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Abstract

We prove a certain number of results on specular points and disloca-
tions of random waves which we have announced without proof in [1] or
for which only an outline of proof has been given in this reference. Along
the paper, waves are Gaussian and the basic tools are Rice formulas.
The main results are on the first two moments and in some special case,
also weak convergence is obtained.
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1 Introduction

This paper is a continuation of [1] in which we study the zeroes of certain ran-
dom waves that appear in oceanography and optics. Our aim here is to give
full proofs of certain results that were stated without proof in that paper, or for
which proofs have been only sketched.

Our interest lies in the geometry of the set of zeros of random fields with
low-dimensional parameter set (smaller or equal than 3). In general, only a
restricted number of geometrical characteristics of these sets can be described
with the methods we use, namely the so-called Rice formulas.

When the set of zeros is 0-dimensional, Rice formulas permit to express the
moments of the number of zeros by means of certain integrals depending upon
a description of the probability law of the random fields. If it is 1-dimensional
one can do something similar with length instead of number of zeros, if it is

∗Université de Toulouse, IMT, ESP, F31062 Toulouse Cedex 9, France. Email: jean-
marc.azais@math.univ-toulouse.fr
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2-dimensional with area-measure, and so on. One can also extend the same
methods to weighted zeros, that is, compute the moments of total weight in the
0-dimensional case and the integral of a weight function on the 0-level set of the
random field in the other cases.

We compute moments that are useful to make statistics on certain param-
eters appearing in the law of the random field. In some situations we can go
further and obtain weak limit theorems for certain re-normalizations of natural
functionals of the paths which are of interest.

These are special cases of the general problem of computing moments of the
geometric measure of the level sets of random fields. For this purpose, Rice for-
mulas have been developed since the pioneering work of Rice [10]. We refer to
the book by Azäıs and Wschebor [2] for an extended presentation of the subject
and for proofs of the general formulas we use.

In this paper we will consider two classes of 0-sets of random fields: specular
points (Section 2) and dislocations of wave fronts (Section 3). For details not
mentioned here and other geometrical properties of waves which can be studied
with analogous methods, we refer to [1], [4], [9].

All random fields are assumed to have continuously differentiable paths and
to be Gaussian, a hypothesis that is useful to be able to perform the computa-
tions associated with Rice formulas, but can fail to approximate physical reality
in certain cases.

We use the following notations: σd(B) the d-dimensional Hausdorff measure
of a Borel set B. If f is a function of d variables we denote fi the partial
derivative with respect to the i-th variable. MT denotes the transpose of a
matrix M . (const) is a positive constant whose value may change from one
occurrence to another. pξ(x) is the density of the random variable or vector ξ,
whenever it exists. λk (k = 0, 1, 2, ...) denotes the k-th spectral moment of a
stationary random process defined on the real line.

2 Specular points

2.1 Specular points for one-parameter processes

Specular points of a curve are defined as follows: We take cartesian coordinates
Oxz in the plane and assume the curve is the graph of a C1-function z = W (x).
A light source placed at (0, h1) emits a ray that is reflected at the point (x,W (x))
of the curve and the reflected ray is registered by an observer placed at (0, h2).

Using the equality between the angles of incidence and reflexion with respect
to the normal vector to the curve - i.e. N(x) = (−W ′(x), 1) - an elementary
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computation gives:

W ′(x) =
α2r1 − α1r2

x(r2 − r1)
(1)

where αi := hi −W (x) and ri :=
√

x2 + α2
i , i=1,2.

The points (x,W (x)) of the curve such that x is a solution of (1) are called
“specular points”. When the curve is random, one of our aims is to study the
probability distribution of the number of specular points such the abcise x ∈ A,
where A is a Borel subset of the line.

The following approximation is due to M.S. Longuet-Higgins (see [7], [8]):

Suppose that h1 and h2 are big with respect to W (x) and x, then ri =
αi + x2/(2αi) + O(h−3

i ). Then, (1) can be approximated by

W ′(x) ' x

2
α1 + α2

α1α2
' x

2
h1 + h2

h1h2
= kx, (2)

where
k :=

1
2

( 1
h1

+
1
h2

)
.

Set Y (x) := W ′(x)− kx and SP (A) the number of roots of Y (x) belonging
to the set A. We will call SP (A) the “Longuet-Higgins approximation” of the
number of specular points, when the parameter k tends to 0.

Assume now that {W (x) : x ∈ R} is a centered Gaussian stationary process
with C2-paths. In [1] an exact formula has been obtained for the expectation
of the number of specular points belonging to the interval [a, b]. This is an
integral formula, well-adapted to numerical computation and it turns out that
E(SP ([a, b])) is a very accurate approximation, for example, for ocean waves.

Also, the Longuet-Higgins approximation is tractable from a mathematical
point of view, and one can go much farther than expectation in the description
of the law of the number of specular points. More precisely in [1] it is proved
that:

1. Adding some hypotheses on the law of the process {W (x) : x ∈ R} (paths
of class C4 and some mixing condition, such as δ-dependence or a con-
trolled decay of correlation), it follows that

Var
[
SP (R)

]
= θ

1
k

+ O(1) as k → 0,

where θ is a constant that can be computed by means of an explicit formula
from the covariance of the given Gaussian process, which is well-adapted
to numerical computation.
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This implies that the coefficient of variation of the random variable SP (R)
tends to zero in a controlled manner, namely:

√
Var(SP (R))
E(SP (R))

∼
√

θπk

2λ4
as k → 0, (3)

since

E(SP (R)) ∼
√

2λ4

π

1
k

((3) corrects a small error in [1]).

2. With some additional requirement on the smoothness of the paths of the
process, under the same asymptotic, the natural renormalization of SP (R)
tends to the standard normal distribution Φ(x), that is, for every x ∈ R:

P
(SP (R)− (2λ4/π)1/2

k

(θ/k)1/2
≤ x

)
→ Φ(x) as k → 0.

2.2 Specular points for two-parameter processes

Let us consider in R3 a coordinate system Oxyz, and a C1-function z = W (x, y).
The following definition of specular points of the graph extends naturally the
one we gave above for functions of one real variable.

The source of light is placed at the point (0, 0, h1) and the observer at
(0, 0, h2). The point (x, y) is said to be a specular point if the normal vector
n(x, y) = (−Wx,−Wy, 1) to the graph at (x, y, W (x, y)) satisfies the following
two conditions:

• the angles with the incident ray I = (−x,−y, h1 −W ) and the reflected
ray R = (−x,−y, h2 − W ) are equal (for short the argument (x, y) has
been removed),

• it belongs to the plane generated by I and R.

Setting αi = hi −W and ri =
√

x2 + y2 + αi, i = 1, 2, as in the one-parameter
case we have:

Wx =
x

x2 + y2

α2r1 − α1r2

r2 − r1
,

Wy =
y

x2 + y2

α2r1 − α1r2

r2 − r1
. (4)

When h1 and h2 are large, the system above can be approximated by

Wx = kx

Wy = ky, (5)
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under the same conditions as in dimension 1. This is the Longuet-Higgins ap-
proximation for two-parameter functions.

For each subset Q of R2, we denote by SP (Q), the number of approximate
specular points in the sense of (5) such that (x, y) ∈ Q. In the remaining of
this paragraph we limit our attention to this approximation and to the case in
which {W (x, y) : (x, y) ∈ R2} is a centered Gaussian stationary random field
with C3-paths.

We need some additional notation: µ denotes the spectral measure of the
random field, which is a Borel measure on R2 and λij , i, j = 0, 1, 2, ... the spectral
moments

λij =
∫

R2
uivjµ(du, dv)

whenever they are well-defined.

In [1] one can find the statement of certain results on the behavior of ex-
pectation and variance of SP (Q) under the asymptotic k → 0. We give full
proofs of these results below. For the time being, what is known for variance
and coefficient of variation is weaker than in the one-dimensional parameter case.

Let us define:

Y(x, y) :=
(

Wx(x, y)− kx
Wy(x, y)− ky

)
. (6)

Under the non-degeneracy condition λ20λ02 − λ2
11 6= 0, the random field

{Y (x, y) : x, y ∈ R} satisfies the hypotheses of Theorem 6.2. in [2], and we can
write the Rice formula:

E
(
SP (Q)

)
=

∫

Q

E
(|detY′(x, y)|∣∣Y(x, y) = 0

)
pY(x,y)(0) dxdy

=
∫

Q

E
(|detY′(x, y)|)pY(x,y)(0) dxdy,

(7)

since for fixed (x, y) the random matrix Y′(x, y) and the random vector Y(x, y)
are independent, so that the condition in the conditional expectation can be
removed.

The density in the right hand side of (7) has the expression

pY(x,y)(0) = p(Wx,Wy)(kx, ky)

=
1
2π

1√
λ20λ02 − λ2

11

exp
[
− k2

2(λ20λ02 − λ2
11)

(
λ02x

2 − 2λ11xy + λ20y
2
)]

.

(8)
To compute the expectation of the absolute value of the determinant in the right
hand side of (7), which does not depend on x, y, we use the method of [3] (see

5



also [6]). Set ∆ := detY′(x, y) = (Wxx − k)(Wyy − k)−W 2
xy.

We have

E(|∆|) = E
[

2
π

∫ +∞

0

1− cos(∆t)
t2

dt

]
. (9)

Define
h(t) := E

[
exp

(
it[(Wxx − k)(Wyy − k)−W 2

xy]
)]

.

Then

E(|∆|) =
2
π

(∫ +∞

0

1−Re[h(t)]
t2

dt
)
. (10)

To compute h(t) we define

A =




0 1/2 0
1/2 0 0
0 0 −1




and Σ the variance matrix of Wxx,Wyy,Wx,y

Σ :=




λ40 λ22 λ31

λ22 λ04 λ13

λ31 λ13 λ22


 .

LetΣ1/2AΣ1/2 = P diag(∆1,∆2, ∆3)PT where P is orthogonal. Then by a
diagonalization argument

h(t) = eitk2

E
(

exp
[
it

(
(∆1Z

2
1−k(s11+s21)Z1)+(∆2Z

2
2−k(s12+s22)Z2)+(∆3Z

2
3−k(s13+s23)Z3)

)])

(11)

where (Z1, Z2, Z3) is standard normal and sij are the entries of Σ1/2PT .
One can check that if ξ is a standard normal variable and τ, µ are real

constants, τ > 0:

E
(
eiτ(ξ+µ)2

)
= (1−2iτ)−1/2e

iτµ2

(1−2iτ) =
1

(1 + 4τ2)1/4
exp

[ −2τ

1 + 4τ2
+i

(
ϕ+

τµ2

1 + 4τ2

)]
,

where
ϕ =

1
2

arctan(2τ), 0 < ϕ < π/4.

Replacing in (11), we obtain for Re[h(t)] the formula:

Re[h(t)] =
[ 3∏

j=1

dj(t, k)√
1 + 4∆2

j t
2

]
cos

( 3∑

j=1

(
ϕj(t) + k2tψj(t)

))
(12)

where, for j = 1, 2, 3:
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• dj(t, k) = exp
[
− k2t2

2
(s1j + s2j)2

1 + 4∆2
j t

2

]
,

• ϕj(t) =
1
2

arctan(2∆jt), 0 < ϕj < π/4,

• ψj(t) =
1
3
− t2

(s1j + s2j)2∆j

1 + 4∆2
j t

2
.

Introducing these expressions in (10) and using (8) we obtain a new formula
which has the form of a rather complicated integral. However, it is well adapted
to numerical evaluation.

On the other hand, this formula allows us to compute the equivalent as
k → 0 of the expectation of the total number of specular points under the
Longuet-Higgins approximation. In fact, a first order expansion of the terms
in the integrand gives a somewhat more accurate result, that we state as a
theorem:

Theorem 1
E

(
SP (R2)

)
=

m2

k2
+ O(1), (13)

where

m2 =
∫ +∞

0

1− [ ∏3
j=1(1 + 4∆2

j t
2)

]−1/2 cos
(∑3

j=1 ϕj(t)
)

t2
dt

=
∫ +∞

0

1− 2−3/2
[ ∏3

j=1

(
Aj

√
1 + Aj

)](
1−B1B2 −B2B3 −B3B1

)

t2
dt,

(14)
where

Aj = Aj(t) =
(
1 + 4∆2

j t
2
)−1/2

, Bj = Bj(t) =
√

(1−Aj)/(1 + Aj).

Notice that m2 only depends on the eigenvalues ∆1,∆2, ∆3 and is easily
computed numerically.

We now consider the variance of the total number of specular points in two
dimensions, looking for analogous results to the one-dimensional case, in view
of their interest for statistical applications. It turns out that the computations
become much more involved. The statements on variance and speed of conver-
gence to zero of the coefficient of variation that we give below include only the
order of the asymptotic behavior in the Longuet-Higgins approximation, but
not the constant. However, we still consider them to be useful. If one refines
the computations one can give rough bounds on the generic constants in Theo-
rem 2 and Corollary 1 on the basis of additional hypotheses on the random field.

7



Now we add the following hypothesis to the set already required to study
the expectation of the specular points under the Longuet-Higgins asymptotic.
We express W ′′(0) in the reference system xOy of R2 as the 2 × 2 symmetric
centered Gaussian random matrix:

W ′′(0) =
(

Wxx(0) Wxy(0)
Wxy(0) Wyy(0)

)

The function
z Ã ∆(z) = det

[
Var

(
W ′′(0)z

)]
,

defined on z = (z1, z2)T ∈ R2, is a non-negative homogeneous polynomial of
degree 4 in the pair z1, z2. We will assume the non-degeneracy condition:

min{∆(z) : ‖z‖ = 1} = ∆ > 0. (15)

Theorem 2 Let us assume that {W (x) : x ∈ R2} satisfies the above conditions
and that it is also δ-dependent, δ > 0, that is, E

(
W (x)W (y)

)
= 0 whenever

‖x− y‖ > δ.

Then, for k small enough:

Var
(
SP (R2)

) ≤ L

k2
,

where L is a positive constant depending upon the law of the random field.

A direct consequence of Theorems 1 and 2 is the following:

Corollary 1 Under the same hypotheses of Theorem 2, for k small enough,
one has: √

Var
(
SP (R2)

)

E
(
SP (R2)

) ≤ L1k

where L1 is a new positive constant.

Proof of Theorem 2. Let us denote T = SP (R2). We have:

Var(T ) = E(T (T − 1)) + E(T )− [E(T )]2 (16)

We have already computed the equivalents as k → 0 of the second and third
term in the right-hand side of (16). Our task in what follows is to consider the
first term.

The proof is performed using Rice formula for the second factorial moment
of the number of roots of the random field Y . We apply Theorem 6.3. of [2] for
dimension d = 2 and k = 2. Then,

E(T (T − 1))

=
∫ ∫

R2×R2
E

(
| detY′(x)||detY′(y)|

∣∣ Y(x) = 0,Y(y) = 0
)
pY(x),Y(y)(0,0) dxdy

=
∫ ∫

‖x−y‖>δ

... dxdy +
∫ ∫

‖x−y‖≤δ

... dxdy = J1 + J2.
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For J1 we proceed as in the proof of Theorem 1 of [1], using the δ-dependence
and the evaluations therein. We obtain:

J1 =
m2

2

k4
+

O(1)
k2

. (17)

Let us show that for small k,

J2 =
O(1)
k2

. (18)

In view of (16), (13) and (17) this suffices to prove the theorem.

We do not perform all detailed computations. The key point consists in
evaluating the behavior of the integrand that appears in J2 near the diagonal
x = y, where the density pY(x),Y(y)(0,0) degenerates and the conditional ex-
pectation tends to zero.

For the density, using the invariance under translations of the law of W ′(x) :
x ∈ R2, we have:

pY(x),Y(y)(0,0) = pW ′(x),W ′(y)(kx, ky)
= pW ′(0),W ′(y−x)(kx, ky)
= pW ′(0),[W ′(y−x)−W ′(0)](kx, k(y − x)).

Perform the Taylor expansion, for small z = y − x ∈ R2:

W ′(z) = W ′(0) + W ′′(0)z + O(‖z‖2).
Using the non-degeneracy assumption (15) and the fact that W ′(0) and W ′′(0)
are independent, we can show that for x, z ∈ R2, ‖z‖ ≤ δ:

pY(x),Y(y)(0,0) ≤ C1

‖z‖2 exp
[− C2k

2(‖x‖ − C3)2
]

where C1, C2, C3 are positive constants.

Let us consider the conditional expectation. For each pair x,y of different
points in R2, denote by τ the unit vector (y − x)/‖y − x‖ and n a unit vec-
tor orthogonal to τ . We denote respectively by ∂τY, ∂ττY, ∂nY the first and
second partial derivatives of the random field in the directions given by τ and n.

Under the condition
Y(x) = 0,Y(y) = 0

we have the following simple bound on the determinant, based upon its definition
and Rolle’s Theorem applied to the segment [x,y] = {λx + (1− λ)y}:

∣∣ detY′(x)
∣∣ ≤ ‖∂τY(x)‖‖∂nY(x)‖ ≤ ‖y − x‖ sup

s∈[x,y]

‖∂ττY(s)‖‖∂nY(x)‖ (19)
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So,

E
(
| detY′(x)||detY′(y)|∣∣ Y(x) = 0,Y(y) = 0

)

≤ ‖y − x‖2E
[

sup
s∈[x,y]

‖∂ττY(s)‖2‖∂nY(x)‖.‖∂nY(y)‖
∣∣∣W ′(x) = kx,W ′(y) = ky

]

= ‖z‖2E
[

sup
s∈[0,z]

‖∂ττY(s)‖2‖∂nY(0)‖.‖∂nY(z)‖
∣∣∣W ′(0) = kx,

W ′(z)−W ′(0)
‖z‖ = kτ

]
,

where the last equality is again a consequence of the stationarity of the random
field {W (x) : x ∈ R2}.

At this point, we perform a Gaussian regression on the condition. For the
condition, use again Taylor expansion, the non-degeneracy hypothesis and the
independence of W ′(0) and W ′′(0). Then, use the finiteness of the moments of
the supremum of bounded Gaussian processes (see for example [2], Ch. 2), take
into account that ‖z‖ ≤ δ to get the inequality:

E
(
| detY′(x)|| detY′(y)|

∣∣ Y(x) = 0,Y(y) = 0
)
≤ C4 ‖z‖2

(
1 + k‖x‖)4 (20)

where C4 is a positive constant. Summing up, we have the following bound for
J2:

J2 ≤ C1C4 πδ2

∫

R2

(
1 + k‖x‖)4 exp

[− C2k
2(‖x‖ − C3)2

]
dx

= C1C4 2π2δ2

∫ +∞

0

(
1 + kρ

)4 exp
[− C2k

2(ρ− C3)2
]
ρdρ

(21)

Performing the change of variables w = kρ, (18) follows.

3 Dislocation of wave fronts

Dislocations are phase singularities of wavefronts. They correspond to lines of
darkness in light propagation, or threads of silence in sound (see Berry and
Dennis [3]). In a mathematical framework they can be defined as the loci of
points where the amplitude of waves vanishes.

We represent the wave as

W (x, t) = ξ(x, t) + iη(x, t), where x ∈ Rd.

The dislocations are the intersection of the two random surfaces ξ(x, t) =
0, η(x, t) = 0. We consider a fixed time, for instance t = 0.
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For random waves, when d = 2 we will study the expectation of the random
variable

#{x ∈ S : ξ(x, 0) = η(x, 0) = 0}.
When d = 3 one important quantity is the length of the level curve

L{x ∈ S : ξ(x, 0) = η(x, 0) = 0}.
In what follows, we will re-formulate some results in optics in the standard

form of probability theory and give complete proofs for them. A short presen-
tation can be found in [1].

3.1 Mean number of dislocation points

Let us consider a space variable x in R2 and a random wave with real part ξ(x)
and imaginary part η(x). We define {Z(x) : x ∈ R2} as the random field taking
values in R2, with coordinates ξ(x), η(x). We assume that these two coordinates
are independent centered Gaussian stationary isotropic random fields with C2-
paths and the same distribution. With no loss of generality, we also assume
that Var(ξ(x)) = 1.

First, we are interested in the expectation of the number of dislocation points

d2 := E[#{x ∈ S : ξ(x) = η(x) = 0}],
where S is a subset of the parameter space having area equal to 1, for simplicity.

Then, using the Rice formula for Gaussian fields ([2] Theorem 6.2) we get:

d2 =
∫

S

E[| det(Z′(x))|∣∣Z(x) = 0]pZ(x)(0)dx, (22)

where pZ(x)(.) is the density of Z(x). One can easily check that this density is
non-degenerate. Moreover, one has (use Proposition 6.5. of [2]) P(∃x,Z(x) =
0, det[Z′(x) = 0]) = 0. These two conditions imply the validity of (22).

Set λ2 = Var(ξi(x)) = Var(ηi(x)), i = 1, 2. The stationarity implies, first,
that the integrand in (22) is constant and, second, that Z(x) and Z′(x) are inde-
pendent, so that the conditional expectation is in fact an ordinary expectation.

The entries of Z′(x) are four independent centered Gaussian variables with
variance λ2, so that, up to the factor λ2, |det(Z′(x))| is the area of the parallel-
ogram generated by two independent standard Gaussian variables in R2. Using
invariance of the distribution, the distribution of this volume is the product of
independent square roots of a χ2(2) and a χ2(1) distributed random variables.
An elementary calculation gives then: E[| det(Z′(x))|] = λ2. Finally, we get

d2 =
1
2π

λ2.

This quantity is equal to K2
4π in Berry and Dennis [3] notation, giving their for-

mula (4.6).
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3.2 Mean length of dislocation curve

Now suppose that the space variable is of dimension 3 and the random field
{Z(x) : x ∈ R3} satisfies the same hypotheses as in the 2-dimensional parameter
case. Generically the dislocation points form a curve C:

C = {x : Z(x) = 0}

Our aim is to compute for each measurable subset S of R3:

d3 = E[L(C ∩ S)]

where L is the length of the curve which is always defined, at least, as the
Hausdorff measure of dimension 1. The Rice formula to be applied is now [2]
Th 6.8 that reads

d3 =
∫

S

E[(detZ′(x) Z′(x)T )1/2
∣∣Z(x) = 0]pZ(x)(0)dx].

and the verification of the validity is performed in a similar way to the 2-
dimensional case above. For simplicity, we may assume again that S has
Lebesgue measure equal to 1. The expression can be simplified using the sta-
tionarity and the normalization of the variance, to get

d3 =
1
2π
E[(detZ′(x)Z′(x)T )1/2],

with
E[(det(Z′(x)Z′(x)T )1/2] = λ2E(V ),

where V is the surface area of the parallelogram generated by two standard
Gaussian variables in R3. The projection method gives

E(V ) = E(XY ) =
4√
2π

√
π

2
= 2,

Here X and Y are independent and X (resp. Y ) is the square root of a χ2(3)-
distributed (resp. χ2(2)-distributed) random variable.

So,

d3 =
λ2

π
.

In Berry and Dennis’ notations [3] the last quantity is denoted by k2
3π giving

their formula (4.5).

3.3 Variance

In this section, we limit ourselves to dimension 2 and the random field satis-
fies the hypotheses we introduced to compute the expectation of the number
of dislocation points. We further assume that for s1, s2 ∈ R2, s1 6= s2 the joint
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distribution of ξ(s1), ξ(s2) does not degenerate. Let S be again a measurable
subset of R2 having Lebesgue measure equal to 1.

The variance of the number of dislocations points is an important issue that
can be obtained via the second factorial moment of the number of zeroes. More
precisely:

Var
(
NZ

S (0)
)

= E
(
NZ

S (0)
(
NZ

S (0)− 1
))

+ d2 − d2
2.

and using Theorem 6.3 of [2], we can write the formula:

E
(
NZ

S (0)
(
NZ

S (0)− 1
))

=
∫

S×S

A(s1, s2)ds1ds2.

where

A(s1, s2) = E
(
| detZ′(s1) detZ′(s2)|

∣∣Z(s1) = Z(s2) = 0
)
pZ(s1,s2)(0, 0)

Taking into account that the law of the random field is invariant under transla-
tions and orthogonal transformations of R2, we have

A(s1, s2) = A
(
(0, 0), (r, 0)

)
= A(r) whith r = ‖s1 − s2‖.

The Rice’s function A(r)) has two intuitive interpretations. First it can be
viewed as

A(r) = lim
ε→0

1
π2ε4

E
[
N

(
B((0, 0), ε)

)×N
(
B((r, 0), ε)

)]
.

Second it is the density of the Palm distribution (a generalization of horizontal
window conditioning of [5]) of the number of zeroes of Z per unit of surface,
locally around the point (r, 0) given that there is a zero at (0, 0). A(r)/d2

2 is
called the “correlation function” in [3].

To compute A(r), we recall that ξ1, ξ2, η1, η2 denote the partial derivatives
of ξ, η with respect to the first and second coordinate. So,

A(r) = E
[| detZ′(0, 0) detZ′(r, 0)|

∣∣Z(0, 0) = Z(r, 0) = 02

]
pZ(0,0),Z(r,0)(04)

= E
[∣∣(ξ1η2 − ξ2η1

)
(0, 0)

(
ξ1η2 − ξ2η1

)
(r, 0)

)∣∣
∣∣∣Z(0, 0) = Z(r, 0) = 02

]

pZ(0,0),Z(r,0)(04) (23)

where 0p denotes the null vector in dimension p.

The density is easy to compute

pZ(0,0),Z(r,0)(04) =
1

(2π)2(1− ρ2(r))
, where ρ(r) =

∫ ∞

0

J0(kr)Π(dk).

Here, J0 is the Bessel function of the first kind of order 0. The spectral measure
µ is invariant under the isometries of R2, so that the measure Π on R+ is defined
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to be such that for every w ≥ 0, µ(τ : τ ∈ R2, ‖τ‖ ≤ w) = 2πΠ([0, w]).

To compute the conditional expectation of the product of the absolute value
of the determinants, we use again the same device as in [3], as well as the same
notations. We have:

|w| = 1
π

∫ +∞

−∞
(1− cos(wt)t−2dt. (24)





C := ρ(r)
E = ρ′(r)
H = −E/r
F = −ρ”(r)
F0 = −ρ”(0)

The regression formulas imply that the conditional variance matrix of the vector

W =
(
ξ1(0), ξ1(r, 0), ξ2(0), ξ2(r, 0), η1(0), η1(r, 0), η2(0), η2(r, 0)

)
,

is given by
Σ = Diag

[
A,B,A,B

]

with

A =

(
F0 − E2

1−C2 F − E2C
1−C2

F − E2C
1−C2 F0 − E2

1−C2

)

B =
(

F0 H
H F0

)

Using formula (24) the expectation we have to compute is equal to

1
π2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2t

−2
1 t−2

2

[
1−1

2
T (t1, 0)−1

2
T (−t1, 0)−1

2
T (0, t2)−1

2
T (0,−t2)

+
1
4
T (t1, t2) +

1
4
T (−t1, t2) +

1
4
T (t1,−t2) +

1
4
T (−t1,−t2)

]
(25)

where
T (t1, t2) = E

[
exp

(
i(w1t1 + w2t2)

)]

with
w1 = ξ1(0)η2(0)− η1(0)ξ2(0) = W1W7 −W3W5

w2 = ξ1(r, 0)η2(r, 0)− η1(r, 0)ξ2(r, 0) = W2W8 −W4W6.

T (t1, t2) = E
(
exp(iWTHW)

)
where W has the distribution N(0, Σ) and

H =




0 0 0 D
0 0 −D 0
0 −D 0 0
D 0 0 0


 ,
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D =
1
2

[
t1 0
0 t2

]
.

A standard diagonalization argument shows that

T (t1, t2) = E
(
exp(iWTHW)

)
= E

(
exp(i

8∑

j=1

λjζ
2
j )

)
,

where the ζj ’s are independent with standard normal distribution and the λj

are the eigenvalues of Σ1/2HΣ1/2. Using the characteristic function of the χ2(1)
distribution:

E
(
exp(iWTHW)

)
=

8∏

j=1

(1− 2iλj)−1/2. (26)

Clearly
Σ1/2 = Diag

[
A1/2,B1/2,A1/2,B1/2

]

and

Σ1/2HΣ1/2 =




0 0 0 M
0 0 −MT 0
0 −M 0 0
MT 0 0 0




with M = A1/2DB1/2.
Let λ be an eigenvalue of Σ1/2HΣ1/2. It is easy to check that λ2 is an

eigenvalue of MMT . Respectively if λ2
1 and λ2

2 are the eigenvalues of MMT ,
those of Σ1/2HΣ1/2 are ±λ1(twice) and ±λ2 (twice).

Note that λ2
1 and λ2

2 are the eigenvalues of MMT = A1/2DBDA1/2 or
equivalently, of DBDA. Using (26)

E
(
exp(iWTHW)

)
=

(
1+4(λ2

1+λ2
2)+16λ2

1λ
2
2

)−1 =
(
1+4 tr(DBDA)+16 det(DBDA)

)−1

where

DBDA =
1
4

[
t21F0(F0 − E2

1−C2 ) + t1t2H(F − E2C
1−C2 ) t21F0(F − E2C

1−C2 ) + t1t2H(F0 − E2

1−C2 )
t1t2H(F0 − E2

1−C2 ) + t22F0(F − E2C
1−C2 ) t1t2H(F − E2C

1−C2 ) + t22F0(F0 − E2

1−C2 )

]

So,

4 tr(DBDA) = (t21 + t22)F0(F0 − E2

1− C2
) + 2t1t2H(F − E2C

1− C2
) (27)

16 det(DBDA) = t21t
2
2

[
F 2

0 −H2
][

(F0 − E2

1− C2
)2 − (F − E2C

1− C2
)2

]
(28)
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giving

T (t1, t2) = E
(
exp(iWTHW)

)

=
(
1 + (t21 + t22)F0(F0 − E2

1− C2
) + 2t1t2H(F − E2C

1− C2
)

+ t21t
2
2

[
F 2

0 −H2
][

(F0 − E2

1− C2
)2 − (F − E2C

1− C2
)2

])−1

(29)

Performing the change of variable t′ =
√

A1t with A1 = F0(F0 − E2

1−C2 ) the
integral (25) becomes

A1

π2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2t

−2
1 t−2

2

[
1− 1

1 + t21

1
1 + t22

+−1
2

{ 1
1 + (t21 + t22)− 2A2t1t2 + t21t

2
2Z

+
1

1 + (t21 + t22) + 2A2t1t2 + t21t
2
2Z

}]

=
A1

π2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2t

−2
1 t−2

2

[
1− 1

1 + t21
− 1

1 + t22
+

1 + (t21 + t22) + t21t
2
2Z(

1 + (t21 + t22) + t21t
2
2Z

)2

− 4A2
2t

2
1t

2
2

]
(30)

where 



A2 = H
F0

F (1−C2)−E2C
F0(1−C2)−E2

Z = F 2
0−H2

F 2
0

[
1− (F − E2C

1−C2 )2.(F0 − E2

1−C2 )−2
]
.

In this form, and up to a sign change, this result is equivalent to Formula (4.43)
of [3] (note that A2

2 = Y in [3]).
In order to compute the integral (30), first we obtain

∫ ∞

−∞

1
t22

[
1− 1

1 + t22

]
dt2 = π.

We split the other term into two integrals, thus we have for the first one

1
2

∫ ∞

−∞

1
t22

[ 1
1 + (t21 + t22)− 2A2t1t2 + t21t

2
2Z

− 1
1 + t21

]
dt2

= − 1
2(1 + t21)

∫ ∞

−∞

1
t22

(1 + t21Z)t22 − 2A2t1t2
1 + t21 − 2A2t1t2 + (1 + t21Z)t22

dt2

= − 1
2(1 + t21)

∫ ∞

−∞

1
t22

t22 − 2Z1t1t2
t22 − 2Z1t1t2 + Z2

dt2 = I1,

where Z2 = 1+t21
1+Zt21

and Z1 = A2
1+Zt21

.
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Similarly, for the second integral we get

1
2

∫ ∞

−∞

1
t22

[ 1
1 + (t21 + t22) + 2A2t1t2 + t21t

2
2Z

− 1
1 + t21

]
dt2

= − 1
2(1 + t21)

∫ ∞

−∞

1
t22

t22 + 2Z1t1t2
t22 + 2Z1t1t2 + Z2

dt2 = I2

I1 + I2 = − 1
2(1 + t21)

∫ ∞

−∞

1
t22

[ t22 − 2Z1t1t2
t22 − 2Z1t1t2 + Z2

+
t22 + 2Z1t1t2

t22 + 2Z1t1t2 + Z2

]
dt2

= − 1
(1 + t21)

∫ ∞

−∞

t22 + (Z2 − 4Z2
1 t21)

t42 + 2(Z2 − 2Z2
1 t21)t

2
2 + Z2

2

dt2

= − 1
(1 + t21)

π(Z2 − 2Z2
1 t21)

Z2

√
(Z2 − Z2

1 t21)
.

In the third line we have used the formula provided by the method of residues.
In fact, if the polynomial X2−SX + P with P > 0 has not root in [0,∞), then

∫ ∞

−∞

t2 − γ

t4 − St2 + P
dt =

π√
P (−S + 2

√
P )

(
√

P − γ).

In our case γ = −(Z2 − 4Z2
1 t21), S = −2(Z2 − 2Z2

1 t21) and P = Z2
2 .

Therefore we get

A(r) =
A1

4π3(1− C2)

∫ ∞

−∞

1
t21

[
1− 1

(1 + t21)
(Z2 − 2Z2

1 t21)
Z2

√
(Z2 − Z2

1 t21)

]
dt1.
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