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Calle Iguá 4225. 11400. Montevideo. Uruguay.
Tel: (5982)5252522. Fax: (5982)5220653.

E mail: wschebor@cmat.edu.uy

February 22, 2006

Abstract

This is a review paper about some problems of statistical inference
for one-parameter stochastic processes, mainly based upon the observa-
tion of a convolution of the path with a non-random kernel. Most of the
results are known and presented without proofs. The tools are first and
second order approximation theorems of the occupation measure of the
path, by means of functionals defined on the smoothed paths. Various
classes of stochastic processes are considered starting with the Wiener
process, Gaussian processes, continuous semi-martingales and Lévy pro-
cesses. Some statistical applications are also included in the text.

Résumé.

Cet article est une révision d’un certain nombre de problèmes statis-
tiques concernant les processus aléatoires à un paramètre continu. En
général, on suppose que l’observable est une régularisation de la trajectoire
du processus, obtenue par convolution avec un noyau détérministe. La plu-
part des résultats ici exposés est connue et presentée sans démonstration.
Les énoncés des théorèmes contiennent des approximations de la mesure
d’occupation, au premier et deuxième ordre, basées sur des fonctionnelles
définies sur les régularisées des trajectoires. On considère diverses classes
de processus, à savoir, le processus de Wiener, les processus gaussiens, les
semi-martingales continues et les processus de Lévy. Nous avons inclus
les détails de certaines applications statistiques.

AMS subject classific.ation: 60F05, 60G17, 60G18, 60G52, 60J55, 60J60,
62M99.

Short Title: Smoothing
Key words and phrases: Occupation measure, smoothing of paths, semi-

martingales, Lévy processes, statistics of stochastic processes.
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1 Introduction.

The content of this paper is motivated by the purpose of making statistical
inference on continuous parameter stochastic processes, on the basis of the ob-
servation of a smooth approximation of a trajectory. Our interest lies in the
situation in which this random path is a non-smooth function. We intend to
make inference on those parameters affecting the regularity, so that understand-
ing the irregularity of the path should allow to obtain information on them.

Most of the results in this paper are known and published. The intention is a
unified presentation including some applications to statistical problems. There
are also some new results for which we will provide proofs or at least some
indications of how they might be proved. However, several important questions
remain unanswered.

Let us consider as a typical example the stochastic differential equation

dX(t) = b(t,X(t) dt+ σ(t,X(t) dZ(t) (t > 0) X(0+) = x0 (1)

where b, σ are regular functions and Z is some noise.
In a certain number of relevant cases, statistics on the drift function b is

classical and well-established since a long time. (See for example the books by
Lipster and Shiryaev [L-S], Ch. 7, 17 or Prakasa Rao [PR]).

On the contrary, if one wants to make inference on the noise part, i.e. on
the function σ, the situation becomes more difficult due to the singularity of
the measures induced on the space of trajectories by different parameter values,
which is an obstacle to apply likelihood methods. One can try to overcome these
difficulties by looking at the behaviour of the likelihood quotient for different
parameter values of the finite-dimensional projections in the path space, and
obtain asymptotic expansions when the time-grid is refined. This corresponds
to observing the solution of (1) on a finite number of parameter values or,
equivalently, its associated polygonal approximation, and the natural problems
turn into understanding the behaviour of the level sets of random polygonals,
when one refines the grid.

Results on first order approximations of the number of level crossings of
random polygonals and some other related functionals have been considered
in the context of the theories of random walks and convergence of empirical
measures. A typical result is the following (see [R],[C-R1],[C-R2] and references
therein): in an appropriate probability space, if {Sn : n ≥ 0} is a random walk
with centered i.i.d. jumps {Xn : n ≥ 0} and the common law of theXn’s satisfies
certain regularity and boundedness conditions, then, for any δ > 0, almost
surely:

sup
u∈R

∣∣ρNu,n − LW (u, [0, n])
∣∣ = o(n

1
4+δ) (2)

where

• Nu,n denotes the number of roots of the equation Sn(t) = u in the inter-
val [0, n], {Sn(t) : t ≥ 0} denoting the function with polygonal graph and
vertices {(k, Sk) : k ≥ 0} ,
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• LW (u, J) is the local time of the Wiener process on interval J at the level
u,

• ρ = E(|X1|).

A related problem consists in approximating the local time by the normalized
number of crossings of polygonal approximations of the paths of a stochastic
process. Using rescaling, a simple consequence of (2) is the following: Denote
by X(n) the polygonal approximation of the path W corresponding to the grid{
k
n : 0 ≤ k ≤ n

}
, that is, X(n)(t) = (1 − nt + k)W ( kn ) + (nt − k)W (k+1

n ) if
k
n ≤ t ≤ k+1

n . Also, Nu(g, I) denotes the number of roots of equation g(t) = u
such that t ∈ I.

Then, (2) implies that√
π

2n
N0(X(n), [0, 1]) converges to LW (0, [0, 1]) as n→ +∞. (3)

in the sense of weak convergence of probability distributions on the line. In
fact one can prove by using some other methods that (3) holds true in the Lp

of the probability space for every p > 0 (see for example [A1],[A2] where Lp-
convergence of normalized crossings of polygonal approximations is studied for
various classes of random processes).

Almost sure approximations of the local time, seem to have started with
Paul Lévy’s work. Classical well-known results are the following:

1. almost surely,√
πε

2
νWε ([0, t]) → 2LW (0, [0, t]) as ε→ 0 for all t ≥ 0 (4)

where νWε ([0, t]) denotes the number of excursions of the path W with
respect to level u = 0, having length greater than ε.

2. almost surely,

εDW
t (ε) → 2LW (0, [0, t]) as ε→ 0 for all t ≥ 0 (5)

where DW
t (ε) denotes the number of downcrossings of the strip [0, ε] per-

formed by the path W during the time interval [0, t].
General treatments of this subject can be found, for example in the books

[I-M],[I-W],[K-S]. Both results (4) and (5) have been extended to a general class
of real-valued Markov processes (see [F-T]).

If one is willing to use these kind of results for statistical purposes, a certain
number of difficulties arise.

First, the use of polygonal approximations or Lévy-type results, requires
the observation of functionals of the actual path, which may be a diffusion
or a diffusion-like process, which is non-differentiable, and in principle can be
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observed only after smoothing. Then, these results can’t be applied directly
since one must know what happens when replacing the values of the process at
the grid times by the values of an approximating observable process at the same
instants. This is by no means trivial.

The majority of the results we are going to consider in this paper try to
overcome this difficulty by observing a regularization of the path obtained with
a convolution device. So that, instead of polygonal approximations of the path
we will deal with smooth functions. This will not happen all the time: in some
cases we will go back to polygonal approximations and the corresponding results.

Second, for statistical purposes, theorems on almost sure convergence or
convergence in probability - which we call here ”first order approximations” -
are not enough, one also needs speeds. We have included some speed results,
both for polygonal approximations and smoothing.

A third problem is that in some of the first order approximation or speed
theorems, the local time appears in the statements. Of course this is a serious
difficulty, since generally speaking the local time of a path can’t be observed
and the approximations that we know are too slow, so that we are unable to
put them instead of the local time to obtain asymptotic results. To face this
problem we integrate in the state space of the process. Once this is done, the
approximations we get are not for each level (as local time approximations)
but integrated results and one can handle them to obtain theorems which are
satisfactory from the standpoint of the statistical applications.

The account we give below of this type of results is far from complete. We
have not included multiparameter processes, for which this author is aware of
first order results only for Gaussian stationary fields defined on Rd (in which
some speed results are also known, see [B-W]) and for the d−parameter Wiener
sheet ([W1],[W2]). For one-parameter continuous semi-martingales, we give a
quite general picture, excepting for technical generalizations. On the contrary,
there are many gaps in the understanding of processes with jumps, Lévy pro-
cesses having jump part with locally unbounded variation, or solutions of SDE
with noise part having jumps.

We have included without proofs some few specific statistical applications,
and discuss some of them for the first time here. The simplest example, which
already contains problems that show some general difficulties, is making infer-
ence on the variance in a simple regression model in continuous time.

2 First order approximations.

2.1 Wiener process.

Let {W (t) : t ≥ 0} be a standard Wiener process. Our starting point is the
following property of the paths:

a.s. λ

({
t ∈ [0, 1] :

W (t+ ε)−W (t)√
ε

≤ x

})
→ P (ξ ≤ x) as ε ↓ 0 (6)
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for every real x, where λ denotes Lebesgue measure on the line and ξ is a
standard normal random variable.

(6) is easily proved by using the Borel-Cantelli Lemma and the Hölder condi-
tion for the Wiener paths (see [W4]). In fact one can prove a somewhat stronger
result, i.e. that almost surely, as ε → 0, one has moment convergence of the
distribution of the functions t  W (t+ε)−W (t)√

ε
defined on the probability space

([0, 1] , λ) .
One can consider (6) as a positive result as opposite to the law of the iterated

logarithm. We mean the following:
Consider the normalized increments Zε(t) = W (t+ε)−W (t)

a(ε) where the normal-
izing function a is non-random and satisfies the mild natural property:

a is non-decreasing on some interval of the form (0, ε0) and a(0+) = 0. (7)

A consequence of the law of the iterated logarithm is that there is no nor-
malizing function a such that almost surely Zε converges to a non-trivial limit
for almost every t.

A similar conclusion is obtained if instead of almost everywhere convergence
with respect to the t-variable one looks at convergence in Lp([0, 1] , λ). In fact, if
almost surely Zε converges in Lp([0, 1] , λ) to a non-trivial random function Z for
some p > 0, one can show that a(ε)√

ε
must have a finite non-zero limit as ε ↓ 0. It

follows that Z is independent of the σ−algebra generated by {W (t) : 0 ≤ t ≤ 1} .
Hence, for each t ∈ [0, 1] Z(t) is almost surely non-random and the one can
check that convergence holds in L2([0, 1] , λ). The moment computation

E

(∫ 1

0

|Zε(t)− Z(t)|2 dt
)

=
h

a2(h)
+

∫ 1

0

Z2(t)dt

shows that this is not possible.
However, (6) says that a(ε) =

√
ε is a good normalizing function, in the

sense that a positive convergence result is obtained if we replace the topology
of almost everywhere (or Lp) convergence by weak convergence of measures.

A natural extension of (6) is as follows.
Let ψ : R → R+ be a C1-function having compact support contained in

[−1, 1] ,
∫ 1

−1
ψ(x)dx = 1. Put, for ε > 0, ψε(t) = ε−1ψ(t/ε).

For any locally bounded real-valued measurable function g defined on the
real line, denote

gε(t) = (g ∗ ψε)(t) =
∫ +∞

−∞
ψε(t− s)g(s)ds.

the convolution of g with the approximation of unity ψε. With these hypotheses,
gε is of class C1. We will use the same notation W ε for the convolution of ψε
with the extension of W (.) to the whole line, putting the value W (0) on the
negative half-axis.
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Then, almost surely, for every bounded continuous function f : R → R and
every bounded interval I contained in R+:√
πε

2
1

‖ψ‖2

∫ +∞

−∞
f(u)Nu(W ε, I) du→

∫ +∞

−∞
f(u) LW (u, I) du =

∫
I

f [W (t)] dt

(8)
as ε → 0. In (8) ‖ψ‖2 is the L2-norm of ψ and LW (u, I) the local time of the
Wiener path at the value u, corresponding to interval I, that is, the continuous
version of the Radon-Nikodym derivative with respect to Lebesgue measure of
the occupation measure µI(B) = λ({t ∈ I,W (t) ∈ B}), B a Borel set in the
line.

(8) can be proved by showing that

• (6) holds true if one replaces the normalized increment W (t+ε)−W (t)√
ε

by
√
ε (Wε)

′ (t) (in fact, the first corresponds to putting ψ = 1[−1,0] in the sec-
ond) and the variance of ξ by ‖ψ‖22. This implies that for every continuous
function h : I → R :∫

I

h(t)
∣∣√ε (W ε)′ (t)

∣∣ dt→ √
2
π

1
‖ψ‖2

∫
I

h(t)dt as ε→ 0 (9)

• Check that formula∫ +∞

−∞
f(u) Nu(g, I) du =

∫
I

f [g(t)] |g′(t)| dt (10)

is valid for continuous f and g of class C1.

• Use (9), (10) and the fact that W ε converges to W uniformly on I as
ε→ 0.

The limit result (8) can be considered as an almost-sure-weak approximation
of the local time of the Wiener process. It differs in two ways from classical
almost sure approximations of the local time.

1. First, we are integrating in the state space instead of putting a Dirac
δ-function in the place where function f is standing.

2. Second, we approximate the local time by means of a functional defined
on the smoothed path W ε instead of the underlying path W .

2.2 Semi-martingales with continuous paths.

Let (Ω,F , P ) be a probability space and {Ft}t≥0 a filtration in it. {M(t) : t ≥ 0}
is a real-valued local martingale adapted to the filtration {Ft}t≥0 having contin-
uous paths. We denote {At : t ≥ 0} its quadratic variation process. For almost
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every ω, A′t is the almost everywhere defined derivative of At. Notice that A′t
is non-negative whenever it exists.

For convinience in what follows we assume that M(t) is defined for negative
values of the argument, M(t) = M(0) if t < 0.

The next two statements extend (6) and (8) to the almost sure weak con-
vergence of the oscillations of M(.) and the approximation of the occupation
measure by the normalized crossings of the regularized path.

Theorem 1 [AW2] Almost surely, for any real x 6= 0 one has

λ({t ∈ [0, 1] :
M(t+ ε)−M(t)√

ε
≤ x}) →

∫ 1

0

P
(
A
′1/2
t ξ ≤ x

)
dt. (11)

where ξ is standard normal and independent of the process M.

Notice that the - random - limit in (11) is a continuous function of x at
x 6= 0 and has a discontinuity at x = 0 if and only if the set {t ∈ [0, 1] : A′t = 0}
has positive Lebesgue measure.

Theorem 2 [AW2] Let I be a bounded interval in the real line. Then, almost
surely,√

πε

2
1

‖ψ‖2

∫ +∞

−∞
f(u) Nu(Mε, I) du→

∫
I

f(Mt) A
′1/2
t dt as ε→ 0 (12)

One can check that exactly the same results hold true if instead of a mar-
tingale we have a semi-martingale with continuous paths, that is, a process
{X(t) : t ≥ 0} such that X(t) = M(t) + V (t), M is a local martingale as
above and {V (t) : t ≥ 0} is an adapted process with continous paths and lo-
cally bounded variation. That is, the process V does not appear in this type of
first order approximation of the normalized number of crossings of Xε.

2.3 Lévy processes.

One can extend (6) to Lévy processes. We will use the canonical representation
for Lévy processes {X(t) : t ≥ 0} wich will be assumed to have cadlag paths, as
a sum of independent processes (see [G-S]):

X(t) = mt+ σW (t) +
∫
|x|≥1

xνt(dx) +
∫
|x|<1

xν∗t (dx) (13)

In formula (13) the ingredients are the following:

• The Lévy-Khinchin representation of the Fourier transform of the distri-
bution of the random variable X(t), which can be written, for t ≥ 0,
s ∈ R, as:

E [exp(izX(t))] = exp
[
itmz − σ2z2

2
t+ t

∫ +∞

−∞
(eizx − 1− izg(x))N(dx)

]
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where m and σ are real constants, σ ≥ 0, g(x) = x 1(−1,1)(x) and N(dx)
is a Borel measure on the real line, N({0}) = 0, N({x : |x| ≥ a}) <∞ for
every a > 0 and

∫
|x|<1

x2N(dx) <∞.

For x > 0, we put:

|N | (x) = N(x, 1)+N(−1,−x), U(x) =
∫
|y|≤x

y2N(dy), V (x) =
U(x)
x2

• {W (t) : t ≥ 0} is a standard Wiener process,

• {νt(dx) : t ≥ 0} is the Poisson measure of discontinuities, that is, for every
Borel setB in the real line, 0 /∈ B, νt(B) = card {s : 0 ≤ s ≤ t,X(s)−X(s−) ∈ B} ,
E(νt(B)) = tN(B). If B ⊂ {x : |x| ≥ a} for some a > 0, then νt(B) has a
Poisson distribution.

• ν∗t (B) = νt(B)− tN(B) (t ≥ 0).

• The families of random variables {W (t) : t ≥ 0} , {νt(B) : t ≥ 0, B a Borel
set in the line} are independent.

• The first integral in (13) is an ordinary Lebesgue integral, the second one
is a Wiener integral with respect to the additive set function ν∗t .

For simplicity we consider here only Lévy processes with symmetric one-
dimensional distributions (for the general case see [W5]).

We have the following statement:

Theorem 3 ([W5] Assume that the law of X1 is symmetric, that is m = 0 and
N(x,+∞) = N(−∞,−x) for every positive x. Then,

(a) There exists a normalizing function a (i.e. satisfying (7)) such that

almost surely λ({t ∈ [0, 1] :
X(t+ ε)−X(t)

a(ε)
≤ x}) → λ∗(x) as ε ↓ 0 (14)

for some Borel probability distribution λ∗ on the line, λ∗ 6= δ0, and every con-
tinuity point x of λ∗, if and only if, one of the conditions in the first column of
the table below holds true.

Necessary and sufficient conditions a(e) Log. Fourier of λ∗

1.- σ > 0 ε1/2 −σ2z2

2

2.- σ = 0, U slowly varying at 0 V −1( 1
ε ) − z2

2

3.- σ = 0, N(x) = x−ρL(x), 0 < ρ < 2 |N |−1 ( 1
ε ) −Kρ |z|ρ

In the table, L is a slowly varying function at x = 0, the inverse func-
tions are defined by F−1(x) = inf {t : F (t) ≤ x} and Kρ is the positive con-
stant such that −Kρ |z|ρ is the log-Fourier transform of the stable symmetric
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distribution with Lévy-Khinchin measure Nρ(dx) = (ρ/2) |x|−ρ−1
dx, so that

Kρ = ρ
2

∫ +∞
−∞

1−cos y
|y|ρ+1 dy

(b) For each condition in the first column of the table, the second and third
columns exhibit respectively a normalizing function and the logarithm of the
Fourier transform of the corresponding limiting distribution.

(c) If a is a normalizing function satisfying (14), then any other normalizing
function ã has the same property if and only if ã(ε)/a(ε) has a finite non-zero
limit as ε ↓ 0. The corresponding limiting measure λ̃∗ is obtained from λ∗ by
means of a change of scale. If there is a normalizing function satisfying (14)
there is also a continuous one with the same property.

(d) Let g : [0, 1]×Ω → R be a measurable function and assume that for each
ω, g(., ω) ∈ L1([0, 1] , λ). Put G(dt) = g(t, .)dt. Assume that the process verifies
one of the conditions in the first column of the table.

Then,

almost surely G({t ∈ [0, 1] :
X(t+ ε)−X(t)

a(ε)
≤ x}) → λ∗(x)

∫ 1

0

g(t, .)dt as ε ↓ 0

(15)
where a stands for the corresponding function in the second column and λ∗ for
the probability measure having log-Fourier transform in the third column.

With respect to the first order approximation of the occupation measure
by normalized crossings of the smoothed path, let us only mention the case
of stable symmetric processes, for which a result of this type is contained in
[A-W1], theorem 5.1.

2.4 Gaussian processes.

First order approximation of the local time of stationary Gaussian processes
using normalized crossings of smoothed paths has been considered in [A-F].
More general results are contained in [A-W1], from which we take as an example
the special case of Gaussian processes with stationary increments, in which the
statement is somewhat simpler than in the general case, even though the proofs
are quite similar.

Our setting is the following:

• {X(t) : t ∈ R} is a Gaussian centered process with continuous paths, and
covariance function r(s, t) = E [X(s)X(t)]. We assume that the process
has stationary increments, i.e. V ar [X(t)−X(s)] depends only on |t− s|.
Let a(ε) = [V ar (X(ε)−X(0))]1/2 .

• We assume that:

(i) the incremental standard deviation a : (0, 1) → R is regularly varying
at ε = 0 with exponent α, 0 < α < 1, i.e. a(ε) = εαL(ε) where L is slowly
varying at zero, i.e., L(εx)/L(x) → 1 as x ↓ 0 for each fixed ε > 0.

9



(ii) The covariance r is twice continuously differentiable outside the diag-
onal t = s and satisfies the following regularly varying condition: there
exists some η > 0 and a non-increasing slowly varying function at zero L1

so that if −η ≤ s < t ≤ 1 + η, then∣∣∣∣∂2r(s, t)
∂s∂t

∣∣∣∣ ≤ (t− s)2α−2
L1(t− s)

where α is the same as in (i).

Theorem 4 Let {X(t) : t ∈ R} satisfy the above conditions. Then,
(i) almost surely, for every bounded interval I, as ε ↓ 0,

λ

({
t ∈ I :

ε. (Xε)′ (t)
a(ε)

≤ x

})
→ λ(I) Φ

(
K−1
ψ x

)
for every x ∈ R

where Φ denotes the standard normal distribution function and

Kψ =
[
−1

2

∫∫ 1

−1

|u− v| ψ(du)ψ(dv)
] 1

2

.

(ii) almost surely, for every continuous real-valued function f and every
bounded interval I, as ε ↓ 0,√

π

2
ε

Kψa(ε)

∫ +∞

−∞
f(u) Nu(Xε, I) du→

∫
I

f [X(t)] dt.

3 Second order approximations. Speeds.

3.1 Wiener process.

We look at the speed of convergence in (8).
Let us put

Eε(t) =
√
πε

2
1

‖ψ‖2

∫ +∞

−∞
f(u) Nu(W ε, [0, t]) du−

∫ +∞

−∞
f(u) LW (u, [0, t]) du

(16)
where the notations are the same as above. Then,

Theorem 5 Assume that the function f : R → R is twice continuously differ-
entiable and its second derivative is bounded.

Then, as ε→ 0, the law of the stochastic process
{

1√
ε
Eε(t) : t ≥ 0

}
converges

weakly in the space C([0,+∞) ,R) to the law of the process

D

∫ t

0

f(W (s)) dB(s), t ≥ 0, (17)

where
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• {B(s) : s ≥ 0} is a new Wiener process, independent of W,

• Conditionally on W the integral in (17) is an ordinary Wiener integral,

• the constant D depends only on the kernel ψ and is given by the explicit
formula

D2 = 2
∫ 2

0

[
r(t) Ar sin[r(t)] +

√
1− r2(t)− 1

]
dt (18)

where r(t) is the covariance function

r(t) =
1

‖ψ‖22

∫ +∞

−∞
ψ(t+ u) ψ(u) du.

The first published proof ot Theorem 5 is based on Wiener chaos expansions
and was given by Berzin and Leon in [B-L1]. See also [B-L-O] for extensions to
stationary Gaussian processes.

A similar result to Theorem 5 holds true - mutatis mutandis - if instead of
smoothing by convolution one uses polygonal approximation. In the latter case,
the statement is valid if one replaces

• W ε byW (n) the polygonal approximation ofW with vertices ( kn ,W ( kn )) k =
0, 1, 2, ....

• ε by 1/n.

• the normalizing constant
√

πε
2

1
‖ψ‖2

by
√

π
2n

• the constant D by
√

π
2 − 1.

Jacod [8] has given a speed theorem using normalized crossings of polygonals
to approximate the local time of the Wiener process at a fixed level u, that is,
when one replaces the regular function f in the statement of the last Theorem
by a Dirac δ. It is as follows:

Let the function h(x, y) satisfy certain boundedness conditions and θ(h) be
a suitable centering constant depending on h, then the stochastic process

n
1
4

 1√
n

[nt]∑
i=1

h

(√
n

(
W (

i− 1
n

− u

)
,
√
n

(
W (

i

n
)−W (

i− 1
n

)
))

− θ(h) LW (u, [0, t])


(19)

converges weakly to a Gaussian martingale conditionally on the given process
W .
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3.2 Semimartingales with continuous paths.

Extensions of Theorem 5 to continuous semi-martingales have been given in
[PW1] and [PW2]. Let us state the main result in [PW2] with some detail.
Consider an Itô semi-martingale with values in Rd, d a positive integer having
the form:

X(t) = x0 +
∫ t

0

a(s) dW (s) + V (t) (20)

where

• {W (s) : s ≥ 0} is a standard Wiener process in Rd. We denote F =
{Fs : s ≥ 0} the filtration it generates.

• a = {a(s) : s ≥ 0} , V = {V (s) : s ≥ 0} are stochastic processes adapted to
F , having continuous paths and values in the space of real d× d matrices
and Rd respectively.

• V (0) = 0, so that x0 ∈ Rd is a given - non-random - initial value.

We assume that a and V satisfy the following conditions:

1. Almost surely, the coordinates of the vector-valued random function s 
V (s) have locally bounded variation.

a is strongly elliptic in each bounded interval I, which means that

inf
s∈I

inf
‖x‖=1

∥∥aT (s).x
∥∥ ≥ CI > 0

where ‖.‖ is Euclidean norm in Rd, AT denotes the transposed of matrix
A and CI is a non-random constant.

2. Let a(s) = ((ajk(s)))j,k=1,...,d. We assume that for s ≥ 0 and 0 < ε ≤ ε0:

ajk(s+ ε)− ajk(s)√
ε

= (ajk(s))T Zjks,ε + rjks,ε (21)

where ajk(s) and Zjks,ε are random vectors in Rd and rjks,ε is real-valued,
such that:

• ajk(s) is Fs-mesurable, Zjks,ε and rjks,ε are Fs+ε-mesurable and for each
p > 0 the coordinates of a(s), ajk(s), Zjks,ε are uniformly bounded in
Lp(Ω) for 0 < ε ≤ ε0 and s in a bounded set.

• For each p > 0, E(
∣∣rjks,ε∣∣p) → 0 as ε ↓ 0 uniformly for s in a bounded set.

• Denote for t ≥ 0, ε > 0, W ε,t(u) = W (t+εu)−W (t)√
ε

(u ≥ 0) which is a new
Wiener process. Then, we assume that almost every pair (s, t) , s 6= t,

the set
(
(Zjks,ε, Z

jk
t,ε)j,k=1,..,d,W

ε,s
. ,W ε,t

.

)
converges weakly to the law of a

random variable ζ(s, t) taking values in the appropriate space. This law is
symmetric, independent of F∞ and if {s, t} and {s′, t′} are disjoint, then
ζ(s, t) and ζ(s′, t′) are independent.
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Some of these technical conditions appear to be complicated at first sight.
However, they are satisfied in certain relevant cases:

1. Our first example is solutions of stochastic differential equations (SDE).
Let the process {X(t) : t ≥ 0} be the strong solution of the SDE in Rd:

dX(t) = σ(t,X(t)) dW (t) + b(t,X(t)) dt, X(0) = x0 (22)

We assume that σ(t, x) = ((σjk(t, x)))j,k=1,...,d and b(t, x) = ((bj(t, x)))j=1,...,d

satisfy usual hypotheses such as Lipshitz local behaviour and degree one
polynomial bound at ∞, and moreover, that σ is twice continuously dif-
ferentiable with bounded second derivatives and∥∥σT (s, x)v

∥∥ ≥ Cs0 ‖v‖

for each s0 > 0, some positive constant Cs0 that may depend on s0, any
s ∈ [0, s0] and any x, v ∈ Rd.

2. Then, one can show that the representation (21) holds true and verifies
the conditions in the list above, with

(ajk(s))T = (Dxσ
jk)(s,X(s)) σ(s,X(s))

Zjks,ε =
W (s+ ε)−W (s)√

ε
= W ε,s(1)

3. Our second example is given by smoother integrands a. If for each t ≥ 0
and j, k = 1, ..., d one has for ε > 0 :

sup
0≤s≤t

∣∣ajk(s+ ε)− ajk(s)
∣∣ ≤ Cεα(t) (23)

where C is a positive random variable having finite moments of all orders
and α(t) > 1/2, then the conditions are satisfied with ajk(s) = 0.

4. In dimension d = 1, put in (20) a(s) = f(W (s)), V (s) = 0 and choose
f : R → R, f(x) = 1 + βg(x), g of class C3, non-negative with compact
support, g′′(0) 6= 0 and β > 0 small enough so that β supx∈R |g′′(x)| < 2.

One can check that our conditions are satisfied with a(s) = f ′(W (s)), Zs,ε =
W ε,s(1). However, the process {X(t) : t ≥ 0} is a non-Markovian continuous
martingale (for a proof, see [N-W], 4.2.) with respect to any natural filtration
and hence, it can not be the solution of a Markovian SDE. Obviously it does
not satisfy (23) either.

Besides the continuous semimartingale (20) the other ingredient in the next
Theorem is smoothing of paths. Since we are considering vector-valued pro-
cesses, we need to introduce some slight changes in notation and some additional
requirements with respect to one-dimensional smoothing.

13



In what follows, ψ(x) = ((ψjk(x)))j,k=1,...,d is a deterministic matrix kernel,
each function ψjk(x) being C∞ real-valued of one real variable, support con-
tained in the interval [−1, 1],

∫ +∞
−∞ ψ(x) dx = ((

∫ +∞
−∞ ψjk(x) dx))j,k=1,...,d = Id =

identity matrix d× d. We put ψε(x) = ε−1ψ(ε−1x).
We also add the following technical condition on the smoothing kernel. De-

note λ(x) (resp. λ(x)) the minimal (resp. maximal) eigenvalue of ψ(x)ψT (x).
We assume that there exists a positive constant L such that λ(x) ≤ L λ(x) for
all x ∈ R. This condition plays some role only if d > 1 and limits the anisotropy
that is allowed for the regularization mechanism.

Define the smoothed path by

Xε(t) =
∫ +∞

−∞
ψε(t− s) X(s) ds (24)

where in (24) we put X(s) = X(0) if s < 0.
Finally, let f : Rd → R be of class C2 with bounded second derivatives and

g : R+ → R be of class C2, |g′(r)| ≤ Cg(1 + rm) for some m ≥ 1, positive
constant Cg and all r ∈ R+.

We consider the observable functional defined on the smoothed path:

θε,τ = θε,τ (f, g) =
∫ τ

0

f [Xε(t)] g(
√
ε ‖(Xε)′(t)‖) dt (25)

Now, we are prepared to state the following Central Limit Theorem for θε,τ :

Theorem 6 With the hypotheses above, as ε ↓ 0 :

1√
ε

[
θε,τ −

∫ τ

0

f (X(t)) E
(
g(

∥∥∥Σ1/2
t ξ

∥∥∥ /F∞)
) dt

]
=⇒ Bσ2(τ) (26)

where

• =⇒ denotes weak convergence of probability measures in C ([0,+∞) ,R) ,

• B denotes a new one-dimensional Wiener process, independent of F∞.

• Σt =
∫ 1

−1
ψ(x) a(t)aT (t) ψT (x) dx.

• ξ is a standard normal random variable in Rd, independent of F∞.

•
σ2(τ) =

∫ τ

0

f2 (X(t)) dt
∫∫ 1

−1

F (t, v, v) dvdv (27)

where

F (t, v, v) = E
[
g′(‖ηt,v‖)g′(

∥∥ηt,v∥∥)sg(ηTt,v)ψ(v) a(t)aT (t) ψT (v)sg(ηTt,v)/F∞
]

14



and the conditional distribution of the pair of Rd-valued random variables
ηt,v, ηt,v given F∞ is centered Gaussian with covariance structure:

E
(
ηt,vη

T
t,v/F∞

)
= E

(
ηt,vη

T
t,v/F∞

)
= Σt,

E
(
ηt,vη

T
t,v/F∞

)
=

∫ v∧v

−1

ψ(−x) a(t)aT (t) ψT (−x+ |v − v|) dx.

3.2.1 Remarks on the Theorem. Related results.

1. To make more clear the statement of Theorem 6 let us consider two ex-
amples of interesting functionals.

• (Normalized curve length). Let g(r) = r and assume that f is a
C2-approximation of the indicator function of a set B ⊂ Rd having
a sectionally smooth boundary. Then, θε,τ is an approximation of√
ε£ε(τ,B),£ε(τ,B) denoting the length of the part of the curve t 

Xε(t) contained in the observation window B. Generally speaking,
in the situations of interest, £ε(τ,B) → +∞ as ε ↓ 0,

√
ε is the

normalization for first order approximation and
√
ε is the order of

the speed.

• (Normalized kinetic energy). Let g(r) = r2 and f as in the pre-
vious example.Then, θε,τ becomes an approximation of εKε(τ,B),
Kε(τ,B) denoting the kinetic energy of the same part of the smoothed
path.

2. The above statement can be compared with results based upon polygonal
approximations. Estimation methods of the diffusion coefficient in a SDE
seem to start with the pionner work by Dacunha-Castelle and Florens
[D-F]. See also [B]. In this direction, the following statement is proved in
[F].

Let {X(t) : t ≥ 0} be a strong solution of the one-dimensional SDE

dX(t) = σ(X(t))dW (t) + b(X(t))dt, X(0) = x0 (28)

where σ and b satisfy certain regularity conditions, and k ≤ σ(x) ≤ K
for all x ∈ R, k,K some positive constants. Take a sequence of positive
numbers {hn} - the window size in space - such that nhn → +∞, nh3

n → 0
and consider the estimator of σ2(x) :

Sn(x) =

∑n−1
i=1 1{|X( i

n )−x|<hn}n
(
X( i+1

n )−X( in )
)2∑n−1

i=1 1{|X( i
n )−x|<hn}

whenever the denominator does not vanish. Denote Tx the waiting time
defined by Tx = inf {t ∈ [0, 1] : X(t) = x} if {.} is non empty and Tx = 1

15



if {.} is empty. Then conditionally on Tx < 1,√
nhn

[
Sn(x)
σ2(x)

− 1
]

converges in distribution to[
LX(x, [0, 1])

]−1/2
.ξ

where LX stands for local time, ξ is standard normal and both factors are
independent random variables.

On the other hand, Jacod has extended (19) to diffusions satisfying
certain conditions and used this extension to make non-parametric infer-
ence on σ [J2]. See also [H] and references therein and [G-J], [G-J-L].

Theorem 6 points towards two kinds of different problems, that did
not seem to be solved for diffusions before: a) Testing hypotheses on the
diffusion function σ beyond considering a fixed argument x; b) Instead
of discrete sampling, using functionals defined on regularizations of the
underlying path.

At the same time, integrating in the state space without compressing
the window to a single point, permits to improve the speed of convergence,
passing from n−1/4 for fixed level to n−1/2 for the integrated result. These
is somewhat similar to what occurs in other statistical problems, in which
integrating a function instead of putting a Dirac δ gives as a by-product
a better speed. Notice that the presence of the local time, as we pointed
out above implies serious inconvenients if one is willing to make statistical
inference.

3. A nice property of Theorem 6 is that the drift part V does not appear
explicity, either in the centering term or in the asymptotic probability
law. Of course, it is hidden in the process X. This becomes useful to
make inference on the martingale part, i.e. on a.

We will see later on that this is not the case if V has jumps, a possi-
bility that we have excluded for the moment.

4. In fact, the actual situation is more complicated. Consider the special
important case in which X is a solution of a SDE with a(t) = σ(t,X(t)).
Theorem 6 as it has been stated, can’t be used for statistical applications
when the observation is the smoothed path Xε, since the unobserved un-
derlying path X appears in the statement, both in the centering term and
in the asymptotic variance σ2(τ).

In the variance σ2(τ) this is not a serious problem, since it is clear from
(27) that if one replaces X(t) by Xε(t), this expression is continuous as
a function of ε and the asymptotic law is close to its limit. This is less
obvious for the centering term in (26) since one must divide by

√
ε, but it

holds true under certain additional conditions given in the next Theorem.
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Theorem 7 Let us consider the process {X(t) : t ≥ 0} solution of the SDE (22)
satisfying the hypotheses of Example 1. We assume further that σ and b are
only functions of space i.e., σ(t, x) = σ(x), b(t, x) = b(x) and that the smoothing
kernel is isotropic, that is, ψ(x) = ψ∗(x) Id, where ψ∗ is real-valued and Id is
the d× d identity matrix.

Then, as ε ↓ 0 :
(i)

1√
ε

[θε,τ −mε(τ)] =⇒ Bσ2(τ) (29)

where:

• mε(τ) =
∫ τ
0
f (Xε(t)) E

(
g

[
‖ψ∗‖2

∥∥σT (Xε(t)) ξ
∥∥]
/F∞

)
dt,

• the symbols θε,τ , =⇒, ξ, B, σ2(τ) are as in Theorem 6.

(ii) a.s. σ2
ε(τ) → σ2(τ) where

σ2
ε(τ) =

∫ τ

0

f2 (Xε(t)) dt
∫∫ 1

−1

ψ∗(−v)ψ∗(−v).

.E
[
g′(‖ηt,v‖)g′(

∥∥ηt,v∥∥)sg(ηTt,v)σ(Xε(t))σT (Xε(t))sg(ηTt,v)/F∞
]
dvdv

and for the conditional distribution of the pair of Rd-valued random variables
ηt,v, ηt,v given F∞, one must change in the statement of Theorem 6 Σt by
‖ψ∗‖2 σ(Xε(t))σT (Xε(t)) and E

(
ηt,vη

T
t,v/F∞

)
by K(v, v)σ(Xε(t))σT (Xε(t)) with

K(v, v) =
∫ v∧v

−1

ψ∗(−x) ψT (−x+ |v − v|) dx. (30)

3.2.2 Some statistical examples.

1. Hypothesis testing for σ.

We consider the case d = 1.

Let X be the solution of the SDE (28) and assume the conditions of
Theorem 7 are satisfied. We put g(r) = r and assume infx∈R σ(x) > 0.

Suppose we want to test the null hypothesis

H0 : σ(x) = σ0(x) for all x ∈ R,
against the local alternative

Hε : σε(x) = σ0(x) +
√
εσ1(x)+ γε(x) for all x ∈ R,

where γε(x) = o(
√
ε) and γ′ε(x) = o(

√
ε) as ε ↓ 0 uniformly on x ∈ R.

σ0(.), σ1(.) and γε(.) are functions with continuous and bounded second
derivatives and at most degree one polynomial growth at ∞.
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The application of Theorem 7 is not straightforward under these condi-
tions, since under the alternative, the solution process depends also on ε.
If we denote it by X(.; ε), then:

dX(t; ε) = σε(X(t; ε)) dW (t) + b(X(t; ε)) dt, X(0; ε) = x0.

Let us put Xε(t) = (ψε ∗X(., ε))(t).

One can prove that under Hε, as ε ↓ 0, one has:

1√
ε

[√
πε

2
1

‖ψ‖2

∫ +∞

−∞
f(u) Nu(Xε, [0, τ ]) du−

∫ τ

0

f(Xε(t)) σ0(Xε(t)) dt
]

≈
∫ τ

0

f(Xε(t)) σ1(Xε(t)) dt+
√
π

2
1

‖ψ‖2
Bσ2

ε(τ)

One should interpret this result as follows: As ε ↓ 0 the law of the left-
hand side converges in C([0,+∞) ,R) to the law of the random process∫ τ
0
f(X(t)) σ1(X(t)) dt+

√
π
2

1
‖ψ‖2

Bσ2
0(τ)

and furthermore, the right-hand
side converges to this process almost surely as ε ↓ 0.

Notice that in case our test is based upon the observation of Xε, this is
well-adapted to the statistical purpose, since both the centering term in
the left-hand member and the right-hand member can be computed from
the hypotheses and from functionals defined on Xε(t), 0 ≤ t ≤ τ.

2. d > 1. Testing isotropy of the noise part.

Assume now that d > 1 and the SDE (28) satisfies the hypotheses of
Theorem 7. We put again g(r) = r.

We want to test the null hypothesis of isotropy of the noise, that is

H0 : Σ(x) = σ(x)σT (x) = Id for all x ∈ Rd

against the alternative

Hε : Σ(x) = Id +
√
εΣ1(x)+ Γε(x) for all x ∈ R

where ‖Γε(x)‖ = o(
√
ε) and ‖Γ′ε(x)‖ = o(

√
ε) as ε ↓ 0 uniformly on x ∈ R.

Here, Σ1(x) and Γε(x) are positive semi-definite d × d real matrix with
elements that are twice continuously differentiable functions with bounded
second derivatives and at most degree two polynomial growth at ∞. The
norm is any norm on d× d matrices.

In this case, the statistical result takes the form

1√
ε

[∫ τ

0

f(Xε(t))
[∥∥√ε (Xε)′ (t))

∥∥− ‖ψ∗‖2 Jd] dt

]
(31)

≈ Jd
2d
‖ψ∗‖2

∫ τ

0

f(Xε(t)) tr(Σ1(Xε(t))) dt+Bσ2
ε(τ)

where the interpretation of the sign ≈ is the same as in the previous
example and:
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• Jd = (2p)!
(2pp!)2 p

√
8π if d = 2p, Jd = (2pp!)2

(2p)!
1√
2π

if d = 2p+ 1.

• σ2
ε(τ) =

∫ τ
0
f2(Xε(t)) dt

∫∫ 1

−1
ψ∗(−v)ψ∗(−v) Ad(K̃(v, v)) dvdv

where K̃(v, v) = K(v,v)

‖ψ∗‖22
, K(v, v) the same function (30) as in the previous

example and the function Ad : [−1, 1] → R is defined by

Ad(ρ) = E

[
〈ξ, η〉
‖ξ‖ ‖η‖

]
where the pair ξ, η of random vectors has a joint Gaussian, centered dis-
tribution in Rd × Rd, each one of them is standard normal in Rd and
E

(
ξηT

)
= ρ Id.

One can see from (31) that a good choice for the function f in a test
against alternative Hε is f(x) = tr(Σ1(x)) in which case the asymptotic
bias under Hε is Jd

2d ‖ψ
∗‖2

∫ τ
0

[tr(Σ1(Xε(t)))]2 dt.

3. Simple regression.

Let us consider the simple regression model in continuous time

X(t) = m(t) + σ W (t), t ≥ 0, (32)

wherem : R+ → R is a continuous non-random function having locally bounded
variation, σ is a positive constant and W stands for Wiener process. Notice that
there are no jumps.

If one wants to make inference on the value of σ, the usual approach is to
assume that one can measure X on a grid, say at the points

{
k
n : k = 0, 1, ..., n

}
of the unit inteval [0, 1] and use the consistency of the estimator

σ̂2
n =

n∑
i=1

[
X(

i

n
)−X(

i− 1
n

)
]2

which converges in probability to the true value σ2.
Of course, the next step is to compute the speed of convergence, that is to

find a sequence {an} of positive numbers tending to +∞ such that

an
[
σ̂2
n − σ2

]
(33)

converges in distribution to some non-trivial limit.
The problem here is that the existence of such a sequence {an} depends on

the regularity of the drift function m. For example, if m is absolutely continuous
with respect to Lebesgue measure and has a bounded Radon-Nikodym derivative
m′, then it is an elementary fact that an =

√
n will do the job and the limit

distribution of (33) is centered normal with variance equal to 2σ4. However,
this is not true in general.

For example, if m(t) = tα with 0 < α < 1
4 , one can easily check that there

is no normalizing sequence {an} such that (33) converges in distribution, and
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this example can be used as a basis to construct a set of other simple ones,
in which the same phenomenon takes place. Notice that in this example, the
function m is not only of bounded variation, but also absolutely continous with
an unbounded derivative.

In other words, using the observation of X on a grid to make inference on
σ in this way, requires m to have certain regularity properties that may not be
verified. In a given situation one may not be able to decide if it is reasonable to
assume that the unknown function m verifies these regularity conditions. This
appears to be a difficulty to use this kind of statistics.

On the other hand, let us assume that we observe a regularization of X of the
type described before the statement of Theorem 6. In our case, the statement
of this Theorem becomes

1√
ε

[
θε,τ − E [g(|σξ|)]

∫ τ

0

f (X(t)) dt
]

=⇒ Bσ2(τ) (34)

with

σ2(τ) = σ2

∫ τ

0

f2 (X(t)) dt
∫∫ 1

−1

E
[
g′(|ηt,v|)g′(

∣∣ηt,v∣∣)sg(ηTt,v)sg(ηTt,v)]ψ(v)ψ(v)dvdv

(35)
where the joint distribution of ηt,v, ηt,v is centered Gaussian, V ar(ηt,v) =
V ar(ηt,v) = σ2 ‖ψ‖22 , Cov(ηt,v, ηt,v) = σ2K(v, v).

This is not yet adequate for statistical use, one still needs to replace X(t) by
Xε(t) in (34) and in (35). In what follows we prove that this can be done, so
that it is possible to use the method based on the observation of the smoothed
path without restrictions on the function m for estimation or hypothesis testing
on σ in the model (32).

Again it is clear that this is not a problem for the variance (35) and that
replacing X(t) by Xε(t) we obtain σ2

ε(τ) ≈ σ2(τ) .
Let us turn to (34). We need to prove that

Proposition 8 Let 0 ≤ τ ≤ 1. Then:

1√
ε

∫ τ

0

[f (Xε(t))− f (X(t))] dt (36)

tends to zero in probability, as ε ↓ 0.

Proof. It is clear that replacing f(X(t)) by f(X(t − ε)) in (36) for almost
every ω the error is O(

√
ε). Using a Taylor expansion for f :

1√
ε

∫ τ

0

[f (Xε(t))− f (X(t− ε))] dt = Yε(τ) +Rε(τ) (37)

where

Yε(τ) =
1√
ε

∫ τ

0

f ′ (X(t− ε)) [Xε(t)−X(t− ε)] dt =
1√
ε

∫ τ

0

fε(t) dt
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|Rε(τ)| ≤
‖f ′′‖∞
2
√
ε

∫ τ

0

[Xε(t)−X(t− ε)]2 dt

We prove that Yε(τ) and Rε(τ) both tend to zero in probability as ε ↓ 0.
For Rε(τ) one has:

E (|Rε(τ)|) ≤
(const)√

ε

[∫ τ

0

[mε(t)−m(t− ε)]2 dt+
∫ τ

0

E
(
[W ε(t)−W (t− ε)]2

)
dt

]
(38)

Let us show that the first term in brackets in right-hand member of (38) is O(ε).
Since m has bounded variation in any bounded interval, it suffices to prove this
when m is non-decreasing. In this case:∫ τ

0

[mε(t)−m(t− ε)]2 dt ≤ m(1 + ε)
∫ τ

0

[mε(t)−m(t− ε)] dt

= m(1 + ε)
∫ τ

0

dt

∫ 1

−1

ψ(u) [m(t− εu)−m(t− ε)] du

≤ m(1 + ε)
∫ 1

−1

ψ(u) du
∫ τ

0

[m(t+ ε)−m(t− ε)] dt = O(ε)

For the second term in (38), one easily checks that E([W ε(t)−W (t− ε)]2) ≤
(const)ε. So, E (|Rε(τ)|) = O(

√
ε).

Let us consider now the first term in (37). We have:

E
(
Y 2
ε (τ)

)
=

1
ε

∫∫ τ

0

E (fε(s)fε(t)) dsdt

=
2
ε

[∫∫
s≤t<s+2ε

E (fε(s)fε(t)) dsdt+
∫∫

t≥s+2ε

E (fε(s)fε(t)) dsdt
]

=
2
ε

[Iε + Jε]

For Iε:

|Iε| ≤
∫∫

s≤t<s+2ε

[
E

(
f2
ε (s))E(f2

ε (t)
)] 1

2 dsdt = o(ε) as ε ↓ 0.

For Jε, if t ≥ s + 2ε denoting with {Ft}t≥0 the filtration generated by the
process, we have:

E (fε(s)fε(t)) = E (E (fε(s)fε(t)/Ft−ε))
= E (f ′ (X(s− ε)) [Xε(s)−X(s− ε)] f ′ (X(t− ε))E (Xε(t)−X(t− ε)/Ft−ε))
= [mε(t)−m(t− ε)] E (f ′ (X(s− ε)) [Xε(s)−X(s− ε)] f ′ (X(t− ε)))

which implies that

|Jε| ≤ (const)
∫ τ

0

E
(
[Xε(s)−X(s− ε)]2

) 1
2
ds

∫ τ

0

|mε(t)−m(t− ε)| dt = o(ε).

This ends the proof.
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3.3 Lévy processes with non-vanishing Gaussian part.

The results we present on speeds of convergence for Lévy processes are partial,
they concern only some special cases. We use without additional reference, the
notation in the previous sections.

We say that the Lévy process satisfies condition (V ) if∫
|x|<1

|x|N(dx) <∞ (39)

which implies that the jump part of the process has locally finite variation. Our
first theorem is on the speed of convergence in (14).

Theorem 9 Let {X(t) : t ≥ 0} be a Lévy process with parameters m, σ and N.
Assume that condition (V ) is satisfied and that σ > 0. Let g be any real-valued
continuously differentiable function, bounded and with a bounded derivative and

Yε(t) =
1√
ε

[∫ t

0

g

(
X(s+ ε)−X(s)√

ε

)
ds− tE (g (σξ))

]
(40)

Then,
(Yε(t), X(t)) =⇒ (DgB(t), X(t)) as ε ↓ 0

where

• =⇒ denotes weak convergence in the product space C([0,+∞) ,R)×D([0,+∞) ,R)
of the space of continuous functions times the Skorokhod space,

• B is a new standard Wiener process, independent of X,

• ξ is a standard normal random variable,

• the constant Dg is given by the formula

D2
g = 2

∫ 1

0

[
E (g (σξ1) g (σξ2))− [E (g (σξ))]2

]
dρ

in which the pair of random variables ξ1, ξ2 has joint normal distribution,
centered and V ar(ξ1) = V ar(ξ2) = 1, Cov(ξ1, ξ2) = ρ.

Corollary 10 With the same hypotheses of the last theorem and the previous
notations for smoothing, if f is twice continously differentiable with bounded
second derivative, one has

1√
ε

[∫ t

0

f(Xε(s))g
(√
ε |(Xε)′(s)|

)
ds− E

(
g(σ ‖ψ‖−1

2 |ξ|)
) ∫ t

0

f(X(s))ds
]

=⇒ Dg,ψ

∫ t

0

f(X(s))dB(s)

(41)
as ε ↓ 0.

In (41) D2
g,ψ =

∫ +∞
−∞ g (|U0|) g (|Uu|) du, where g(x) = g(σx)−E(g (σξ)) and

Uu is a stationary centered Gaussian process with covariance

r(u) = ‖ψ‖−2
2

∫ +∞

−∞
ψ(u− y)ψ(−y) dy. (42)
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In the corollary we may replace again X(s) by Xε(s) and obtain approximate
results based on the observation of the smoothed path. However, both the
theorem and its corollary do not include the special case g(r) = r which in
one dimension corresponds to observing crossings of the smoothed path. In
the next theorem we consider this case, for which the proof is somewhat more
complicated (see [MW2]) than the one of Theorem 9.

Theorem 11 . Let {X(t) : t ≥ 0} be a Lévy process with parameters m, σ and
N. Assume that conditon (V ) is satisfied and σ > 0.

Then, for each function f , twice continuously differentiable with bounded
second derivatives, as ε ↓ 0,

1√
ε

[√
πε

2
1

‖ψ‖2

∫ +∞

−∞
f(u) Nu(Xε, [0, t]) du− σ

∫ t

0

f(X(s))ds
]
−

∑
0<s≤t

L(f, s) |∆X(s)|

(c)
=⇒ Dψ

∫ t

0

f(X(s))dB(s) (43)

where:

• (c)
=⇒ means cylindric convergence,

•

L(f, s) =
√
π

2
1

‖ψ‖2

∫ 1

−1

ψ(z) f
(
X(s−)

∫ 1

z

ψ(w)dw +X(s)
∫ z

−1

ψ(w)dw
)
dz,

• ∆X(s) = X(s)−X(s−),

• B is a Wiener process, independent of X,

•
D2
ψ = 2σ2

∫ 2

0

[
r(u)Ar sin r(u) +

√
1− r2(u)− 1

]
du

where r(u) is given by (42).

Remark 12 One can not expect weak convergence in the Skorokhod space in
the statement of Theorem 11 if the jump part of the process does not vanish,
excepting for trivial functions f . If this convergence would hold true, the limit
should be the right-hand member of (43) But if the jump part of X does not
vanish, for a generic f the bias term

∑
0<s≤t L(f, s) |∆X(s)| in the left hand

member of (43) has non-vanishing jumps with positive probability, so that there
can not be weak convergence to a process with continuous paths. Notice also that∑

0<s≤t L(f, s) |∆X(s)| term can be passed to the right-hand member and look
at the result as a speed result for the approximation of the occupation measure
by normalized crossings. The bias in the limit measure is due to the presence of
jumps.
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On the other hand, one can obtain weak convergence replacing the bias term
by

√
π
2

1
‖ψ‖2

∫ t
0
f(Xε(s))

∣∣(Sε)′ (s)∣∣ ds where S is the jump part of the process
X and Sε is its smooth approximation by convolution. Even though this holds
in a stronger topology, it looks less interesting from the point of view of the
interpretation of the bias term.

Theorem 11 has the following counterpart in polygonal approximation.

Theorem 13 Assume the same hypotheses of Theorem 11 are satisfied, and let
us consider the polygonal approximation X(n) of the paths of the process X, as
defined above. Then, as n→ +∞,

√
n

[√
π

2n

∫ +∞

−∞
f(u) Nu(X(n), [0, t]) du− σ

∫ t

0

f(X(s))ds
]
−Z(t)

(c)
=⇒ D

∫ t

0

f(X(s))dB(s)

(44)
where

• D2 = σ2(π2 − 1), (c)

• Z(t) =
√

π
2

1
2

∑
0<s≤t [f(X(s)) + f(X(s−))] |∆X(s)| .

3.4 Pure jump Lévy processes.

Let X be a Lévy process with vanishing Gaussian component, i.e. σ = 0. We as-
sume again, for simplicity, that it has symmetric one-dimensional distributions,
so that m = 0 and N(dx) is even.

In this section we sketch the calculations that lead to certain second order
results, only in some special cases. One can get some more general approxima-
tions using similar methods. However, as far as this author knows, no general
result is available.

We assume that the process satisfies condition 3. in the table included in
the statement of Theorem 9, i.e. regular variation at zero of the function N, so
that the corresponding conclusions hold true. We use the same notations as in
Theorem 9.

The general scheme is as follows: let g : R → R be continuous and bounded,
and ξ a random variable having the limit distribution λ∗. Denote mg(ε) =

E
[
g

(
Xε

a(ε)

)]
. One can show the following CLT.

As ε ↓ 0,

1√
ε

[∫ t

0

g

[
X(s+ ε)−X(s)

a(ε)

]
ds− tE (g (ξ))

]
− t H(ε) =⇒ Dg,ρBt (45)

where

• =⇒ denotes weak convergence in the space C([0,+∞) ,R),

• the random variable ξ has distribution λ∗,
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• B is a Wiener process independent of X,

• H(ε) = 1√
ε
[mg(ε)− E (g (ξ))] ,

• the constant Dg,ρ is given by formula

D2
g,ρ = 2

∫ 1

0

[
Gρ(θ, g)− [E (g (ξ))]2

]
dθ, (46)

Gρ(θ, g) = E
[
g

(
θ

1
ρ ξ1 + (1− θ)

1
ρ ξ2

)
g

(
(1− θ)

1
ρ ξ2 + θ

1
ρ ξ3

)]
where ξ1, ξ2, ξ3 are independent random variables, each one of them with
distribution λ∗.

The proof of (45) is standard. One proves tightness using fourth moments
and the independence of increments of X. A variance computation gives (46)
and the remainder is plain.

The only point that remains in order to have a useful result, is the behaviour
of H(ε) as ε ↓ 0. Denote by ϕε the Fourier transform of the probability distri-
bution of Xε

a(ε) . Then,

H(ε) =
1√
ε

∫ +∞

−∞
g(x)dx

1
2π

∫ +∞

−∞
exp(−ixz)

(
ϕε(z)− e−Kρ|z|ρ

)
dz(47)

=
∫ +∞

−∞
g(x)dx

1
2π

∫ +∞

−∞
exp(−ixz −Kρ |z|ρ) γρ(ε, z) dz + o(1)

where

γρ(ε, z) =
1√
ε

{
exp

[
Kρ |z|ρ −

ε

a2(ε)
z2

∫
|x|<1

G(x) exp(
izx

a(ε)
) dx

]
− 1

}
(48)

with G(x) =
∫ 1

x
N(y, 1)dy.

In case the process X is ρ-stable, and X(1) has probability distribution λ∗,
one can show that

γρ(ε, z) =
1√
ε

{
exp

[
−ρ

2
|z|ρ

∫
|y|≥ |z|

ε1/ρ

1− cos y
|y|ρ+1 dy

]
− 1

}

which implies |γρ(ε, z)| ≤ ε1/2 if ε is small enough. So, in this case, if also
g ∈ L1(R, dx), it follows from (47) that H(ε) → 0 as ε ↓ 0, and we have proved
that (45) holds true on replacing H(ε) by zero.

The general case in which the function N(x, 1) is ρ-regularly varying at zero
is more complicated. One can prove, with the same hypotheses on the function
g and using similar calculations, the following result.

Assume that N(x, 1) = x−ρL(x) where L(x) = L(0)+C(x) xα for 0 < x ≤ 1,
L(0) > 0, C, C ′ are bounded functions, C(0+) 6= 0, α ≥ 0.

Then, the behaviour of H(ε) is given by:
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• If α > 1
2ρ, then H(ε) → 0.

• If α < 1
2ρ, then H(ε) →∞, and more precisely, H(ε) ≈ (const) ε

α
ρ−

1
2 as

ε ↓ 0, the constant factor depending on the function g.

• If α = 1
2ρ, then H(ε) → Kρ,g,C(0+) . This limit can be computed by the

formula:

Kρ,g,C(0+) = C(0+)
∫ +∞

0

sin y
y

ρ
2
dy

∫ +∞

−∞
g(x)dx

1
2π

∫ +∞

−∞
exp(−ixz−Kρ |z|ρ)zρdz.

Remarks.

1.- In the last section, we have considered second order approximation for
Lévy processes with no Gaussian component only for the increments of the
Lévy process, in other words, only in the case that the convolution kernel is
ψ(x) = 1[−1,0](x). With some extrawork, it is possible to obtain similar theo-
rems for a general convolution kernel, under the same hypotheses, when instead
of X(s+ε)−X(s)

a(ε) one considers ε
a(ε) (X

ε)′(s). The results have the same form,
excepting that one has to multiply the stable random variables ξ, ξ1, ξ2, ξ3 ap-
pearing in the above formulae by the constant ‖ψ‖ρ .

2.- We will not pursue here the subject of statistical applications of the above
results in the case of Lévy processes. It is clear from the statements that they
may be used for this purpose.

As examples, theorems (11) and (13) fit well to certain inference problems,
such as testing the hypothesis that are no jumps or estimation of σ in the
presence of jumps. Also, notice that if one knows that the Lévy process has no
Gaussian part and the Lévy measure is regularly varying at zero with exponent
ρ, 0 < ρ < 2, the results in the last section show, even in a restricted framework,
that one can make inference from the smoothed path on parameters appearing
in the slowly varying function L.
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sure of Lévy processes, Comptes Rendus de l’Académie des Sciences, Paris, Sér.
I, 340, 605-610, 2005..

[N-W] Nualart, D.; Wschebor, M. Intégration par parties dans l’espace de
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