Algebra I
Segundo semestre 2002
Práctico 5

1. Sea \(\mathbb{Z} \left(\sqrt{-5} \right) = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\} \). Probar que \(R \) es un subanillo de \(\mathbb{C} \) y que su cuerpo de fracciones es \(\mathbb{Q} \left(\sqrt{-5} \right) = \{a + b\sqrt{-5} : a, b \in \mathbb{Q}\} \).

2. Sean \(D_1 \) y \(D_2 \) dominios de integridad, \(F_1, F_2 \) sus respectivos cuerpos de fracciones y \(\phi : D_1 \rightarrow D_2 \) un isomorfismo de anillos. Probar que \(\phi \) se extiende a un isomorfismo entre \(F_1 \) y \(F_2 \).

3. Sean \(R \) un anillo commutativo con unidad y \(S \) un submonoido de \((R, \cdot, 1) \). En \(R \times S \) se define la relación: \((a_1, s_1) \sim (a_2, s_2) \) si y sólo si existe \(s \in S \) tal que \(s(s_2a_1 - s_1a_2) = 0 \).
 a. Probar que \(\sim \) es una relación de equivalencia en \(R \times S \). Sea \(R_S \) el cociente \((R \times S)/\sim \). Se indica con \(a/s \) la clase de equivalencia de \((a, s) \in R \times S \). Probar que \(R_S \) es un anillo con la suma y el producto definidos mediante:
 \[
 \frac{a_1 + a_2}{s_1} = \frac{s_2a_1 + s_1a_2}{s_1s_2}, \quad \frac{a_1a_2}{s_1} = \frac{a_1a_2}{s_1s_2}.
 \]
 El anillo \(R_S \) se llama localización de \(R \) en \(S \).
 b. Sea \(\lambda_S : R \rightarrow R_S \) dado por \(\lambda_S(a) = \frac{a}{1} \). Probar que \(\lambda_S \) es un homomorfismo de anillos y que \(\lambda_S(s) \) es invertible para todo \(s \in S \).
 c. Probar que \(R_S = 0 \) si y sólo si \(0 \in S \). En ese caso se dice que \(S \) es un ciointungo multiplicativo
 d. Sean \(R' \) un anillo commutativo y \(\eta : R \rightarrow R' \) un homomorfismo de anillos tal que \(\eta(s) \) es invertible para todo \(s \in S \). Probar que existe un único homomorfismo de anillos \(\bar{\eta} : R_S \rightarrow R' \) tal que el diagrama
 \[
 \begin{array}{ccc}
 R & \xrightarrow{\lambda_S} & R_S \\
 \downarrow{\eta} & & \downarrow{\bar{\eta}} \\
 R' & \xrightarrow{\bar{\eta}} & R_S \\
 \end{array}
 \]
 conmuta.
 e. Sean \(R = \mathbb{Z}_6 \) y \(S = \{[1], [2], [4]\} \subset \mathbb{Z}_6 \). Probar que \(R_S \) es isomorfo a \(\mathbb{Z}_3 \).

4. a. Sea \(A \) un anillo commutativo con unidad, y \(f \in A \) un elemento no nulo, qu no es divisor de cero. Probar que entonces \(S = \{f^n \mid n \geq 0\} \) es un conjunto multiplicative. Notaremos \(A_f \) el localizado de \(A \) por \(S \).
 b. ¿Cómo se traduce en este caso la propiedad universal del ejercicio 3?

5. a. Sea \(A \) un anillo con unidad. Un ideal \(\mathcal{P} \) de \(A \) se dice primo si toda vez que \(a, b \in A \) son tales que \(ab \in \mathcal{P} \), entonces o \(a \) o \(b \) pertenecen a \(\mathcal{P} \) (dicho de otro modo: si \(a, b \notin \mathcal{P} \), entonces \(ab \notin \mathcal{P} \)). Probar que si \(\mathcal{P} \neq A \), entonces \(A \setminus \mathcal{P} \) es un conjunto multiplicative de \(A \). Notaremos por \(A_\mathcal{P} \) dicho localizado.
 b. Probar que todo ideal maximal es primo.
c. optativo Probar que si $\mathcal{P} \subset A$ es primo, entonces $A_{\mathcal{P}}$ es un anillo local, es decir contiene un único ideal maximal. **SUGERENCIA:** Probar que un anillo es local si y sólo si el conjunto de todos los elementos no invertibles es un ideal.

Nota: La resolución del problema 1 deberá ser incluida en la carpeta de ganancia de curso cuyo plazo de presentación vence el 19 de noviembre.