1. Prove that the duration of a coupon bearing bond can not be larger than its time to maturity.

2. Prove, using Itô formula, that the stochastic process

\[r(t) = \frac{\theta}{\alpha} + e^{-\alpha t} \left[r_0 - \frac{\theta}{\alpha} \right] + \sigma e^{-\alpha t} \int_0^t e^{\alpha s} dW(s) \]

satisfies Vasicek diffusion equation

\[dr(t) = (\theta - \alpha r(t)) dt + \sigma dW(t). \]

Based on the first formula, prove that \(r(t) \) is a gaussian random variable, with

\[\mathbb{E} r(t) = \frac{\theta}{\alpha} + e^{-\alpha t}, \]

\[\text{var} r(t) = \frac{\sigma^2}{2\alpha} \left[1 - e^{-2\alpha t} \right]. \]

Remember that, for a deterministic function \(f(s) \)

\[\text{var} \int_0^t f(s) dW(s) = \int_0^t f(s)^2 ds. \]