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Abstract

We study the probability distribution F'(u) of the maximum of smooth Gaussian fields
defined on compact subsets of R having some geometric regularity.

Our main result is a general expression for the density of F. Even though this is an
implicit formula, one can deduce from it explicit bounds for the density, hence for the
distribution, as well as improved expansions for 1 — F'(u) for large values of w.

The main tool is the Rice formula for the moments of the number of roots of a random
system of equations over the reals.

This method enables also to study second order properties of the expected Euler Charac-
teristic approximation using only elementary arguments and to extend these kind of results
to some interesting classes of Gaussian fields. We obtain more precise results for the “di-
rect method” to compute the distribution of the maximum, using spectral theory of GOE
random matrices.

1 Introduction and notations

Let X = {X(t) : t € S} be a real-valued random field defined on some parameter set S and
M := sup;cg X (t) its supremum.

The study of the probability distribution of the random variable M, i.e. the function
Fyr(u) :== P{M < u} is a classical problem in probability theory. When the process is Gaussian,
general inequalities allow to give bounds on 1 — Fj;(u) = P{M > u} as well as asymptotic
results for u — 4+00. A partial account of this well established theory, since the founding paper
by Landau and Shepp [20] should contain - among a long list of contributors - the works of
Marcus and Shepp [24], Sudakov and Tsirelson [30], Borell [13] [14], Fernique [17], Ledoux and
Talagrand [22], Berman [11] [12], Adler[2], Talagrand [32] and Ledoux|[21].

During the last fifteen years, several methods have been introduced with the aim of ob-
taining more precise results than those arising from the classical theory, at least under certain
restrictions on the process X', which are interesting from the point of view of the mathematical
theory as well as in many significant applications. These restrictions include the requirement
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the domain S to have certain finite-dimensional geometrical structure and the paths of the
random field to have a certain regularity.

Some examples of these contributions are the double sum method by Piterbarg [28]; the
Euler-Poincaré Characteristic (EPC) approximation, Taylor, Takemura and Adler [34], Adler
and Taylor [3]; the tube method, Sun [31] and the well- known Rice method, revisited by Azais
and Delmas [5], Azals and Wschebor [6]. See also Rychlik [29] for numerical computations.

The results in the present paper are based upon Theorem 3 which is an extension of Theorem
3.1 in Azals and Wschebor [8] allowing to express the density pys of Fiy by means of a general
formula. Even though this is an exact formula, it is only implicit as an expression for the
density, since the relevant random variable M appears in the right-hand side. However, it can
be usefully employed for various purposes.

First, one can use Theorem 3 to obtain bounds for pys(u) and thus for P{M > u} for
every u by means of replacing some indicator function in (5) by the condition that the normal
derivative is “extended outward” (see below for the precise meaning). This will be called the
“direct method”. Of course, this may be interesting whenever the expression one obtains can
be handled, which is the actual situation when the random field has a law which is stationary
and isotropic. Our method relies on the application of some known results on the spectrum of
random matrices.

Second, one can use Theorem 3 to study the asymptotics of P{M > u} as u — 400. More
precisely, one wants to write, whenever it is possible

1 2
P{M >u} = A(u) exp(— 5%) + B(u) (1)
where A(u) is a known function having polynomially bounded growth as u — oo, 02 =
sup;cg Var(X(t)) and B(u) is an error bounded by a centered Gaussian density with variance
02, 02 < 0. We will call the first (respectively the second) term in the right-hand side of (1)

the “first (resp second) order approximation of P{M > u}.”

First order approximation has been considered in [3] [34] by means of the expectation of the
EPC of the excursion set F, := {t € S : X(t) > u}. This works for large values of u. The same
authors have considered the second order approximation, that is, how fast does the difference
between P{M > u} and the expected EPC tend to zero when u — +oc0.

We will address the same question both for the direct method and the EPC approxima-
tion method. Our results on the second order approximation only speak about the size of the
variance of the Gaussian bound. More precise results are only known to the authors in the
special case where S is a compact interval of the real line, the Gaussian process X is stationary
and satisfies a certain number of additional requirements (see Piterbarg [28] and Azals et al. [4]).

Theorem 5 is our first result in this direction. It gives a rough bound for the error B(u) as
u — +00, in the case the maximum variance is attained at some strict subset of the face in .S
having the largest dimension. We are not aware of the existence of other known results under
similar conditions.

In Theorem 6 we consider processes with constant variance. This is close to Theorem 4.3
in [34]. Notice that Theorem 6 has some interest only in case sup;cg Kkt < 00, that is, when
one can assure that 02 < o2 in (1). This is the reason for the introduction of the additional
hypothesis k(S) < co on the geometry of S, (see below (58) for the definition of x(.5)), which
is verified in some relevant situations (see the discussion before the statement of Theorem 6).

In Theorem 7, S is convex and the process stationary and isotropic. We compute the exact
asymptotic rate for the second order approximation as u — +oo corresponding to the direct



method.

In all cases, the second order approximation for the direct method provides an upper bound
for the one arising from the EPC method.

Our proofs use almost no differential geometry, except for some elementary notions in Eu-
clidean space. Let us remark also that we have separated the conditions on the law of the
process from the conditions on the geometry of the parameter set.

Third, Theorem 3 and related results in this paper, in fact refer to the density pys of
the maximum. On integration, they imply immediately a certain number of properties of the
probability distribution £}, such as the behaviour of the tail as u — +o0.

Theorem 3 implies that F); has a density and we have an implicit expression for it. The
proof of this fact here appears to be simpler than previous ones (see Azais and Wschebor [8])
even in the case the process has 1-dimensional parameter (Azais and Wschebor [7]). Let us
remark that Theorem 3 holds true for non-Gaussian processes under appropriate conditions
allowing to apply Rice formula.

Our method can be exploited to study higher order differentiability of Fjs (as it has been
done in [7] for one-parameter processes) but we will not pursue this subject here.

This paper is organized as follows:

Section 2 includes an extension of Rice Formula which gives an integral expression for the
expectation of the weighted number of roots of a random system of d equations with d real
unknowns. A complete proof of this formula in a form which is adapted to our needs in this
paper, can be found in [9]. There is an extensive literature on Rice formula in various contexts
(see for example Belayiev [10] , Cramér-Leadbetter [15], Marcus [23], Adler [1], Wschebor [35].

In Section 3, we obtain the exact expression for the distribution of the maximum as a conse-
quence of the Rice-like formula of the previous section. This immediately implies the existence
of the density and gives the implicit formula for it. The proof avoids unnecessary technicalities
that we have used in previous work, even in cases that are much simpler than the ones consid-
ered here.

In Section 4, we compute (Theorem 4) the first order approximation in the direct method
for stationary isotropic processes defined on a polyhedron, from which a new upper bound for
P{M > u} for all real u follows.

In Section 5, we consider second order approximation, both for the direct method and the
EPC approximation method. This is the content of Theorems 5, 6 and 7.

Section 6 contains some examples.

Assumptions and notations

X = {X(t) : t € S} denotes a real-valued Gaussian field defined on the parameter set S. We
assume that S satisfies the hypothesis A1l

Al :

e S is a compact subset of R%.



e S is the disjoint union of Sg, S4—1..., S0, where Sj is an orientable C? manifold of dimension
J without boundary. The S;’s will be called faces. Let Sy,, dg < d be the non empty face
having largest dimension.

e We will assume that each S; has an atlas such that the second derivatives of the inverse
functions of all charts (viewed as diffeomorphisms from an open set in R’ to S;) are
bounded by a fixed constant. For ¢t € S;, we denote L; the maximum curvature of S; at
the point t. It follows that L; is bounded for t € S.

Notice that the decomposition S = S; U ... U Sy is not unique.

Concerning the random field we make the following assumptions A2-A5
A2 : X is in fact defined on an open set containing S and has C? paths,

A3 : for every t € S the dlstrlbutlon of (X ) does not degenerate; for every s,t € S,
s # t, the distribution of ( )) oes not degenerate,

A4 : almost surely the maximum of X (¢) on S is attained at a single point.

For t € Sj, j > 0, Xj(t) X} y(t) denote respectively the derivative along S; and the normal
derivative. Both quantities are viewed as vectors in R¢, and the density of their distribution
will be expressed respectively with respect to an orthonormal basis of the tangent space Tj ; of
S at the point ¢, or its orthogonal complement Ny ;. X7(t) will denote the second derivative
of X along S, at the point ¢ € S; and will be viewed as a matrix expressed in an orthogonal
basis of T} ;. Similar notations will be used for any function defined on S;.

A5 1 Almost surely, for every j = 1,...,d there is no point ¢ in S; such that Xi(t) = 0,
det(X7(t)) = 0.

Other notations and conventions will be as follows :

e 0; is the geometric measure on 5.

e m(t) := E(X(¢)), r(s,t) = Cov(X(s), X (t)) denote respectively the expectation and co-
variance of the process X' ; 79,1(s,t), 70,2(s,t) are the first and the second derivatives of r
with respect to . Analogous notations will be used for other derivatives without further
reference.

e If  is a random variable taking values in some Euclidean space, p,(x) will denote the
density of its probability distribution with respect to the Lebesgue measure, whenever it
exists.

o o(x) = (2r)" /2 exp(—22/2) is the standard Gaussian density ; ®(z) := I e(y)dy.

e Assume that the random vectors £,n have a joint Gaussian distribution, where n has
values in some finite dimensional Euclidean space. When it is well defined,

is the version of the conditional expectation obtained using Gaussian regression.

o E, :={teS:X(t) > u} is the excursion set above u of the function X(.) and A, :=
{M < u} is the event that the maximum is not larger than w.

e (,),|lll, denote respectively inner product and norm in a finite-dimensional real Euclidean
space; \g is the Lebesgue measure on R?; S9! is the unit sphere ; A€ is the complement
of the set A. If M is a real square matrix, M > 0 denotes that it is positive definite.



e If g: D — (C is a function and v € C, we denote

NI(D):=t{t € D:g(t) =u}

u

which may be finite or infinite.

Some remarks on the hypotheses

One can give simple sufficient additional conditions on the process X so that A4 and A5 hold
true.
If we assume the following

e for each pair j,k = 1,...,d and each pair of distinct points s,t, s € S;,t € S, the
distribution of the vector
(X(t) — X(s), Xj(s), Xp,(1))

does not degenerate in R x R7 x R¥,
e for s € Sy,t €5, j # 0, the distribution of (X (t) — X(s),X}(t)) does not degenerate,
e for s and ¢ distinct in Sy, the distribution of X (¢) — X (s) does not degenerate,

then A4 holds true.

This is well-known and follows easily from the next lemma (which is a version of the so-called
Bulinskaya’s lemma). We give a proof, for completeness.

Lemma 1 Let {Z(t) :t € T} be a random field defined on a neighborhood of a set T embedded
in some Euclidean space R™and taking values in R™. Let u € R™ be fixed.

Assume that the Hausdorff dimension of T is equal to 3,0 < m. Suppose, in addition, that Z
has C' paths and that the density Pz(t) (v) is bounded fort € T and v in some neighborhood of
U.

Then, a. s. there is no point t € T such that Z(t) = u.

Proof

Let ,7 > 0 be given. Choose L large enough, so that

P(| 7|l > L) <&,

where ||Z'||« is the sup norm over T' of the Euclidean operator norm of Z'(t), considered as a
linear operator from R” to R™.

Let 8 < a < m. The hypothesis on the Hausdorff dimension of T' implies that if 6 > 0 is
small enough, we can cover T with a finite number of balls B; (i = 1,..., N) having radius
di, 0<9; <94 (i=1,...,N) such that

N
> < (2)
=1

In each B;,i =1,..., N choose a (non-random) point ¢.
Denote:
Ay ={3t €T, Z(t) = u}.



We have:
P(Ay) < e+ P(A, 0 {]|Z']|0c < L})

N
<c+ Y P(3t€ B such that Z(t) = u, | Z'||o < L)
=1

N
<e+ > P(I2(t) —ull < Ls;)
i=1

Choose § < 1 and small enough so that pz((v) < K for some constant K whenever [jv — ul| <
L. Tt follows from (2) that:

N
P(Ay) <c+ Y Ken(Lo)™ <e+ KemL™,
i=1
where ¢, is the volume of the unit ball in R™. The result is obtained by letting 1 and then &
tend to zero in that order. ]

With respect to A5, one has the following sufficient conditions: Assume Al, A2, A3 and as
additional hypotheses one of the following two:

o t~ X(t) is of class C3

sup  P(|det (X"(¢))] < 5‘X’(t) =2') >0, asd—0,
t€S,a'eV (0)

where V(0) is some neighborhood of zero.

Then A5 holds true. This follows from Proposition 2.1 of [8] and [16].

2 Rice formula for the number of weighted roots of random
fields

In this section we review Rice formula for the expectation of the number of roots of a random
system of equations. For proofs, see for example [8], or [9], where a simpler one is given.

Theorem 1 (Rice formula) Let Z : U — R be a random field, U an open subset of R and
u € R? q fized point in the codomain. Assume that:
(i) Z is Gaussian,
(ii) almost surely the function t ~ Z(t) is of class C*,
(iii) for each t € U, Z(t) has a non degenerate distribution (i.e. Var(Z(t)) = 0),
(iv) P{3t € U, Z(t) = u,det (Z'(t)) =0} =0
Then, for every Borel set B contained in U, one has

B(VAE) = [ B(1detZ/0)]|26) = u) pz(wi. 3)
If B is compact, then both sides in (3) are finite.
Theorem 2 Let Z be a random field that verifies the hypotheses of Theorem 1. Assume that

for each t € U one has another random field Yt : W — R | where W is some topological space,
verifying the following conditions:



a) Yt(w) is a measurable function of (w,t,w) and almost surely, (t,w) ~ Y'(w) is continu-
ous.

b) For eacht € U the random process (s,w) ~ (Z(s),Y"(w)) defined on U x W is Gaussian.

Moreover, assume that g : U x C(W, Rd/) — R is a bounded function, which is continuous when
one puts on C(W, Rd/) the topology of uniform convergence on compact sets. Then, for each
compact subset I of U, one has

B( > gt¥) = [B(detZ®)lgltY)|2(0) = w)-pz0 (w)dt. (4)
tel, Z(t)=u I

Remarks:

1. We have already mentioned in the previous section sufficient conditions implying hypoth-
esis (iv) in Theorem 1.

2. With the hypotheses of Theorem 1 it follows easily that if J is a subset of U, \4(J) = 0,
then P{NZ(J) = 0} = 1 for each u € R%.

3 The implicit formula for the density of the maximum

Theorem 3 Under assumptions A1 to A5, the distribution of M has the density

py () = Z E( Ty,

t€So

d
+ ; /Sj B(|det(X/(t))] La,

X(t) = x)pxp (2)

X(t) =z, Xj(t) = O)Z)X(t),X]’.(t) (z,0)a;(dt). (5)

Remark: One can replace | det(X7(t))] in the conditional expectation by (—1)7 det(X7 (1)),
since under the conditioning and whenever M < z holds true, X j’/ (t) is negative semi-definite.
Proof of Theorem 3

Let Nj(u),j =0,...,d be the number of global maxima of X(.) on S that belong to S; and are
larger than u. From the hypotheses it follows that a.s. 37, o ;N;j(u) is equal to 0 or 1, so

that
PM>uh= 3 PN(w)=1}= 3 EWN;w). (6)

§=0,...,d §=0,....d

The proof will be finished as soon as we show that each term in (6) is the integral over (u, +00)
of the corresponding term in (5).

This is self-evident for j = 0. Let us consider the term j = d. We apply the weighted Rice
formula of Section 2 as follows :

e 7 is the random field X’ defined on Sy.

e For each t € Sy, put W = S and Y : S — R? defined as:
Yiw) == (X(w) — X(t), X(t)).

Notice that the second coordinate in the definition of Y does not depend on w.



e In the place of the function g, we take for each n = 1,2,... the function g,, defined as
follows:

In(t, f1, f2) = gn(f1, f2) = (1 = Fu(sup fi(w))).(1 = Fulu — fo(@))),

weS

where w is any point in W and for n a positive integer and = > 0, we define :
Fo(z) :=F(nzx) ; with F(x)=0if0<2<1/2 |, Flx)=1ifz>1, (7)
and F monotone non-decreasing and continuous.

It is easy to check that all the requirements in Theorem 2 are satisfied, so that, for the value 0
instead of u in formula (4) we get:

BC Y o) = [ B(det(X"0)la (O X0 = 0 OMaldr). (8)

teS4, X' (t)=0 d

Notice that the formula holds true for each compact subset of Sy in the place of S;, hence for
S, itself by monotone convergence.

Let now n — oo in (8). Clearly g,(Y?) | Tx(s)—x()<ovses- Ix()>u- The passage to the limit
does not present any difficulty since 0 < g,,(Y?) < 1 and the sum in the left-hand side is bounded
by the random variable N(f(l (Sy), which is in L! because of Rice Formula. We get

E(Ng(u)) = /5 E(|det(X"(1))] Tx(s)—xt)<ovses Ixsu|X'(£) = 0).pxt) (0)Aa(dt)
d

Conditioning on the value of X (¢), we obtain the desired formula for j = d.

The proof for 1 < j < d — 1 is essentially the same, but one must take care of the parame-
terization of the manifold S;. One can first establish locally the formula on a chart of S, using
local coordinates.

It can be proved as in [8], Proposition 2.2 (the only modification is due to the term 1y4,)
that the quantity written in some chart as

E(det(Y”(s)) Ta,|Y(s)=2,Y'(s) = 0)py(s)’y}/(s)($,0)d8,

where the process Y (s) is the process X written in some chart of Sj ,
(Y(s) = X(¢7%(s))), defines a j-form. By a j-form we mean a mesure on S; that does not
depend on the parameterization and which has a density with respect to the Lebesgue measure
ds in every chart. It can be proved also that the integral of this j-form on §; gives the
expectation of Nj(u).

To get formula (3) it suffices to consider locally around a precise point t € S; the chart ¢
given by the projection on the tangent space at ¢. In this case we obtain that at ¢

e ds is in fact o;(dt)
o Y'(s) is isometric to X ()

where s = ¢(t). O

The first consequence of Theorem 3 is the next corollary. For the statement, we need to
introduce some further notations.
For tin S;, 7 < do we define C; ; as the closed convex cone generated by the set of directions:

_Sn

AeRY: M =1;3s,€8,(n=1,2,...) such that snat,m
n

— Xasn — +oo},



whenever this set is non-empty and C; ; = {0} if it is empty. We will denote by é\t,j the dual
cone of C; j, that is:

@J ={z € R : (z,\) >0 forall A €Cy,}.

Notice that these definitions easily imply that 7; ; C C; ; and CAM C N j. Remark also that for
J = do, Ctjj = Nij.

We will say that the function X(.) has an “extended outward” derivative at the point ¢ in
Sj, j <dp if X}N(t) S Ct,j.

Corollary 1 Under assumptions A1 to A5, one has :

(a) py(x) < p(x) where

p(z) = Z E( ][X’(t)eCAt,o X(t) = CU)PX(t)(x)‘i‘

teSo

do
> [ BaO )] Ly e,
‘7:

X(t) =z, Xj(t) = 0)px (), x;() (%, 0)o(dt).  (9)

+oo

(b) PIM > u} < / B(z)dz.

u

Proof

(a) follows from Theorem 3 and the observation that if ¢ € S;, one has
{M < X(t)} C {X] y(t) € Cty}. (b) is an obvious consequence of (a). O

The actual interest of this Corollary depends on the feasibility of computing p(z). It turns
out that it can be done in some relevant cases, as we will see in the remaining of this section.
Our result can be compared with the approximation of P{M > u} by means of f;oo pP(x)dx
given by [3], [34] where

PP@) =D B( Lyyee, | X (1) = 2)px (@)
teSo

do ‘

+3 (=1 / B(det(X/(1) L, ec,,

j=1 Sj

X(t) = 2, Xj(t) = 0)px(s),x:() (2, 0)05(dt).  (10)

Under certain conditions , fu+°° p¥(x)dz is the expected value of the EPC of the excursion set
E, (see [3]). The advantage of p¥(x) over p(z) is that one can have nice expressions for it in
quite general situations. Conversely p(z) has the obvious advantage that it is an upper-bound
of the true density py/(x) and hence provides upon integrating once, an upper-bound for the
tail probability, for every u value. It is not known whether a similar inequality holds true for

p" (2).

On the other hand, under additional conditions, both provide good first order approximations
for pas(x) as  — oo as we will see in the next section. In the special case in which the process
X is centered and has a law that is invariant under isometries and translations, we describe
below a procedure to compute p(z).



4 Computing p(z) for stationary isotropic Gaussian fields

For one-parameter centered Gaussian process having constant variance and satisfying certain
regularity conditions, a general bound for pys(x) has been computed in [8], pp.75-77. In the
two parameter case, Mercadier [26] has shown a bound for P{M > u}, obtained by means of a
method especially suited to dimension 2. When the parameter is one or two-dimensional, these
bounds are sharper than the ones below which, on the other hand, apply to any dimension but
to a more restricted context. We will assume now that the process X is centered Gaussian,
with a covariance function that can be written as

E(X ()X (1) = p(lls — tl*), (11)

where p : RY — R is of class C* . Without loss of generality, we assume that p(0) = 1.
Assumption (11) is equivalent to saying that the law of X" is invariant under isometries (i.e.
linear transformations that preserve the scalar product) and translations of the underlying
parameter space R%.

We will also assume that the set S is a polyhedron. More precisely we assume that each
S;(j =1,...,d) is a union of subsets of affine manifolds of dimension j in R

The next lemma contains some auxiliary computations which are elementary and left to the
reader. We use the abridged notation : p' := p/(0), p” := p”(0)

Lemma 2 Under the conditions above, for eacht € U, i,i',k, k', j=1,...,d:
- E(GE(1).X (1) =0,

~

o

E(g%(t)%(t)) = —2p'b;, and p' <0,
92X o 92X ox B
3. Elgrar, (10-X (1) = 20'0u, B, (-5, (1) = 0,
4 (s (O)-aeey (1) = 49" [Bisr O + SO + Sindi]
5. 10// _ pl2 Z 0;

6. if t € S, the conditional distribution of X7 (t) given X (t) = z, X}(t) = 0 is the same as
the unconditional distribution of the random matrix

Z + 2/)/:6[]‘ s

where Z = (Zy, : i,k = 1,...,7) is a symmetric j X j matriz with centered Gaussian
entries, independent of the pair (X (t), X'(t)) such that, for i <k, i’ <k' one has :

E(ZixZiny) = 420”05 + (0" — p')|inbirss + 4" 80 Spepr (1 — i) -

Let us introduce some additional notations:

e H,(x),n=0,1,... are the standard Hermite polynomials, i.e.
2 0 2
Hy(z) :=¢e" (- %)ne v
For the properties of the Hermite polynomials we refer to Mehta [25].

e H,(x),n=0,1,... are the modified Hermite polynomials, defined as:

Hn(x) = ew2/2( _ ;E)HGZQQ

10



We will use the following result:

Lemma 3 Let

+oo
Jo() ::/ e V' 2 H,(2)dy, n=0,1,2,... (12)

—0o0
where z stands for the linear form z = ay + bx where a,b are some real parameters that satisfy
a? +b* =1/2. Then B

In(x) := (20)" V21 Hp(x).
Proof :

From the definitions of H,, and H,, we get

00 n e n

§ : (w? Hn(Z) _ e—w2+2wz § : (w? Fn(z) _ e—w2/2+wz
n. n:

n=0 n=0

using the Taylor expansion of e(Z=0)?* and e=)*/2 in w around 0. Therefore
o0
Z (w)” Jn(x) = / 6*y2/27w2+2w(ay+b;p)dy
n=0 R
e [ ey,
R

—vary P ).
n=0 ’

Therefore J,,(x) = (2b)"v21 H (). O
The integrals
+o0o
In(z2) := / e 12, (t)dt,

will appear in our computations. They are computed in the next Lemma, which can be proved
easily, using the standard properties of Hermite polynomials.

Lemma 4 (a)
I 9¢=7"/2 [nzl]z’f (=D, 1
n(z) = 2e kZ_O =1 =gy 12k () (13)
+ Iy, eveny 22 (n— DIIV27 () (14)
(b) .
In(—00) = Ty, eveny22 (n— D! Vo (15)

Theorem 4 Assume that the process X is centered Gaussian, satisfies conditions A1-A5 with
a covariance having the form (11) and verifying the regqularity conditions of the beginning of this

section. Moreover, let S be a polyhedron. Then, p(x) can be expressed by means of the following
formula:
do

pa) = o) § 3 50 + 3 (LY @) + Byl | (16)

teSp j=1

where

11



e g; is a geometric parameter of the face S; defined by

5= [ (0, a7)

i
where 7(t) is the normalized solid angle of the cone (?t,j in Nyj, that is:

041 (Cry N ST

oj(t) o 1(STTT) forj=0,....,d—1, (18)
aq(t) = 1. (19)

Notice that for convex or other usual polyhedra 7;(t) is constant for t € S;, so that g; is
equal to this constant multiplied by the j-dimensional geometric measure of S;.

o Forj=1,...d,

20 (G2 e y?
Ryta) = () P [ mywenn (< ) ay (20)
where
vi=—(2)7 2 (1= )Py —qz) with = |p/|(p") 7} (21)
and
=L H2 (0 2 (v
130) 1= [ X el = et ) (22)
k=0

where I, is given in the previous Lemma.

For the proof of the theorem, we need some ingredients from random matrices theory.
Following Mehta [25], denote by ¢, (v) the density of eigenvalues of n x n GOE matrices at the
point v, that is, g, (v)dv is the probability of G,, having an eigenvalue in the interval (v, v +dv).
The random n x n real random matrix G,, is said to have the GOE distribution, if it is symmetric,
with centered Gaussian entries g, i,k = 1,...,n satisfying E(¢2) = 1, E(¢%) = 1/2if i < k
and the random variables: {g;z, 1 <i <k < n} are independent.

It is well known that:

n—1
e’ 2g,(v) = e*/? Z 2 HE(v)
k=0

“+oo

+1/2 (n/2)! 2 enren Hnoa (v) [ /

—00

; (23)

—y?/2 _ i -y2/2
e V' /"Hy(y)dy — 2 e ¥ /"Hy(y)dy

+ 1 Hn1(v)
tnodd} 155 221, (y)dy

where ¢ := (28k!\/7)"Y/2 k= 0,1,..., (see Mehta [25], ch. 7.)
In the proof of the theorem we will use the following remark due to Fyodorov [18] that we
state as a Lemma

Lemma 5 Let G, be a GOE n x n matriz. Then, for v € R one has:

E(|det(Gy, — vI,)|) = 2T ((n + 3)/2) eXp(VZ/Q)qZJj_(T), (24)

12



Proof:

Denote by vy, ..., v, the eigenvalues of G,,. It is well-known (Mehta [25], Kendall et al. [19])
that the joint density f,, of the n-tuple of random variables (v1, ..., 1) is given by the formula

fu( ) = (_W> . : .: —n/2 (T oy —1
n(V1,.. .,y Cp, €Xp H lvg—v;| , with ¢, := (2m) (T'(3/2)) (HF(l—H/?))
i=1

2 :
1<i<k<n
Then,

E(|det(Gy, — v1,,)|) = E(H v —v))

. Zz 1 12 _ 1
H’Vz V’CneXp( ) H ’Vk Vz‘ dvy, ..., dvy

1<i<k<n
2/9 Cp 2/9 Cn Qnt1(V)
= /2 fn+1(V1,...,Vn,u)dvl,...,dyn:e”/ —_—"
Cnt+1 Jre Cnt1 n+1

The remainder is plain. ]

Proof of Theorem 4:

We use the definition (9) given in Corollary 1 and the moment computations of Lemma 2 which
imply that:

px ) (x) = @(x), (25)
px(t).x:(1)(,0) = () (2m) /2 (=2p) 772, (26)
X'(t) is independent of X (), (27)

7 n(t) is independent of (X7 (t), X (t), X}(t)). (28)

Since the distribution of X'(¢) is centered Gaussian with variance —2p'Iy, it follows that :

E( Ty,

Hede, | X () =2) =5o(t) if t € So,

and if t € S;,5 > 1:

E(| det(X”(t))| T X(t) = 2, X}(t) = 0)

X! y(0)ECr;
= 5,(t) B(|det(X](1)]| X (1) = 2, X](t) = 0)
= 5,(t) E(|det(Z + 20'zI)]). (29)

In the formula above, 7;(¢) is the normalized solid angle defined in the statement of the theorem
and the random j X j real matrix Z has the distribution of Lemma 2 .
A standard moment computations shows that Z has the same distribution as the random matrix:

/8p’/G]’+2 /P/,—p/2€lj7

where G is a j X 7 GOE random matrix, ¢ is standard normal in R and independent of Gj.
So, for 7 > 1 one has

. +oo
B(|det(Z + 29/L))) = (89")7% | E(|det(G;  oI;)o(w)i
where v is given by (21).

For the conditional expectation in (9) use this last expression in (29) and Lemma 5. For the
density in (9) use (26). Then Lemma 3 gives (16). O
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Remarks on the theorem
e The “principal term” is

do

o) S50 + S 12y P H )], b (30)

T
t€So j=1

which is the product of a standard Gaussian density times a polynomial with degree dy.
Integrating once, we get -in our special case- the formula for the expectation of the EPC
of the excursion set as given by [3]

e The “complementary term” given by

do

p(z) > Rj(x)g;, (31)

j=1

can be computed by means of a formula, as it follows from the statement of the theorem
above. These formulae will be in general quite unpleasant due to the complicated form of
Tj(v). However, for low dimensions they are simple. For example:

Ti(v) = V2r[p(v) — v(1 — B(w))], (32)

Ta(v) = 2v2mp(v), (33)

T3(v) = \/5[3(%2 + 1)p(v) — (20% — 3)v(1 — 2(v))]. (34)

e Second order asymptotics for pys(x) as * — 400 will be mainly considered in the next

section. However, we state already that the complementary term (31) is equivalent, as
r — 400, to

1 2
() gay Kagz?® ™ e 2527 , (35)
where the constant K, j = 1,2, ... is given by:
A p(m) A N 24
K. — 23]—2 ‘2 nija T \2 . 36
= g o) (36)

We are not going to go through this calculation, which is elementary but requires some
work. An outline of it is the following. Replace the Hermite polynomials in the expression
for T;(v) given by (22) by the well-known expansion:

[J/2] .
(2 )] '

and I;_;(v) by means of the formula in Lemma 4.

Evaluating the term of highest degree in the polynomial part, this allows to prove that,
as v — +o00, Tj(v) is equivalent to

27—1

14
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Using now the definition of R;(z) and changing variables in the integral in (20), one gets
for R;(x) the equivalent:

’Y2 2

52" (39)

K% 4 3
In particular, the equivalent of (31) is given by the highest order non-vanishing term in
the sum.

e Consider now the case in which S is the sphere S4~! and the process satisfies the same
conditions as in the theorem. FEven though the theorem can not be applied directly,
it is possible to deal with this example to compute p(z), only performing some minor
changes. In this case, only the term that corresponds to j = d — 1 in (9) does not vanish,
CAt’d,l = Nig—1,s0 that 1 X/ =1 for each t € S% ! and one can use invariance

under rotations to obtain:

_1,n(t)€EC a1

B(x) = M / \1/2
Bla) = pla) TN B den(Z + 20'ali) + QA) uLanl) (0)

where Z is a (d — 1) x (d — 1) centered Gaussian matrix with the covariance structure
of Lemma 2 and 7 is a standard Gaussian real random variable, independent of Z. (40)
follows from the fact that the normal derivative at each point is centered Gaussian with
variance 2|p’| and independent of the tangential derivative. So, we apply the previous
computation, replacing = by x + (2|p'|)~%/2 1 and obtain the expression:

ord/2
p(x) = ¢() T(d/2)

+o0 /
/ (D2 @10 2) + R+ @) )] o)y, (41)

oo T

5 Asymptotics as r — +o0

In this section we will consider the errors in the direct and the EPC methods for large values
of the argument x. Theses errors are:

X(t) = z)px ()

p(z) —pu(@) = D E( Ly pyeq, - Tursa
teSo

do
2
Y /S B(|det(X ()] T, 1eq,, Thrse
j=175i

X(t) = 2, Xj(t) = 0)px(0),x;(1) (@, 0)0;(dt).  (42)

PP (@) = pur(e) = Y E( Ly e, - Tuse| X (1) = 2)px (@)
teSy

do

+) (-1 /

j=1 Sj

E(det(X)(1) Ty, yea,,- Tars X (0) = 2, X}(6) = 0)px (0, xs0) 2, 0)rs ).
(43)

It is clear that for every real z,

Ip"(2) = par(2)] < B(z) — pas()
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so that the upper bounds for p(x) — pas(z) will automatically be upper bounds for
|pP (x) — par(z)]. Moreover, as far as the authors know, no better bounds for |p¥(x) — ps(z)|
than for p(z) — pas(x) are known. It is an open question to determine if there exist situations
in which p¥(z) is better asymptotically than p(x).

Our next theorem gives sufficient conditions allowing to ensure that the error

p(z) — pu(x)

is bounded by a Gaussian density having strictly smaller variance than the maximum variance
of the given process X , which means that the error is super- exponentially smaller than pys(z)
itself, as * — —+o00. In this theorem, we assume that the maximum of the variance is not attained
in S\Sg,. This excludes constant variance or some other stationary-like condition that will be
addressed in Theorem 6. As far as the authors know, the result of Theorem 5 is new even for
one-parameter processes defined on a compact interval.

For parameter dimension dy > 1, the only result of this type for non-constant variance
processes of which the authors are aware is Theorem 3.3 of [34].

Theorem 5 Assume that the process X satisfies conditions A1 -A5. With no loss of generality,
we assume that maxics Var(X(t)) = 1. In addition, we will assume that the set S, of points
t € S where the variance of X(t) attains its mazimal value is contained in Sq,(do > 0) the
non-empty face having largest dimension and that no point in S, is a boundary point of S\Sg, .
Then, there exist some positive constants C, 0 such that for every x > 0.

p" (x) — pur(@)| < Plx) —pu(e) < Copla(L +9)), (44)

where ¢(.) is the standard normal density.

Proof :

Let W be an open neighborhood of the compact subset S, of S such that dist(W, (S\Sq,)) >0
where dist denote the Euclidean distance in R?. For t € S; N W€, the density

Px(t),x5t)(%,0)

can be written as the product of the density of X j’(t) at the point 0, times the conditional density
of X (t) at the point x given that X}(¢) = 0, which is Gaussian with some bounded expectation
and a conditional variance which is smaller than the unconditional variance, hence, bounded by
some constant smaller than 1. Since the conditional expectations in (42) are uniformly bounded
by some constant, due to standard bounds on the moments of the Gaussian law, one can deduce
that:

B(z) — par(z) = / B( et (X5, ()] Ty, (e - Tarse| X(0) = 2, X0y (1) = 0)

WnNSq, do-N

Px(1).x5, (1) (2:0)0a, (dt) + O(p((1 +d1)z)),  (45)

as r — +oo, for some §; > 0. Our following task is to choose W such that one can assure
that the first term in the right hand-member of (45) has the same form as the second, with a
possibly different constant ¢y .

To do this , for s € S and t € Sy, let us write the Gaussian regression formula of X (s) on the

pair (X (), X}, (1)):

It — s|I?

5 X'(s). (46)

X (s) = a' ()X (t) + (b (s), X5, (1)) +
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where the regression coefficients af(s), b(s) are respectively real-valued and R%-valued.
From now onwards, we will only be interested in those t € W. In this case, since W does not
contain boundary points of S\Sy,, it follows that

Ct.dy = Ni4, and ]IX:iO,N(t)eét,do =
Moreover, whenever s € S is close enough to ¢, necessarily, s € S4, and one can show that
the Gaussian process {X*(s) : t € W N Sy,,s € S} is bounded, in spite of the fact that its
trajectories are not continuous at s = t. For each ¢, {X?(s) : s € S} is a “helix process”, see [§]
for a proof of boundedness.

On the other hand, conditionally on X (t) = z, Xj (t) = 0 the event {M > x} can be written as

{X"'(s) > B'(s) z, for somes € S}

e e - 20— a(5)
B(s) = W (47)
Our next goal is to prove that if one can choose W in such a way that
inf{3'(s) :t € WNSy,s€8,s#t}>0, (48)

then we are done. In fact, apply the Cauchy-Schwarz inequality to the conditional expectation
in (45). Under the conditioning, the elements of Xj (¢) are the sum of affine functions of x
with bounded coefficients plus centered Gaussian variables with bounded variances, hence, the
absolute value of the conditional expectation is bounded by an expression of the form

Q) 2 (P( sp KD 0))

49
ses\{t} B(s) (49)

where Q(t, ) is a polynomial in x of degree 2dy with bounded coefficients. For each t € WNSy,,
the second factor in (49) is bounded by

X'(s)
P ( sup
(oo 55
Now, we apply to the bounded separable Gaussian process

X'(s)
{W.teWdeo,ses,s;ét}

the classical Landau-Shepp-Fernique inequality [20], [17] which gives the bound

1/2
:tEWﬂSdO,SGS,s;ét}>a:>> .

Xt
P(sup{ﬁt((j)) teWnSy,se S, s# t} > 1:) < Cgexp(—daz?),

for some positive constants Cs, d3 and any = > 0. Also, the same argument above for the density
PX(t),X", (1) (x,0) shows that it is bounded by a constant times the standard Gaussian density.
0

To finish, it suffices to replace these bounds in the first term at the right-hand side of (45).

It remains to choose W for (48) to hold true. Consider the auxiliary process

Y(s):= ———, seSs. (50)



Clearly, Var(Y (s)) =1 for all s € S. We set
Y (s,5") == Cov(Y(s),Y(s) , s, €S8.

Let us assume that ¢ € S,. Since the function s ~» Var(X(s)) attains its maximum value at

s = t, it follows that X(t), X} (t) are independent, on differentiation under the expectation

sign. This implies that in the regression formula (46) the coefficients are easily computed and

at(s) = r(s,t) which is strictly smaller than 1 if s # ¢, because of the non-degeneracy condition.
Then

2(1 —r(s,t)) _ 2(1 —7rY(s,1))
B(s) = > (51)
[t — s> [t — |
Since 7Y (s,s) = 1 for every s € S, the Taylor expansion of ¥ (s,t) as a function of s, around

s =t takes the form:
rY(s,t) =1+ (s = t,730 4, (£, 1) (s — 1)) + o([|s — t]|*), (52)

where the notation is self-explanatory.
Also, using that Var(Y(s)) =1 for s € S, we easily obtain:

~730,45, (£, 1) = Var(Yg, (£)) = Var(Xg, (¢)), (53)

where the last equality follows by differentiation in (50) and putting s = ¢. (53) implies that
—r &, (t,t) is uniformly positive definite on ¢ € S,, meaning that its minimum eigenvalue has
a strictly positive lower bound. This, on account of (51) and (52), already shows that

inf{G3'(s):t € S,,s € S,s#t} >0, (54)
The foregoing argument also shows that
inf{—7(a")j ()7 : t € Sy, 7 € ST s £t} >0, (55)
since whenever ¢t € S, one has a’(s) = r(s,t) so that

(a")y (t) = 720,d, (£, 7).

To end up, assume there is no neighborhood W of S, satisfying (48). In that case using a
compactness argument, one can find two convergent sequences {s,} C S, {tn} C Sq4,, Sn — S0,
t, — top € S, such that

B (sp) — £ <0.

£ may be —oo.
to # So is not possible, since it would imply
1 —a'(sp))

(
(=2
lIto — soll?

= ﬁto (80)7

which is strictly positive.
If tg = so, on differentiating in (46) with respect to s along Sy, we get:

P
X0y (5) = () ()X (1) 4 (Y (), X (1)) + 20 W2 )

where (a')}; (s) is a column vector of size do and (b')} (s) is a do x do matrix. Then, one must
have a*(t) = 1, (a')}, () = 0 . Thus

ﬁtn (5n) = _UZ(ato)go (to)un + o(1),

where u, = (s, — t,)/||$n — tn]|. Since ty € S, we may apply (55) and the limit £ of 3 (s,,)
cannot be non-positive. ]

A straightforward application of Theorem 5 is the following
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Corollary 2 Under the hypotheses of Theorem 5, there exists positive constants C,§ such that,
for every u >0 :

0<

+00 +oo
/ pP(x)de —P(M > u)| < / p(z)dr — P(M > u) < CP(§ > u),

where € is a centered Gaussian variable with variance 1 — 6.

The precise order of approximation of p(x) — par(x) or p¥(z) — pas(x) as  — +oo remains
in general an open problem, even if one only asks for the constants afl, 0,29 respectively which
govern the second order asymptotic approximation and which are defined by means of

1 . - _
— = lim —2z %log [p(m) - PM(x)] (56)
and 1
= lim 22 % log|p (x) — pur(a)], (57)
O-E r—-+00

whenever these limits exist. In general, we are unable to compute the limits (56) or (57) or
even to prove that they actually exist or differ. Our more general results (as well as in [3], [34])
only contain lower-bounds for the liminf as x — +oo. This is already interesting since it gives
some upper-bounds for the speed of approximation for pys(z) either by p(x) or p¥(x). On the
other hand, in Theorem 7 below, we are able to prove the existence of the limit and compute
afl for a relevant class of Gaussian processes.

For the next theorem we need an additional condition on the parameter set S. For S
verifying Al we define

dist((t — s),Cq.;
k(S)= sup sup sup ' (( s) t’J)

(58)
0<j<dy teS; seS, st s — ]2 7

where dist is the Euclidean distance in R?.

One can show that x(S) < oo in each one of the following classes of parameter sets S:

- S is convex, in which case k(S) = 0.

- S is a C® manifold, with or without boundary.

- S verifies the following condition: For every t € S there exists an open neighborhood V' of
t in R? and a C? diffeomorphism ¢ : V' — B(0,7) (where B(0,7) denotes the open ball in RY
centered at 0 and having radius r, r > 0) such that

(V' NS) = CnNB(0,r), where C' is a convex cone.

However, k(S) < oo can fail in general. A simple example showing what is going on is the
following: take an orthonormal basis of R? and put

S={(N\0):0<A<1}U{(pcosh,psinh) : 0 < pu <1},

where 0 < 6 < m, that is, S is the boundary of an angle of size 6. One easily checks that
k(S) = +00. Moreover it is known [3] that in this case the EPC approximation does not verify
a super- exponential inequality. More generally, sets S having “whiskers” have k(S) = +oc.

Theorem 6 Let X be a stochastic process on S satisfying A1 -A5. Suppose in addition that
Var(X(t)) =1 for allt € S and that K(S) < +o0.
Then

1
lim inf —22 2 log [p(z) — z)| >1+inf ———— 59
lin nf g [p(@) —pu(2)] = 1+ inf TN (59)
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with

, Var (X (s)| X (¢), X'(t))
o; = sup
" ses\n (1 —r(s,1))?
and
d’ist( — At—lrm(s, t), Cm‘) (60)
K¢ = sup ,
" s\ 1—r(s,t)
where

e Ay := Var(X'(t)),

e \(t) is the mazimum eigenvalue of Ay,

e in (60), j is such thatt € S; ,(j =0,1,...,dp).

The quantity in the right hand side of (59) is strictly bigger than 1.

Remark. In formula (59) it may happen that the denominator in the right-hand side is
identically zero, in which case we put +o0o for the infimum. This is the case of the one-parameter
process X (t) = {cost 4+ nsint where £, n are Gaussian standard independent random variables,
and S is an interval having length strictly smaller than .

Proof of Theorem 6

Let us first prove that sup;cg r < 0.
For each t € S, let us write the Taylor expansions

ro1(s,t) = roi(t, t) + r1(t, 1) (s — t) + O(||s — t||*)
= M(s —t) + O(||s — t|?),

where O is uniform on s,t € S, and
L—r(s,t) = (s = )" As(s = ) + O(||s — t]|*) = La||s — ||,
where Lo is some positive constant. It follows that for s € S, t € S;, s # t, one has:

dist( - At_lrol(s,t),cm) < dist((t — s),Ct;)
1— (s, 1) = T st

+ Ly, (61)

where L3 and L, are positive constants. So,

dist( - At_lT(n(S, t), Ctﬂ')
1—r(s,t)

< Ls H(S) + Ly.

which implies sup;cg k¢ < 00.

With the same notations as in the proof of Theorem 5, using (5) and (9), one has:

pa) ~ par(e) = ()| B Tygpeq,,e T X(0) =)

teSo

X(t) =z, Xj(t) =0)

do
+X;L.E(‘det(X;/(t))| ][X;’N(t)e@,j. Tases
= J

(2m) /2 (det(Var(X}(t)))) " 20;(dt)|. (62)
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Proceeding in a similar way to that of the proof of Theorem 5, an application of the Holder
inequality to the conditional expectation in each term in the right-hand side of (62) shows that
the desired result will follow as soon as we prove that:

. 1
lim inf —22log P({X] 5 € Cej} N{M > 2} X(t) = 2, X[(t) = 0) >

(63
/ T of + A(t)K? (63)

for each j =0,1,...,dy, where the liminf has some uniformity in ¢.
Let us write the Gaussian regression of X (s) on the pair (X (t), X'(t))

X(s) = a'(s)X(8) + (b'(s), X' (1)) + R'(s).
Since X (t) and X'(t) are independent, one easily computes :

a'(s) = r(s,t),
bi(s) = A7 oy (s, t).

Hence, conditionally on X (t) =z, X/(t) =0, the events
{M >z} and {R'(s) > (1 —r(s,t))x — rgl(s,t)AngJ/-’N(t) for some s € S}

coincide.
Denote by (X} v (#)|X(t) = 0) the regression of X (¢) on X}(t) = 0. So, the probability in
(63) can written as

rgl(s,t)At_lx/

/c},j P{¢'(s) >z — = r(s,0) for some s € S}pxj’-yN(t)\>(J’.(t)=0($/)dff/7 (64)
where
i -
* ¢ls)i= 1 —r(s,t)

e dr’ is the Lebesgue measure on N; ;. Remember that (?m C N j.

If —A;lTol (S,t) € CtJ‘ one has
—répl(s,t)At_lx' >0

for every o’ € Cy 5, because of the definition of Cy ;.
If —A; 'ro1(s,t) ¢ Cij, since Cy; is a closed convex cone, we can write

— A Mg (s,t) = 2/ + 27,

with 2/ € Cyj , 2/ L2" and ||2”|| = dist(—A; 'ro1(s,t),Cr ).
So,if 2’ € Cyj :
—rd (s, At Tl 4 Ty

= > /
1—r(s,t) 1—r(s,t) — ralll

using that 2’72’ > 0 and the Cauchy-Schwarz inequality. It follows that in any case, if z’ € CAM-

the expression in (64) is bounded by

/5 P(Ct(s) > 1z — Ky||2’|| for some s € S)PXJ’.,N(tMX;(t):o(xl)d$/~ (65)
t.

To obtain a bound for the probability in the integrand of (65) we will use the classical
inequality for the tail of the distribution of the supremum of a Gaussian process with bounded
paths.
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The Gaussian process (s,t)) ~ ((s), defined on (S x S)\{s = t} has continuous paths. As
the pair (s,t) approches the diagonal of S x S, ¢*(s) may not have a limit but, almost surely,
it is bounded (see [8] for a proof). (For fixed ¢, ¢(.) is a “helix process” with a singularity at
s =t, a class of processes that we have already met above).

We set
o mi(s) :=E(C'(s)) (s#1),
® M = SUP, g o4t [m*(s)],

o 1= B(|supy e [C1(5) — m!(5)]):

The almost sure boundedness of the paths of ¢*(s) implies that m < co and p < co. Applying the
Borell-Sudakov-Tsirelson type inequality (see for example Adler [2] and references therein) to
the centered process s ~» (!(s)—m!(s) defined on S\{t} , we get whenever x—r||2’|| —m—pu > 0:

P{¢'(s) > x — ky|2’|| for some s € S}
< P{¢'(s) —m'(s) > x — r¢||2’|| — m for some s € S}
(z — Fefl2’]| —m — M)Z)

< 2exp|( —
- p( 20}2

The Gaussian density in the integrand of (65) is bounded by

2" = mj y (O]

2)(t)

(27A;(6) "7 exp

)

where A;(t) and X;(t) are respectively the minimum and maximum eigenvalue of Var(X Fn®1X5(@)

and m’; y(t) is the conditional expectation E(X] (¢)|X}(t) = 0). 1\lotice t}ft (), A4(), m’; y(t)
are bounded, A;(t) is bounded below by a positive constant and A;(t) < A().

Replacing into (65) we have the bound :

P({X)y € Crs} N{M > x}‘X(t) — 2, X}(t) = 0)

j— _ n o N2 2 —m ()2
< (2m),(1)) "2 / oxp— (@l =m = p? =N
Ci j{@—r||z’||—m—p>0} 20} 2X(t)

(X 01X 0) — 0] > Em

Rt

where it is understood that the second term in the right-hand side vanishes if x; = 0.
Let us consider the first term in the right-hand side of (66). We have:

(z — kel —m—p)? I —m) y ()]
207 2\ (t)
o @l —m—w? (2] = llmj v @)1)
- 207 2 (t)

(@ —m — p— ky|Jm 5 (1))
202 + 2\ (t)K?

= [A@®)||2"|| + B(t)(x —m — p) + C(t)]z +

)

where the last inequality is obtained after some algebra, A(t), B(t), C(t) are bounded functions
and A(t) is bounded below by some positive constant.
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So the first term in the right-hand side of (66) is bounded by :

(x —m—p— Htl!m},N(t))2>
202 + 2\(t)k?

/Rd_j exp —[(A@®)||2'|| + B(t)(z — m — p) + C())]*da’

(@ —m — p— kl|m; 5 (2)]])°
202 + 2\ (t)K?

2.(27@]-)% exp —(

< Llz| ' exp *(

). (67)

where L is some constant. The last inequality follows easily using polar coordinates.

Consider now the second term in the right-hand side of (66). Using the form of the conditional
density p (z'), it follows that it is bounded by
X! 0

z—m — p— kelmj ()]

Rt

P{I X (0| X (6) = 0) =) w (D] =

}

(z —m — p— k||m; 5 (1))
20(t)K?

< Ll\x\d_j_Q exp —(

). (68)
where L; is some constant. Putting together (67) and (68) with (66), we obtain (63). O
The following two corollaries are straightforward consequences of Theorem 6:

Corollary 3 Under the hypotheses of Theorem 6 one has

lim inf —22~2 log [p¥ (z) — z) >1+inf ————.
lim inf glp”(z) — pm(z)] = L VR

Corollary 4 Let X a stochastic process on S satisfying A1 -A5. Suppose in addition that
E(X(t)) =0, E(X%(t)) = 1, Var(X'(t)) = I; for allt € S.

Then +00
lim inf — 2u™? log ‘P(M > u) — /u P (@)dz| > 1 ﬂgﬁm
and
P @) = [ (1P 2m) T ) o)
§=0

where g; is given by (17) and H;(z) has been defined in Section 4.

The proof follows directly from Theorem 6 the definition of p¥(x) and the results in [1].

6 Examples

1) A simple application of Theorem 5 is the following. Let X be a one parameter real-valued
centered Gaussian process with regular paths, defined on the interval [0,7] and satisfying an
adequate non-degeneracy condition. Assume that the variance v(t) has a unique maximum, say
1 at the interior point o, and k = min{j : v (ty) # 0} < co. Notice that v(?*)(ty) < 0. Then,
one can obtain the equivalent of pys(x) as x — oo which is given by:

1—2"(tg)/2 1 _
pute) = 1= E R () ot (69
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where ¢ is a standard normal random variable and Cj, = — (Z}C)!v(%) (to) + X[v"(t0)]* Ty=s. The
proof is a direct application of the Laplace method. The result is new for the density of the
maximum, but if we integrate the density from u to +o00, the corresponding bound for P{M > u}
is known under weaker hypotheses (Piterbarg [28]).

2) Let the process X be centered and satisfy A1-A5. Assume that the the law of the process
is isotropic and stationary, so that the covariance has the form (11) and verifies the regularity

condition of Section 4. We add the simple normalization p’ = p'(0) = —1/2. One can easily
check that ) ) . ) ,
1— —t]2) -4 —t —t
o2 = sup p~(lls — tlI°) — 4p (HS2 2H )ls — ¢l (70)
seS\{t} [1—=p(lls = ¢lI*)]
Furthermore if
p'(z) <0 for z >0, (71)

one can show that the sup in (70) is attained as ||s — t|| — 0 and is independent of ¢. Its value

1S
o2 =12p" — 1.

The proof is elementary (see [4] or [34]).

Let S be a convex set. For t € §;, s € S:
dist( —ro1(s,t),Cj) = dist(—20'(||s — t1?)(t - s), Cej)- (72)

The convexity of S implies that (¢t —s) € Cy ;. Since C;; is a convex cone and —2p/(||s —t||?) >0,
one can conclude that —rpi(s,t) € C; ; so that the distance in (72) is equal to zero. Hence,

ke = 0 for every t € S

and an application of Theorem 6 gives the inequality

1

14— 73
T (73)

o 2 _
lim inf —— log [p(x) — par ()] =
A direct consequence is that the same inequality holds true when replacing p(x) — pas(z) by
|pE (x) — par(x)| in (73), thus obtainig the main explicit example in Adler and Taylor [3], or in
Taylor et al. [34].
Next, we improve (73). In fact, under the same hypotheses, we prove that the liminf is an

ordinary limit and the sign > is an equality sign. We state this as

Theorem 7 Assume that X is centered, satisfies hypotheses A1-A5, the covariance has the
form (11) with p'(0) = —1/2, p'(z) <0 for x > 0. Let S be a convex set, and dy = d > 1.
Then

lim 2 log [p(z) — pr(a)] = 1+ —— (74)

z—+oo T 12p" — 1

Remark Notice that since S is convex, the added hypothesis that the maximum dimension dy
such that S; is not empty is equal to d is not an actual restriction.

Proof of Theorem 7

In view of (73), it suffices to prove that

lim sup —% log [p(z) — pm(z)] <1+ ! (75)

r——+00 X 12[)” - ]. '
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Using (5) and the definition of p(x) given by (9), one has the inequality
p(x) —pu(x) > (27T)_d/290($)/ E(| det(X"(t)] Tnr>o| X () = 2, X'(t) = 0)oq(dt),  (76)
Sq

where our lower bound only contains the term corresponding to the largest dimension and we
have already replaced the density px ;) x+(+)(z,0) by its explicit expression using the law of the
process. Under the condition {X () = x, X'(t) = 0} if v} X" (t)vg > 0 for some vy € S1, a
Taylor expansion implies that M > x. It follows that

E(|det(X"(t))] Lar>o

X(t)=z,X'(t) =0)

> B(|det(X" ()T 0 ey, = 0’X(t) — 2, X'(t) =0). (77)

veSd-1

We now apply Lemma 2 which describes the conditional distribution of X”(t) given X (t) =
x, X'(t) = 0 . Using the notations of this lemma, we may write the right-hand side of (77) as :

E(|det(Z — zId)| 1 sup o7 Zv > x)’

veSd-1

which is obviously bounded below by

E(|det(Z — zId)| 17,,>4)
2

= /+oo E(|det(Z — xld)]’Zn =) (2m) Y26 L exp (- dy, (78)

Y
257

where 02 := Var(Zy1) = 12p” — 1. The conditional distribution of Z given Z3; = vy is easily
deduced from Lemma 2. It can be represented by the random d x d real symmetric matrix

y  Zi2 AP
7. & +ay ?23 e o |
Ca+ oy
where the random variables {&a, ..., &4, Zik, 1 < i < k < d} are independent centered Gaussian
with
Var(Zi) =4p" (L<i<k<d) ; Var(§) = % (i=2,....d) ; a= 142;;/—_11

Observe that 0 < o < 1. B
Choose now oy such that (14+ag)a < 1. The expansion of det(Z —xId) shows that if z(1+ag) <
y < xz(l+ ap)+ 1 and zx is large enough, then

E(|det(Z — zId)|) > L ag(1 — a(1 4 ap))* ! ¢,

where L is some positive constant. This implies that

! y2 E(|d Z Id)|)d rireort X y2 1 1 d-1 dd
exp(—— et(Z—=x Y, > —— exp(—-—)ao(l—a(l+ao T

for = large enough. On account of (76),(77),(78), we conclude that for x large enough,

(z(1+ag) + 1)2]

+ 202

d ?
p(x) — par(z) > Liz®exp — [?
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for some new positive constant Lj. Since ag can be chosen arbitrarily small, this implies (75).
O

3) Consider the same processes of Example 2, but now defined on the non-convex set {a <
|lt]] < b}, 0 < a < b. The same calculations as above show that x; = 0 if a < ||t|| < b and

Ky = max{ sup “20(z0z  —2a/(2a%(1 — cos6))(1 - cose)}
ceaaty] 1= P(2%) " ocoq] 1 — p(2a2(1 — cos b)) ’
for [|¢]| = a.

4) Let us keep the same hypotheses as in Example 2 but without assuming that the covari-
ance is decreasing as in (71). The variance is still given by (70) but x; is not necessarily equal
to zero. More precisely, relation (72) shows that

"(Ils — t|I2) T ||s — ¢
s sup ofUs= et
ses\iry L= p(l[s —t]?)

The normalization: p’ =-1 /2 implies that the process X is “identity speed”, that is
Var(X'(t)) = I so that A(t) = 1. An application of Theorem 6 gives

2
limJirnf = log [p(z) — pum(z)] > 1+ 1/Zn. (79)
where )
02052 A2(52) 52 Al (22)F
Zp = sup L=p (&) 42p 2(Z )z max [/)(27)22]2,
2€(0,A] [1—p(22)] 2€(0,4] [1—p(2?)]

and A is the diameter of S.

5) Suppose that

e the process X is stationary with covariance I'(t) := Cov(X(s), X (s + t)) that satisfies
L(s1,...,8a) = [liz1, g Ti(si) where I't,...,I'g are d covariance functions on R which are
monotone, positive on [0, +00) and of class C4,

e S is a rectangle

S = H [ai,bi] ,a; < b;.
i=1,..d

Then, adding an appropriate non-degeneracy condition, conditions A2-Aj5 are fulfilled and The-
orem 6 applies
It is easy to see that

Fll (81 — tl)FQ(SQ — tg) .. .Fd(sd — td)
F1(31 — tl) .. -Fd—l(sd—l — td_l).l“zl(sd — td)

belongs to C;; for every s € S. As a consequence x; = 0 for all t € S. On the other hand,
standard regressions formulae show that

Var(X(S)‘X(t)vX’(t)) 1T} TG -TPr3...T5— - —T}...T5 I
(1 - T(S,t))2 (1 —I.. -Fd)2 ’

where T'; stands for I';(s; — t;). Computation and maximisation of o2 should be performed
numerically in each particular case.
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