5. Portfolio diversification (II) and CAPM

MA6622, Ernesto Mordecki, CityU, HK, 2006.

References for Lecture 5:

5a. Computing efficient portfolios

Purpose: construct an efficient portfolio in practice, departing from historical prices of the assets.

Suppose: we have three assets A, B, C (in the same currency) to construct our portfolio.

Let $S_i(0), \ldots, S_i(n)$ be the historical prices of asset $i = A, B, C$. (in practice $n = 90$ for daily data, of $n = 12$ for monthly data, etc).
STEP 1: Calculate the return of A, by the equations

$$x_A(1) = \frac{S_A(1)}{S_A(0)} - 1, \ldots, x_A(n) = \frac{S_A(n)}{S_A(n-1)} - 1,$$

and similar for B and C.

STEP 2: Estimate the mean returns of A by

$$\bar{x}_A = \frac{1}{n} \sum_{k=1}^{n} x_A(k).$$

and the same for B, C.
STEP 3: Estimate the variance-covariance matrix:

\[
\begin{bmatrix}
\sigma^2_A & \text{cov}_{AB} & \text{cov}_{AC} \\
\text{cov}_{AB} & \sigma^2_B & \text{cov}_{BC} \\
\text{cov}_{AC} & \text{cov}_{BC} & \sigma^2_C
\end{bmatrix}
\]

As this matrix is symmetric we must estimate only 6 values.
For A, the variance is

$$\bar{\sigma}_A^2 = \frac{1}{n - 1} \sum_{k=1}^{n} \left(x_A(k) - \bar{x}_A \right)^2.$$

and similarly for B and C.

The covariance between returns of A and B is

$$\bar{c}_{AB} = \frac{1}{n} \sum_{k=1}^{n} x_A(k)x_B(k) - \bar{x}_A\bar{x}_B,$$

and similarly for A, C and B, C.
Now, we can estimate the expected return of a portfolio $\pi = (\alpha, \beta, \gamma)$, with proportions (a, b, c), $a + b + c = 1$. The expected return is

$$E X_\pi = a \bar{x}_A + b \bar{x}_B + c \bar{x}_C,$$

while the variance of the return is

$$\text{var} X_\pi = a^2 \bar{\sigma}_A^2 + b^2 \bar{\sigma}_B^2 + c^2 \bar{\sigma}_C^2 + 2(ab \bar{c}_A \bar{c}_B + ac \bar{c}_A \bar{c}_C + bc \bar{c}_B \bar{c}_C).$$
Consider for example the values (in %)

\[
\bar{x}_A = 10 \quad \bar{x}_B = 5 \quad \bar{x}_C = 3 \\
\bar{\sigma}_A = 8 \quad \bar{\sigma}_B = 10 \quad \bar{\sigma}_C = 12 \\
\bar{c}_{AB} = 0 \quad \bar{c}_{AC} = 0 \quad \bar{\sigma}_{BC} = 0
\]

Consider the following two portfolios:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(\bar{x})</th>
<th>(\bar{\sigma})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi)</td>
<td>0.333</td>
<td>0.333</td>
<td>0.333</td>
<td>6</td>
<td>5.85</td>
</tr>
<tr>
<td>(\pi_{eff})</td>
<td>0.322</td>
<td>0.372</td>
<td>0.305</td>
<td>6</td>
<td>5.81</td>
</tr>
</tbody>
</table>

The second portfolio is efficient, both have the same expected return.
5b. Introduction to CAPM

Consider

- The risk-free interest rate \(r \)

- A global market index with (stochastic) return \(\rho \)

- An asset \(A \) in the market with (stochastic) return \(\rho_A \)
Problem: Quantify the risk and return of A in the market

Example: r is the interest rate of a zero coupon US-bond, ρ is the return of the S&P 500, and A is a share of Google.
W. Sharpe (1964) established that there exists a quantity denoted β such that

$$E \rho_A - r = \beta (E \rho - r),$$ \hspace{1cm} (1)

where

$$\beta = \frac{\text{cov}(\rho_A, \rho)}{\text{var} \rho} = \frac{E(\rho \rho_A) - E \rho E \rho_A}{E(\rho^2) - (E \rho)^2}.$$

The amount $E \rho_A - r$ is the risk premium of asset A.
5c. β and the expected return

Based on (1) we see that

- If $\beta = 0$ then $E\rho_A = r$.

- If $\beta = 0$ then $E\rho_A = \rho$.

$E\rho_A$ is a linear function of β under the equation

$$E\rho_A = r + \beta(\rho - r).$$
5d. β and the risk

As we are interested in risk, we compute the variance of ρ_A. Define the random variable ε by the relation

$$\varepsilon = \rho_A - E\rho_A - \beta(\rho - E\rho).$$

Taking expectations we verify $E\varepsilon = 0$.

$$\text{cov}(\rho, \varepsilon) = E\rho\varepsilon = E\rho\left(\rho_A - E\rho_A - \beta(\rho - E\rho)\right) = E(\rho\rho_A) - E\rho E\rho_A - \beta[E\left(\rho^2\right) - (E\rho)^2] = 0$$
We obtained a decomposition of ρ_A of the form

$$\rho_A - \mathbf{E} \rho_A = \beta (\rho - \mathbf{E} \rho) + \varepsilon$$

where the two terms in the sum are uncorrelated.
This gives

\[\text{var } \rho_A = \beta^2 \text{var } \rho + \text{var } \varepsilon. \]

Here

- \(\beta^2 \text{var } \rho \) is the systematic (unavoidable) risk of \(A \)
- \(\text{var } \varepsilon \) is the unsystematic (diversifiable) risk of \(A \).

Then, \(\beta \) measures the systematic or market risk of \(A \).
It is important to distinguish between this two risks:

- the first is the **systematic**, intrinsic of the market, can not be reduced.

- The second, called **unsystematic**, can be diversified, for instance, buying other assets.
In practice β ranges, approximately from $1/2$ to 2, and, for instance

- If $\beta = 1/2$, the asset A has half of the expected return of the market, but $1/4$ of the systematic risk, we have a **defensive** asset.

- If $\beta = 2$, the asset doubles the expected return of the market, but the systematic risk is raised four times. We have an **aggressive** asset.
5d. Computation of β

The parameter β results as the slope in a simple linear regression model of the form

$$\rho_A - r = \beta (\rho - r) + \varepsilon,$$

where ε is a statistical error.
In order to estimate β, you need:

- Prices $(S_A(0), S_A(1), \ldots, S_A(n))$ of the asset A,

- corresponding prices $(S(0), S(1), \ldots, S(n))$ of the market index.
STEP 1: Compute the corresponding returns by the formula

\[
x(k) = \frac{S(k)}{S(k-1)} - 1, \quad y(k) = \frac{S_A(k)}{S_A(k-1)} - 1.
\]

STEP 2: Find the mean returns

\[
\bar{x} = \frac{1}{n} \sum_{k=1}^{n} x(k), \quad \bar{y} = \frac{1}{n} \sum_{k=1}^{n} y(k),
\]
STEP 3: Estimate the variance of ρ by

$$\bar{\sigma}_x^2 = \frac{1}{n} \sum_{k=1}^{n} (x(k) - \bar{x})^2,$$

STEP 4: Estimate the covariance

$$\bar{c}_{xy} = \frac{1}{n} \sum_{k=1}^{n} (x(k)y(k)) - \bar{x}\bar{y}.$$

FINAL STEP: The estimation of β is

$$\beta = \frac{\bar{c}_{xy}}{\bar{\sigma}_x^2}.$$