

We next state a lemma that establishes a bound on the difference between the

matrix of entry-wise self-products, W(k), and the true moments matrix, X[k]X⊤[k].

The proof follows the general scheme of Gallagher et al. (Proposition 1 from 2023),

but differs in a key aspect: we rely on a different result for tail bounds of sums of

independent matrices. This is due to the fact that the concentration result they

invoke does not hold in our more general setup.

Lemma 4.4.3. Let (W,Xk) ∼ WRDPG(F) satisfy the hypotheses of Theorem

4.4.1. For each fixed integer k ≥ 0, let Wk := W(k) and Mk := X[k]X⊤[k]. Then

∥Wk −Mk∥2 = OP
(
logkθ N

)
.

Proof. Note that the definition of our model implies that E [Wk] = Mk, so we are

trying to control the spectral norm of the centered matrix Wk −Mk. To that end,

we will use a tail bound for sums of independent matrices (Tropp, 2012, Corollary

3.7). That result can be stated as follows: assume we have a finite sequence {Yl}Rl=1

of independent, self-adjoint, random N ×N matrices that satisfy

E
(
eλYl

)
≼ eg(λ)Al for all λ ∈ [0, λ0]

for some function g : [0, λ0] → R and a finite sequence {Al}Rl=1 of fixed self-adjoint

matrices. Here, ≽ denotes the semidefinite ordering on Hermitian matrices, i.e.,

77

A ≽ B if A−B is positive semi-definite. Define the scale parameter

ρ =

∥∥∥∥∥
R∑
l=1

Al

∥∥∥∥∥
2

.

Then for all t ≥ 0 it holds:

P

{∥∥∥∥∥
R∑
l=1

Yl

∥∥∥∥∥
2

≥ t

}
≤ N inf

λ∈[0,λ0]
exp (−λt+ g(λ)ρ).

In order to use this result, for each 1 ≤ j ≤ i ≤ N let Yij be the N ×N matrix

whose (i, j) and (j, i) entries equal W k
ij − x⊤

i [k]xj[k] := Yij, with the rest being 0.

Then,
∑

ij Yij = Wk −Mk and E [Yij] = 0 since E [Yij] = 0. Also note that if ei is

the i-th vector of the canonical basis of RN , we have:

Yij = Yij(eie
⊤
j + eje

⊤
i)⇒ Yp

ij =

Y p
ij(eie

⊤
j + eje

⊤
i) if p is odd

Y p
ij(eie

⊤
i + eje

⊤
j) if p is even, p ≥ 2

.

Therefore:

eλYij = I+
∑
p odd

(λYij)
p

p!
(eie

⊤
j + eje

⊤
i) +

∑
p even, p≥2

(λYij)
p

p!
(eie

⊤
i + eje

⊤
j)

= I+ sinh(λYij)(eie
⊤
j + eje

⊤
i) + (cosh(λYij)− 1)(eie

⊤
i + eje

⊤
j).

This means that eλYij has ones along the diagonal, except at the (i, i) and (j, j)

entries, which are equal to cosh(λYij). Its off-diagonal entries are zero, except for

the (i, j) and (j, i) entries, which are equal to sinh(λYij). Using the identity e|x| −
cosh(x) = | sinh(x)| for all x ∈ R, together with the Gershgorin circle theorem, we

obtain:

eλYij ≼ I+ (e|λYij | − 1)(eie
⊤
i + eje

⊤
j) = exp

(
|λYij|(eie⊤i + eje

⊤
j)
)
,

where the last equality follows from the fact that the matrix I+
(
e|λYij | − 1

)
(eie

⊤
i +

eje
⊤
j) is diagonal, with all entries equal to 1 except at the (i, i) and (j, j) positions,

which are equal to e|λYij |. Since the matrix expectation preserves the semidefinite

order, this in turn implies

E
(
eλYij

)
≼ E

[
exp

(
|λYij|(eie⊤i + eje

⊤
j)
)]

.

As discussed in Remark 4.4.2, Assumption 3 implies that Yij is a sub-Weibull random

variable with parameter kθ. Therefore, by Lemma 4.4.1, there exists a constant Ci,j
1

78

and a threshold λi,j
0 > 0 such that for all λ ∈ [0, λi,j

0],

E
(
eλYij

)
≼ E

[
exp

(
−Ci,j

1 λ1/(1−kθ)(eie
⊤
i + eje

⊤
j)
)]

.

Letting K1 = mini,j C
i,j
1 and λmin = mini,j λ

i,j
0 , we obtain that for all λ ∈ [0, λmin]

E
(
eλYij

)
≼ E

[
exp

(
−K1λ

1/(1−kθ)(eie
⊤
i + eje

⊤
j)
)]

.

Thus, we can apply the tail bound for sums of independent random matrices stated

above, with g(λ) = −K1λ
1/(1−kθ) and Aij = eie

⊤
i + eje

⊤
j . Therefore,

P {∥Wk −Mk∥2 ≥ t} ≤ N inf
λ∈[0,λmin]

exp
(
−λt−K1λ

1/(1−kθ)ρ
)
, (4.6)

where

ρ =

∥∥∥∥∥ ∑
1≤i≤j≤N

(eie
⊤
i + eje

⊤
j)

∥∥∥∥∥
2

= ∥NI∥2 = N.

Note that the function inside the infimum in (4.6) is equivalent to that on the right-

hand side of (4.5). Therefore, an argument analogous to the one in the proof of

Proposition 4.4.2 yields

P {∥Wk −Mk∥2 ≥ t} ≤ N exp

(
−min

{
λmint+NK1λ

1/(1−kθ)
min ,

(
t

K2

)1/(kθ)

N (kθ−1)/(kθ)

})
,

where K2 = (kθ)kθ

(kθ−1)kθ−1 (K
(kθ−1)/(kθ)
1). Since for large t the term involving t1/(kθ)

dominates the minimum, we have that, for large enough t,

P {∥Wk −Mk∥2 ≥ t} ≤ Nexp

(
−
(

t

K2

)1/(kθ)

N (kθ−1)/(kθ)

)
.

Choosing t = K2 log
kθ N then yields the desired result.

The following propositions can be proven with the same arguments found in

Lyzinski et al. (Proposition 16 and Lemma 17 from 2017) and Gallagher et al.

(Propositions 3 and 5 from 2023), respectively. While we omit the detailed proofs,

we provide a brief outline of the key ideas underlying each result.

Proposition 4.4.4 follows from a Procrustes-alignment style argument, which

leverages the relationship between the principal angles of the subspaces spanned

by the columns of Uk and Ûk, and the eigenvalues of the difference ÛkÛ
⊤
k −UkU

⊤
k ,

79

together with an application of the Davis–Kahan theorem (Yu et al., 2015). Propo-

sition 4.4.6 can be proved using similar techniques.

Proposition 4.4.5 is derived via a concentration argument analogous to that used

in the proof of Theorem 4.4.1. Lastly, Proposition 4.4.7 is a direct consequence of

Propositions 4.4.4 and 4.4.6.

Proposition 4.4.4. For each k, let Mk := X[k]X⊤[k] and denote its spectral de-

composition as Mk = UkDkU
⊤
k . Also let Wk := W(k), and define D̂k ∈ Rd×d as

the diagonal matrix of the d largest-magnitude eigenvalues of Wk, with Ûk ∈ RN×d

containing the corresponding eigenvectors as columns. For each k, let

U⊤
k Ûk = Sk1ΣkS

⊤
k2

be the singular value decomposition of U⊤
k Ûk. If Sk := Sk1S

⊤
k2
, then Sk ∈ O(d) and

it holds that ∥∥∥U⊤
k Ûk − Sk

∥∥∥
F
= OP

(
N−1 logkθ N

)
.

Proposition 4.4.5. For each k, let Mk,Wk and Uk be as in Proposition 4.4.4.

Then the following holds:

∥∥U⊤
k (Wk −Mk)Uk

∥∥
F
= OP

(
logkθ N

)
.

Proposition 4.4.6. For each k, let Uk be as in Proposition 4.4.4. Then the fol-

lowing holds: ∥∥∥ÛkÛ
⊤
k −UkU

⊤
k

∥∥∥
F
= OP

(
N−1 logkθ N

)∥∥∥Ûk −UkU
⊤
k Ûk

∥∥∥
F
= OP

(
N−1 logkθ N

)
Proposition 4.4.7. For each k, let Dh, D̂k and Sk be as in Proposition 4.4.4. Then

the following holds: ∥∥∥SkD̂k −DkSk

∥∥∥
F
= OP

(
logkθ N

)
,∥∥∥SkD̂

1/2
k −D

1/2
k Sk

∥∥∥
F
= OP

(
N−1/2 logkθ N

)∥∥∥SkD̂
−1/2
k −D

−1/2
k Sk

∥∥∥
F
= OP

(
N−3/2 logkθ N

)
.

We now state and prove the proposition that characterizes the behavior of the

remainders that will appear in the proof of Theorem 4.4.1.

Proposition 4.4.8. For each fixed integer k ≥ 0, let Wk := W(k). Also let Mk :=

X[k]X⊤[k] and denote its spectral decomposition as Mk = UkDkU
⊤
k . Let Sk ∈ O(d)

80

be as in Proposition 4.4.4 and define Rk1, Rk2, Rk3 and Rk4 as

Rk1 = Uk

(
U⊤

k ÛkD̂
1/2
k −D

1/2
k Sk

)
,

Rk2 =
(
I−UkU

⊤
k

)
(Wk −Mk)

(
Ûk −UkSk

)
D̂

−1/2
k ,

Rk3 = −UkU
⊤
k (Wk −Mk)UkSkD̂

−1/2
k ,

Rk4 = (Wk −Mk)Uk

(
SkD̂

−1/2
k −D

−1/2
k Sk

)
.

Then the following holds:

∥Rk1∥2→∞ = OP
(
N−1 logkθ N

)
,

∥Rk2∥2→∞ = OP
(
N−3/2 log2kθ N

)
,

∥Rk3∥2→∞ = OP
(
N−1 logkθ N

)
,

∥Rk4∥2→∞ = OP
(
N−3/2 log2kθ N

)
.

Proof. In order to bound Rk1 = Uk

(
U⊤

k ÛkD̂
1/2
k −D

1/2
k Sk

)
, note that:

∥Rk1∥2→∞ ≤ ∥Uk∥2→∞

∥∥∥U⊤
k ÛkD̂

1/2
k −D

1/2
k Sk

∥∥∥
2

≤ ∥Uk∥2→∞

(∥∥∥(U⊤
k Ûk − Sk

)
D̂

1/2
k

∥∥∥
F
+
∥∥∥SkD̂

1/2
k −D

1/2
k Sk

∥∥∥
F

)
.

Since UkD
1/2
k = X[k]Qk with Qk ∈ O(d), we have that

∥Uk∥2→∞ ≤ ∥X[k]∥2→∞

∥∥∥D−1/2
k

∥∥∥
2
.

Since the inner product between the rows of X[k] equals the k-th moment of some

random variable–which, by the definition of our model, we assume to be finite for

all k–this implies that all rows of X[k] (which lie in Rd) must have bounded norm.

Therefore, ∥X[k]∥2→∞ is finite and does not depend on N . In Lemma 4.A.1 of

Appendix 4.A, we show that Assumption 2 implies all nonzero eigenvalues of Mk

are ΘP (N), so
∥∥∥D−1/2

k

∥∥∥
2
= OP

(
N−1/2

)
. Consequently, ∥Uk∥2→∞ = OP

(
N−1/2

)
.

Combining this with Propositions 4.4.4 and 4.4.7 yields the desired bound for Rk1 .

In a similar vein, for Rk3 = −UkU
⊤
k (Wk −Mk)UkSkD̂

−1/2
k it holds:

∥Rk3∥2→∞ ≤ ∥Uk∥2→∞

∥∥∥U⊤
k (Wk −Mk)UkSkD̂

−1/2
k

∥∥∥
2

≤ ∥Uk∥2→∞

∥∥U⊤
k (Wk −Mk)Uk

∥∥
F

∥∥∥D̂−1/2
k

∥∥∥
2
.

Using Proposition 4.4.5 and the fact that both ∥Uk∥2→∞ and
∥∥∥D̂k

∥∥∥
2
are OP

(
N−1/2

)
(the latter being a consequence of Assumptions 2 and 3, as shown in Lemma 4.A.2

81

of Appendix 4.A) then implies that ∥Rk3∥2→∞ is OP
(
N−1 logkθ N

)
, as desired.

Regarding Rk4 = (Wk −Mk)Uk

(
SkD̂

−1/2
k −D

−1/2
k Sk

)
we have that:

∥Rk4∥2→∞ ≤ ∥Wk −Mk∥∞
∥∥∥Uk

(
SkD̂

−1/2
k −D

−1/2
k Sk

)∥∥∥
2→∞

≤
√
N∥Wk −Mk∥2∥Uk∥2→∞

∥∥∥SkD̂
−1/2
k −D

−1/2
k Sk

∥∥∥
2
,

where in the second inequality we have used that ∥A∥∞ ≤ √n∥A∥2 for all

A ∈ Rn×m. Using Lemma 4.4.3 and Proposition 4.4.7 together with the fact that

∥Uk∥2→∞ is OP
(
N−1/2

)
then shows the desired bound for Rk4 .

This leaves us with the task of bounding the 2 → ∞ norm of Rk2 , which we

remind the reader is defined as:

Rk2 =
(
I−UkU

⊤
k

)
(Wk −Mk)

(
Ûk −UkSk

)
D̂

−1/2
k

Therefore:

∥Rk2∥2→∞ ≤
∥∥I−UkU

⊤
k

∥∥
2→∞∥Wk −Mk∥2

∥∥∥Ûk −UkSk

∥∥∥
2

∥∥∥D̂−1/2
k

∥∥∥
2

(4.7)

For the first term we have that:

∥∥I−UkU
⊤
k

∥∥
2→∞ ≤ ∥I∥2→∞ +

∥∥UkU
⊤
k

∥∥
2→∞ ≤ 1 + ∥Uk∥2→∞

∥∥U⊤
k

∥∥
2
.

Since
∥∥U⊤

k

∥∥
2
= ∥Uk∥2 ≤

√
N∥Uk∥2→∞ we have that

∥∥U⊤
k

∥∥
2
= OP (1) because

∥Uk∥2→∞ = OP
(
N−1/2

)
. Therefore

∥∥I−UkU
⊤
k

∥∥
2→∞ ≤ 1 +OP

(
N−1/2

)
= OP (1) .

Also note that:∥∥∥Ûk −UkSk

∥∥∥
2
≤
∥∥∥Ûk −UkU

⊤
k Ûk

∥∥∥
2
+
∥∥∥Uk

(
U⊤

k Ûk − Sk

)∥∥∥
2

≤
∥∥∥Ûk −UkU

⊤
k Ûk

∥∥∥
2
+ ∥Uk∥2

∥∥∥U⊤
k Ûk − Sk

∥∥∥
2
.

By Proposition 4.4.6 the first term is OP
(
N−1 logkθ N

)
, whereas the second term is

OP
(
N−1 logkθ N

)
because ∥Uk∥2 = OP (1) and

∥∥∥U⊤
k Ûk − Sk

∥∥∥
2
is OP

(
N−1 logkθ N

)
by virtue of Proposition 4.4.4. Therefore:∥∥∥Ûk −UkSk

∥∥∥
2
= OP

(
N−1 logkθ N

)
.

Combining this with Lemma 4.4.3 and the fact that
∥∥∥D̂−1/2

k

∥∥∥
2
is OP

(
N−1/2

)
,

from (4.7) we conclude ∥Rk2∥2→∞ = OP
(
N−3/2 log2kθ N

)
, which finalizes the proof.

82

Using this proposition, we are now ready to prove Theorem 4.4.1.

Proof of Theorem 4.4.1. First, assume X[k] = UkD
1/2
k . Fix Sk ∈ O(d) such

that Proposition 4.4.8 holds. Since X̂[k] = ÛkD̂
1/2
k , we have that:

X̂[k]−X[k]Sk = ÛkD̂
1/2
k −UkD

1/2
k Sk

=ÛkD̂
1/2
k −UkU

⊤
k ÛkD̂

1/2
k +Uk

(
U⊤

k ÛkD̂
1/2
k −D

1/2
k Sk

)
= ÛkD̂

1/2
k −UkU

⊤
k ÛkD̂

1/2
k +Rk1 ,

where Rk1 is defined as in Proposition 4.4.8.

Note that ÛkD̂k = WkÛk, which implies that ÛkD̂
1/2
k = WkÛkD̂

−1/2
k . So:

X̂[k]−X[k]Sk =WkÛkD̂
−1/2
k −UkU

⊤
k WkÛkD̂

−1/2
k +Rk1

=WkÛkD̂
−1/2
k −MkÛkD̂

−1/2
k +MkÛkD̂

−1/2
k +

−UkU
⊤
k WkÛkD̂

−1/2
k +Rk1

= (Wk −Mk) ÛkD̂
−1/2
k +UkU

⊤
k MkÛkD̂

−1/2
k

−UkU
⊤
k WkÛkD̂

−1/2
k +Rk1

(4.8)

=
(
I−UkU

⊤
k

)
(Wk −Mk) ÛkD̂

−1/2
k +Rk1 , (4.9)

where in (4.8) we have used the fact that Mk = UkU
⊤
k Mk. From (4.9) we find that:

X̂[k]−X[k]Sk =
(
I−UkU

⊤
k

)
(Wk −Mk)

(
UkSk −UkSk + Ûk

)
D̂

−1/2
k +Rk1

= (Wk −Mk)UkSkD̂
−1/2
k +Rk1 +Rk2 +Rk3

= (Wk −Mk)Uk

(
D

−1/2
k Sk + SkD̂

−1/2
k −D

−1/2
k Sk

)
+

+Rk1 +Rk2 +Rk3

= (Wk −Mk)UkD
−1/2
k Sk +Rk1 +Rk2 +Rk3 +Rk4 , (4.10)

with Rk2 ,Rk3 and Rk4 defined as in Proposition 4.4.8. By said proposition, we

conclude that∥∥∥X̂[k]−X[k]Sk

∥∥∥
2→∞

≤
∥∥∥(Wk −Mk)UkD

−1/2
k Sk

∥∥∥
2→∞

+OP
(
N−1 logkθ(N)

)
.

Since ∥AB∥2→∞ ≤ ∥A∥2→∞∥B∥2, we have:∥∥∥X̂[k]−X[k]Sk

∥∥∥
2→∞

≤∥(Wk −Mk)Uk∥2→∞

∥∥∥D−1/2
k

∥∥∥
2
+OP

(
N−1 logkθ(N)

)
83

≤∥(Wk −Mk)Uk∥2→∞OP
(
N−1/2

)
+OP

(
N−1 logkθ(N)

)
.

(4.11)

To bound the term ∥(Wk −Mk)Uk∥2→∞, we first note that each entry of that

matrix is a linear combination of centered, sub-Weibull rvs. Indeed,

[(Wk −Mk)Uk]ij =
N∑
l=1

(Wil −Mil)Ulj =
∑
l ̸=i

(Wil −Mil)Ulj −MiiUii,

where we denote the (i, j) element of Wk, Mk, and Uk by Wij, Mij, and Uij,

respectively. Since the sum in the rightmost term consists of centered, independent

sub-Weibull rvs of parameter kθ, using Proposition 4.4.2 we find that, for large

enough t:

P
[∣∣∣[(Wk −Mk)Uk]ij

∣∣∣ ≥ t
]
≤ 2exp

((
t

K2

)1/(kθ)

N (kθ−1)/(kθ)

)
,

for some constant K2 > 0 depending on kθ. By choosing t = K2 log
kθ N we get that

[(Wk −Mk)Uk]ij is OP
(
logkθ N

)
, and by summing over j = 1, . . . , d we get that

each row of (Wk −Mk)Uk is also OP
(
logkθ N

)
, so its 2→∞ norm is of the same

order.

Equation (4.11) then implies that∥∥∥X̂[k]−X[k]Sk

∥∥∥
2→∞

= OP
(
N−1/2 logkθ N

)
+OP

(
N−1 logkθ(N)

)
= OP

(
N−1/2 logkθ N

)
.

Choosing Qk = S⊤
k shows that

∥∥∥X̂[k]Qk −X[k]
∥∥∥
2→∞

= OP
(
N−1/2 logkθ N

)
, as de-

sired.

If X[k] ̸= UkD
1/2
k , we have that X[k]Tk = UkD

1/2
k for some Tk ∈ O(d). Note

that the above calculations imply that∥∥∥X̂[k]−UkD
1/2
k Sk

∥∥∥
2→∞

= OP
(
N−1/2 logkθ N

)
.

Therefore, in this case it is enough to choose Qk = S⊤
k T

⊤
k ∈ O(d), since∥∥∥X̂[k]Qk −X[k]

∥∥∥
2→∞

=
∥∥∥(X̂[k]−X[k]TkSk)Qk

∥∥∥
2→∞

≤
∥∥∥X̂[k]−UkD

1/2
k Sk

∥∥∥
2→∞

.

84

4.4.2 Asymptotic Normality

Next, we show that latent positions behave, asymptotically as N → ∞, as multi-

variate normal random variables. We also explicitly calculate the covariance matrix

of such a normal in terms of the second-moment matrix ∆k of the latent positions

and the latent positions themselves.

Theorem 4.4.2. Let (W,Xk) ∼ WRDPG(F) be as in Theorem 4.4.1. For each

index k, define the variance function vk : Rd × Rd 7→ R as

vk(x,y) := var
[
W k

ij

∣∣xi[k] = x,xj[k] = y
]
,

where Wij is the (i, j) entry of W. Let Σk : Rd 7→ Rd×d be the covariance function

Σk(x) = ∆−1
k E

[
vk(x,yk)yky

⊤
k

]
∆−1

k ,

where {yk}k≥0 ∼ F and ∆k is the second-moment matrix ∆k = E
[
yky

⊤
k

]
.

Then for each k there exists a sequence of orthogonal matrices {QkN}N≥0 such

that for all z ∈ Rd and for any fixed row index i,

lim
N→∞

P
[
N1/2

(
X̂[k]QkN −X[k]

)⊤
i
≤ z

∣∣∣xi[k] = x

]
= Φ(z;Σk(x)),

where Φ(·;Σ) stands for the cumulative distribution function of a N (0,Σ) random

vector.

Proof. From the proof of Theorem 4.4.1, we have that for each fixed k there exists

Sk,Tk ∈ O(d) such that for Qk = S⊤
k T

⊤
k it holds

X̂[k]Qk −X[k] =
(
X̂[k]−UkD

1/2
k Sk

)
Qk.

Also from that proof [see (4.10)], we have that

X̂[k]−UkD
1/2
k Sk = (Wk −Mk)UkD

−1/2
k Sk +Rk,

where we have defined Rk = Rk1 +Rk2 +Rk3 +Rk4 . Therefore:

N1/2
(
X̂[k]Qk −X[k]

)
= N1/2 (Wk −Mk)UkD

−1/2
k T⊤

k +N1/2RkQk. (4.12)

Using Proposition 4.4.8, we have that
∥∥N1/2RkQk

∥∥
2→∞ → 0 as N →∞. Therefore,

we can focus on the first summand in (4.12).

Recall from the proof of Theorem 4.4.1 that Tk is such that X[k]Tk = UkD
1/2
k ,

85

which implies that UkD
−1/2
k = X[k]TkD

−1
k . Thus:

N1/2 (Wk −Mk)UkD
−1/2
k T⊤

k = N1/2 (Wk −Mk)X[k]TkD
−1
k T⊤

k .

Therefore, the i-th row of the first summand in (4.12) equals:

N1/2
[
(Wk −Mk)UkD

−1/2
k T⊤

k

]⊤
i
= N1/2TkD

−1
k T⊤

k {(Wk −Mk)X[k]}⊤i

= NTkD
−1
k T⊤

k

[
N−1/2

N∑
j=1

(
W k

ij −Mij

)
xj[k]

]

= NTkD
−1
k T⊤

k

[
N−1/2

∑
j ̸=i

(
W k

ij −Mij

)
xj[k]

]
−NTkD

−1
k Tk

(
N−1/2Miixi[k]

)
,

(4.13)

where as before we denote the (i, j) element of W and Mk by Wij and Mij, respec-

tively. Conditioning on xi[k] = x, we have that for the second term in (4.13)

∥∥NTkD
−1
k Tk

(
N−1/2Miixi[k]

)∥∥
2
≤ N1/2|Mii|

∥∥TkD
−1
k Tk

∥∥
2→∞∥x∥2

≤ N1/2|Mii|
∥∥D−1

k

∥∥
2
∥x∥2,

where in the second inequality we have used that ∥A∥2→∞ ≤ ∥A∥2 and ∥Tk∥2 = 1

because Tk ∈ O(d). Because
∥∥D−1

k

∥∥
2
= OP (N

−1), we conclude that the second

term in (4.13) is OP
(
N−1/2

)
.

As for the first term in (4.13), conditional on xi[k] = x we have that Mij =

x⊤xj[k], so the terms in the sum

N−1/2
∑
j ̸=i

(
W k

ij −Mij

)
xj[k]

are centered, independent random variables, whose covariance matrix is

Σ̃k(x) = E
[
vk(x,yk)yky

⊤
k

]
,

where {yk}k≥0 ∼ F . Therefore, the multivariate central limit theorem implies that

N−1/2
∑
j ̸=i

(Wij −Mij)xj[k]
L−→ N (0, Σ̃k(x)).

To conclude the proof, recall that Tk ∈ O(d) is such that X[k]Tk = UkD
1/2
k , so

86

X[k] = UkD
1/2
k T⊤

k and therefore X⊤[k]X[k] = TkDkT
⊤
k . This implies that

(
X⊤[k]X[k]

)−1
= TkD

−1
k T⊤

k ,

and therefore by the law of large numbers we have that almost surely it holds

NTkD
−1
k T⊤

k →∆−1
k .

This implies that the first term in (4.13) converges in distribution to a multivariate

normal N (0,Σ(x)), which completes the proof.

Remark 4.4.3. The covariance function in Theorem 4.4.2 depends on vk(x,y),

which is the conditional variance of W k
ij given xi[k] = x and xj[k] = y. Therefore,

we can rewrite vk as

vk(x,y) = E
[
(W k

ij)
2
∣∣xi[k] = x,xj[k] = y

]
− E

[
W k

ij

∣∣xi[k] = x,xj[k] = y
]2

= E
[
W 2k

ij

∣∣xi[k] = x,xj[k] = y
]
− (x⊤y)2,

since the WRDPG model by definition imposes E
[
W k

ij

∣∣xi[k] = x,xj[k] = y
]
= x⊤y.

The expectation of W 2k
ij need not have a closed-form expression given xi[k] = x

and xj[k] = y. However, if we further condition on the events xi[2k] = x2 and

yi[2k] = y2, we have that E
[
W 2k

ij

]
= x⊤

2 y2. Therefore, by conditioning on xi[k] = x1

and xi[2k] = x2 we have the following Corollary of Theorem 4.4.2.

Corollary 4.4.3. Let (W,Xk) ∼ WRDPG(F) be as in Theorem 4.4.1. Then for

each k there exists a sequence of orthogonal matrices {QkN}N≥0 such that for all

z ∈ Rd and for any fixed row index i,

lim
N→∞

P
[
N1/2

(
X̂[k]QkN −X[k]

)⊤
i
≤ z

∣∣∣xi[k] = x1, xi[2k] = x2

]
= Φ(z,Σk(x1,x2)),

where Σk : Rd × Rd 7→ Rd×d is the covariance function

Σk(x1,x2) = ∆−1
k E

[(
x⊤
2 y2k − (x⊤

1 yk)
2
)
yky

⊤
k

]
∆−1

k ,

and {yk}k≥0 ∼ F .

As seen in a previous example in this chapter, when the random graph follows

a weighted stochastic block model (WSBM) with C classes, for each moment index

k there are at most C distinct latent positions that a node can assume. We denote

87

these positions by ym[k], for m = 1, . . . , C. Assume that each node belongs to class

m with probability πm, and define the vector π = [π1, π2, . . . , πC]
⊤. Let B ∈ RC×C

be the matrix of edge-formation probabilities between classes–that is, the entry blm

in position (l,m) gives the probability that an edge exists between a node in class

l and a node in class m. Let dlm denote the probability distribution governing the

edge weights between nodes in communities l and m, with mlm[k] denoting its k-th

moment.

Under these conventions, each entry of the weighted adjacency matrix W is

either zero with probability 1−π⊤Bπ, or drawn from dlm with probability πlπmblm.

In this setup, the following corollary of Theorem 4.4.2 holds:

Corollary 4.4.4. With the above notation, for each moment index k here exists a

sequence of orthogonal matrices {QkN}N≥0 such that for all z ∈ Rd and for any fixed

row index i,

lim
N→∞

P
[
N1/2

(
X̂[k]QkN −X[k]

)⊤
i
≤ z

∣∣∣ node i belongs to community l

]
= Φ(z,Σkl),

where the covariance matrix Σkl is given by Σkl = ∆−1
k Σ̃kl∆

−1
k , with

Σ̃kl =
C∑

m=1

πm

(
blmmlm[2k]− b2lmm

2
lm[k]

)
ym[k]y

⊤
m[k]

and

∆k =
C∑

m=1

πmym[k]y
⊤
m[k].

4.5 Graph generation

So far, we have formally defined the WRDPG model and demonstrated its versatility

and discriminative power through examples. In addition, we have provided statisti-

cal guarantees for the proposed ASE-based estimation method. In this section, we

investigate how to generate graphs from the WRDPG model with latent positions

X[0],X[1], . . . ,X[K] ∈ RN×d,

where X[k] = [x1[k],x2[k], . . . ,xN [k]]
⊤. In other words, our aim is to sample the

adjacency matrix W ∈ RN×N , such that, for each pair 1 ≤ i < j ≤ N , Wij

follows a distribution whose first K + 1 moments are given by x⊤
i [k]xj[k], for all

k = 0, 1, . . . , K. The latent positions could be defined so as to match a prescribed

weight distribution, or, be estimated from real networks via the ASE.

88

In the sequel, we first consider a discrete weight distribution with finite support.

We show that the weights’ probability mass function (pmf) can be obtained in

closed form, by solving a linear system of equations with Vandermonde structure.

As we will see, our method is capable of reproducing the original characteristics of

the network. Next, we address the problem of generating samples from WRDPG

graphs with continuous weight distributions. To this end, we rely on the maximum

entropy principle to recover the probability density function (pdf) from its moments.

We develop a new primal-dual method, providing better and more robust solutions

than prior art (Saad & Ruai, 2019). Finally, we consider the case of a mixture

distribution, simultaneously reproducing the connectivity structure of a real network

and its weight distribution. Throughout, we provide supporting examples using

synthetic and real data.

4.5.1 Discrete weights distribution

We begin by deriving a solution for the case where Wij has a discrete distribution.

Suppose that the latent positions for each node are given, and Wij takes on R + 1

(known) distinct values v0, v1, . . . , vR with (unknown) probabilities p0, p1, . . . , pR.
1

To generate a WRDPG-adhering graph, we need to estimate these probabilities from

the latent position sequence. In this case, the moments for such a distribution can

be computed as

E
[
W k

ij

]
=

R∑
r=0

vkrpr = vk0p0 + vk1p1 + · · ·+ vkRpR = x⊤
i [k]xj[k] := mij[k],

where the usual convention 00 = 1 is used in case vr = 0, for some r. We then obtain

the following system of K + 1 linear equations on the pmf p = [p0, p1, . . . , pR]
⊤ ∈

[0, 1]R+1: 

p0 + p1 + · · ·+ pR = mij[0]

v0p0 + v1p1 + · · ·+ vRpR = mij[1]

v20p0 + v21p1 + · · ·+ v2RpR = mij[2]
...

...

vK0 p0 + vK1 p1 + · · ·+ vKR pR = mij[K]

⇔ Vp = m, (4.14)

1Note that both vr’s and pr’s are dependent on i, j, but that dependence has been omitted to
improve readability.

89

where m = [mij[0],mij[1], . . . ,mij[R]]⊤ ∈ RR+1 and V ∈ R(K+1)×(R+1) is the Van-

dermonde matrix

V =



1 1 . . . 1

v0 v1 . . . vR

v20 v21 . . . v2R
...

...
. . .

...

vK0 vK1 . . . vKR


.

Note that if K = R then the system (4.14) has a unique solution. So, in order to

estimate the pmf associated with edge (i, j) we need to prescribe as many moments

as there are possible values for Wij. Given the first R moments of the distribution,

we readily obtain the probabilities as p = V−1m.

While the linear system (4.14) needs to be solved for every pair (i, j), if the

distributions associated with different edges share a common support v0, v1, . . . , vR,

then V (and thus V−1) are the same across those edges, making computation of p

for the entire graph less demanding.

Example 4.5.1. To illustrate how the graph generative process works, we simulated

a two-class weighted SBM network with N = 500 nodes (350 in community 1 and

150 in community 2), and block probability matrix

B =

(
0.7 0.2

0.2 0.5

)
, (4.15)

where edge weights are sampled from a discrete distribution supported on the values

1, 2, . . . , 10, with pi = 1
18

for i ̸= 5 and p5 = 1
2
. Using (4.4), we compute the

analytical latent positions for each node, where md[k] denotes the k-th moment of

the aforementioned discrete distribution.

For each edge, we compute the finite moment sequence mij[k] = x⊤
i [k]xj[k], for

k = 0, . . . , 10. In this setup, each edge weight can take on values in {0, 1, 2, . . . ,
10}, with probabilities p0, (1 − p0)p1, (1 − p0)p2, . . . , (1 − p0)p10, where p0 is the

probability that nodes i and j are not connected. Specifically, p0 = 1− 0.7 = 0.3 if

i and j both belong to community 1, p0 = 1− 0.5 = 0.5 if both are in community 2,

and p0 = 1− 0.2 = 0.8 otherwise. Thus, edge weights are discrete random variables

with R+1 = 11 possible values, which requires 11 moments to uniquely solve (4.14).

Figure 4.7 shows the distributions of various metrics (degree, betweenness cen-

trality, geodesic distance) for 100 simulated networks generated using the above

procedure, along with the same metrics computed on a single reference network

drawn from the base model–namely, a two-block SBM with B as in (4.15), and edge

90

1000 1500
Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

p
or

ti
on

of
no

de
s

0.000 0.005 0.010
Betweenness centrality

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
ro

p
or

ti
on

of
no

de
s

0 1 2 3 4 5
Minimum geodesic distance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

p
or

ti
on

of
dy

ad
s

Figure 4.7: Comparisons between two-blocks SBMs generated from the base model
(blue line) and from the discrete density estimated from latent positions (histograms and
boxplots).

weights sampled from the above discrete distribution. Apparently, the metrics for

the network generated from the base model align closely with the distribution of

corresponding metrics computed from the sampled graphs.

Remark 4.5.1. Vandermonde matrices–particularly those constructed from mono-

mial bases–are prone to ill-conditioning, especially as the polynomial degree in-

creases, or when the support of the distribution is large. This poses significant

numerical challenges when recovering discrete distributions from moment sequences

using direct matrix inversion methods, such as solving the system (4.14). To mit-

igate this issue, we propose an alternative formulation that leverages Chebyshev

polynomials of the first kind. These polynomials are orthogonal with respect to

the weight function 1√
1−x2 on the interval [−1, 1], which endows them with superior

numerical stability and conditioning within that domain (Boyd & Gally, 2007).

Our approach is to reformulate the system (4.14) on the basis of Chebyshev

polynomials of the first kind. Each expression on the left-hand side of the system

can be interpreted as a dot product between the unknown probability vector p and

a polynomial expressed on the monomial basis {xi}, evaluated at the support points

{vr}. Since any polynomial of degree K can be expressed as a linear combination

of the first K + 1 Chebyshev polynomials, we propose to convert each monomial

xk in the system into its Chebyshev expansion. This leads to an equivalent system,

with a better conditioned Vandermonde-like matrix constructed using evaluations

of Chebyshev polynomials at {vr}.
This Chebyshev-based reformulation enhances numerical stability during re-

91

construction; an attractive feature when dealing with empirically estimated

moments, which are inevitably affected by noise due to finite sample size.

4.5.1.1 Chebyshev Polynomial Reformulation

We next provide a detailed description of the Chebyshev-based reformulation of the

moment-recovery system in (4.14). By expressing the system on the basis of Cheby-

shev polynomials of the first kind, we markedly improve the problem’s conditioning.

Transformation of monomials into Chebyshev basis

Any monomial xk of degree k ≤ K can be uniquely expanded in the Chebyshev

basis {Tj(x) : j = 0, 1, . . . , K}:

xk =
K∑
j=0

ckj Tj(x),

where the coefficients ckj are computed using recurrence relations or discrete orthog-

onality integrals. In practice, these coefficients can be precomputed up to degree K

using the recurrence:

T0(x) = 1,

T1(x) = x,

Tj+1(x) = 2xTj(x)− Tj−1(x), j ≥ 1,

and the identity relating monomials to Chebyshev polynomials (e.g., via trigono-

metric definitions or forward recurrence).

Construction of the Chebyshev–Vandermonde matrix

Let {v0, v1, . . . , vR} denote the support points of the discrete distribution. We

define the Chebyshev–Vandermonde matrix VC ∈ R(K+1)×(R+1) with entries

(VC)kr = Tk

(
v∗r
)
, k = 0, . . . , K, r = 0, . . . , R,

where v∗r are the support points mapped into the canonical interval [−1, 1] via affine

scaling if necessary.

The moment-recovery system then becomes an equivalent system in the Cheby-

shev basis. Let C ∈ R(K+1)×(K+1) be the matrix with entries Ckj = ckj, so that the

Chebyshev-moment vector

mC = Cm

is the projection of the original moment vector m = [mij[0], . . . ,mij[K]]⊤ onto the

92

Chebyshev basis. The system in the Chebyshev basis then reads

VC p = mC.

Numerical solution and stability

Because Chebyshev polynomials constitute an orthogonal basis on [−1, 1] with
respect to the weight (1− x2)−1/2, the condition number of VC grows only polyno-

mially in K, rather than exponentially as in the monomial basis. Therefore, solving

for p via a standard least-squares or regularized inversion

p̂ = argmin
p≥0

∥VC p−m∥22

offers improved numerical stability. Additional regularization or non-negativity con-

straints may be imposed to further enhance stability and ensure valid probability

estimates.

4.5.2 Continuous weights distribution

We now move on to the case where the edge weights Wij are continuous random

variables. That is, our goal is to determine a pdf gij such that∫
Ω

xkgij(x) dx = x⊤
i [k]xj[k], for all k = 0, 1, . . . , K, (4.16)

where Ω ⊂ R denotes the (assumed known) support of the random variable Wij.

To identify a unique pdf consistent with this partial information, we turn to

the foundational work of Shore and Johnson (1980), who provided an axiomatic

justification for using the principle of maximum entropy in such settings. Their key

result shows that when one’s knowledge about a probability distribution is limited

to certain expectation values or constraints given in the form of moments, the only

consistent and unbiased method for selecting a distribution is to choose the one that

maximizes entropy subject to those constraints. This follows from a set of axioms

that any rational updating procedure should satisfy, such as consistency, uniqueness,

invariance under coordinate transformations, and system independence.

In this context, entropy refers to the differential entropy of pdf gij, namely

S(gij) = −
∫
Ω

gij(x) log gij(x) dx.

Maximizing S(gij) under the moment constraints (4.16) ensures that no additional

structure or assumptions are imposed beyond what is strictly warranted by those

constrains. Thus, following Shore and Johnson’s derivation, the maximum entropy

93

principle is not simply a heuristic, but the unique method of inference consistent

with the logical requirements of rational belief updating.

Therefore, we formulate the following primal optimization problem:

max
g∈F

S(g) s. to

∫
Ω

xkg(x) dx−mk = 0, for all k = 0, 1, . . . , K, (4.17)

where mk = x⊤
i [k]xj[k] and F denotes the space of all probability distributions

supported on Ω (as before, for clarity and to avoid notational clutter, we omit the

dependence of g and mk on indices i and j). To solve (4.17), we introduce Lagrange

multipliers λk and the Lagrangian functional1

L(g,λ) = S(g)− (λ0 − 1)

(∫
Ω

g(x) dx−m0

)
−

K∑
k=1

λk

(∫
Ω

xkg(x) dx−mk

)
,

(4.18)

where λ = [λ0, λ1, . . . , λK]
⊤ ∈ RK+1. We will find a solution to (4.17) by solving

the dual problem:

min
λ∈RK+1

d(λ), (4.19)

where d : RR+1 7→ R is the dual function

d(λ) = max
g∈F

L(g,λ).

Using the Euler-Lagrange equation for the calculus of variations we conclude that

the function gλ that extremizes L is the one that makes the functional derivative
δL(g,λ)

δg(x)
equal to zero. By differentiation, we see that such a condition amounts to

δL(g,λ)

δg(x)

∣∣∣
gλ(x)

= 0⇔ gλ(x) = exp

(
−

K∑
k=0

λkx
k

)
. (4.20)

Looking at the second variation of L(g,λ) we conclude that this gλ maximizes the

Lagrangian, so the dual function can be computed as

d(λ) = L(gλ,λ) =
K∑
k=0

λkmk +

∫
Ω

exp

(
−

K∑
k=0

λkx
k

)
dx−m0.

One can check that d(λ) is a convex function of λ0, λ1, . . . , λK (see, e.g., Kapur

1Following Kapur and Kesavan (1992) we have used λ0 − 1 as the first Lagrange multiplier for
convenience.

94

and Kesavan (1992, Example 2.3)). Since its partial derivatives are equal to

∂d(λ)

∂λk

= mk −
∫
Ω

xkgλ(x) dx

we have that whenever the gradient of d(λ) is zero, then gλ satisfies the moments

constraints (4.16). In other words, if λ∗ is a solution to the dual problem (4.19),

then the function gλ∗ given by (4.20) both maximizes the Lagrangian (4.18) and

satisfies the moments constraints (4.16), i.e., it is a solution to the primal problem

(4.17). This implies that strong duality holds for the maximum entropy problem.

Therefore, by solving the dual problem, we can recover the maximum entropy pdf we

are seeking. Since the dual objective is convex and unconstrained, it can be solved

using any standard convex optimization algorithm. In practice, we solve it using

the BFGS algorithm (Nocedal & Wright, 2006) available through SciPy’s minimize

function.

Remark 4.5.2. If a function gλ such as that in (4.20) satisfies the moments con-

straints (4.16), then it has maximum entropy among all pdfs g supported in Ω that

satisfy such constraints. Indeed, we have that, since log gλ(x) = −
∑K

k=0 λkx
k,

S(gλ) = −
∫
Ω

gλ(x) log gλ(x) dx =
K∑
k=0

λk

∫
Ω

gλ(x)x
k dx =

K∑
k=0

λk

∫
Ω

g(x)xk dx

= −
∫
Ω

g(x) log gλ(x) dx,

where in the third equality we have used that both gλ and g satisfy the moments

constraints (4.16). Then

S(gλ)− S(g) =

∫
Ω

g(x) log

(
g(x)

gλ(x)

)
dx = DKL(g||gλ) ≥ 0

where DKL is the Kullback-Leibler divergence.

Example 4.5.2. We showcase our method by testing its ability to recover an ex-

ponential distribution from its first four moments. Since the pdf of an exponential

random variable with parameter α is αe−αx, it can be written in the form of (4.20)

by setting λ0 = − logα, λ1 = α and λk = 0 for all k ≥ 2, so we can check whether

the Lagrange multipliers λk obtained with our gradient descent solution are close to

these values. The results for an exponential random variable with parameter α = 2

are depicted in Figure 4.8, where we show the λk’s upon convergence of our GD

algorithm for 100 random initializations of λ. We also show the Lagrange multi-

95

0 1 2 30 1 2 3
Lagrange multipliers

0.5

0.0

0.5

1.0

1.5

2.0
i v

al
ue

s
True i

Gradient descent
PyMaxEnt

Exponential pdf estimation with maximum entropy

Figure 4.8: Box plots of Lagrange multipliers for maximum entropy estimation of an
exponential rv distribution via our dual approach (red) and the method from Saad and
Ruai (2019) (PyMaxEnt, green) for 100 random initializations. Our approach always
converges to the true value, while PyMaxEnt does not.

pliers obtained with the method proposed in Saad and Ruai (2019). In that work,

the authors estimate λ by using Newton’s method to approximate the solutions of

the system of nonlinear equations that arises from imposing that the function gλ in

(4.20) satisfies the moments constraints (4.16), i.e., the system∫
Ω

xk exp
(
−λ0 − λ1x− λ2x

2s− · · · − λRx
K
)
dx = mk ∀ k = 0, . . . , K.

As shown in Figure 4.8 the Lagrange multipliers that we obtain using this ap-

proach are, most of the time, quite far from the actual values. This is because

Newton’s method is sensitive to initialization and heavily relies on having an initial

guess that lies on the solution’s basin of attraction. Our method, in contrast, always

converges to the true solution. That is because our dual function is convex, so as

long as the maximum entropy problem has a solution our method will converge to

it no matter where it starts.

Remark 4.5.3. This maximum entropy approach can be easily modified to accom-

modate discrete distributions. This is useful when we have access to fewer moments

than the amount of symbols the discrete random variable takes, in which case we

can no longer use the procedure described in Section 4.5.1.

Assuming that our random variable takes on the values v0, . . . , vR, we wish to

96

find its corresponding probabilities p0, . . . , pR by maximizing Shannon’s entropy

S(p0, . . . , pR) = −
R∑

r=0

pr log pr

subject to the moments constrains

R∑
r=0

vkrpr = mk ∀k = 0, . . . , K.

We define the Lagrangian in analogy to (4.18) and by differentiation we find that

it has a maximum when pr = exp
(
−∑K

k=0 λkv
k
r

)
. Thus, the dual function can be

computed as:

d(λ) =
K∑
k=0

λkmk +
R∑

r=0

exp

(
−

K∑
k=0

λkv
k
r

)
−m0,

which, as before, is a convex function of λ0, . . . , λK . Therefore, we can find its

minimizer using any standard convex optimization algorithm and from it compute

the pr’s that maximize Shannon’s entropy.

Example 4.5.3. To further illustrate the flexibility of the proposed graph genera-

tion method, we consider a two-block weighted SBM network with N = 500 nodes,

comprising 350 nodes in community 1 and 150 nodes in community 2. The block

probability matrix is given by

B =

(
1 1

1 1

)
,

which implies that the graph is fully connected. This setup is chosen because assign-

ing probabilities strictly less than one would introduce a point mass at zero in the

edge-weight distribution, thereby resulting in a mixture distribution – a setup which

we address in the next section. Edge weights are sampled from distinct continuous

distributions depending on the community membership of the connected nodes: for

intra-community edges within community 1, weights follow a normal distribution

N (6, 1); for intra-community edges within community 2, weights follow an exponen-

tial distribution with rate parameter λ = 1
3
; and for inter-community edges, weights

follow a normal distribution N (1, 0.01). Using (4.4), we compute the analytical

latent positions for each node, where md[k] now denotes the k-th moment of the

corresponding distribution associated with each block. Edge weights thus arise from

a mixture of three distributions, leading to a richer moment structure.

97

750 1000 1250 1500 1750 2000 2250
Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
or

ti
on

of
no

de
s

0 1
Minimum geodesic distance

0.1

0.2

0.3

0.4

0.5

P
ro

p
or

ti
on

of
dy

ad
s

Figure 4.9: Comparisons between two-block SBMs generated from the base model (blue
line) and from the pdf estimated with our method for solving the maximum entropy
problem from latent positions (histogram and boxplot). Since in this setup graphs are
fully connected, we do not report results for betweenness centrality.

As before, for each edge we compute the finite moment sequence mij[k] =

x⊤
i [k]xj[k], for k = 0, . . . , 5. We approximate the underlying edge-weight dis-

tributions using those first six moments, estimating them via the maximum en-

tropy principle by solving the previously derived dual problem. Figure 4.9 dis-

plays network-wide distributions of summary statistics (degree and geodesic dis-

tance) for 100 networks generated using this procedure, alongside the correspond-

ing metrics of a single network sampled directly from the base model, i.e., a

two-class, fully connected weighted SBM, and edge weights sampled according

to the aforementioned mixture of continuous distributions. The metric distri-

butions computed from the base model are in close agreement with those ob-

tained from the generated graphs, thus validating the accuracy of the moment-

based generation process in the presence of heterogeneous weight distributions.

4.5.3 Mixed weights distribution

We now focus on the case where the weights’ distribution is a mixture of discrete

and continuous components, with its pdf having the form

gij(x) = pij0 δ(x) + (1− pij0)hij(x) (4.21)

where δ(x) is Dirac’s delta, hij(x) is an unknown pdf and pij0 ∈ [0, 1] is an unknown

parameter that controls the edge-formation probability between nodes i and j . If pij0

98

were known, we could estimate hij from the prescribed momentsmij[k] = x⊤
i [k]xj[k],

since

mij[0] = pij0 + (1− pij0)

∫
Ω

hij(x) dx,

mij[k] = (1− pij0)

∫
Ω

xkhij(x) dx, ∀ k ≥ 1,

where Ω is the support of hij(x). This implies that we are looking for a pdf hij with

moments ∫
Ω

hij(x) dx =
mij[0]− pij0

1− pij0
,∫

Ω

xkhij(x) dx =
mij[k]

1− pij0
, ∀ k ≥ 1,

so we can use the procedure in Section 4.5.2 to find hij by maximizing its entropy.

In order to estimate pij0 , we propose to simultaneously estimate it for every edge

via the ASE of the binary matrix A := I {W > 0}, where I {·} denotes the entry-

wise matrix indicator function, i.e., Aij := I {Wij > 0}. This estimator can be

justified by noting that E [Aij] = 1− pij0 . Indeed,

E [Aij] =

∫
Ω

I {Wij > 0}g(x) dx =

∫
Ω

(1− pij0)hij(x) dx = 1− pij0 ,

where we have assumed that Ω ⊂ R+. Let X̂A denote the ASE of A. Then, in light

of our consistency result in Section 4.4.1, matrix P̂ := X̂AX̂
⊤
A converges to E [A] in

the ∥·∥∞ sense, as N →∞.

Example 4.5.4 (Reproducing real networks.). In this example the latent posi-

tions are not given and instead we estimate them from a real graph that is observed.

As a result, now the input is a finite sequence of approximate moments. We study a

dataset that records football matches between national teams (Li & Mateos, 2022).

For a given time period, we construct a graph in which nodes represent countries,

and an edge exists between two countries if they have played at least one match

against each other during that period. The edge weight corresponds to the number

of matches played between them. Next, we compute the latent positions for the edge

weight distribution by performing the ASE of W(k), where W(k) denotes the k-th

entry-wise power of the weight matrix W, with k ranging from 0 to a prespecified

value K. Using these latent positions, we compute a finite moment sequence for

each edge via the corresponding inner product and estimate its density using the

procedure described earlier in this section.

99

0 50 100
Degree

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
Pr

op
or

tio
n

of
 n

od
es

0.00 0.02 0.04
Betweenness centrality

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 n
od

es
0 1 2 3 4 5 6 7 8 9 10

Minimum geodesic distance

0.0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n
of

 d
ya

ds

Figure 4.10: Graph generation metrics the football dataset Li and Mateos (2022). Met-
rics for the true graph are shown with a blue solid line, while a histogram or a boxplot
shows the results for the corresponding metric for 100 synthetic graphs generated using
the estimated mixed densities.

By assuming a mixture-like density as in (4.21), we explicitly model the sparsity

pattern of the football network. This approach enables us to generate synthetic net-

works that both conform to the observed sparsity pattern and exhibit edge weights

that closely mimic those of the actual network. Figure 4.10 shows several metrics for

the actual network of football matches during the period 2010–2016, alongside the

corresponding metrics for 100 synthetically-generated networks using the aforemen-

tioned pdf estimation plus weighted graph sampling procedure. For this example,

we used K = 2, meaning that the zeroth, first, and second moments were employed

for density estimation.

To further demonstrate the quality of the generated graphs, we conducted a

community structure analysis. Since matches between countries belonging to the

same football confederation are more frequent, one would expect to observe a clear

community structure in the real network, with clusters roughly corresponding to

confederations. This can be verified by looking at Figure 4.11, where we show the

results of applying the classic Louvain clustering algorithm (Blondel et al., 2008) to

the real graph. The algorithm detects as many clusters as there are confederations

(six), with community membership reflecting, most of the times, the actual confed-

erations teams belong to: for example, Australia is geographically in Oceania, but

is a member of the Asian Football Confederation (AFC). The only major discrep-

ancy is in North and Central America: while the countries in those subcontinents

belong to the Confederation of North, Central America and Caribbean Association

Football (CONCACAF), they are clustered together with southern countries, which

100

Figure 4.11: Result of applying the Louvain algorithm Blondel et al. (2008) to the
network of international football matches. Nodes with the same color belong to the same
community.

belong to the South American Football Confederation (CONMEBOL). This might

be because the former are often invited to participate in CONMEBOL’s flagship

tournament, the Copa América, inflating the amount of games they play against

CONMEBOL members. The fact that most Caribbean members of CONCACAF

belong to a separate cluster further strenthengs this hypothesis, since they rarely

play in the Copa América.

We then ran the Louvain algorithm on the simulated networks and compared the

results with those of the real network; see the results in Figure 4.12. On the left panel

we show a histogram of the amount of communities in the synthetic graph’s largest

connected component. As we can see, all graphs have either 5 or 6 communities in

that component, which is consistent with the structure we discussed perviously. And

while most graphs tend to have one community less than those in the real graph,

we found that most of the times this is because countries from Oceania tend to be

clustered with the AFC.

Besides simply looking at the amount of communities, we compared whether

clusters in the simulated graphs matched those of the real network. To that end,

we computed three different metrics of cluster agreement between each synthetic

graph and the real one. Those metrics were V-measure (Rosenberg & Hirschberg,

2007), the Adjusted Rand Index (Hubert & Arabie, 1985), and the Adjusted Mutual

Information (Vinh et al., 2009). On the right panel of Figure 4.12 we show a boxplot

101

5.0 5.5 6.0
Number of communities in lcc

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n
of

 g
ra

ph
s

V-measure ARI AMI
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Sc
or

e
va

lu
e

Figure 4.12: Comparisons between community structure of the real football matches
network and its synthetic replicates. Left: histogram of number of communities in the
largest connected component (lcc) for synthetic graphs. Right: Boxplot for three metrics
of clustering agreement between real and synthetic networks: V-measure, Adjusted Rand
Index (ARI) and Adjusted Mutual Information (AMI).

for each metric. Apparently, the overall community structure in the synthetic graphs

follows closely that of the actual network.

Remark 4.5.4. Since the estimation of pij0 is based on the consistency result from

Section 4.4.1, which guarantees convergence as the number of nodes N → ∞,

the finite size of the graph introduces a non-negligible finite-sample deviation.

This deviation partially accounts for the (arguably quite minor) discrepancies ob-

served in the metrics shown in Figure 4.10, underscoring the method’s robustness.

4.6 Concluding remarks

We developed the Weighted RDPG (WRDPG) model, which extends the vanilla

RDPG framework to effectively capture the intricacies of weighted graphs charac-

terized by heterogeneous edge weight distributions. Our approach assigns latent po-

sitions to nodes, parameterizing edge weight distributions’ moments using moment-

generating functions. This innovative modeling strategy enhances the WRDPG’s

capability to distinguish between weight distributions that may have the same mean

but differ in higher-order moments, thus providing a richer representation of network

data than previous attempts to weighted RDPG modeling. We derived statistical

guarantees (consistency and asymptotic normality) for our estimator of latent po-

sitions, leveraging the well-established adjacency spectral embedding method. Fur-

thermore, we developed a generative framework that approximates desired weight

102

distributions from a given (or estimated) latent position sequence and facilitates

sampling synthetic graphs that closely mimic the structure and characteristics of

real-world networks. Through a series of illustrative examples, we have demon-

strated the effectiveness of the WRDPG model in practical applications. We show

how our model can recover latent position structures and replicate key graph met-

rics, exhibiting a discriminative power essential for community detection tasks. We

have also shown that the model accommodates various edge weight distributions,

ranging from discrete to continuous, or even mixed random variables. To achieve this

versatility, we developed an improved computational method to estimate a continu-

ous density by maximizing the entropy subject to moment constraints. This result

is of independent interest and could permeate benefits in other, broader contexts.

The findings of this study highlight the importance of incorporating higher-order

moments in graph models, contributing to the methods of inference and generation

in network data analysis.

Appendix 4.A: Consequences of Assumptions 2 and

3 regarding the largest eigenvalues of Mk and Wk

In this appendix, we show that Assumptions 2 and 3 for the WRDPG model imply

that for all k ≥ 0, the nonzero eigenvalues of Mk := X[k]X⊤[k] are ΘP (N), and that

the same holds for the top d eigenvalues of Wk := W(k). We begin by proving this

for Mk. The proof scheme follows that of (Sussman et al., 2014, Proposition 4.3).

In what follows, the notation λi(A) denotes the i-th largest-magnitude eigenvalue

of matrix A.

Lemma 4.A.1. Let (W,Xk) ∼ WRDPG(F), where F satisfies Assumption 2.

Then for all k ≥ 0 it holds that λi(Mk) = ΘP (N) for i = 1, . . . , d, while λi(Mk) = 0

for i = d+ 1, . . . , N .

Proof. That λi(Mk) = 0 for i = d + 1, . . . , N is immediate since Mk = X[k]X⊤[k],

so Mk is a N ×N matrix with rank at most d. For i = 1, . . . , d, note that

λi(Mk) = λi(X[k]X⊤[k]) = λi(X
⊤[k]X[k]).

Now, each entry of X⊤[k]X[k] is:

(X⊤[k]X[k])ij =
N∑
l=1

(xl[k])i (xl[k])j ,

where (xl[k])i denotes the i-th entry of vector xl[k]. Then (X⊤[k]X[k])ij is a sum of

103

independent random variables, each with expectation E
[
(xl[k])i (xl[k])j

]
= (∆k)ij,

where (∆k)ij is the (i, j) entry of the second moment matrix ∆k from Assumption

2. Since, for each k, the inner product between the rows of X[k] equals the k-th

moment of some random variable–which, by the definition of our model, we assume

to be finite for all k–it follows that all rows of X[k] (which lie in Rd) must have

bounded norm, with a bound that does not depend on N . Therefore, each term in

the above sum is bounded by some constant Lk > 0, so by Hoeffding’s inequality

(Vershynin, 2018, Theorem 2.6.2) we have that:

P
(∣∣(X⊤[k]X[k])ij −N(∆k)ij

∣∣ ≥ t
)
≤ 2 exp

(−2t2
N2L2

k

)
.

Choosing t = Lk√
2
N1/2 log1/2N then shows that

∣∣(X⊤[k]X[k])ij −N(∆k)ij
∣∣ = OP

(
N1/2 log1/2N

)
.

Taking a union bound then shows that
∥∥X⊤[k]X[k]−N∆k

∥∥
F

is also

OP

(
N1/2 log1/2N

)
, and since the spectral norm is dominated by the Frobenius

norm, we have
∥∥X⊤[k]X[k]−N∆k

∥∥
2
= OP

(
N1/2 log1/2N

)
. A corollary of Weyl’s

inequality (Horn & Johnson, 2012, Corollary 7.3.5) then implies that:

∣∣λi

(
X⊤[k]X[k]

)
−Nλi(∆k)

∣∣ = OP

(
N1/2 log1/2N

)
.

Since λi(∆k) = ΘP (1), this in turn implies that λi

(
X⊤[k]X[k]

)
= ΘP (N), which

completes the proof.

The next lemma shows that, under Assumptions 2 and 3, the top d eigenvalues

of Wk are ΘP (N), while the remaining ones are within logkθ N of zero with high

probability.

Lemma 4.A.2. Let (W,Xk) ∼WRDPG(F), where F satisfies Assumption 2 and

W satisfies Assumption 3. Then, for all k ≥ 0 it holds that λi(Wk) = ΘP (N) for

i = 1, . . . , d, while λi(Wk) = OP
(
logkθ N

)
for i = d+ 1, . . . , N .

Proof. Again, by (Horn & Johnson, 2012, Corollary 7.3.5) we have that:

|λi (Wk)− λi (Mk)| ≤ ∥Wk −Mk∥2.

Therefore, using Lemma 4.4.3 we have that |λi (Wk)− λi (Mk)| = OP
(
logkθ N

)
.

Applying Lemma 4.A.1 implies the desired result.

104

Chapter 5

Online change point detection for

network data

Online (or sequential) change-point detection (CPD) is the problem of deciding

whether (and if so when) the generating process underlying an observed data stream

has changed–see e.g., (Page, 1954) for seminal work in the context of quality control.

The goal is to flag a problem (in order to take corrective actions) as soon as

it happens, while controlling the probability of false alarm. Unlike offline or batch

processing–see e.g., (Truong et al., 2020)–, in the online CPD setting we do not have

access to the full data sequence which could well be infinitely long.

Given the ubiquity of datasets that are generated in a streaming fashion, on-

line CPD is a timely research area with applications to sensor networks (He et al.,

2018), financial markets (Keshavarz et al., 2020), or, social networks (Kaushik et al.,

2021; Peel & Clauset, 2014). As these examples suggest, data are increasingly high-

dimensional and possibly non-Euclidean. Indeed, here we will consider network data

streams in the form of graph sequences. In a nutshell, given an incoming sequence

of random (possibly weighted and directed) graphs, we want to signal if and when

the data generating mechanism changes.

5.1 Relation to prior work on online CPD for net-

work data

Sequential CPD approaches are often parametric, and follow the general premise of

minimizing detection delay subject to a constraint on the test’s type-I error. For

network data existing methods look for changes in the graphs’ distribution (He et al.,

2018; Keshavarz et al., 2020; Peel & Clauset, 2014), their topology (Kaushik et al.,

2021) and community structure (M. Zhang et al., 2020), or else the distribution of

signals supported on the nodes (Ferrari et al., 2019). Some of these (Kaushik et al.,

105

2021; Keshavarz et al., 2020; Peel & Clauset, 2014) are only applicable to undirected

graphs. A sequential non-parametric, k-nearest neighbors-based approach was de-

veloped in Chen (2019), solely requiring a pairwise distance between samples (e.g.,

the Frobenius distance between graph adjacency matrices). Unlike methods based

on generative models, said distance is prone to overlooking simple changes in network

structure; see the comparisons in Section 5.4.1. A computationally-intensive model-

based CPD effort advocates the Generalized Hierarchical Random Graph (GHRG)

model in Peel and Clauset (2014), which monitors posterior Bayes factors for all

partitions of the data over a sliding window. The approach in H. Wang et al. (2014)

is more general, as it considers the workhorse Stochastic Block Model (SBM). The

distribution of two so-termed scan statistics is derived to signal changes in the input

graph sequence.

Going beyond SBMs, the recent work (Yu et al., 2021) considers an inhomoge-

neous Bernoulli graph; whereby the existence of an edge between a pair of nodes

(i, j) is a Bernoulli random variable with probability Pij, independent of all other

pairs. Each timestep, two statistics are computed for a logarithmic grid of previ-

ous instants to check whether they exceed a certain threshold. Evaluating these

statistics requires computing the eigendecomposition of an N ×N matrix–N being

the number of graph nodes. In addition to being computationally intensive, the

algorithm in Yu et al. (2021) has to store all historical data in memory, which may

pose a major hurdle even for moderate-sized networks. The procedure offers solid

theoretical guarantees on the detection delay and average run length. Here instead

we resort to the RDPG model since its interpretability provides an attractive feature

that simplifies the explanation of the detected change-points.

5.2 Contributions and chapter outline

Building on (Kirch & Tadjuidje Kamgaing, 2015), we assume a clean historical

dataset with no change-points is available, from which we estimate the latent nodal

vectors via the ASE in an offline training phase. As new data arrive in a stream-

ing fashion during the operational phase, the novel online CPD algorithm (Section

5.3) recursively updates a monitoring function statistic whose null distribution we

characterize analytically via asymptotic arguments. In addition to providing theo-

retical guarantees on the false alarm rate of the resulting online CPD scheme, an

attractive feature is its limited memory footprint –we store a single N ×N matrix

in memory (in addition to the estimated latent vectors, naturally). Moreover, the

resulting lightweight statistic updates are an order-of-magnitude more efficient than

those based on repeated eigendecompositions. Using simplifying approximations we

derive conditions under which changes may go undetected.

106

Numerical tests in Section 5.4 corroborate the effectiveness of the proposed online

CPD method, using both simulated and real network datasets that we share in our

Github repository. Concluding remarks are outlined in Section 5.5.

The contents of this chapter are based on the paper Marenco et al., 2022. The

code to reproduce the experiments reported below is available at https://github.

com/git-artes/cpd rdpg.

5.3 Proposed approach

Our idea to develop an online CPD framework for network data is to endow se-

quential CPD techniques with a graph representation learning substrate based on

RDPGs. For clarity of exposition, we first focus on the unweighted, undirected case

before presenting the more general setting.

5.3.1 Problem statement

Suppose we acquire a batch of m independent graphs, with adjacency matrices

A1 . . . ,Am, all adhering to an RDPG with latent position matrix X ∈ RN×d, in

which all matrices stem from the same RDPG model. We will refer to that sequence

as the training data set, which is used in an offline initialization phase to estimate

model parameters from the null model. During the operational phase we observe

a (possibly infinite) sequence of streaming adjacency matrices Am+1,Am+2, . . . ,

and would like to detect at what time t > m (if any) the null model described in

(2.1) from Chapter 2 is no longer valid (i.e., drifts from the aforementioned RDPG

model represent the alternative hypothesis). We tackle this CPD problem in an on-

line fashion, meaning graph observations {Am+k}k≥1 are sequentially and efficiently

monitored as they are acquired, without having to store the whole multivariate time

series. This way, the algorithm’s computational complexity and memory footprint

does not grow with k. Another attractive feature is the possibility of detecting the

change in (pseudo) real-time, ideally soon after it occurs and with control on the

probability of false alarm (i.e., type-I error).

We will also consider generalizations of the aforementioned baseline CPD prob-

lem in order to account for weighted and directed graph sequences. This calls for

fundamentally re-examining the RDPG model to accommodate said observations

–especially in the weighted case–, as well as the associated embedding algorithms

and the overall online CPD framework.

107

https://github.com/git-artes/cpd_rdpg
https://github.com/git-artes/cpd_rdpg

5.3.2 General algorithmic framework

We build on the so-called estimating function approach for sequential CPD (Kirch

& Tadjuidje Kamgaing, 2015; Kirch & Weber, 2018), which we markedly broaden

to accommodate network data. The central notion behind this online CPD method

is to consider a monitoring function H of each streaming graph At, that should

satisfy E (H) = 0 under the null hypothesis. If one monitors a cumulative sum of

H, that quantity should intuitively remain small provided there are no changes in

the underlying model. If there is a change however, then E (H) ̸= 0 and we should

observe a drift in the trend of the sum.

As proposed in (Kirch & Tadjuidje Kamgaing, 2015) for a network-agnostic

setting, we first estimate the parameters of the underlying null RDPG model using

the training data set, i.e., we estimate the latent positions matrix X. The estimation

should be carried out with an estimating function G, where the estimated parameter

X̂ is the solution to a system of equations of the form

m∑
t=1

G(At, X̂) = 0. (5.1)

To define such a function for our problem, given the training data set we estimate

X as the ASE corresponding to the mean adjacency matrix Ā = 1
m

∑m
t=1

At.

Remark 5.3.1 (ASE variance reduction). Dispersion of ASE estimates can be

reduced if one has access to multiple observations from the underlying RDPG. In-

deed, let A1 . . . ,Am be an independent sequence of adjacency matrices, all adhering

to an RDPG with latent position matrix X ∈ RN×d. Define the mean adjacency

matrix

Ā =
1

m

m∑
t=1

At, (5.2)

and henceforth let X̂ be the ASE decomposition of Ā; i.e., the solution of

(2.2) using Ā instead of A. Since Ā is also an unbiased estimator of P and

var
[
Āij

]
= 1

m
Pij(1 − Pij), then as N → ∞ the estimated latent positions X̂ will

follow a normal distribution with variance scaled by 1
m

relative to the variance of

the ASE obtained from a single graph as in (2.2) (R. Tang et al., 2018). The

alternative of averaging individual ASEs is problematic due to the rotational am-

biguity discussed in Remark 2.2.1. Indeed, alignment of the (rotated) ASEs of a

graph collection would entail solving several Procrustes distance minimization prob-

lems, or else computing the so-termed omnibus embedding (Levin et al., 2017).

108

Taking the derivative w.r.t. X of the objective function in (2.2) (with A ← Ā)

and setting it to zero, we arrive at

m∑
t=1

(
X̂X̂⊤ −At

)
X̂ = 0,

suggesting the use of G(At, X̂) =
(
X̂X̂⊤ −At

)
X̂ as the estimating function. Ac-

cordingly, G amounts to projecting the residual X̂X̂⊤ −At onto X̂.

In order to detect a change on the underlying model during the operational

phase, we will track the cumulative sum (CUSUM) of a monitoring function H as

new adjacency matrices arrive for t ≥ m+ 1, namely

S[m, k] =
m+k∑

t=m+1

H(At, X̂).

While it is possible (and often natural) to use the same function for both estimation

and monitoring (i.e., H = G), we show in Section 5.4.1 that adopting the residual

itself instead of a projection yields in a more powerful detector. Thus, we choose

H(At, X̂) = X̂X̂⊤ −At.

We reiterate here that the matrix X̂ is computed during training, via the ASE of

the average Ā of the adjacency matrices in the training set. Once monitoring starts,

X̂ is fixed and we do not recompute the ASE for new observations.

Since all involved matrices are hollow and symmetric, we only need to consider

entries, say, above the main diagonal. It will also prove useful in the analysis that

follows to vectorize the resulting values. We thus define a vector function h as

h(At, X̂) = vec
[
triu

(
X̂X̂⊤ −At

)]
, (5.3)

where vec(triu(B)) means arranging the entries above the main diagonal of matrix

B in a vector. If B ∈ RN×N , then vec(triu(B)) ∈ Rr, with r := N(N−1)
2

.

If the norm of the partial sum

s[m, k] =
m+k∑

t=m+1

h(At, X̂) (5.4)

exceeds a certain threshold, we will conclude that the model is no longer valid. Let

us then denote our CUSUM statistic as

Γ[m, k] = ∥s[m, k]∥22.

109

Algorithm 4 Online change-point detection for RDPGs

Require: Training graphs At, t = 1 . . .m.
1: Compute the ASE X̂ of Ā in (5.2) (see Remark 5.3.1)
2: Compute threshold function cα (see Section 5.3.5)
3: Initialize partial sum s[m, 0] = 0
4: for k = 1, 2, . . . do
5: Acquire graph Am+k

6: Compute monitoring function h(Am+k, X̂)
7: Update CUSUM statistic Γ[m, k] (see Remark 5.3.2)
8: if w[k]Γ[m, k] > cα[k] then
9: Change point detected at time k∗ = k
10: break
11: end if
12: end for
13: return k∗.

In order to control the variance of Γ[m, k] as k grows, a weighting function ω[k]

is also introduced. We use ω[k] = (rk3/2)−1 and instead monitor ω[k]Γ[m, k]; the

reason for this choice is explained in the next section when we derive said variance

for the null distribution.

All in all, the null hypothesis of no change will be rejected at the first time

instant k when

ω[k]Γ[m, k] > cα[k],

where cα[k] is a certain threshold that depends on the distribution of ω[k]Γ[m, k]

under the null hypothesis and the prescribed type-I-error level α. In the next sec-

tion we will discuss how this threshold is chosen after characterizing the running

statistic’s null distribution. A pseudocode of the online CPD method including the

offline (training) and operational (monitoring) phases is tabulated under Algorithm

4.

Remark 5.3.2 (Computational complexity). Efficient recursive calculation of

the cumulative monitoring function s[m, k] = s[m, k−1]+h(Am+k, X̂) incurs O(N2)

memory storage and computational complexity. The cost of forming the weighted

CUSUM statistic ω[k]Γ[m, k] is of the same order. A single ASE is required in the of-

fline training phase to yield fixed edge probabilities estimates X̂X̂⊤. No embeddings

have to be recomputed each time a new graph is observed. To gain discriminative

power in the statistical tests we perform, an alternative would be to examine the

CUSUM statistic at every time point t ∈ [m+1, . . . ,m+k]. This comes at the price

of increased computational complexity, since it would entail computing k additional

ASEs during the monitoring phase. This computational challenge is compounded

110

with the need to derive the limiting distribution of the resulting stochastic process.

5.3.3 Statistical analysis of the null distribution

In order to select the weighting and threshold functions, we will study the distribu-

tion of our statistic under the null hypothesis. We will first develop theory for the

case when the ASE estimate is error-free, i.e., X̂X̂⊤ = XX⊤ = P. This way the

estimated latent positions allow for a perfect reconstruction of the connection prob-

ability matrix. In practice, this will be valid when m and/or N are large enough.

Since for some applications this may not be necessarily true, we will then extend

the analysis for the imperfect estimation case.

5.3.3.1 Perfect ASE estimation

In this favorable case one has1 h = vec [triu (P−At)], with E (h) = 0. The

covariance matrix ΣH = E(hh⊤) ∈ Rr×r has null non-diagonal entries since

the random variables Aij are mutually independent. The diagonal entries are

var [Aij] = Pij(1−Pij). In short, ΣH is a diagonal matrix whose nonzero entries are

pl(1−pl), l = 1, . . . , r, with pl denoting the entries of vec [triu (P)] (i.e., a reindexing

of Pij).

Given this characterization of the first two moments of h, the following propo-

sition gives the asymptotic distribution of the CUSUM statistic Γ[m, k] as k →∞.

In practice, we rely on this limiting distribution as an approximation (for finite k)

based on which we set the threshold cα[k].

Proposition 5.3.1. Suppose the perfect ASE estimation assumption X̂X̂⊤ =

XX⊤ = P holds. Then, as k → ∞ the test statistic sequence converges in dis-

tribution, namely

k−1Γ[m, k]
L→

r∑
l=1

pl(1− pl)y
2
l , (5.5)

where {yl}rl=1 are i.i.d. standard Gaussian random variables.

Proof. Invoking the Central Limit Theoreom (CLT), as k → ∞ the distribution of

k−1/2s[m, k] in (5.4) converges to a multivariate Gaussian distribution N (0,ΣH),

i.e., k−1/2s[m, k]
L→ (ΣH)

1/2y, where y is a standard Gaussian random vector.

Hence, k−1Γ[m, k] = ∥k−1/2s[m, k]∥22 also converges in distribution because

k−1Γ[m, k] = (k−1/2s[m, k])⊤k−1/2s[m, k]

1We have omitted the dependence of h on t and X̂ for clarity.

111

L→ (Σ
1/2
H y)⊤Σ

1/2
H y

= y⊤ΣHy

=
r∑

l=1

pl(1− pl)y
2
l ,

which is the desired result in (5.5).

Remark 5.3.3 (Convergence rate and network size). By bringing to bear

Berry-Essen type results for the CLT, one can establish that the distribution of

k−1Γ[m, k] converges to the limit stated in Proposition 5.3.1 at a rate O(k−1/2),

independent of r and hence the graph size N ; see e.g., (Bentkus, 2003, Theorem 1.1).

Since yl ∼ N (0, 1) then y2l ∼ χ2(1) (chi-squared distribution with one degree

of freedom). By virtue of Proposition 5.3.1 and for sufficiently large k, we can

approximate the mean and variance of Γ[m, k] as

E [Γ[m, k]] ≈ k
r∑

l=1

pl(1− pl),

var [Γ[m, k]] ≈ 2k2

r∑
l=1

p2l (1− pl)
2, (5.6)

where we have used that the {yl}rl=1 are mutually independent.

To control the growing variance of Γ[m, k], the weighting function for the perfect

ASE case can be chosen as ω[k] = (rk)−1. The threshold cα[k] is thus selected as

the (1 − α)-quantile of the limiting distribution in (5.5), which provides a type-I

error of approximately α. Next, we show that in the presence of estimation errors

the weighting function will have to be readjusted accordingly.

5.3.3.2 Imperfect ASE estimation.

In this case, we will write

X̂X̂⊤ −At = XX⊤ −At + X̂X̂⊤ −XX⊤,

where X is the true latent positions matrix (cf. P = XX⊤). Defining the estimation

error E = X̂X̂⊤ −XX⊤, then

h(At, X̂) = vec
[
triu

(
XX⊤ −At

)]
+ e, (5.7)

112

where e = vec [triu (E)] = [e1, . . . , er]
⊤. So the first term in (5.7) corresponds to a

perfect ASE, while the second one captures the estimation error stemming from an

imperfect reconstruction of P. Note that after training, e is fixed and it does not

depend on t.

Using (5.7) and by virtue of the CLT, it follows that for sufficiently large k

the distribution of s[m, k] can be well approximated by the multivariate Gaussian

N (ke, kΣH). Standard calculations for the norm of a non-centered Gaussian vector

suffice to assert that the distribution of Γ[m, k] can be in turn approximated by the

distribution of the random variable

Γ̄ = k

r∑
l=1

pl(1− pl) (yl + bl)
2 , (5.8)

where {yl}rl=1 is an independent sequence of standard Gaussian random variables and

{bl}rl=1 are the entries of vector b =
√
kΣ

−1/2
H e. Note that if the ASE estimation is

perfect, then e = 0 and we recover the distribution in Proposition 5.3.1.

For large k, using (5.8) we can approximate the expected value and variance

of Γ[m, k] as in the error-free case. The difference here is that each summand

(yl + bl)
2 ∼ χ2(1, b2l), i.e., a non-central chi-squared distribution with one degree of

freedom and parameter b2l =
k

pl(1− pl)
e2l . Hence, one finds

E (Γ[m, k]) ≈ k2∥e∥22 + k
r∑

l=1

pl(1− pl)

= k2∥e∥22 + k∥σ∥1, (5.9)

var [Γ[m, k]] ≈ 4k3

r∑
l=1

pl(1− pl)e
2
l + 2k2

r∑
l=1

p2l (1− pl)
2

= 4k3σ⊤e2 + 2k2∥σ∥22, (5.10)

where for notational convenience we defined the auxiliary vector σ with entries

{pl(1− pl)}rl=1, and e2 denotes the entry-wise square of e. The preceding arguments

suffice to establish the following result on the convergence of Γ[m, k].

Proposition 5.3.2. In the general case, as k →∞ the test statistic sequence con-

verges in distribution, namely

Γ[m, k]− k2∥e∥22 − k∥σ∥1√
4k3σ⊤e2 + 2k2∥σ∥22

L→ y,

where y is a standard Gaussian random variable.

Apparently, we need to choose ω[k] = (rk3/2)−1 to control the variance of the

weighted statistic. This is because for large k, the term that dominates the variance

113

expression (5.10) grows like k3 [cf. k2 in (5.6)]. The detection threshold cα[k] is thus

set as the (1−α)-quantile of the generalized chi-squared distribution defined in (5.8),

after weighting. We note that the resulting cumulative distribution function has a

complex form which requires numerical integration to compute the desired quantiles;

see also (Imhof, 1961; Munuswamy, 1963) for classic formulae to approximate said

distribution function. As the next example shows, for particular cases the resulting

distribution simplifies.

Example 5.3.1. For an ER model with connection probability p we have pl = p

for all l = 1, . . . , r and (5.8) simplifies to

Γ̄ER = kp(1− p)u, with u ∼ χ2

(
r,

k

p(1− p)
∥e∥22

)
. (5.11)

Alternatively, for threshold selection we will often resort to the mean plus three

standard deviations

th[k] := ω[k]Ebc[k] + 3
√
ω2[k]varbc[k], (5.12)

where Ebc is the expectation of the statistic before the change and varbc is its variance;

given by (5.9) and (5.10), respectively, using a suitable estimate of e described in

Section 5.3.5 Numerical tests in Section 5.4.1 corroborate that this rule of thumb

works well for all practical CPD purposes and it comes close to the true 0.99-quantile.

Moreover, having an analytic threshold expression facilitates studying the detection

resolution of the online CPD procedure, the subject of the next section.

5.3.4 Change detectability analysis

Let us examine what changes are detectable by the proposed online CPD algo-

rithm, when using the simple thresholding rule th[k] based on the derived mean

and variance of the statistics’s null distribution. To this end, we will assume that

from a certain change-point k = kc onward, the sequence of graphs is generated by

an RDPG with latent vectors Y so that ∆ := XX⊤ − YY⊤ (i.e., the change is

manifested through a perturbation on the resulting probability matrix). Given the

expressive power of RDPGs, the modeling assumption for k ≥ kc comes with limited

loss of generality. Henceforth, let δ := vec [triu (∆)].

If we are at a certain time k > kc, the partial sum of the monitoring function is

114

then (recall E = X̂X̂⊤ −XX⊤)

s[m, k] =
m+k∑

t=m+1

h
(
At, X̂

)
=

m+kc−1∑
t=m+1

h (At,X) +
m+k∑

t=m+kc

h (At,Y) + ke+ (k − kc)δ.

Similar to the previous section, for large kc and k we obtain a Gaussian vector

with independent entries; mean ke+ (k − kc)δ and covariance matrix kcdiag[σX] +

(k − kc)diag[σY], where σX and σY are the auxiliary vectors defined in (5.10)

corresponding to X and Y, respectively. This results in a CUSUM statistic with

mean approximately equal to

E (Γ[m, k]) ≈ ∥ke+ (k − kc)δ∥22
+ kc∥σX∥1 + (k − kc)∥σY ∥1. (5.13)

In the long run as k → ∞, the dominant term will be the first one, which when

weighted by ω[k] = (rk3/2)−1 amounts to ω[k]E (Γ[m, k]) ≈ k1/2 ∥e+ δ∥22 /r. Given

that ω[k]Γ[m, k] has finite variance and that on this asymptotic regime th[k] ≈
k1/2∥e∥22/r plus a constant, we have established that changes are detectable as long

as

∥e+ δ∥22 > ∥e∥22 ⇒ 2∥e∥2 cos θ + ∥δ∥2 > 0, (5.14)

where θ is the angle between e and δ. It thus follows that a large value of ∥δ∥2
aids detectability, as expected. The same happens for small values of the estimation

error magnitude ∥e∥2, and in the idealized perfect estimation scenario we find all

changes will be detected in the long run. Naturally, condition (5.14) is sufficient for

changes to be detected, but not necessary. On the imperfect scenario, the resulting

model estimation error will result in small changes likely going undetected provided

θ ∈ (π
2
, 3π

2
). On top of this angular requirement, a change may be missed when the

“perturbation-to-imperfection” ratio is small, i.e., ∥δ∥2
∥e∥2 < 2| cos θ|.

The following simple example offers additional insights on the feasibility of the

condition (5.14).

Example 5.3.2. Consider a sequence of ER graphs with connection probability p,

which at a certain time-step kc changes to q = p−∆. Then the bound

P
(
∥e+ δ∥22 > ∥e∥22

)
≥ 1− 8(1− p)

∆2N2(N − 1)m

[
1− p

Nm
+ 2(N − 1)p

]
(5.15)

115

on the probability of satisifying the detectability condition (5.14) holds asymptoti-

cally in N . This means that if ∆2N2m goes to infinity as N grows, then the change

will be detected with high probability. In other words, the method detects changes

∆ up to an order of N−1m−1/2. This example further illustrates that Algorithm 4’s

performance improves with growing m (the size of the training set) as well as N

(the number of nodes).

In order to prove the bound in (5.15) holds, first note that the equation ∥e+δ∥22 >
∥e∥22 in this case may be written as

2
N∑
i=1

N∑
j=i+1

Eij > −∆
N(N − 1)

2
, (5.16)

where we have assumed that ∆ > 0 (the analysis that follows is readily extended to

∆ < 0). Recalling that in this case E = x̂x̂⊤ − p1N×N (with x̂ ∈ RN×1), we rewrite

(5.16) as

x̂⊤(1N×N − I)x̂ >

(
p− ∆

2

)
N(N − 1). (5.17)

Since asymptotically (in N) x̂ is a normal vector with mean µ =
√
p1N×1 and

covariance matrix Σ = (1−p)
Nm

I (Athreya et al., 2016; Bourgade et al., 2017; R. Tang

et al., 2018), we consider this asymptotic regime and use results about the statistics

of quadratic forms of Gaussian vectors (Rencher & Schaalje, 2008, Ch. 5). For

instance, the resulting mean is

E[x̂⊤(1N×N − I)x̂] = tr [(1N×N − I)Σ] + µ⊤(1N×N − I)µ

= pN(N − 1).

Comparing the equation above to (5.17), it follows we have to bound the prob-

ability that x̂⊤(1N×N − I)x exceeds its mean minus ∆N(N − 1)/2. To this end we

compute the variance of the quadratic form, which is (let σ2 := (1− p)/(Nm))

var[x̂⊤(1N×N − I)x̂] = 2tr
[
((1N×N − I)Σ)2

]
+ 4µ⊤(1N×N − I)Σ(1N×N − I)µ

= 2σ2N(N − 1)(σ2 + 2(N − 1)p).

Applying Chebyshev’s inequality, the result follows.

116

5.3.5 Implementation details

We close this section with some necessary implementation details for Algorithm 4.

These pertain to the calculation of the threshold and the possibility of utilizing

windowed statistics as alternatives to the the cumulative sum (5.4).

5.3.5.1 Threshold calculation

The procedure outlined in Section 5.3.3 requires prior knowledge on the values of P

and e in order to set the threshold cα[k]. This will be the case if one uses the exact

(1 − α)-quantile of the null distribution, approximate formulae, or, simply th[k] in

(5.12). In most applications the values of P and e are unknown, so it is necessary

to estimate them from the observations in the training set.

For P we simply use the plugin estimator P̂ = X̂X̂⊤, i.e., we estimate P using the

ASE of Ā in (5.2), computed over the training set. Characterization of the statistical

properties of E (and subsequently e) is challenging in general. Even for the simple

ER model, the study of E is non-trivial as shown in Example 5.3.2. Therefore, we

opted for a data-driven approach to form point estimates of E by performing “leave-

one-out” passes over the training set: we randomly select an index j in 1, . . . ,m and

compute the ASE of A[j] and of

Ā(−j) =
1

m− 1

m∑
t=1
t̸=j

At,

the mean adjacency matrix over the left-out samples. We denote these ASEs as X̂j

and X(−j), respectively. Because var
[
X(−j)X

⊤
(−j) −P

]
= var

[
X̂jX̂

⊤
j −P

]
/(m− 1)

as discussed in Remark 5.3.1 and (R. Tang et al., 2018), we compute

Ej =
X̂jX̂

⊤
j −X(−j)X

⊤
(−j)√

m− 1
,

a fixed number of times, obtain a set of values Ej, and estimate a “worst-case” Ê

via the 0.99-quantile of this set.

Note that the change detectability of the algorithm depends on the value of ê

and how close it is to e. In particular, the relevant condition (5.14) in practice

becomes ∥ê∥2 < ∥e+ δ∥22.

5.3.5.2 Finite memory statistics

The CUSUM statistic Γ[m, k] = ∥s[m, k]∥22 we have dealt with so far is based on

the partial sum s[m, k] =
∑m+k

t=m+1 h(At, X̂). As discussed in Remark 5.3.2, it can

117

be computed in a recursive and memory-efficient fashion that is ideal for online

operation. Moreover, such an infinite-memory statistic accrues information from

the entire data stream {Am+k}k≥1, which is beneficial when it comes to invoking

asymptotic approximations to the null distribution as in Section 5.3.3. However, if

the change point kc occurs rather late during the monitoring horizon, then the inertia

effect induced by a lengthy history of nominal graph observations will translate to

longer detection delays.

To attain faster reaction times one can resort to alternative finite memory statis-

tics, which tend to rely on a judicious subset of the most recent observations. One

natural variant is to adopt a fixed-length sliding window statistic, where the partial

sum is s[k−L, k] for given window length L. At time k, this moving sum (MOSUM)

statistic discards past data in the interval (m, k − L), and its computation requires

storing the last L graphs in the sequence; see also (5.21) and (Kirch & Weber,

2018) for a modified version where the window length grows proportionally with

k. Another useful procedure stems from the exponentially-weighted sum (EWSUM)

statistic, namely

sβ[m, k] =
m+k∑

t=m+1

βm+k−th
(
At, X̂

)
, (5.18)

where β ∈ (0, 1] is a so-termed forgetting factor. EWSUM coincides with CUSUM

for β = 1, whereas for β < 1 past samples are exponentially down-weighted and thus

it offers a faster response to changes. Similar to CUSUM, (5.18) can be recursively

updated as sβ[m, k] = βsβ[m, k−1]+h(A[k], X̂) and does not require storing any of

the past measurements. Notice that as long as the window length is long enough we

may still use the results derived in Section 5.3.3, and the only algorithmic difference

is that the weight ω[k] and the threshold cα[k] should be changed accordingly (e.g.,

ω[k] = (rmin{k, L}3/2)−1 in the MOSUM case). The effect of choosing different

windowed statistics is studied in the numerical tests of Section 5.4.

5.3.6 Handling weighted and directed networks

Let us briefly discuss how to perform online CPD for the general weighted and/or

directed case. Extending the results presented in Section 5.3 to digraphs is straight-

forward. The only noteworthy difference is that, since the adjacency matrices are

no longer symmetric, we need to consider entries from the entire residual matrix H

(except the diagonal) during online monitoring, instead of the upper triangular half

in (5.3).

The path forward in the weighted case is also clear. The important difference is

that the variance of each Aij is no longer of the form pij(1−pij), because we are nat-

urally allowing for non-Bernoulli edge weight distributions. Following the WRDPG

118

model we introduced in Chapter 4, we have var [Aij] = x⊤
i [2]xj[2] − (x⊤

i [1]xj[1])
2.

We rely on plugin variance estimates using the corresponding ASEs to compute the

thresholds for the numerical test cases that follow [cf. vector σ in (5.9) and (5.10)].

One can seamlessly blend the ideas in Chapter 4 to perform online CPD for weighted

digraphs. The provided code offers this functionality.

In closing, note that the aforementioned discussion is pertinent only when the

goal is to detect changes in the mean adjacency matrix (i.e., l = 1). This is the

scope of the ensuing numerical experiments. Considering larger values of l could be

prudent when interested in more fine-grained changes on the weights’ distribution.

5.4 Numerical Experiments

Here we carry out numerical experiments to evaluate the performance of the pro-

posed online CPD algorithm for weighted and (un)directed graph sequences. We

start with a controlled synthetic data setting, where the goal is to identify emer-

gent network community structure (Section 5.4.1). We carefully examine: (i) the

choice of the detection threshold and monitoring function; (ii) the choice of the

running statistic and its effect on the detection delay; (iii) robustness to the pre-

scribed false alarm rate α; and (iv) comparisons with relevant batch and online

CPD methods. Test cases with real wireless and social network data are pre-

sented in Section 5.4.2. For the implementations we used the Python libraries

NumPy (Harris et al., 2020), NetworkX (Hagberg et al., 2008), pandas (McKinney,

2010), graspologic (Chung et al., 2019), as well as our own code which we share in

https://github.com/git-artes/cpd rdpg. For the comparison with the online CPD

method in Chen (2019), we used the official R implementation in the gStream pack-

age with the default parameters settings. Furthermore, as a baseline we have imple-

mented the offline CPD algorithm described in Madrid Padilla et al. (2022). This

implementation is also available in our GitHub repository.

5.4.1 Simulated data

A timely problem is to detect when communities arise in networks. So, we first

test the proposed online CPD method by generating a sequence of 150 ER graphs

with N = 100 nodes and connection probability p = 0.5. After tc = 150, the model

shifts to a two-block SBM with N/2 = 50 nodes in each community and connection

probability q1 = 0.6 for nodes in the same community and q2 = 0.4 for nodes in

different blocks. We use the first m = 50 graphs as the training set, and the value of

d is automatically chosen via the algorithm by M. Zhu and Ghodsi (2006). Because

the index k in Γ[m, k] measures how much time has elapsed since monitoring started,

119

https://github.com/git-artes/cpd_rdpg

0 25 50 75 100 125 150 175 200

k

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

gh
te

d
st

at
is

ti
c

ω[k]Γ[m, k]

Mean

Estimated mean

0.99 quantile

Est. mean + 3std

Figure 5.1: Evolution of ω[k]Γ[m, k], its mean and the estimated mean, for simulated
data. Two thresholds are shown: the 0.99-quantile of the distribution in (5.11) and three
standard deviations away from the mean; those thresholds are very close and the latter is
preferred due to its reduced complexity. The solid vertical line indicates the actual change-
point, while the dashed one is the detection. A change in background color indicates a
change-point detected by the offline algorithm (Madrid Padilla et al., 2022). Our approach
is able to detect the change with a relatively small delay, while operating in an online
fashion.

the change-point is at kc = 100.

Figure 5.1 depicts the results for this test case. We show two thresholds: the

0.99 quantile of the estimated distribution [i.e., the distribution given by (5.11) but

with ê instead of e] and th[k], the estimated mean plus three standard deviations.

Apparently, the difference between those two thresholds is small, so th[k] is preferred

due to its reduced complexity. Using that threshold a change-point is declared at

k∗ = 121, so our algorithm is successfully identifying the change in the model. The

detection delay can be explained if we look at the estimated mean of the weighted

CUSUM statistic. Since we are estimating the error E as the 0.99-quantile over the

training set, we always overestimate the true value. Also, since we are monitoring

the cumulative sum (5.4), if a change occurs after a long period of time then the

drift in Γ[m, k] will not be noticed immediately; see also the discussion in Section

5.3.5. As a way to compare the performance of Algorithm 4 with other approaches,

Figure 5.1 also shows the detection result for the offline baseline proposed in Madrid

Padilla et al. (2022). That algorithm detects the change with no delay, but it has a

markedly greater computational complexity than ours and examines the entire data

sequence as a batch.

120

5.0

7.5

10.0

12.5
When H = X̂X̂T −A[t]

0 25 50 75 100 125 150 175 200

k

100

150

When H = (X̂X̂T −A[t])X̂

W
ei

gh
te

d
st

at
is

ti
c

Figure 5.2: Evolution of ω[k]Γ[m, k] for residual (top) and projection (bottom) monitor-
ing functions, using the MOSUM sliding window statistic. After the change-point there is
a discernible change in trend for the residual; the projection does not exhibit such desir-
able behavior.

5.4.1.1 On the choice of the monitoring function

In this running example, had we used the monitoring function H′ =
(
X̂X̂⊤ −At

)
X̂

(i.e., use the projection instead of the residual) we would have missed the change

altogether. Indeed, for perfect ASE estimation, if our training data adheres to an

ER model with parameter p then X̂ =
√
p1N×d and X̂X̂⊤ = p1N . Now suppose

there is a change in the nominal model and we shift to a two-block SBM, where each

community has N/2 nodes and the connection probabilities are q1 for nodes in the

same block and q2 for nodes in different communities. The connection probability

matrix for said SBM is

PSBM =

(
Q1 Q2

Q2 Q1

)
, (5.19)

where Q1 = q1(1N/2 − IN/2) and Q2 = q21N/2. After the change we thus have

E (H′) = (p1N − PSBM)
√
p1N×d. Since each row of PSBM has N/2− 1 entries with

value q1 and N/2 entries with value q2, each entry of E (H′) is given by

(E (H′))ij =

(
N

2
− 1

)√
p(p− q1) +

N

2

√
p(p− q2)

≈ N
√
p

(
p− q1 + q2

2

)
,

for large N . Accordingly, choosing p, q1 and q2 such that q1 + q2 = 2p (as was the

case for our simulation), we find that E (H′) = 0, i.e., we do not expect to see a

drift in the monitoring function after the change.

121

0 25 50 75 100 125 150 175 200

k

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

W
ei

gh
te

d
st

at
is

ti
c

ω[k]Γ[m, k]

0.99 quantile

0.95 quantile

0.90 quantile

Est. mean + 3std

Est. mean + 2std

Figure 5.3: Evolution of ω[k]Γ[m, k] and five possible thresholds: cα[k] (for 1 − α ∈
{0.9, 0.95, 0.99}) and th[k] equal to the mean plus two and three standard deviations. The
setting is the same as in Fig. 5.1 except that N = 20 to increase the variance of ω[k]Γ[m, k].
Using 1 − α = 0.99 is preferred as it provides more robustness to false positives. Both
choices of th[k] are reasonable, although using three standard deviations is consistently
above c0.01[k] (see the first time-steps).

Figure 5.2 shows the evolution of the weighted statistic ω[k]Γ[m, k] for both

choices of the monitoring function. The setup is the same as in the previous test

case, with a change-point located at kc = 100. The MOSUM statistic is adopted

here, using a sliding window of length L = 10. When the residual H is chosen as

the monitoring function, a sudden shift in trend is observed after the change-point.

However, when the projection H′ is used the statistic does not exhibit such desirable

behaviour and misses the model change.

5.4.1.2 On the sensitivity to α

Here we examine the robustness of Algorithm 4 to the choice of the false alarm

rate α. We simulate the same scenario as before, except that N = 20 in order to

increase the variance of ω[k]Γ[m, k] and the error E. As thresholds we test cα[k] for

1 − α ∈ {0.99, 0.95, 0.9}, along with two versions of th[k]: the mean plus two and

three times the standard deviations as in (5.12).

The results are depicted in Figure 5.3. The example illustrates how using 1 −
α = 0.95 or 1 − α = 0.9 may prove too conservative. In this particular instance,

1−α = 0.9 would result in a (false) change-point detected at k ≈ 10. Furthermore,

both versions of th[k] provide reasonable results, although the one that uses three

standard deviations is consistently above c0.01[k] and is thus preferred. We will

re-examine this choice in Section 5.4.2, when we present real-world examples.

122

5.4.1.3 Comparison with (Chen, 2019)

An online CPD algorithm based on a k-nearest neighbor approach was proposed

in Chen (2019). Observations are viewed as points in a normed space and the

distance induced by such norm is used to define a neighborhood for each observation.

Changes are detected by performing two-sample testing on the neighborhood graph.

The proposed approach is computationally intensive because it requires that, if the

current observation index is n, a two-sample hypothesis test is performed for each

time t ∈ {1, . . . , n− 1} (or for a subset of these time instants). Also, it is memory-

inefficient since one has to store the pairwise distances between all past observations.

Even if these aspects are not a concern, this approach is ill-suited to detect changes

in some sequences of networks, as we will argue shortly.

An example in Chen (2019) illustrates the performance of the CPD algorithm

on network sequences. Observations are the adjacency matrices of the graphs and

neighborhoods are defined using the distance induced by the Frobenius norm over

such matrices. We will see that this distance does not allow for capturing some

changes in the network connectivity, such as the formation of two communities

discussed so far. Indeed, if A,B ∈ RN×N are adjacency matrices of two ER graphs

with connection probability p, then

E
(
∥A−B∥2F

)
= N(N − 1)2p(1− p),

since all entriesAij, Bij ∼ Bernoulli(p). Thus ∥A−B∥2F ≈ 2p(1−p)N2 for sufficiently

large N . Suppose now that C and D are two adjacency matrices from a two-block

SBM, where each community has N/2 nodes and the connection probabilities are

q1 for nodes in the same cluster and q2 for nodes in different communities. Then

the connection probability matrix for C and D is given by (5.19), so those matrices

have N2/2 entries whose expected value is q2 and (N/2− 1)N ≈ N2 entries whose

expected value is q1. All in all, similarly to the ER case we have

∥C−D∥2F ≈ N2
(
q1 − q21 + q2 − q22

)
,

∥A−C∥2F ≈ N2

(
p− p(q1 + q2) +

q1 + q2
2

)
.

Again, if we choose q1 and q2 such that q1 + q2 = 2p, then we obtain ∥A −B∥2F ≈
∥A−C∥2F . In other words, the distance between an observation before the change

(A) and an observation after the change (C) will be very similar to the distance

between two observed matrices before the change (A and B). For matrices after the

change, we have that when q1 + q2 = 2p then

∥C−D∥2F ≈ 2N2
(
p− p2 − (p− q1)

2
)
,

123

0 100 200 300 400 500

k

0.5

1.0

1.5

2.0

2.5

3.0

W
ei

gh
te

d
st

at
is

ti
c

ω[k]Γ[m, k]

Estimated mean

Threshold

Figure 5.4: Detection result for a network transitioning from an ER model with p = 0.3
to a two-block SBM with q1 = 0.275 and q2 = 0.325. Algorithm 4 is able to detect the
change in this setup, while the approach proposed in Chen (2019) fails to do so.

so choosing p and q1 to be very similar (but not equal, so there is effectively a

change), for large N these two models will be indistinguishable under the Frobenius

distance criterion.

We simulated such a setup, with a network of N = 100 nodes switching from

an ER model with p = 0.3 to a two-block SBM with q1 = 0.275 and q2 = 0.325.

The change-point was located at kc = 200. We ran the algorithm proposed in Chen

(2019) using the implementation in the R package gStream. Selecting between 3 and

10 nearest neighbors and an average run length of 1000, it found no change-points in

the data. Results for our CUSUM detector are depicted in Figure 5.4. Apparently,

there is a noticable change in trend in the weighted statistic after k = 300, with a

change-point being detected at k∗ = 365. This arguably large detection delay can

be shortened using a finite memory statistic such as MOSUM.

5.4.1.4 Detection delay

Characterizing the distribution of the detection delay τ (i.e., the time interval be-

tween the occurrence of a change and it actually being detected) is in general chal-

lenging. Instead, we will settle with a point estimate obtained via identification

of the first instant the weighted statistic ω[k]Γ[m, k] crosses the threshold function

cα[k]. Recall that this is the condition that defines the rejection region of our test.

Since that statistic has finite variance, it is possible to predict at which time point

k∗ the change will be detected by studying when the expectation of the weighted

test statistic after the change [cf. (5.13)] first exceeds the threshold. Once more,

for simplicity and analytical tractability we will henceforth assume the threshold

is set as th[k] in (5.12). This choice (approximately) corresponds to α = 0.01; see

124

0 200 400 600 800 1000

kc

0

10

20

30

40

50

60

70

D
et

ec
ti

on
de

la
y

Empirical (CUSUM) Estimated

Figure 5.5: Estimated detection delay and empirical delays for different change-point
locations kc. Empirical delay is well predicted by the estimated curve. For the adopted
CUSUM statistic, as expected the delay grows with kc.

Figures 5.1 and 5.3 for further discussion on this point. To estimate the delay, we

find the first instant k∗ ≥ kc for which ω[k∗]Eac[k
∗] ≥ th[k∗], where Eac denotes the

expectation of Γ[m, k] after the change that is approximately given by (5.13). This

amounts to solving the equation

(k∗ − kc)
2
(
∥σY ∥1 − ∥σX∥1 + 2k∗(e⊤δ) + (k∗ − kc)||δ||22

)2
= 9

(
2(k∗)2∥σX∥22 + 4(k∗)3(σ⊤

Xe
2)
)
, (5.20)

which entails finding the roots of a fourth-order polynomial. The solution k∗ can be

obtained numerically, and the estimated delay becomes τ = k∗ − kc.

To test said method, we simulated a sequence of ER networks with N = 100

nodes and connection probability p = 0.5. We use the first m = 100 graphs for

training. The first kc graphs after training follow that same model, but then obser-

vations shift to an ER with p = 0.6. The solution to (5.20) allows us to estimate

the detection delay for different values of kc. This can be done after training, since

once that phase ends the error e is fixed, and vectors σX , σY and δ are defined

by the change in the underlying model. Figure 5.5 shows the estimated delay for

kc ∈ {0, 200, 400, 600, 800, 1000}. For each kc a box plot of Algorithm 4’s empirical

delays is also shown, computed for 100 simulated runs using the CUSUM statistic.

Our estimation is consistent with the experimental delays in Algorithm 4, which

tend to show a linear growth with kc. Figure 5.6 depicts the empirical delays in this

setup for three different statistics: CUSUM, MOSUM and mMOSUM. This last

125

0

10

20

30

40

50

60

70

80

De
te

ct
io

n
de

la
y

kc = 0 kc = 200 kc = 400 kc = 600 kc = 800 kc = 1000

CUSUM MOSUM mMOSUM

Figure 5.6: Empirical delays for different change-point locations kc, using the CUSUM,
MOSUM (with L = 10), and mMOSUM (with h = 0.4) statistics. Delays behave as
expected given the different effective observation intervals: roughly constant delay for
MOSUM, growing delays with kc for both CUSUM and mMOSUM, but at a slower rate
for the latter.

running statistic is defined in Kirch and Weber (2018) as

s[m, k] =
m+k∑

t=m+⌊kh⌋+1

h
(
At, X̂

)
, (5.21)

where h ∈ (0, 1) and ⌊x⌋ is the floor function, i.e., the largest integer that is smaller

or equal to x. The mMOSUM is defined in a way such that early observations

are discarded and the window length grows proportionally with k. Hence, the al-

gorithm’s response time should be faster than when using the CUSUM statistic.

That is consistent with Figure 5.6, which shows that the detection delay for the

mMOSUM statistic grows with kc, but at a slower rate than that of CUSUM. For

this simulation we set h = 0.4. The MOSUM statistic, with a window length of

L = 10 observations, attains the shortest delay among the three and it is roughly

constant with kc. This is expected given that the window size remains constant for

MOSUM, so there is no inertia associated with the change-point occurring long after

monitoring started.

Finally, Figure 5.7 shows the empirical and estimated delays for the CUSUM

statistic for various training set sizes m. The setup is similar to that of the previous

test case, with an ER model switching from p = 0.5 to p = 0.6 at kc = 100. As

expected, the delay decreases with m, since more training samples lead to more

accurate ASE estimates. Also, it is important to note that Algorithm 4 performs

well with a relatively small training set size. In this setting, we observe there is no

significant improvement beyond m = 25 (with the expected delay going from τ = 13

126

10 25 50 100 150 200 250 300 350

m

5

10

15

20

25

D
et

ec
ti

on
de

la
y

Empirical (CUSUM) Estimated

Figure 5.7: Estimated detection delay and empirical delays for different training set sizes
m, for the CUSUM statistic. The delay is lower as m increases, but there is no significant
improvement after m = 25.

to τ = 11 for m = 300).

5.4.2 Real data experiments

5.4.2.1 Wireless network data

Received Signal Strength Indicator (RSSI) measurements between Wi-Fi access

points (APs) in a Uruguayan school are obtained from the dataset described

in Capdehourat et al. (2020). In this particular example we considered a network

consisting of N = 6 APs, with measurements collected hourly during almost four

weeks, spanning from 10/17/2018 to 11/13/2018 (corresponding to T = 655 graphs).

The AP corresponding to node 4 was moved on 10/30/2018. As RSSI is measured

in dBm (and are negative), we have first added an offset of 91 to all weights so

that they become positive (as −90 dBm is the smallest RSSI measurement in this

case) and that larger values still mean “stronger” edges. We thus have a directed

(as power measurements between APs are not necessarily symmetric) and weighted

graph sequence.

We used two days worth of measurements for training (m = 48) beginning on

10/12/2018. The resulting MOSUM statistic, the estimated mean and the resulting

threshold th[k] are shown in Figure 5.8 (top). Note how Algorithm 4 rapidly detects

the AP movement. The offline CPD baseline in Madrid Padilla et al. (2022) is also

able to detect the change, at around the same date. Furthermore, we complement

the threshold studies carried out in Section 5.4.1 and compare the same two versions

of th[k], namely the estimated mean plus two or three standard deviations. Note

how the change-point is detected around the same instant regardless of the specific

127

10/21/18 10/25/18 10/29/18 11/01/18 11/05/18 11/09/18 11/13/18

250

500

750

1000

1250

1500

1750

W
ei

gh
te

d
st

at
is

ti
c

ω[k]Γ[m, k]

Estimated mean

Est. mean + 3std

Est. mean + 2std

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

4
1

2

3

4

5

6

0 1 2 3 4 5 6

1

2

3

4

5

6

Figure 5.8: Online CPD for the RSSI dataset. Top: MOSUM statistic. A change in
background color indicates a change-point detected by the offline algorithm Madrid Padilla
et al. (2022). The dashed vertical line shows the detected change-point for the online
algorithm. Algorithm 4 successfully detects that an AP was moved. Bottom, left: X̂l

1

(blue) and X̂l
2 (orange) latent vectors for d = 2 corresponding to Ā1 and Ā2 respectively.

Vectors corresponding to the same node are joined by an arrow. Bottom, right: Id. but
with X̂r

1 (blue) and X̂r
2 (orange). Node 4 corresponds to the AP that was moved, which

together with node 3 are the ones whose embeddings change more prominently.

choice.

In addition to CPD, a valuable feature of RDPGs and its variants is their in-

terpretability. To illustrate this attribute, let us consider two averaged adjacency

matrices: those corresponding to the historic dataset and the last two days of the

observation period. Let us denote the resulting matrices as Ā1 and Ā2, respectively,

and analyze the resulting latent positions. In order to avoid the rotation ambigui-

ties, we have used the so-called omnibus embedding (Levin et al., 2017), which in

128

this case amounts to performing ASE to

M =

(
Ā1 (Ā1 + Ā2)/2

(Ā1 + Ā2)/2 Ā2

)
.

This approach is only practical when jointly embedding a few adjacency matrices

(two here), as the size ofM increases rapidly with the number of matrices considered.

Nodal vectors (d = 2) are depicted in Figure 5.8 (bottom), where an arrow shows

the changes between the embeddings of Ā1 and Ā2. Notice how the largest changes

correspond to nodes 3 and 4. The scaling ambiguity we discussed in Remark 2.2.1

obscures which of the two APs was actually moved. Still, this monitoring tool would

be valuable to network administrations as it identifies changes in a timely fashion

and it provides a curated list of potentially problematic APs.

5.4.2.2 South American football matches

Consider a dynamic football network, whose N = 10 nodes are the national teams

affiliated to CONMEBOL (which associates all South American countries except

Guyana and Suriname). This is the oldest continental confederation under FIFA,

and its teams have a long history going back to 1901. We consider yearly matches

since 1940, when all national associations were founded and most have joined CON-

MEBOL (Venezuela joined in 1952).

The resulting undirected graphs have edge weights indicating the number of

matches played between the two incident national teams during a particular year (Li

& Mateos, 2022). We used the first m = 20 years for training and the evolution of

the resulting weighted CUSUM statistic is shown in Figure 5.9 (top).

A change-point is detected around 1990 both by the online and offline CPD algo-

rithms. Indeed, CONMEBOL’s flagship tournament (Copa América) went through

a period of intermittency that would last until 1987, when it started being organized

regularly every two years with a nation hosting the event. This is apparent from the

resulting embeddings in Figure 5.9 (bottom), where northern countries increase their

corresponding magnitudes (indicating more frequent matches) and form a relatively

tight community. On the other hand, southern countries form another (more loose)

community, which approached the northern’s one in recent years. Furthermore, this

community’s structure changed, where e.g., the historic Argentina-Uruguay match

is now not as significant. We also examine the robustness of the results with respect

to the choice of the threshold. Notice that both versions of th[h] we implemented

again detect a change-point roughly around the same time (one year difference in

Figure 5.9). But as mentioned in Section 5.4.1, using the mean plus three standard

deviations clearly provides more robustness to false positives, particularly in high

129

1960 1970 1980 1990 2000 2010

Year

1

2

3

4

5

6

7

8

W
ei

gh
te

d
st

at
is

ti
c

ω[k]Γ[m, k]

Estimated mean

Est. mean + 3std

Est. mean + 2std

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.6

0.4

0.2

0.0

0.2

0.4

0.6

Argentina

Bolivia

Brazil

Chile
Colombia

Ecuador

Paraguay

Peru Uruguay

Venezuela

Figure 5.9: Online CPD for the South American football matches. Top: evolution of
MOSUM statistic. The dashed vertical line shows the detected change-point, that can be
traced to a change in the Copa América organization format. A change in background
color indicates a change-point detected by the offline algorithm (Madrid Padilla et al.,
2022). Bottom: embeddings corresponding to the averaged historic set (blue) and the
last 10 graphs of the observation period (orange). There are two distinct communities
(northern and southern countries), and an increase of the number of matches played by
the northern countries (with relatively less football tradition at the time) is clear by the
changes in its embeddings.

noise settings as in this test case.

5.4.2.3 MIT proximity network

Lastly, let us consider the stream of social graphs introduced in Eagle and Pentland

(2006). The dataset includes the cell tower to which the mobile phone of a group

of MIT faculty and graduate students connected between July 2004 and June 2005.

130

set/2004

oct/2004

nov/2004
0

2000

4000

6000

8000

W
ei

gh
te

d
st

at
is

ti
c

ω[k]Γ[m, k]

Estimated mean

Threshold

Figure 5.10: Online CPD for the MIT proximity dataset (using the MOSUM window).
A change in background color indicates a change-point detected by the offline algorithm
of Madrid Padilla et al. (2022). The dashed vertical line shows the detected change-point
for the online algorithm. Dotted vertical lines indicate the beginning of the semester and
the “sponsor week”. The offline algorithm misses the first change-point.

We have processed the dataset and constructed a daily graph where nodes are people

and the weight of each edge is how many minutes two people share the same tower

on that given day1. A collection of labeled events are described in Peel and Clauset

(2014, Fig. 8), such as the beginning of the semester in early September and the

“sponsor week” during mid-October.

We have considered a full month worth of undirected graphs starting on mid-

July as training set and all the N = 84 people that were registered during the

study. The evolution of the MOSUM statistic until early November is shown in

Figure 5.10. Dotted vertical red lines indicate the two events we mentioned before,

which fall within the observation period. First of all, it is important to note that

the online CPD algorithm detects a change during early September, very near to

the beginning of the semester. This change-point is missed by the offline algorithm

in Madrid Padilla et al. (2022) (see the changes on the background color), which in-

dicates a change-point almost two weeks later. Furthermore, the example illustrates

an interesting advantage of a finite-memory statistic such as MOSUM: the second

change-point (this time correctly flagged by the offline algorithm) is also clearly

discernible. Notice how the statistic is starting to stabilize around mid-October

and then presents a large change of slope. Indeed, changes on the statistic after

plateauing are indicative of further change-points.

1We used Jeremy Kun’s scripts in https://github.com/j2kun/reality-mining.

131

https://github.com/j2kun/reality-mining

5.5 Concluding remarks

We developed a computationally-efficient online CPD algorithm for monitoring ap-

plications involving streaming network data. The goal is to declare in (pseudo) real

time when a sequence of observed graphs changes its underlying distribution. Lever-

aging the RDPG modeling framework and assuming historical “clean” data are avail-

able, the novel algorithm computes (offline) the ASE of the historical graphs (i.e., a

training set) and then efficiently updates the cumulative sum of a monitoring func-

tion as data arrive sequentially-in-time. Statistical analysis of the monitored random

sequence facilitates deriving meaningful detection thresholds to control type-I error

rates, as well as to study the algorithm’s detectability limits and to numerically pre-

dict delay behavior. By resorting to generalizations of the RDPG model to directed

and weighted graphs we markedly broaden the applicability of the novel online CPD

framework, as illustrated through various real-data case studies.

132

Chapter 6

Conclusions and future work

The study of network data through latent position models, and in particular the

RDPG model, has yielded powerful insights into the structure, dynamics, and infer-

ence procedures associated with complex graphs. This thesis focused on the RDPG

model as a unifying framework to address key challenges in statistical network anal-

ysis, from embedding and estimation to model extensions and applications. In this

final chapter, we reflect on the core findings and contributions developed throughout

the thesis, organizing them by thematic emphasis and technical progression.

First, we revisited spectral embedding methods under the RDPG model and

proposed a new formulation that more faithfully represents the underlying model

assumptions. This alternative formulation not only better captures the probabilistic

structure of the model but also enables a principled analysis of the optimization

landscape. Our results demonstrate that the embedding problem exhibits a benign

landscape under appropriate regularity conditions, laying a foundation for provably

correct non-convex optimization approaches.

Building upon this formulation, we then turned to directed networks, which pose

additional challenges due to inherent asymmetries in their structure. We introduced

a Riemannian optimization algorithm for embedding directed RDPG networks that

directly addresses the non-identifiability induced by the model’s invariances. Our

approach provides a practical and theoretically grounded solution to a problem

that is often overlooked in the literature, especially in the context of real-world

applications where directed edges are prevalent.

We next proposed an extension of the RDPG model to the setting of weighted

graphs. While the original formulation is limited to binary adjacency matrices,

many applications involve edge weights reflecting intensity, frequency, or capacity of

interactions. We introduced the Weighted RDPG (WRDPG) model and provided an

inference procedure for estimating latent positions from weighted observations. Our

results include consistency guarantees and a method for generating graphs under the

WRDPG model, enabling synthetic generation of networks that mirror real-world

133

statistical properties.

Finally, we explored the use of the RDPG model in change-point detection

(CPD), illustrating how embeddings can reveal temporal shifts in network structure.

By modeling each graph in a sequence as an RDPG, we developed a lightweight

framework for detecting statistically significant changes in latent structure in an

online fashion. This approach combines theoretical robustness with practical appli-

cability, highlighting the utility of latent position models beyond static settings.

Collectively, these contributions advance the understanding of the RDPG model

along several axes: formulation, algorithmic development, model generalization, and

practical application. They underscore the versatility of spectral methods for statis-

tical network analysis and open several directions for future work, which we outline

next.

6.1 Future work

Building upon the results of this thesis, there are several promising directions for

future research, which we organize into four broad categories: theoretical directions,

algorithmic and computational enhancements, application-oriented extensions, and

modeling directions.

6.1.1 Theoretical directions

A key open theoretical problem pertains to the online CPD algorithm presented in

Chapter 5. While this method is shown to be effective in practice, providing rig-

orous statistical guarantees for its detection delay remains an important challenge.

Establishing such results would help formalize its performance in both finite-sample

and asymptotic regimes. For the WRDPG model introduced in Chapter 4, future

work could investigate robustness under model misspecification, as well as extend

the current consistency guarantees to more general settings involving dependent

edge weights or partially observed graphs. Additionally, the reformulated embed-

ding problem introduced in Chapter 3 raises interesting questions regarding global

optimality guarantees. Since, when accounting for unobserved or missing data,

the optimization landscape remains non-convex, understanding when and how local

minima can be avoided would offer valuable insights into the algorithm’s theoretical

properties.

6.1.2 Algorithmic and computational enhancements

From a computational standpoint, improving the scalability and efficiency of our

methods is a natural next step. One avenue is to port the current Python imple-

134

mentations to lower-level languages such as C or Rust to gain significant performance

improvements, particularly in large-scale or real-time applications. Another promis-

ing direction is to explore the parallelization of the block coordinate descent algo-

rithm developed in Chapter 3, which could make it feasible for even larger graphs. In

streaming scenarios, developing online rules for adaptively selecting the embedding

dimension remains a practical challenge, and could help improve performance in

dynamic environments. Furthermore, while the online gradient descent techniques

proposed in Chapter 3 have shown good empirical results, a dynamic regret analysis

in non-convex settings would represent a valuable contribution to the theoretical

literature on streaming optimization.

6.1.3 Application-oriented extensions

Chapter 5 already presents an efficient and lightweight online CPD pipeline, which

accounts for partially observed networks and dynamic node sets. Nonetheless, sev-

eral additional application-focused extensions are possible. For instance, it would

be interesting to develop CPD techniques that rely solely on graph signal observa-

tions, rather than explicit adjacency matrices. This would be particularly valuable

in settings where only indirect measurements of network activity are available, such

as through diffusion or communication processes. Moreover, one could extend the

CPD framework to detect more complex structural changes, such as shifts in latent

dimension or edge variability, particularly under the WRDPG model where edge

weights carry additional information. Such extensions would further broaden the

practical utility of our methodology in real-world systems.

6.1.4 Modeling directions

Finally, several avenues remain open for enriching the modeling framework intro-

duced in this thesis. While Chapter 3 already provides a method for embedding par-

tially observed networks, and Chapter 5 leverages this to handle streaming graphs

with varying node sets, further exploration is warranted. In particular, it would be

useful to formalize inference procedures for networks with temporally varying avail-

ability or sampling schemes. The WRDPG model proposed in Chapter 4 also opens

the door to more general formulations of weighted latent position models, especially

those capable of incorporating temporal dynamics, edge attributes, or more complex

dependence structures. Another promising direction involves adapting the WRDPG

methodology to heterophilous graphs, as motivated by the generalized RDPG model

of Rubin-Delanchy et al. (2022). Our framework, being based on spectral techniques

such as those in Gallagher et al. (2023), is well-suited for this extension.

135

Bibliography

Absil, P.-A., Mahony, R., & Sepulchre, R. (2009). Optimization algorithms on matrix

manifolds. Princeton University Press.

Athreya, A., Fishkind, D. E., Tang, M., Priebe, C. E., Park, Y., Vogelstein, J. T.,

Levin, K., Lyzinski, V., & Qin, Y. (2017). Statistical inference on random

dot product graphs: A survey. J. Mach. Learn. Res., 18 (1), 8393–8484.

Athreya, A., Priebe, C. E., Tang, M., Lyzinski, V., Marchette, D. J., & Sussman,

D. L. (2016). A limit theorem for scaled eigenvectors of random dot product

graphs. Sankhya A, 78 (1), 1–18.

Belkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for

mmbedding and clustering. Proc. Adv. Neural. Inf. Process. Syst., 14, 1–7.

Bentkus, V. (2003). On the dependence of the Berry–Esseen bound on dimension.

Journal of Statistical Planning and Inference, 113 (2), 385–402.

Bertsekas, D. (1999). Nonlinear programming. Athena Scientific.

Bhojanapalli, S., Kyrillidis, A., & Sanghavi, S. (2016). Dropping convexity for faster

semi-definite optimization. Proc. Conf. Learn. Theory, 530–582.

Bickel, P. J., & Doksum, K. A. (2015). Mathematical statistics: Basic ideas and

selected topics. Chapman; Hall/CRC.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast un-

folding of communities in large networks. Journal of Statistical Mechanics:

Theory and Experiments, 2008 (10), P10008.

Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T., & Vesztergombi, K. (2008). Con-

vergent sequences of dense graphs I: Subgraph frequencies, metric properties

and testing. Advances in Mathematics, 219 (6), 1801–1851.

Boumal, N. (2023). An introduction to optimization on smooth manifolds. Cambridge

University Press.

Boumal, N., Absil, P.-A., & Cartis, C. (2018). Global rates of convergence for

nonconvex optimization on manifolds. IMA Journal of Numerical Analysis,

39 (1), 1–33.

Bourgade, P., Huang, J., & Yau, H.-T. (2017). Eigenvector statistics of sparse ran-

dom matrices. Electronic Journal of Probability, 22, 1–38.

136

Bourin, C., & Bondon, P. (1998). Efficiency of high-order moment estimates. IEEE

Transactions on Signal Processing, 46 (1), 255–258.

Boyd, J. P., & Gally, D. H. (2007). Numerical experiments on the accuracy of the

Chebyshev–Frobenius companion matrix method for finding the zeros of a

truncated series of Chebyshev polynomials. Journal of Computational and

Applied Mathematics, 205 (1), 281–295.

Brand, M. (2006). Fast low-rank modifications of the thin singular value decomposi-

tion [Special Issue on Large Scale Linear and Nonlinear Eigenvalue Problems].

Linear Algebra Appl., 415 (1), 20–30.

Burer, S., & Monteiro, R. D. (2005). Local minima and convergence in low-rank

semidefinite programming. Mathematical programming, 103 (3), 427–444.

Campos, P., Dı́ez, F., & Cantador, I. (2014). Time-aware recommender systems:

A comprehensive survey and analysis of existing evaluation protocols. User

Model. User-adapt. Interact., 24, 67–119.

Capdehourat, G., Larroca, F., & Morales, G. (2020). A nation-wide Wi-Fi RSSI

dataset: Statistical analysis and resulting insights. Proc. IFIP Networking

Conf., 370–378.

Cape, J., Tang, M., & Priebe, C. E. (2019). The two-to-infinity norm and singu-

lar subspace geometry with applications to high-dimensional statistics. The

Annals of Statistics, 47 (5), pp. 2405–2439.

Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., & Murphy, K. (2022). Machine

learning on graphs: A model and comprehensive taxonomy. J. Mach. Learn.

Res., 23 (89), 1–64.

Chen, H. (2019). Sequential change-point detection based on nearest neighbors. Ann.

Stat, 47 (3), 1381–1407.

Chi, Y., Lu, Y., & Chen, Y. (2019). Nonconvex optimization meets low-rank matrix

factorization: An overview. IEEE Trans. Signal Process., 67 (20), 5239–5269.

Chung, J., Pedigo, B. D., Bridgeford, E. W., Varjavand, B. K., Helm, H. S., &

Vogelstein, J. T. (2019). GraSPy: Graph statistics in Python. J. Mach. Learn.

Res., 20 (158), 1–7.

Davenport, M. A., & Romberg, J. (2016). An overview of low-rank matrix recovery

from incomplete observations. IEEE J. Sel. Topics Signal Process., 10 (4),

608–622.

De Bruijn, N. G. (2014). Asymptotic methods in analysis. Courier Corporation.

DeFord, D. R., & Rockmore, D. N. (2016). A random dot product model for weighted

networks. arXiv:1611.02530 [stat.AP].

Dokmanic, I., Parhizkar, R., Ranieri, J., & Vetterli, M. (2015). Euclidean distance

matrices: Essential theory, algorithms, and applications. IEEE Signal Pro-

cess. Mag., 32 (6), 12–30.

137

Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems.

Personal Ubiquitous Comput., 10 (4), 255–268.

Eckart, C., & Young, G. (1936). The approximation of one matrix by another of

lower rank. Psychometrika, 1 (3), 211–218.

Ferrari, A., Richard, C., & Verduci, L. (2019). Distributed change detection in

streaming graph signals. Proc. IEEE Workshop on Computational Advances

in Multi-Sensor Adaptive Process., 166–170.

Fiori, M., Marenco, B., Larroca, F., Bermolen, P., & Mateos, G. (2023). Gradient-

Based Spectral Embeddings of Random Dot Product Graphs. IEEE Trans-

actions on Signal and Information Processing over Networks, 10, 1–16.

Gallagher, I., Jones, A., & Rubin-Delanchy, P. (2021). Spectral embedding for dy-

namic networks with stability guarantees. Proc. Adv. Neural. Inf. Process.

Syst., 1–13.

Gallagher, I., Jones, A., Bertiger, A., Priebe, C. E., & Rubin-Delanchy, P. (2023).

Spectral embedding of weighted graphs. J. Am. Stat. Assoc., 0 (0), 1–10.

Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks.

Proceedings of the 22nd ACM SIGKDD international conference on Knowl-

edge discovery and data mining, 855–864.

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure,

dynamics, and function using networkx. In G. Varoquaux, T. Vaught, & J.

Millman (Eds.), Proceedings of the 7th python in science conference (pp. 11–

15).

Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding structure with ran-

domness: Probabilistic algorithms for constructing approximate matrix de-

compositions. SIAM Rev., 53 (2), 217–288.

Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Arti-

ficial Intelligence and Machine Learning, 14, 1–159.

Harris, C. R., Millman, K. J., van der Walt, S. J., & et al. (2020). Array programming

with NumPy. Nature, 585, 357–362.

He, X., Xie, Y., Wu, S.-M., & Lin, F.-C. (2018). Sequential graph scanning statistic

for change-point detection. 52nd Asilomar Conference on Signals, Systems,

and Computers, 1317–1321.

Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to

social network analysis. J. Am. Stat. Assoc., 97 (460), 1090–1098.

Holland, P., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First

steps. Social Networks, 5 (2), 109–137.

Horn, R. A., & Johnson, C. R. (2012). Matrix Analysis. Cambridge University Press.

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2,

193–218.

138

Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal vari-

ables. Biometrika, 48 (3-4), 419–426.

Izenman, A. J. (2023). Network models for data science: Theory, algorithms, and

applications. Cambridge University Press.

Jones, A., & Rubin-Delanchy, P. (2020). The multilayer random dot product graph.

arXiv:2007.10455 [stat.ML].

Kalantzis, V., & Traganitis, P. (2023). Matrix resolvent eigenembeddings for dy-

namic graphs. Proc. Int. Conf. Acoustics, Speech, Signal Process.

Kapur, J., & Kesavan, H. (1992). Entropy optimization principles with applications.

Academic Press.

Kaushik, C., Roddenberry, T., & Segarra, S. (2021). Network topology change-point

detection from graph signals with prior spectral signatures. Proc. Int. Conf.

Acoustics, Speech, Signal Process., 5395–5399.

Keshavarz, H., Michaildiis, G., & Atchade, Y. (2020). Sequential change-point detec-

tion in high-dimensional Gaussian graphical models. J. Mach. Learn. Res.,

21 (82), 1–57.

Kirch, C., & Tadjuidje Kamgaing, J. (2015). On the use of estimating functions in

monitoring time series for change points. J. Stat. Plan. Inference, 161, 25–49.

Kirch, C., & Weber, S. (2018). Modified sequential change point procedures based

on estimating functions. Electron. J. Statist., 12 (1), 1579–1613.

Kolaczyk, E. D. (2009). Statistical analysis of network data: Methods and models.

Springer.

Kolaczyk, E. D. (2017). Topics at the frontier of statistics and network analysis:

(re)visiting the foundations. Cambridge University Press.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for rec-

ommender systems. Computer, 42 (8), 30–37.

Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing

community detection algorithms. Phys. Rev. E, 78, 046110.

Levin, K., Athreya, A., Tang, M., Lyzinski, V., & Priebe, C. E. (2017). A central

limit theorem for an omnibus embedding of multiple random dot product

graphs. Int. Conf. on Data Mining Workshops, 964–967.

Levin, K., Roosta, F., Mahoney, M., & Priebe, C. (2018). Out-of-sample extension

of graph adjacency spectral embedding. Proc. Int. Conf. Mach. Learn., 80,

2975–2984.

Li, Y., & Mateos, G. (2022). Networks of international football: Communities, evo-

lution and globalization of the game. Applied Network Science, 7.

Lovász, L., & Szegedy, B. (2006). Limits of dense graph sequences. Journal of Com-

binatorial Theory, Series B, 96 (6), 933–957.

139

Lovász, L., & Szegedy, B. (2007). Szemerédi’s lemma for the analyst. GAFA Geo-

metric And Functional Analysis, 17 (1), 252–270.

Luo, Y., & Garcia Trillos, N. (2022). Nonconvex matrix factorization is geodesically

convex: Global landscape analysis for fixed-rank matrix optimization from a

Riemannian perspective. arXiv preprint arXiv:2209.15130.

Lyzinski, V., Tang, M., Athreya, A., Park, Y., & Priebe, C. E. (2017). Commu-

nity detection and classification in hierarchical stochastic blockmodels. IEEE

Trans. Netw. Sci. Eng., 4 (1), 13–26.

Madrid Padilla, O. H., Yu, Y., & Priebe, C. E. (2022). Change point localization in

dependent dynamic nonparametric random dot product graphs. Journal of

Machine Learning Research, 23 (234), 1–59.

Marchette, D., Priebe, C., & Coppersmith, G. (2011). Vertex nomination via at-

tributed random dot product graphs. Proceedings of the 57th ISI World

Statistics Congress, 6, 16.

Marenco, B., Bermolen, P., Fiori, M., Larroca, F., & Mateos, G. (2022). Online

Change Point Detection for Weighted and Directed Random Dot Product

Graphs. IEEE Trans. Signal Inf. Process. Netw., 8, 144–159.

Marenco, B., Bermolen, P., Fiori, M., Larroca, F., & Mateos, G. (2025). Weighted

random dot product graphs. arXiv preprint arXiv:2505.03649.

Mateos, G., & Rajawat, K. (2013). Dynamic network cartography: Advances in

network health monitoring. IEEE Signal Process. Mag., 30 (3), 129–143.

McKinney, W. (2010). Data structures for statistical computing in Python. In S.

van der Walt & J. Millman (Eds.), Proceedings of the 9th Python in Science

Conference (pp. 56–61).

Munuswamy, S. (1963). Approximations to the non-central chi-square distribution.

Biometrika, 50 (1-2), 199–204.

Newman, M. (2018). Networks. Oxford University Press.

Nocedal, J., & Wright, S. J. (2006). Numerical Optimization (2nd). Springer.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41 (1-2), 100–115.

Peel, L., & Clauset, A. (2014). Detecting change points in the large-scale structure

of evolving networks. arXiv:1403.0989 [cs.SI].

Priebe, C. E., Park, Y., Tang, M., Athreya, A., Lyzinski, V., Vogelstein, J. T., Qin,

Y., Cocanougher, B., Eichler, K., Zlatic, M., & Cardona, A. (2017). Semipara-

metric spectral modeling of the drosophila connectome. arXiv:1705.03297

[stat.ML].

Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics. John Wiley &

Sons.

Rosenberg, A., & Hirschberg, J. (2007). V-measure: A conditional entropy-based

external cluster evaluation measure. Proc. of the 2007 Joint Conference on

140

Empirical Methods in Natural Language Processing and Computational Nat-

ural Language Learning (EMNLP-CoNLL), 410–420.

Rubin-Delanchy, P., Cape, J., Tang, M., & Priebe, C. E. (2022). A statistical inter-

pretation of spectral embedding: The generalised random dot product graph.

Journal of the Royal Statistical Society Series B: Statistical Methodology,

84 (4), 1446–1473.

Saad, T., & Ruai, G. (2019). Pymaxent: A python software for maximum entropy

moment reconstruction. SoftwareX, 10, 100353.

Scheinerman, E., & Tucker, K. (2010). Modeling graphs using dot product represen-

tations. Comput. Stat, 25, 1–16.

Shore, J., & Johnson, R. (1980). Axiomatic derivation of the principle of maximum

entropy and the principle of minimum cross-entropy. IEEE Transactions on

Information Theory, 26 (1), 26–37.

Sussman, D. L., Tang, M., Fishkind, D. E., & Priebe, C. E. (2012). A consistent

adjacency spectral embedding for stochastic blockmodel graphs. Journal of

the American Statistical Association, 107 (499), 1119–1128.

Sussman, D. L., Tang, M., & Priebe, C. E. (2014). Consistent latent position estima-

tion and vertex classification for random dot product graphs. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 36 (1), 48–57.

Tang, M., Athreya, A., Sussman, D., Lyzinski, V., Park, Y., & Priebe, C. (2017). A

semiparametric two-sample hypothesis testing problem for random graphs.

J. Comput. Graph. Stat., 26 (2).

Tang, R., Ketcha, M., Badea, A., Calabrese, E. D., Margulies, D. S., Vogelstein,

J. T., Priebe, C. E., & Sussman, D. L. (2018). Connectome smoothing via

low-rank approximations. IEEE Trans. Med. Imaging, 38 (6), 1446–1456.

Tang, R., Tang, M., Vogelstein, J. T., & Priebe, C. E. (2017). Robust estima-

tion from multiple graphs under gross error contamination. arXiv:1707.03487

[stat.ME].

Townsend, J., Koep, N., & Weichwald, S. (2016). Pymanopt: A Python toolbox for

optimization on manifolds using automatic differentiation. J. Mach. Learn.

Res., 17 (137), 1–5.

Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices. Foun-

dations of Computational Mathematics, 12, 389–434.

Truong, C., Oudre, L., & Vayatis, N. (2020). Selective review of offline change point

detection methods. Signal Process., 167, 107299.

Vershynin, R. (2018). High-dimensional probability: An introduction with applica-

tions in data science. Cambridge University Press.

141

Vinh, N. X., Epps, J., & Bailey, J. (2009). Information theoretic measures for clus-

terings comparison: Is a correction for chance necessary? Proc. International

Conference on Machine Learning (ICML), 1073–1080.

Vladimirova, M., Girard, S., Nguyen, H., & Arbel, J. (2020). Sub-Weibull distribu-

tions: Generalizing sub-Gaussian and sub-Exponential properties to heavier

tailed distributions. Stat, 9 (1), e318.

Voeten, E., Strezhnev, A., & Bailey, M. (2009). United Nations General Assembly

Voting Data.

Vu, T., & Raich, R. (2021). Exact linear convergence rate analysis for low-rank sym-

metric matrix completion via gradient descent. Proc. Int. Conf. Acoustics,

Speech, Signal Process., 3240–3244.

Wang, H., Tang, M., Park, Y., & Priebe, C. E. (2014). Locality statistics for anomaly

detection in time series of graphs. IEEE Trans. Signal Process., 62 (3), 703–

717.

Wang, L., Zhang, X., & Gu, Q. (2017). A unified computational and statistical

framework for nonconvex low-rank matrix estimation. Artificial intelligence

and statistics, 981–990.

Xie, F., & Xu, Y. (2023). Efficient estimation for random dot product graphs via a

one-step procedure. J. Am. Stat. Assoc., 118 (541), 651–664.

Yu, Y., Padilla, O. H. M., Wang, D., & Rinaldo, A. (2021). Optimal network online

change point localisation. arXiv:2101.05477 [math.ST].

Yu, Y., Wang, T., & Samworth, R. J. (2015). A useful variant of the Davis–Kahan

theorem for statisticians. Biometrika, 102 (2), 315–323.

Zachary, W. W. (1977). An information flow model for conflict and fission in small

groups. Journal of anthropological research, 33 (4), 452–473.

Zhang, M., Xie, L., & Xie, Y. (2020). Online community detection by spectral

CUSUM. Proc. Int. Conf. Acoustics, Speech, Signal Process.

Zhang, Z., Cui, P., Pei, J., Wang, X., & Zhu, W. (2018). TIMERS: Error-bounded

SVD restart on dynamic networks. Proceedings of the AAAI Conference on

Artificial Intelligence, 32 (1).

Zhou, D., Cao, Y., & Gu, Q. (2020). Accelerated factored gradient descent for low-

rank matrix factorization. Proc. Int. Conf. Artif. Intell. Statist., 4430–4440.

Zhu, M., & Ghodsi, A. (2006). Automatic dimensionality selection from the scree

plot via the use of profile likelihood. Comput Stat Data Anal, 51 (2), 918–930.

Zhu, Z., Li, Q., Tang, G., & Wakin, M. B. (2021). The global optimization geometry

of low-rank matrix optimization. IEEE Transactions on Information Theory,

67 (2), 1308–1331.

142

	List of Figures
	Notational conventions
	Acronyms
	Introduction and thesis outline
	Preliminaries and related work
	Latent position network models
	The Random Dot Product Graph (RDPG) model
	The RDPG model for directed graphs
	The Generalized RDPG model

	Algorithmic advances for the inference problem in RDPGs
	Challenges facing the Adjacency Spectral Embedding
	Contributions and chapter outline
	Problem statement and related work
	Related work

	Embedding algorithms for undirected graphs
	Back to basics: Estimation via gradient descent
	Landscape analysis of the embedding problem
	A local convergence result for general masks
	Block coordinate descent
	Complexity and execution time analyses

	Embedding algorithms for digraphs
	On the interpretability of the directed RDPG
	Optimizing on a manifold

	Numerical experiments and applications
	Robustness to initialization
	Inference with missing data
	Embedding multiple graphs: the batch case
	Model tracking for graph streams

	Concluding remarks
	Appendix 3.A: Critical points for the unmasked objective

	A weighted RDPG model
	Related work
	Contributions and chapter outline
	Weighted RDPG model
	Model specification
	Estimation of latent positions
	Examples
	Discriminative power of higher-order spectral embeddings
	Accuracy of moment recovery with varying number of nodes

	Asymptotic results
	Asymptotic consistency
	Asymptotic Normality

	Graph generation
	Discrete weights distribution
	Continuous weights distribution
	Mixed weights distribution

	Concluding remarks
	Appendix 4.A: Consequences of Assumptions 2 and 3 regarding the largest eigenvalues of Mk and Wk

	Online change point detection for network data
	Relation to prior work on online CPD for network data
	Contributions and chapter outline
	Proposed approach
	Problem statement
	General algorithmic framework
	Statistical analysis of the null distribution
	Change detectability analysis
	Implementation details
	Handling weighted and directed networks

	Numerical Experiments
	Simulated data
	Real data experiments

	Concluding remarks

	Conclusions and future work
	Future work
	Theoretical directions
	Algorithmic and computational enhancements
	Application-oriented extensions
	Modeling directions

	Bibliography

