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2 Centro de Matemática. Facultad de Ciencias. Universidad de la República,
Calle Iguá 4225. 11400 Montevideo, URUGUAY; e-mail: wscheb@fcien.edu.uy

Received June 12, 2001 / Revised version received October 29, 2001 /
Published online November 27, 2002 – c© Springer-Verlag 2002

Summary. Let A be an n × m real matrix and consider the linear conic
system

Ax ≤ 0, x �= 0.

In [Cheung and Cucker 2001] a condition number C(A) for this system is
defined. In this paper we let the coefficients of A be independent identical-
ly distributed random variables with standard Gaussian distribution and we
estimate the moments of the random variable ln C(A). In particular, when n
is sufficiently larger than m we obtain for its expected value E(ln C(A)) =
max{lnm, ln ln n} + O(1). Bounds for the expected value of the condition
number introduced by Renegar [1994b, 1995a, 1995b] follow.

Mathematics Subject Classification (1991): 65F35, 65K05

1 Introduction

1.1 Condition of linear systems

The dawn of digital computers brought the possibility of mechanically solv-
ing a plethora of mathematical problems. It also rekindled the interest for
round-off analysis. The issue here is that, within the standard floating point
arithmetic, all computations are carried in a subset F ⊂ R instead of on
the whole set of real numbers R. A characteristic property of floating point
arithmetic is the existence of a number 0 < u < 1, the round-off unit,
� Partially supported by CERG grant City U 1085/02p.
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and a function r : R → F, the rounding function, such that, for all x ∈ R,
|r(x)−x| ≤ u|x|. Arithmetic operations in R are then replaced by “rounded”
versions in F. The result of, for instance, multiplying x, y ∈ F is r(xy) ∈ F.

During a computation these errors accumulate and the final result may
be far away from what it should be. A prime concern when designing
algorithms is thus to minimize the effects of this accumulation. Algorithms
are consequently analyzed with this regard and compared between them in
the same way they are compared regarding their running times. This prac-
tice, which today is done more or less systematically, was already present in
Gauss’ work.

Since none of the numbers we take out from logarithmic or trigono-
metric tables admit of absolute precision, but are all to a certain extent
approximate only, the results of all calculations performed by the aid
of these numbers can only be approximately true. [ . . . ] It may hap-
pen, that in special cases the effect of the errors of the tables is so
augmented that we may be obliged to reject a method, otherwise the
best, and substitute another in its place.

Carl Friedrich Gauss, Theoria Motus (cited in [Goldstine 1977] p.
258).

To study how errors accumulate during the execution of an algorithm it is
convenient to first focus on a simplified situation namely, that in which errors
occur only when reading the input. That is, an input a = (a1, . . . , an) ∈ R

n

is rounded to r(a) = (r(a1), . . . , r(an)) ∈ F
n and then the algorithm is

executed with infinite precision over the input r(a).
Let’s see how this is done for the problem of linear equation solving. Let

A be an invertible n×n real matrix and b ∈ R
n. We are interested in solving

the system

Ax = b

and want to study how the solution x is affected by perturbations in the input
(A, b).

Early work by Turing [1948] and von Neumann and Goldstine [1947]
identified that the key quantity was

κ(A) = ‖A‖‖A−1‖
where ‖A‖ denotes the operator norm of A defined by

‖A‖ = max
‖x‖=1

‖A(x)‖.

Here ‖ ‖ denotes the Euclidean norm in R
n both as a domain and codomain

of A. Turing called κ(A) the condition number of A. A main result for κ(A)
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states that, if κ(A) ‖�A‖
‖A‖ < 1 then

‖�x‖
‖x‖ ≤ κ(A)

1 − κ(A)
‖�A‖
‖A‖

(‖�A‖
‖A‖ + ‖�b‖

‖b‖
)
.

Notice that the factor κ(A)

1−κ(A) ‖�A‖
‖A‖

tends to κ(A)when ‖�A‖ → 0. In addition,

κ(A) is sharp in the sense that no smaller number will satisfy the inequality
above for allA and b. Thus, κ(A)measures how much the relative input error
is amplified in the solution and log κ(A) measures the loss of precision. In
Turing’s words

It is characteristic of ill-conditioned sets of equations that small per-
centage errors in the coefficients given may lead to large percentage
errors in the solution.

When A is not invertible its condition number is not well defined. How-
ever, we can extend its definition by setting κ(A) = ∞ if A is singular.
MatricesAwith κ(A) small are said to be well-conditioned, those with κ(A)
large are said to be ill-conditioned, and those with κ(A) = ∞ ill-posed.

Note that the set � of ill-posed matrices has Lebesgue measure zero in
the space R

n2
. The distance of a matrixA to this set is closely related to κ(A).

Theorem 1 (Condition Number Theorem, [Eckart and Young 1936]) For
any n× n real matrix A one has

κ(A) = ‖A‖
dF (A,�)

Here dF means distance in R
n2

with respect ot the Frobenius norm ‖A‖ =√∑
a2
ij .

The relationship between conditioning and distance to ill-posedness is a
recurrent theme in numerical analysis (cf. [Demmel 1987]). It will play a
central role in our understanding of the condition of a linear program.

Reasonably enough, κ(A) will appear in more elaborate round-off anal-
ysis in which errors may occur in all the operations. As an example, we
mention such an analysis for Cholesky’s method. If A is symmetric and pos-
itive definite we may solve the linear system Ax = b by using Cholesky’s
factorisation. If the computed solution is (x +�x) then one can prove that,
for u sufficiently small,

‖�x‖
‖x‖ ≤ 3n3uκ(A).
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Remark 1 Note that a bound as the one above for the relative forward error
of an input a ∈ R

n in the form of an expression in its size n, its condition
number κ(a), and the round-off unit umay not be computable for a particular
input a since we may not know κ(a). Yet, such bounds allow us to compare
algorithms with respect to stability. The fastest the expression tends to zero
with u, the more stable the algorithm is.

Numerical linear algebra is probably one of the best developped areas in
numerical analysis. The interested reader can find more about it in, for in-
stance, the introductory books [Demmel 1997; Trefethen and Bau III 1997]
or in the more advanced [Higham 1996].

1.2 Condition of linear conic systems

To extend the ideas above to linear programming is not immediate. Let A ∈
R
n×m be given and consider the two systems1

Ax ≤ 0, x �= 0(1)

and

ATy = 0, y ≥ 0, y �= 0.(2)

It is well-known that one of these systems has a strict solution (one for which
the satisfied inequality is strict in all coordinates) if and only if the other
has no solutions at all. This is a generic property. Indeed, except for a set of
Lebesgue measure zero, for any A ∈ R

m×n, one of the systems in the pair
(1)–(2) has a strict solution, and this continues to hold even if the matrix
A is slightly perturbed. A standard problem in linear programming is the
following

Given a n × m real matrix A, decide which of (1) or (2) is strictly
feasible and return a strict solution for it.

Here the concept of “input error” still makes sense but that of “output
error” becomes less clear. The answer of the “decision part” of the problem
(finding which of the two systems is strictly feasible) will either be severely
affected by input errors (the algorithm will return the wrong system) or will
not be affected at all. No “small output error” is possible. Also, for the strictly
feasible system there is not a unique strict solution and the algorithm may
return any of them. So, it is less clear how to define a condition number.

1 Usually, in the literature, one considers am×nmatrixA appearing in (2), the “primal
system”, and its transpose AT appears in (1), the “dual system.” We revert this notation
here since in most of this paper we will deal with system (1) and we do not want to burden
the notation with the transpose superscript.
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A natural alternative to define condition numbers in the context above (and
for other forms of conic systems as well) was proposed by Renegar [1994b,
1995a, 1995b]. The idea is to use the condition number theorem. More pre-
cisely, let D (resp. P) denote the set of matrices A for which (1) (resp. (2))
is feasible and let � be the boundary of D and P . Renegar defined

CR(A) = ‖A‖
d(A,�)

where both numerator and denominator are for the operator norm with re-
spect to the Euclidean norm in both R

m and R
n. It turns out that the condition

number thus defined naturally appears in a variety of bounds related with the
problem above —besides, of course, those in error analysis. For instance, it
appears when studying the relative distance of solutions to the boundary of
the solution set, the number of necessary iterations to solve the problem (for
iterative algorithms such as interior-point or ellipsoid), or —as expected—
in different error estimates in the round-off analysis of these algorithms. All
these quantities may be bounded by expressions in which CR(A) appears as
a parameter. References for the above are [Renegar 1995b; Freund and Vera
1999b; Freund and Vera 1999a; Vera 1998; Cucker and Peña 2001] (see also
Section 4 for some of it).

If we are only interested in estimating complexity bounds for iterative
algorithms with infinite precision, it is possible to consider some measures
of condition which are always finite. This has been done for instance in [Ye
1994] where the condition measure σ(A) for a matrix A with n ≥ m is de-
fined. Then (cf. [Vavasis and Ye 1995]) this measure was used to show that a
feasibility problem similar to the one above can be solved by an interior-point
method with O(√n| ln σ(A)| + ln n) iterations.

Similarly, always under the assumption n ≥ m, an algorithm was given
in [Vavasis and Ye 1996] which solves optimization linear programs within
O(n3.5(ln χA+ ln n)) iterations each of them performing O(m2n) arithmetic
operations. Here χA is the condition measure introduced in [Stewart 1989]
and [Todd 1990]. Both | ln σ(A)| and ln χA are finite for all matrices A.

Other recent measures of condition for linear programming, C(A) and
µ(A), are defined in [Cheung and Cucker 2001] and [Freund and Epelman
2000]. The first one, a very close relative of CR(A), enjoys all the good
properties of CR(A) and has some additional ones including some nice geo-
metric interpretation. It is the central character in this paper. We give now
its definition and delay exposing some of its main properties to Section 2 so
that we can quickly state our main result. Let ak denote the kth row of A,
k = 1, . . . , n, and x ∈ Sm−1, the unit sphere in R

m. Define

fk(x) = 〈ak, x〉
‖ak‖
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(here, and in the rest of this paper, 〈 , 〉 denotes the standard inner product in
R
m and ‖ ‖ its induced norm) and D = min

x∈Sm−1
max

1≤k≤n
fk(x). We define C(A)

to be

C(A) = 1

|D| .

1.3 Averaging condition measures

Condition numbers have two probably disturbing features. One is that, in
general, we don’t have an a priori knowledge of the condition of an input.
Unlike the size of a, which is straightforwardly obtained from a, the con-
dition number of a seems to require a computation which is not easier than
solving the problem for which a is an instance (see [Renegar 1994a] for a
discussion on this). The other is that there are no bounds on their magnitude
as a function of the input size. They may actually be infinite.

A reasonable way to cope with these features is to assume a probability
measure on the space of inputs and to estimate the expected value (and if
possible, other moments) of the condition number. The use of such idea in
complexity analysis is pushed forward, for instance, in [Smale 1997]. Ex-
amples of this kind of result are the following. We say that a random matrix
is Gaussian when its entries (real and imaginary parts of the entries for the
complex case) are i.i.d. N(0, 1) random variables defined on a probability
space (�,A,P).

Theorem 2 ([Edelman 1988]) Let A be a n× n Gaussian matrix. Then the
expected value of log(κ(A)) satisfies

E (log(κ(A))) = log n+ c + o(1) when n → ∞
where c ≈ 1.537 for real matrices and c ≈ 0.982 for complex matrices. 
�
Theorem 3 ([Todd, Tunçel, and Ye 2001]) Let n > m > 3 and A be a
Gaussian n×m matrix. Then

E(ln χA), E(ln σ(A)) = O(min {m ln n, n}).

�

Theorem 4 ([Cheung and Cucker 2002]) Let A be a Gaussian n×m ma-
trix. Then

(i)

E (ln C(A)) =
{O(min{m ln n, n}) if n > m

O(ln n) otherwise.
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(ii)

E(lnCR(A)) ≤ E(ln C(A))+ 5 ln n

2
+ lnm

2
+ 2 ln 2.


�
Remark 2 The restriction to the case n > m in Theorem 3 (and in all the
work related with χA and σ(A)) is not severe. In the case n ≤ m system (1)
is always feasible. The decision part of the problem at the beginning of the
previous section is thus, in this case, empty of content. In addition in most
of the occurrences in practice of that problem one actually has that n is some
orders of magnitude larger than m. The case n � m (i.e. n much larger than
m) is actually the case of interest among researchers in linear programming.

1.4 Main result in this paper

The goal of this paper is to improve the bounds in Theorem 4 for the case
n � m. We next state our main result. Let � denote the standard N(0, 1)
distribution,

�(x) = 1√
2π

∫ x

−∞
e−

t2
2 dt

and ϕ its density

ϕ(t) = e−
t2
2√

2π
.

Let

D(n,m) = 1

6qm

( e
m

)m
2
(�(1))n−2(1 + (m ∧ n)m2 ) (K0n

2m3/2q2)(m∧n)

where m ∧ n denotes the minimum of m and n,

K0 = e3
√

2

(e − 1)
√
π�(1)

≈ 11.086 and q = max

{
3.2,

√
3 ln(2n)

m

}
.

Note thatD(n,m) becomes small when either n is sufficiently larger than
m or m is sufficiently larger than n, and the larger one of this parameters
becomes with respect to the other the smaller is the value of D(n,m). For
instance, if either m(1+ln n)

n
≤ 1 or n(1+lnm)

m
≤ 1

14 , we have D(n,m) ≤ 1. It
follows that if m or n (or both) tend to ∞ in such a way that either m ln n

n
or

n lnm
m

tend to 0 then D(n,m) ≤ 1 holds true for sufficiently large values of
m or n. Our interpretation of n � m will thus be n > m and D(n,m) ≤ 1.
The relation m � n is defined similarly.
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Main Theorem Let A be an n×m Gaussian matrix. Then

(i)

E(ln C(A)) ≤
{

lnm+ 2 ln q + 2D(n,m) if D(n,m) ≤ 1
lnm+ 2 ln q + 2 lnD(n,m)+ 2 if D(n,m) > 1.

(ii) For ν = 2, 3, . . .

E([ln C(A)]ν)

≤



2ν!
∑ν

k=0
1
k!

(
1
2 lnm+ ln q

)k
if D(n,m) ≤ 1

2ν!
∑ν

k=0
1
k!

(
lnD(n,m)+ 1

2 lnm+ ln q
)k

if D(n,m) > 1.

Remark 3 Note that when m � n then q = 3.2 and we get E(ln C(A)) =
lnm + O(1). More interestingly, when n � m, we get E(ln C(A)) =
max{lnm, ln ln n} + O(1).

Corollary 1 Let m, n ≥ 1 be given. Then, for each λ ∈ R, 0 < λ < 1, and
any y > 0
(i) If D(n,m) ≤ 1,

P
(

ln C(A) > y

(
1

2
lnm+ ln q

))
≤
(

1 + 2e
λ

λ− 1

)
e−λy.

(ii) If D(n,m) > 1,

P
(

ln C(A) > y

(
lnD(n,m)+ 1

2
lnm+ ln q

))
≤
(

1 + 2e
λ

λ− 1

)
e−λy.

Proof. We only prove (i). Part (ii) is done similarly.
From the Main Theorem

E {(ln C(A))ν} ≤ 2eν!αν0
with α0 = 1

2 lnm+ ln q. It follows that, for 0 < λ < 1,

E
{
e
λ

ln C(A)
α0

}
= 1+

∞∑
ν=1

λν

ν!
E
{(

ln C(A)
α0

)ν}
≤ 1+2e

∞∑
ν=1

λν = 1+2e
λ

λ− 1

and using Markov’s inequality, if y > 0,

P (ln C(A) > yα0) = P
(
e
λ

ln C(A)
α0 > eλy

)
≤ e−λy

(
1 + 2e

λ

λ− 1

)
. 
�

In the next section we review some of the basic properties of C(A). In
Section 3 we prove, modulo a few technical results, the Main Theorem. The
proofs of these technical results are given in Section 5. In doing so, we in-
tended to isolate the central ideas behind the proof of the Main Theorem from
the less conceptual, yet necessary, results allowing these central ideas to be
applied. Section 4 is devoted to point out some consequences of the Main
Theorem.
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2 Main properties of C(A)

Let A be a real n×m matrix. For 1 ≤ k ≤ n denote by ak the kth row of A.
For any vector x ∈ R

m, x �= 0, let θk(A, x) ∈ [0, π] be the angle between x

and ak, i.e. θk(A, x) = arccos 〈x,ak〉
‖x‖‖ak‖ = arccos fk

(
x

‖x‖
)

and

θ(A, x) = min
k≤n

θk(A, x).

Denote by x any vector satisfying

θ(A) = θ(A, x) = max
x∈Rm

θ(A, x).

Then

cos θ(A) = cos

(
max
x∈Rm

min
k≤n

θk(A, x)

)

= cos


max

x∈Rm

x �=0

min
k≤n

arccos fk

(
x

‖x‖
)

= D

and we conclude that

C(A) = 1

| cos(θ(A))| .

The number C(A) captures several features related with the feasibility of
the system Ax ≤ 0. We next briefly state them. Proofs of these results can
be found in [Cheung and Cucker 2001].

Let Sol(A) = {x | Ax ≤ 0, x �= 0} and D = {A ∈ R
n×m | Sol(A) �= ∅}.

Lemma 1 Let x ∈ R
m and x as above. Then,

(i) 〈ak, x〉 ≤ 0 ⇐⇒ cos θk(A, x) ≤ 0 ⇐⇒ θk(A, x) ≥ π
2 ,

(ii) x ∈ Sol(A) ⇐⇒ θ(A, x) ≥ π
2 ⇐⇒ cos θ(A, x) ≤ 0 and

(iii) A ∈ D ⇐⇒ x ∈ Sol(A).


�
A version of the Condition Number Theorem holds for C(A). Let

�(A) = sup

{
�

∣∣∣∣ max
k≤n

‖a′
k − ak‖
‖ak‖ < � ⇒ (A ∈ D ⇐⇒ A′ ∈ D)

}

where A′ denotes the matrix with a′
k as its kth row.

Theorem 5 C(A) = 1
�(A)

. 
�
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We already mentioned that C is a close relative to Renegar’s condition
number CR. Actually, one can prove that, for every matrix A, C(A) ≤√
nCR(A). Moreoever, there is no converse of this in the sense that there

is no function f (m, n) such that CR(A) ≤ f (m, n)C(A) for all n×mmatri-
ces A. This shows that CR(A) can be arbitrarily larger than C(A). However,
the following relation holds.

Proposition 1

CR(A) ≤ ‖A‖
mink ‖ ak ‖C(A).


�
Therefore, restricted to the set of matrices A such that ‖ak‖ = 1 for

k = 1, . . . , n, one has

C(A) ≤ √
nCR(A) ≤ nC(A).

We now note that if A is arbitrary and A is the matrix whose kth row is

ak = ak

‖ak‖
then C(A) = C(A) since C is invariant by row-scaling andCR(A) ≤ nCR(A).
Thus, C(A) is closely related to CR(A) for a normalization A of A which is
easy to compute and does not increase too much CR(A).

The last feature of C(A) we mention in this section relates the probabi-
listic behaviour of C(A) (for random matrices A) with a classical problem
in geometric probability. Before that, we do a remark on distributions for
random matrices. Let ak ∈ R

m, k = 1, . . . , n, denote the rows of a matrixA.
The assumption that A is Gaussian is equivalent to say that the random vari-

ables
{

a1
‖a1‖ , . . . ,

an
‖an‖ , ‖a1‖2, . . . , ‖an‖2

}
are independent, the first n being

uniformly distributed on the sphere Sm−1 and the last n having the com-
mon distribution χ2 with m degrees of freedom (i.e. ‖a1‖2 can be written
as ‖a1‖2 = ∑m

j=1 ζ
2
j where ζ1 . . . ζm are i.i.d. random variables in the real

line with standard normal distribution). Thus, since C(A) is invariant under
row scaling of A, its moments (or those of ln(C(A))) will be the same for
both the Gaussian assumption on A or the assumption that a1, . . . , an are
independently drawn from Sm−1 with the uniform distribution.

Assume that the rows of A have all norm 1. Then it is easy to prove that

θ(A) = inf{θ : the union of the circular caps with centers ak and

angular radius θ covers Sm−1}
Thus, if the rows ak of A are randomly drawn from Sm−1, independently and
with a uniform distribution, the random variable θ(A) (and a fortiori C(A)) is



On the Expected Condition Number of Linear Programming Problems 429

related to the problem of covering the sphere with random circular caps. The
latter is a classical problem in geometric probability (cf. [Hall 1988; Solomon
1978]). The aspect most studied of this problem is to estimate, for given θ
and n, the probability that n circular caps of angular radius θ cover Sm−1. A
full solution of this problem is, as today, unknown. Partial results and some
asymptotics can be found in [Gilbert 1966; Miles 1969; Janson 1986]. In our
case, for the estimation of the moments of the random variable ln C(A) the
main point is to understand the behaviour of the distribution of the random
varible

1

|cos(θ(A))|

near the zero values of the denominator, that is, for the set of matricesA such
that θ(A) is near π

2 . The above mentioned results do not seem to be helpful
for this purpose.

On the other hand, the covering problem can be explicitly solved for the
special value θ = π

2 in which case (cf. Theorem 1.5 in [Hall 1988]), the
probability that n circular caps cover Sm−1 is equal to

1 − 1

2n−1

m−1∑
k=0

(
n− 1

k

)
.

This has some immediate consequences in our context. In the following, by
“Ax ≤ 0 is feasible” we mean that Ax ≤ 0 has non-zero solutions.

Proposition 2 LetA be a random matrix whose n rows are randomly drawn
in Sm−1 independently and uniformly distributed. Then,

P(Ax ≤ 0 is feasible) = 1

2n−1

m−1∑
k=0

(
n− 1

k

)
.

Consequently, P(Ax ≤ 0 is feasible) = 1 if n ≤ m, P(Ax ≤ 0 is feasi-
ble) → 0 if m is fixed and n → ∞ and P(Ax ≤ 0 is feasible) = 1

2 when
n = 2m.

Proof. From (ii) and (iii) of Lemma 1 it follows that A ∈ D if and only if
θ(A) ≥ π

2 . And the latter is equivalent to say that the n circular caps with
centers ak and angular radius π

2 do not cover Sm−1. Thus, the first statement
follows. The rest of the proposition is trivial. 
�
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3 Proof of the Main Theorem

Let ak, k = 1, . . . , n, be i.i.d. random variables with standard (N(0, Im))
normal law. We want to give bounds (depending on n,m) for

E
{(

ln
1

|D|
)ν}

(ν = 1, 2, . . . ).

Note that |D| ≤ 1, so that ln 1
|D| ≥ 0.

3.1 Replacing ‖ak‖ by
√
m for k = 1, . . . , n

As we noted in Section 2 to compute E
{(

ln 1
|D|
)ν}

we may assume the ak

either uniformly distributed on Sm−1 or standard normally distributed in R
m.

The first choice has the drawback of introducing dependencies among the
coordinates of the ak’s. So, we will take the second one.

In addition, our computations will become less complicated if we replace
‖ak‖ by

√
m for k = 1, . . . , n. To do so we now introduce a few objects

which will be present during the whole development.
Let q > 1 and

Eq =
{
ω ∈ � :

‖ak‖√
m

≤ q for k = 1, . . . , n

}
.

Also, let

f̃ (x) = max
1≤k≤n

fk(x),

Z(x) = max
1≤k≤n

〈x, ak〉, and

Z = min
x∈Sm−1

Z(x).

Lemma 2 If ω ∈ Eq then

1√
m

|Z| ≤ q|D|.

Proof. If ω ∈ Eq one has, for all x ∈ Sm−1 and all k = 1, . . . , n,

〈x, ak〉 ≥ 0 ⇒ 〈x, ak〉√
m

≤ 〈x, ak〉
‖ak‖ q

and

〈x, ak〉 < 0 ⇒ q
〈x, ak〉
‖ak‖ ≤ 〈x, ak〉√

m
.
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Taking maxima over 1 ≤ k ≤ n it follows that

Z(x) ≥ 0 ⇒ Z(x)√
m

≤ qf̃ (x)

and

Z(x) < 0 ⇒ qf̃ (x) ≤ Z(x)√
m
.

Since Z(x) and f̃ (x) have the same sign for all ω ∈ Eq , now taking minima
over x ∈ Sm−1,

Z ≥ 0 ⇒ 1√
m
Z ≤ qD

and

Z < 0 ⇒ qD ≤ 1√
m
Z

from which the conclusion follows. 
�
Lemma 3 Let Ec

q denote the complement of the event Eq in the probability
space. If

q ≥ max

{
3.2,

√
3 ln(2n)

m

}

then

P(Ec
q) ≤ 1

2
.

Proof. One has

P(Ec
q) ≤ nP

(‖a1‖2

m
> q2

)
= nP
(
X1 + · · · +Xm

m
> q2 − 1

)

whereX1, . . . , Xm are i.i.d. random variables with the distribution of ξ 2 −1,
ξ a normal standard random variable.

The logarithmic moment generating function of ξ 2 − 1 is

�(λ) = ln E{eλ(ξ2−1)} =
{

−λ− 1
2 ln(1 − 2λ) if λ < 1

2

+∞ if λ ≥ 1
2

and its Fenchel-Legendre transform

�∗(x) = sup
λ∈R

(λx −�(λ)) =
{

1
2 (x − ln(x + 1)) if x > −1
+∞ if x ≤ −1.
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A basic result on large deviations (cf. Chapter 2 of [Dembo and Zeitouni
1998]) states that, for any x > 0,

P
(
X1 + · · · +Xm

m
≥ x

)
≤ e−m�

∗(x).

Therefore, in our case,

P(Ec
q) ≤ n

(
e−m�

∗(q2−1)
)
.

Using the form of �∗ shown above, and the fact that if q ≥ 3.2 then q2

−1 − 2 ln q ≥ 2
3q

2, an elementary computation shows that the right-hand
side of this inequality is at most 1/2 if q satisfies the hypothesis. 
�

Proposition 3 Let α ≥ 0 and q ≥ max

{
3.2,
√

3 ln(2n)
m

}
. Then:

E
{(

ln
1

|D|
)ν}

≤ 2

[
α +
∫ +∞

α

P
({

|Z| < √
mqe−x

1/ν
}

∩ Eq
)
dx

]
.

Proof.

E
{(

ln
1

|D|
)ν}

= E
{(

ln
1

|D|
)ν

IEq

}
+ E
{(

ln
1

|D|
)ν

IEc
q

}
(3)

Here we denote by IS the characteristic function of a set S.
SinceD is a function of ak

‖ak‖ , k = 1, . . . , n, and IEq is a function of ‖ak‖,
k = 1, . . . , n, the random variables D and IEq are independent.

This implies that

E
{(

ln
1

|D|
)ν

IEc
q

}
= E
{(

ln
1

|D|
)ν}

P(Ec
q).

By Lemma 3, P(Ec
q) ≤ 1

2 , and therefore it follows from (3)

E
{(

ln
1

|D|
)ν}

≤ 2E
{(

ln
1

|D|
)ν

IEq

}
.(4)

Consequently

E
{(

ln
1

|D|
)ν

IEq

}
=
∫ +∞

0
P
((

ln
1

|D|
)ν

IEq > x

)
dx(5)

=
∫ +∞

0
P
({

|D| < e−x
1/ν
}

∩ Eq
)
dx

≤
∫ +∞

0
P
(
{|Z| < √

mqe−x
1/ν } ∩ Eq

)
dx

≤ α +
∫ +∞

α

P
({

|Z| < √
mqe−x

1/ν
}

∩ Eq
)
dx
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the third line by Lemma 2. Replacing (5) in (4) we get

E
{(

ln
1

|D|
)ν}

≤ 2

[
α +
∫ +∞

α

P
({

|Z| < √
mqe−x

1/ν
}

∩ Eq
)
dx

]
.


�

In the rest of this paper we fix q = max

{
3.2,
√

3 ln(2n)
m

}
. Thus

ln q = max

{
ln 3.2,

1

2
(ln(ln 2n)− lnm+ ln 3)

}
.

In the sequel we focus on bounding the probability

P({|Z| < a} ∩ Eq).

3.2 Bounding P({|Z| < a} ∩ Eq): preliminaries

In what follows we face the difficulty that the random process Z = {Z(x) :
x ∈ Sm−1} does not have differentiable paths. We will deal with this by
smoothing out Z through convolution with a deterministic kernel.

Let ψε : R
m → R

+ be a regular isotropic approximation of the unity. It
is defined, for ε > 0, by

ψε(y) = cm

εm
ψ

(‖y‖
ε

)

where ψ : [0,+∞) → R
+ is of class C∞, supp(ψ) ⊆ [0, 1],

cm = 1

σm−1(Sm−1)
= �(m/2)

2πm/2
,

and
∫

Rm
ψε(y)dy = 1. Here σm−1 denotes the standard surface measure in

Sm−1.
Note that if

∫
Rm
ψε(y)dy = 1 holds then

1 =
∫

Rm

ψε(y)dy = cm

∫
Rm

1

εm
ψ

(‖y‖
ε

)
dy =
∫ 1

0
ρm−1ψ(ρ) dρ.

Thus, to ensure that
∫

Rm
ψε(y)dy = 1 it suffices to choose ψ satisfying that∫ 1

0 ρ
m−1ψ(ρ) dρ = 1. This can be obtained with

‖ψ‖∞ ≤ C1m and C1 = e

e − 1
.(6)
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Indeed, notice that if we take ψ(ρ) = bmI(1− 1
m
,1)(ρ) we have:

∫ 1

0
ρm−1ψ(ρ) dρ = bm

(
ρm

m

) ∣∣∣∣
1

ρ=1− 1
m

which is equal to 1 if we choose

b =
[

1 −
(

1 − 1

m

)m]−1

<
e

e − 1
.

This ψ verifies ‖ψ‖∞ = bm but is not C∞. At the cost of slightly increas-
ing its norm we can change it into one such function that also verifies the
remaining conditions.

Now define Zε : R
m → R by

Zε(x) = (ψε ∗ Z)(x) =
∫

Rm

ψε(x − y)Z(y)dy

and

Zε = min
x∈Sm−1

Zε(x).

Since for every ω ∈ �
Zε(x) −→

ε→0
Z(x) uniformly on Sm−1

we may deduce a bound for

P({|Z| < a} ∩ Eq)
by passing to the limit as ε → 0 in a bound for P({|Zε| < a}∩Eq). This will
be our goal. To attain it we will use a simple geometric idea. For all ε, a > 0,
the condition ∣∣∣∣ min

x∈Sm−1
Zε(x)

∣∣∣∣ < a

implies the existence of a local minimum ξ of Zε such that |Zε(ξ)| < a. The
idea to bound P({|Zε| < a}∩Eq) is to use a formula for counting the number
of local minima ξ as above. We next give such formula.

Let F : Sm−1 → R and a > 0. Denote

MF (a) = {x ∈ Sm−1 s.t. |F(x)| < a and x is a local minimum of F
}

and letmF(a) = #MF (a), the cardinality of MF (a) (if a = +∞ we simply
write MF and mF ). We also use the following notations:
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• (D̃F ) and (D̃2F) denote respectively the first and second derivatives of
F . For their computation at a point x ∈ Sm−1 we will parametrize Sm−1

locally by projection on the tangent hyperplane Tx .
.................................................................................................................................................................................................................................................................................................................................................................................................................................

...........
...........
...........
...........

...................................................................................................................................................................................................................................................................................Sm−1

x

Tx

•

• If A : R
m−1 → R

m−1 is a real symmetric linear transformation we write
A � 0 to denote that A is positive definite.

Lemma 4 Let F be smooth and assume that all the local minima of F are
strict (in the sense that D̃2F is non-singular at those points). Then,

mF = lim
δ→0

1

|Bm−1(0; δ)|
∫
Sm−1

det(D̃2F)(x)I{‖(D̃F )(x)‖<δ}I{(D̃2F)(x)�0}σm−1(dx).

where Bm−1(0; δ) is the open ball of radius δ centered at the origin in R
m−1

and |Bm−1(0; δ)| its Lebesgue measure in R
m−1.

Proof. The hypothesis implies that the local minima are isolated points in
Sm−1, hence mF is finite. Let mF = N and MF = {x1, . . . , xN }. Then,
for j = 1, . . . , N ,

(D̃F )(xj ) = 0
(D̃2F)(xj ) � 0.

}

For δ0 > 0, δ0 small enough, there existE1, . . . , EN , pairwise disjoint neigh-
bourhoods of x1, . . . , xN respectively, such that

N⋃
j=1

Ej =
{
x : ‖(D̃F )(x)‖ < δ0 and (D̃2F)(x) � 0

}



436 F. Cucker et al.

........

........

........

........
........
........
.........
.........
.........
.........
..........
..........

...........
...........

............
..............

................
....................

..................................
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
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.........
.........
........
........
........
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.........
.........

..........
..

...............

..........
..

.............

•

•

•

···

x1

x2

xN

E1

E2

EN

and, for each j = 1, . . . , N , the map x �→ (D̃F )(x) is a diffeomor-
phism between Ej and Bm−1(0; δ0). Thus,

∫
Ej

det(D̃2F(x)) σm−1(dx) =
|Bm−1(0; δ0)|. Consequently

mF = 1

|Bm−1(0; δ0)|
∫
Sm−1

det(D̃2F)(x)I{‖(D̃F )(x)‖<δ0}I{(D̃2F)(x)�0}σm−1(dx).

Since this holds for every δ ≤ δ0 the conclusion follows. 
�
Remark 4 The same proof, mutatis mutandis, shows that

mF(a) = lim
δ→0

1
|Bm−1(0;δ)|

∫
Sm−1 det(D̃2F)(x)I{‖(D̃F )(x)‖<δ}

I{(D̃2F)(x)�0}I{|F(x)|<a}σm−1(dx).

Let

I •(ε, δ, a)=E
{

det(D̃2Zε)(e1)I{(D̃2Zε)(e1)�0}∩{‖(D̃Zε)(e1)‖<δ}∩{|Zε(e1)|≤a}∩Eq
}

and

I (ε, δ, a) = 1

|Bm−1(0; δ)|I
•(ε, δ, a).

Proposition 4 For all ε > 0,

P({|Zε| < a} ∩ Eq) ≤ σm−1(S
m−1)lim

δ→0
I (ε, δ, a).

To prove Proposition 4 we would like to apply Lemma 4 to the (random)
function F = Zε. To be able to do this we need a result ensuring that, with
probability one, the local minima of Zε are strict. The next lemma provides
such a result.

Lemma 5 Let V : [0, 1]d → R
d , be a random vector field defined on the

probability space (�,A,P) and y ∈ R
d such that:
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(1) For almost every ω ∈ � the function τ �→ V (τ) is twice continuously
differentiable.

(2) For each τ ∈ [0, 1]d the probability distribution in R
d of the random

vector V (τ) has a density πτ .
(3) There exist positive constants L and δ such that

sup
{
πτ (z) : τ ∈ [0, 1]d, ‖z− y‖ ≤ δ

} ≤ L.

Then the probability for y to be a critical value of V is equal to zero. That is,

P
({
τ : τ ∈ [0, 1]d, V (τ) = y, detDV (τ) = 0

} �= ∅) = 0.

Proof. Suppose y = 0 (if this is not the case, replace V by V − y).
Denote by E0 the set

E0 = {τ : τ ∈ [0, 1]d, V (τ) = 0, detDV (τ) = 0
}

and for each positive integer N consider [0, 1]d as the union of the cubes of
sides equal to 1

N
that are products of intervals of the form [ j1

N
,
j1+1
N

] × · · · ×
[ jd
N
,
jd+1
N

], 0 ≤ j1, . . . , jd ≤ N − 1. Denote these cubes by C1, . . . , CNd .

In a similar way, consider each face of the boundary of each cube Cr as
a union of (d − 1)-dimensional cubes of sides equal to 1

N2 . We denote these
cubes by Drs , s = 1, . . . , 2dNd−1.

In each set Drs fix a point τ ∗
rs . For instance, let τ ∗

rs be the center of Drs .
For given η > 0, using the hypothesis, we can find B > 0 (large enough)

so that if we denote FB the event

FB=
{[

sup

∣∣∣∣∂Vi∂τj
(τ )

∣∣∣∣ ,
∣∣∣∣ ∂

2Vi

∂τj∂τh
(τ )

∣∣∣∣ : i, j, h = 1, . . . , d; τ ∈ [0, 1]d
]
>B

}

where V = (V1, . . . , Vd) and τ = (τ1, . . . , τd) one has

P(FB) < η.

Clearly,

{E0 �= ∅} =
Nd⋃
r=1

{E0 ∩ Cr �= ∅}(7)

and

{E0 ∩ Cr �= ∅} ⊂ {∃τr ∈ Cr s.t. V (τr) = 0, detDV (τr) = 0}
= {∃τr ∈ Cr, v ∈ R

d s.t. V (τr) = 0, ‖v‖ = 1, and

DV (τr)v = 0
}
.
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•

v↗

•

τr

τ̃rs

Drs

Cr

Let ω ∈ {E0 ∩ Cr �= ∅} ∩ F c
B . Take an intersection point of the straight line

through τr parallel to v with the boundary of Cr . This point belongs to some
Drs for some s ∈ {1, . . . , 2dNd−1}. We denote it by τ̃rs . Let i ≤ d and
consider the Taylor expansion of Vi around the point τr , evaluated at τ̃rs . This
is

Vi(τ̃rs) = Vi(τr)+
d∑
j=1

∂Vi

∂τj
(τr)(τ̃rs,j − τr,j )

+1

2

d∑
j,h=1

∂2Vi

∂τj∂τh
(τr + θ(τ̃rs − τr))(τ̃rs,j − τr,j )(τ̃rs,h − τr,h)

with 0 < θ < 1. Since the first two terms of this sum are equal to zero, we
deduce that, for i = 1, . . . , d,

|Vi(̃τrs)| ≤ KdBN
−2

where Kd is a constant depending only on the dimension d.
Since the diameter of each Drs is bounded by KdN−2 the existence of

τ̃rs ∈ Drs s.t. |Vi(̃τrs)| ≤ KdBN
−2 implies that

∥∥V (τ ∗
rs)
∥∥ ≤ KN−2 for some

constant K depending only on d and B. Here τ ∗
rs is the point a priori chosen

in Drs (apply the mean value theorem on the line segment with extremities
τ ∗
rs , τ̃rs and the fact that ω ∈ F c

B).
Hence, if N is large enough so that

K

(
1

N

)2

< δ

with δ given by hypothesis (3), one has

P(E0 �= ∅) ≤ P(FB)+ P({E0 �= ∅} ∩ F c
B)

< η + P
(∃r ≤ Nd, s ≤ 2dNd−1 s.t.

∥∥V (τ ∗
rs)
∥∥ ≤ KN−2)
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≤ η +
Nd∑
r=1

2dNd−1∑
s=1

P
(∥∥V (τ ∗

rs)
∥∥ ≤ KN−2)

≤ η +
Nd∑
r=1

2dNd−1∑
s=1

∫
‖z‖≤KN−2

πτ∗
rs
(z)dz

≤ η +NdNd−1LK1N
−2d

where K1 is a new constant depending only on B and d. Letting N → +∞
and using that η is an arbitrary positive number, the result follows. 
�
Proof of proposition 4.

P
({|Zε| < a} ∩ Eq

) ≤ P
({
mZε(a) ≥ 1

} ∩ Eq) ≤ E
{
mZε(a)IEq

}
Note that the property in Lemma 5 is local and to apply it to the random
field V = D̃Zε and the value y = 0 one only needs to check conditions (2)
and (3) in that lemma. The probability distribution of D̃Zε(x), x ∈ Sm−1, is
invariant under a linear linear isometry of R

m so that it suffices to check (2)
and (3) for x = e1. This is contained in Proposition 9 (take g = 1) which we
state in §3.4 below and prove in Section 5.

So we may use Lemma 4 which, together with Fatou’s Lemma, permit to
bound the expectation above (for related formulae, see for example [Adler
1981; Brillinger 1972]). We get:

E
{
mZε(a)IEq

} = E
{

lim
δ→0

1

|Bm−1(0; δ)|
∫
Sm−1

det(D̃2Zε)(x)I{(D̃2Zε)(x)�0}

×I{‖(D̃Zε)(x)‖<δ}∩{|Zε(x)|<a}∩Eq σm−1(dx)

}

≤ lim
δ→0

1

|Bm−1(0; δ)|
∫
Sm−1

E
{

det(D̃2Zε)(x)I{(D̃2Zε)(x)�0}
×I{‖(D̃Zε)(x)‖<δ}∩{|Zε(x)|<a}∩Eq

}
σm−1(dx).

Since the law of the random set of vectors {a1, . . . , an} and {T a1, . . . , T an}
is the same for any isometry T of R

m it follows that the last integrand does
not depend on x and the result follows. 
�

Using Proposition 4 we obtain

P({|Z| < a} ∩ Eq) ≤ σm−1(S
m−1)lim

ε→0
lim
δ→0

I (ε, δ, a).

Consequently we will focus on estimating the limit in the right-hand side. The
next section is devoted to the computation of the first and second derivatives
of Zε and the following one to describe the joint distribution of Zε and its
gradient, as well as its limiting behaviour as ε → 0.
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3.3 Computation of partial derivatives

We now compute the first and second derivatives of Zε : R
m → R. Later we

will be interested in computing the derivatives of the restrictionZε : Sm−1 →
R. To distinguish between both we will write a˜over the latter (as we did
above). Thus, for instance,DZε denotes the first derivative of Zε : R

m → R

and D̃Zε that of Zε : Sm−1 → R.

Proposition 5 For all x ∈ R
m and all j, l = 1, . . . , m,

(i) ∂Zε
∂xj
(x) = ∫

Rm
ψε(x − y)

(∑n
k=1 akj IUk (y)

)
dy

(ii)
∣∣∣ ∂2Zε
∂xj ∂x�

(x)

∣∣∣ ≤ C1
√
m

ε

∑n
k=1 |akj |.

Proof. Recall that for x ∈ R
m, we defined

Zε(x) =
∫

Rm

ψε(x − y)Z(y)dy.

Therefore, for j = 1, . . . , m,

∂Zε

∂xj
(x) =

∫
Rm

∂ψε

∂xj
(x − y)Z(y)dy

=
∫

Rm−1

∏
h�=j

dyh

∫
R

∂ψε

∂xj
(x − y)Z(y)dyj

=
∫

Rm−1

∏
h�=j

dyh

∫
R

ψε(x − y)
∂Z

∂yj
(y)dyj(8)

the last equality on integration by parts since ∂ψε
∂xj
(x−y) = − ∂ψe

∂yj
(x−y) and

ψε(x− y)Z(y)∣∣yj=+∞
yj=−∞= 0 because ψε has compact support (as a function of

yj ).
Denote

Uk = {y ∈ R
m : 〈y, ak〉 > 〈y, al〉 for all l �= k}.

Note that almost surely, for almost all y ∈ R
m —in the sense of Lebesgue

measure— there is exactly one k such that y ∈ Uk. In addition, if y ∈ Uk one
has

∂Z

∂yj
(y) = ∂

∂yj
(〈y, ak〉) = akj .

Therefore

∂Zε

∂xj
(x) =

∫
Rm

ψε(x − y)

(
n∑
k=1

akj IUk (y)

)
dy.
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We now proceed to part (ii). To do so, the following notation will be use-
ful. For x ∈ R

m we denote by x̃j the vector in R
m−1 obtained from x by

suppressing the j th coordinate.
For j, � = 1, . . . , m,

∂2Zε

∂xj∂x�
(x) =

∫
Rm

∂ψε

∂x�
(x − y)

[
n∑
k=1

akj IUk (y)

]
dy

=
n∑
k=1

akj

∫
Rm−1

∏
h�=�

dyh

∫
R

∂ψε

∂x�
(x − y)IUk (y) dy�.

Note that for each k = 1, . . . , n, the set Uk is convex so that, fixing ỹ� ∈
R
m−1, the set

Uk� = {y� : (y1, . . . , y�, . . . , ym) ∈ Uk}
is also convex. Thus Uk� is an interval (possibly infinite),

n⋃
k=1

Uk� = R,

(Uk� denotes the closure of Uk�) and, almost surely, the interiors of the Uk�

are pairwise disjoint. Therefore, fixing x ∈ R
m and ỹ� ∈ R

m−1 we have

∫
R

∂ψε

∂x�
(x − y)IUk (y�) dy� =

∫ βk�

αk�

∂ψε

∂x�
(x − y) dy� = G(ỹ�; x)

where

G(ỹ�; x) = ψε(x1 − y1, . . . , x�−1 − y�−1, x� − αk�, . . . , xm − ym)

−ψε(x1 − y1, . . . , x�−1 − y�−1, x� − βk�, . . . , xm − ym)

and αk� < βk� are the extremities of Uk�. Hence

∂2Zε

∂xj∂x�
(x) =

n∑
k=1

akj

∫
Bm−1 (̃x�;ε)

G(ỹ�; x)
∏
h�=�

dyh.

So,

∣∣∣∣ ∂
2Zε

∂xj∂x�
(x)

∣∣∣∣ ≤
n∑
k=1

|akj ||Bm−1(0; 1)|εm−1‖ψε‖∞

=
n∑
k=1

|akj | |Bm−1(0; 1)|
ε

‖ψ‖∞cm(9)



442 F. Cucker et al.

(this bound is asymmetric with respect to (j, �) because of the way it has
been obtained). Also:

|Bm−1(0; 1)| = σm−2(S
m−2)

∫ 1

0
ρm−2dρ = 1

(m− 1)cm−1
.

As a consequence, using (6) and Lemma 6 below, the bound in (9) implies
that

∣∣∣∣ ∂
2Zε

∂xj∂x�
(x)

∣∣∣∣ ≤ C1
√
m

ε

n∑
k=1

|akj |.(10)


�

Lemma 6 For all m ≥ 2, mcm
(m−1)cm−1

≤ √
m.

Proof. Use cm = �
(
m
2

)
2π

m
2

and Stirling’s formula, �(t) ≥ √
2πtt−

1
2 e−t , (see

[Ahlfors 1979], Chapter 5, Section 2.5, Exercise 2). 
�

We now compute the partial derivatives of the restriction ofZε toSm−1.We
denote by {e1, . . . , em} the canonical basis in R

m, where ej = (δjh)h=1,... ,m,
j = 1, . . . , m, and δjh is the Kronecker δ.

Proposition 6 Choose {e2, . . . , em} as a basis for the tangent hyperplane to
Sm−1 at the point e1. Then:

(i) For j = 2, . . . , m

∂̃Zε

∂xj
(e1) = ∂Zε

∂xj
(e1) =

∫
Rm

ψε(e1 − y)

[
n∑
k=1

akj IUk (y)

]
dy.

(ii) For j, � = 2, . . . , m

∂̃2Zε

∂xj∂x�
(e1) = −∂Zε

∂x1
(e1)δj� + ∂2Zε

∂xj∂x�
(e1).

Proof. Fix the parametrization of Sm−1 defined in a small neighbourhood of
e1 by

x1 = γ (x2, . . . , xm)

= (1 − (x2
2 + · · · + x2

m))
1/2.

Thus, (x2, . . . , xm) varies in a small ball centered at (0, . . . , 0) ∈ R
m−1.
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................

................

..................................................................................................................................

1
x1

x2, . . . , xn

•

To prove part (i), using Proposition 5 (i) we obtain, for j = 2, . . . , m,

∂̃Zε

∂xj
(x) = ∂Zε

∂x1

∂γ

∂xj
(x)+ ∂Zε

∂xj
(x)

=
∫

Rm

ψε(x − y)

[
n∑
k=1

akj IUk (y)

]
dy

(−xj
γ

)

+
∫

Rm

ψε(x − y)

[
n∑
k=1

akj IUk (y)

]
dy

where γ denotes γ (x2, . . . , xm), and with x = (γ (x2, . . . , xm), x2, . . . , xm).
Evaluating at e1, we get

∂̃Zε

∂xj
(e1) =

∫
Rm

ψε(e1 − y)

[
n∑
k=1

akj IUk (y)

]
dy.

For part (ii), if j = 2, . . . , m,

∂̃2Zε

∂x2
j

∣∣∣∣
x=e1

=
[(

−∂
2Zε

∂x2
1

· xj
γ

+ ∂2Zε

∂x1∂xj

)
(−xj
γ
)− ∂Zε

∂x1

(
γ − xj (− xj

γ
)

γ 2

)

+ ∂2Zε

∂xj∂x1
(−xj
γ
)+ ∂2Zε

∂x2
j

] ∣∣∣∣
x=e1

= −∂Zε
∂x1

(e1)+ ∂2Zε

∂x2
j

(e1).

For j, � = 2, . . . , m, j �= �,

∂̃2Zε

∂xj∂x�

∣∣∣∣
x=e1

=
[(

−∂
2Zε

∂x2
1

x�

γ
+ ∂2Zε

∂x1∂x�

)
(−xj
γ
)− ∂Zε

∂x1

(
xj (−1

2
)

1

γ 3
(−2x�)

)

+ ∂2Zε

∂xj∂x1
(−x�
γ
)+ ∂2Zε

∂xj∂x�

] ∣∣∣∣
x=e1

= ∂2Zε

∂xj∂x�
(e1).


�
Remark 5 The computations in Propositions 5 and 6 remain valid if instead
of the canonical basis {e1, e2, . . . , em} one uses a basis {e1, v2, . . . , vm} with
{v2, . . . , vm} any orthonormal basis of the orthogonal complement of e1.
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3.4 Bounding lim
ε→0

lim
δ→0

I (ε, δ, a)

We now return to our purpose, stated at the end of §3.2, of bounding lim
ε→0

lim
δ→0

I (ε, δ, a). The main statement in this section is the following.

Proposition 7 For a ≥ 0 the expression lim
ε→0

lim
δ→0

I (ε, δ, a) is bounded by

m∧n∑
t=1

[(
n

t

)
(t − 1)!

πt

(
e2

2

)t (
4C1nm

3/2q2)t−1 1

(2π)
m+t−1

2

∫ a

−a
|x|m−t (�(x))n−t−1

(√
2π

t
�(

√
tx)(n− t)ϕ(x)+ t

m
2 e−

t
2 x

2
�(x)

)
dx

]
.

To obtain bounds for the limiting behaviour of I (ε, δ, a) as δ → 0 and
ε → 0 (in that order) we intend to describe the joint distribution of the random
vector

(Zε(e1), (D̃Zε)(e1))

in R
m as well as to bound the expression det(D̃2Zε)(e1))IEq appearing in

I •(ε, δ, a) (or in I (ε, δ, a)).
Note that almost surely one has

Zε(e1) −→
ε→0

Z(e1) = max
1≤k≤n

ak1

and, for j = 2, . . . , m,

∂̃Zε(e1)

∂xj
−→
ε→0

n∑
�=1

a�j I
{
a�1= max

1≤k≤n
ak1

}.

Denote, for � = 1, . . . , n,

χ� = I{
a�1= max

1≤k≤n
ak1

}

and, for j = 2, . . . , m,

Yj =
n∑
�=1

a�jχ�.

Note that both the χ� and the Yj are well-defined almost surely. With this
notation, the joint distribution of the m-tuple

(
Zε(e1),

∂̃Zε(e1)

∂x2
, . . . ,

∂̃Zε(e1)

∂xm

)
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converges, as ε → 0, to the distribution of

(Z(e1), Y2, . . . , Ym)

which is easy to compute.Actually, conditionally on then-tuple (a11, . . . , an1)

the random variables Y2, . . . , Ym are independent (Yj depends only on a�j ,
� = 1, . . . , n), Gaussian with mean zero and variance

E(Y 2
j ) =

n∑
�=1

χ2
�E{a2

�j } = 1.

Hence, the distribution of (Z(e1), Y2, . . . , Ym) is that of m independent
random variables, Z(e1) being the maximum of n i.i.d. N(0, 1) r.v.’s and
Y2, . . . , Ym beingN(0, 1). Thus, the joint density at the point (z, y2, . . . , ym)

is

nϕ(z)(�(z))n−1
m∏
j=2

ϕ(yj ).

The actual picture is, however, more complicated since we have first to pass
to the limit when δ → 0 and this implies that, as ε → 0, we have to deal
with convergence of densities, not only of distributions.

The other problem to overcome is that, due to the non-smoothness of Z,
in some ω-sets det(D̃zZε)(e1)) becomes very large for small ε > 0. As a
consequence, we will need to estimate the size of the probability of these
ω-sets and check that it compensates the growth of det(D̃zZε(e1)).

These are the resons for the technical detour implied by Propositions 8, 9,
and 10 which we state below in this section. We delay their proof to Section 5
to avoid breaking the main stream of our argument.

Towards the proof of Proposition 7 we introduce some additional nota-
tions. Let, for 1 ≤ i �= j ≤ n,

Fij = {y ∈ R
m : 〈y, ai〉 = 〈y, aj 〉}

and

θ(ε) = #{k : B(e1; ε) ∩ Uk �= ∅}.
Clearly θ(ε) can take the values 1, 2, . . . , n. Note that if θ(ε) = t then, out
of a set of measure zero, one also has θ(ε′) = t for some ε′ > ε, ε′ depending
on ω ∈ �. This is because, for each pair k, l with k �= l, the probability for
the distance from e1 to Fkl to be exactly equal to ε is equal to zero.

For t = 1, 2, . . . , n let

I •
t (ε, δ, a)

= E
{

det(D̃2Zε)(e1)I{(D̃2Zε)(e1)�0}∩{‖(D̃Zε)(e1)‖<δ}∩{|Zε(e1)|≤a}∩Eq∩{θ(ε)=t}
}
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and

It (ε, δ, a) = 1

|Bm−1(0; δ)|I
•
t (ε, δ, a).

Clearly

I •(ε, δ, a) =
n∑
t=1

I •
t (ε, δ, a)

and

I (ε, δ, a) =
n∑
t=1

It (ε, δ, a).(11)

To prove Proposition 7 we study the limiting behaviour of each term of the
sum in (11) as δ → 0 and ε → 0 (in that order).

Before that we state as a lemma an observation that we will be using
repeatedly.

Lemma 7 Let ω ∈ Eq . Then:

∂Zε

∂x1
(e1) = Zε(e1)+ R1

where |R1| ≤ εq
√
m.

Proof. We have

∂Zε

∂x1
(e1) =

∫
Rm

ψε(e1 − y)

(
n∑
k=1

ak1IUk (y)

)
dy

= Zε(e1)+
∫

Rm

ψε(e1 − y)

(
n∑
k=1

〈ak, e1 − y〉 IUk (y)

)
dy.

Use now that, since ω ∈ Eq , ‖ak‖ ≤ q
√
m and that

∑n
k=1 IUk (y) = 1 almost

everywhere, to bound the absolute value of the second term. 
�
Denote by X the random set of integers

X = {k : Uk ∩ B(e1; ε) �= ∅}
so that θ(ε) = #X = t .

We will call a chain on X a set of t − 1 non-ordered pairwise different
pairs {kj , lj }, j = 1, . . . , t − 1, such that kj �= lj , and

t−1⋃
j=1

{kj , lj } = X .
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A chain is proper if there exists a permutation σ of the indices {1, . . . , t −
1} such that for all j = 2, . . . , t − 1 exactly one of kσ(j), lσ (j) does not
belong to {kσ(1), lσ (1), . . . , kσ(j−1), lσ (j−1)}. Without loss of generality, when
considering proper chains in the sequel, we will assume that σ is the identity
and that the element which has not appeared previously is kj .

We next give a coarse bound on the number of chains on X .

Lemma 8 There are at most (t−1)!
πt

(
e2

2

)t
different chains on X .

Proof. Clearly, there are at most t2(t−1) sequences of length 2(t − 1) with
elements from X .

Consider the subset of those sequences

(k1, l1, k2, l2, . . . , kt−1, lt−1)

that verify kj �= lj for j = 1, . . . , t − 1 and also that the 2−subsets of X
{k1, l1} , {k2, l2} , . . . , {kt−1, lt−1}

are pairwise different.
Each such sequence induces a chain on X but the same chain is counted

(t − 1)!2t−1 times since we can permute the t − 1 pairs as well as the 2
elements of each of these pairs without altering the chain. Now use Stirling’s
formula to get the stated bound. 
�

Recall we defined, for k, l = 1, . . . , n, k �= l,

Fkl = {y : 〈y, ak〉 = 〈y, al〉}.
Lemma 9 Suppose θ(ε) = t > 2. Then there exists a proper chain

{k1, l1} , {k2, l2} , . . . , {kt−1, lt−1}
on X such that

d(e1, Fkj lj ) < ε for j = 1, . . . , t − 1.

Here d denotes Euclidean distance in R
m.

Proof. The construction of such a chain is immediate. Start with k1, l1 ∈ X ,
k1 �= l1. Since t > 2, (Uk1 ∪ Ul1) ∩ B(e1; ε) is not the whole B(e1; ε).
Therefore, there exists k ∈ X such that k �= k1, l1 and Uk has a common
boundary either with Uk1 or with Ul1 with a non empty intersection with
B(e1; ε). Say it is withUk1 . In that case choose k2 = k1, l2 = k. The procedure
continues until one fills B(e1; ε). 
�
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In what follows, let ρ = q
√
m andBm−1(0; ρ) = {ζ ∈ R

m−1 | ‖ζ‖ ≤ ρ}.
Also, letMρ be the set of n×(m−1) real matricesM = (akj ), k = 1, . . . , n;
j = 2, . . . , m defined by

Mρ =

M |

m∑
j=2

a2
kj ≤ ρ2 for k = 1, . . . , n


 .

Note that, for all ω ∈ �, ω ∈ Eq ⇒ ω ∈ Mρ . That is, considered as events,
Eq ⊂ Mρ .

Proposition 8 (i) For all α = (α1, . . . , αn) ∈ R
n, ε > 0 and g : R → R

continuous with compact support there exists a continuous function

pgε,α : Bm−1(0; ρ) → R
+

such that, for all continuous functionsG : R
m−1 → R with support contained

in Bm−1(0; ρ),

Eα

{
g(Zε(e1))G

(
∂Zε

∂x2
(e1), . . . ,

∂Zε

∂xm
(e1)

)
IMρ

}

=
∫
Bm−1(0;ρ)

G(ζ )pgε,α(ζ )dζ.

Here Eα{ } denotes conditional expectation under a11 = α1, . . . , an1 = αn.
For fixed g, pgε,α is uniformly bounded on Bm−1(0; ρ), 0 < ε ≤ 1, α ∈ R

n.
(ii) Assume there exists k̄ ≤ n such that αk̄ > αl for l = 1, . . . , n, l �= k̄.

Then lim
ε→0

pgε,α(ζ ) = qgα(ζ ) uniformly on Bm−1(0; ρ) where

qgα(ζ ) = g(αk̄)
(
P(χ2

m−1 ≤ ρ2)
)n−1

m∏
j=2

ϕ(ζj ).

Here ζ = (ζ2, . . . , ζm) andχ2
m−1 is a random variable havingχ2-distribution

with m− 1 degrees of freedom.

Proposition 9 (i) For fixed ε > 0 and g : R → R continuous with compact
support, there exists a continuous function

pgε : Bm−1(0; ρ) → R
+

such that for all continuous functionsG : R
m−1 → R with support contained

in Bm−1(0; ρ) one has

E
{
g(Zε(e1))G

(
∂Zε

∂x2
(e1), . . . ,

∂Zε

∂xm
(e1)

)
IMρ

}
=
∫
Bm−1(0;ρ)

G(ζ )pgε (ζ ) dζ.
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That is, pgε is the density of the Borel measure defined by

B �−→ E
{
g(Zε(e1))I

{(
∂Zε
∂x2

(e1),... ,
∂Zε
∂xm

(e1)
)
∈B
}IMρ

}

whereB is any Borel subset of Bm−1(0; ρ). For allg,pgε is uniformly bounded
on Bm−1(0; ρ).

(ii) lim
ε→0

pgε (ζ ) = pg(ζ ) for each ζ ∈ Bm−1(0; ρ) where

pg(ζ ) =
[
P(χ2

m−1 ≤ ρ2)
]n−1

(2π)
m−1

2

e−
1
2 (ζ

2
2 +···+ζ 2

m)

∫ +∞

−∞
g(x)nϕ(x)(�(x))n−1 dx.

Proposition 10 Let g : R → R, be continuous with compact support. Let
t ∈ N, 2 ≤ t ≤ n and let (kj , lj ), j = 1, . . . , t − 1, be a proper chain. Then,
for all λ > 0,

lim
ε→0

1

εt−1

∫
{∣∣∣αkj−αlj

∣∣∣<λε for j=1,... ,t−1
} pgε,α(0)

n∏
k=1

[ϕ(αk)dαk]

≤ (2λ)t−1

(2π)
m+t−1

2

∫ +∞

−∞
g(x)(�(x))n−t−1

×
[√

2π

t
�(x

√
t)(n− t)ϕ(x)+ t

m
2 e−

1
2 tx

2
�(x)

]
dx.

3.5 Proof of Proposition 7

Case t = 1 Let k ≤ n be such that e1 ∈ Uk. Then, for all l �= k, ak1 > al1.
In addition, because of the discussion above, almost surely, there exists ε′ > ε

such that B(e1; ε′) ⊂ Uk.
So (use Proposition 5 (i)), if ‖x − e1‖ < ε′ − ε, for j = 1, . . . , m,

∂Zε

∂xj
(x) = akj

which implies that, for j, � = 1, . . . , m,

∂2Zε

∂xj∂x�
(e1) = 0.

Therefore, by Proposition 6,

(D̃2Zε)(e1) =
(

−∂Zε
∂x1

(e1)

)
Im−1
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where Im−1 denotes the identity map on R
m−1 and, taking determinants,

det(D̃2Zε)(e1) =
(

−∂Zε
∂x1

(e1)

)m−1

.

Observe also that Lemma 7 implies that if Zε(e1) > ερ then (D̃2Zε)(e1) is
not positive definite.

Let now� > 0 be given and denote by g� : R → R a C∞ function with
support in the interval [−a −�, 2�] and such that 0 ≤ g�(z) ≤ 1 for all
z ∈ R and g�(z) = 1 for z ∈ [−a,�].

Choose ε > 0 small enough so that ερ < �.
Then:

I •
1 (ε, δ, a) ≤ E

{
(|Zε(e1)| + ερ)m−1

I{‖(D̃Zε)(e1)‖<δ}∩{−a≤Zε(e1)≤ερ}∩Eq
}

≤ E
{
g�,1(Zε(e1))Gδ((D̃Zε)(e1))IMρ

}
with

g�,1(z) = (|z| +�)m−1 g�(z)

and Gδ : R
m−1 → R, C∞ with support in the ball Bm−1(0; δ + δ2) and

satisfying 0 ≤ Gδ(ζ ) ≤ 1 for all ζ ∈ R
m−1 and Gδ(ζ ) = 1 for ζ ∈

Bm−1(0; δ).
Using Proposition 9 (i) with g = g�,1 and G = Gδ we get

lim
δ→0

I1(ε, δ, a) ≤ lim
δ→0

1∣∣Bm−1(0; δ)∣∣
∫
Bm−1(0;ρ)

Gδ(ζ ) p
g�,1
ε (ζ ) dζ = pg�,1ε (0)

the last by the continuity of pg�,1ε proved in that proposition. Therefore, using
Proposition 9 (ii),

lim
ε→0

lim
δ→0

I1(ε, δ, a) ≤ lim
ε→0

pg�,1ε (0)

=
[
P(χ2

m−1 ≤ρ2)
]n−1

(2π)
m−1

2

∫ +∞

−∞
g�,1(x)nϕ(x)(�(x))

n−1dx.

Since � is an arbitrary positive number, using the rough bound P(χ2
m−1 ≤

ρ2) ≤ 1, it follows that

lim
ε→0

lim
δ→0

I1(ε, δ, a) ≤ 1

(2π)
m−1

2

∫ 0

−a
|x|m−1 nϕ(x)(�(x))n−1 dx.

This inequality yields the term corresponding to t = 1 in Proposition 7.
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Case t = 2 The extension of the above result to the case θ(ε) = 2 requires
some additional computations that will also suggest the general procedure
for θ(ε) > 2.

Without loss of generality assume that the Uk’s having non-empty inter-
section with the ball of radius ε centered at the point e1 are exactly U1 and
U2, that is: {

Uk ∩ B(e1; ε) �= ∅ for k = 1, 2
Uk ∩ B(e1; ε) = ∅ for k = 3, . . . , n.

(12)

Then B(e1; ε) is partitioned into the three sets: B(e1; ε)∩U1, B(e1; ε)∩U2,
and B(e1; ε) ∩ F12.
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• •

e1

ε

U1

U2

F12

LetE12 = F12 ∩{x1 = 0}. Then, almost surely,E12 has dimensionm−2.
Choose an orthonormal basis {v2, · · · , vm} of the subspace {x1 = 0} so that
{v3, . . . , vm} ⊆ E12 (note that v2, . . . , vm depend on ω).

As in the previous case, almost surely, there exists ε′ > ε such that
B(e1; ε′) ⊂ U1 ∪ U2 ∪ F12. For y ∈ B(e1; ε′) write the orthogonal decom-
position

y = y∗ + y∗∗ with y∗ ∈ E12 and y∗∗ ∈ E⊥
12.

Then

〈y, a1〉 = 〈y∗, a1〉 + 〈y∗∗, a1〉
and

〈y, a2〉 = 〈y∗, a2〉 + 〈y∗∗, a2〉
where 〈y∗, a1〉 = 〈y∗, a2〉 since y∗ ∈ E12. It follows that

Z(y) = max
1≤k≤n

〈y, ak〉 = max
1≤k≤2

〈y, ak〉 = 〈y∗, a1〉 + max{〈y∗∗, a1〉, 〈y∗∗, a2〉}.
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For v ∈ E12 and δ ∈ R, |δ| small enough so that y + δv ∈ B(e1; ε′), one has

Z(y + δv)− Z(y) = 〈y∗ + δv, a1〉 − 〈y∗, a1〉 = δ〈v, a1〉
which implies

∂Z

∂vj
(y) = 〈vj , a1〉 for j = 3, . . . , m and all y ∈ B(e1; ε′).

Using Proposition 5 (i) and the fact that ε′ > ε, it follows that, for j =
3, . . . , m and x ∈ B(e1; ε′ − ε),

∂Zε

∂vj
(x) = 〈vj , a1〉

which implies, for j = 3, . . . , m, and � = 2, . . . , m,

∂2Zε

∂vj∂v�
(e1) = 0.(13)

In the basis {e1, v2, . . . , vm} the matrix of (D̃2Zε)(e1) is diagonal (use
Proposition 6, Remark 5, and (13)) and

det(D̃2Zε)(e1) =
(

−∂Zε
∂x1

(e1)+ ∂2Zε

∂v2
2

(e1)

)(
−∂Zε
∂x1

(e1)

)m−2

.

In addition, by Proposition 5 (ii),

∣∣∣∣ ∂
2Zε

∂vj∂v�

∣∣∣∣ ≤ C1
√
m

ε

n∑
k=1

∣∣〈ak, vj 〉∣∣

for j, � = 2, . . . , m. From here it follows that, for ω ∈ Eq ,

∣∣∣∣ ∂
2Zε

∂vj∂v�

∣∣∣∣ ≤ C1
√
m

ε

n∑
k=1

‖ak‖ ≤ C1
√
m

ε
nρ for j, � = 2, . . . , m.(14)

Denote with V12 the event (the set of ω’s) such that (12) holds. If ω ∈ V12,
the Euclidean distance from e1 to F12 is smaller than ε, that is

|a11 − a21|
‖a1 − a2‖ < ε

which implies, if in addition ω ∈ Eq , that

|a11 − a21| < 2ερ.
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Hence, taking into account the
(
n

2

)
forms in which θ(ε) = 2 may occur,

corresponding to all pairs (k, l) in the place of (1, 2), we obtain, with the
same notations as for t = 1:

I •
2 (ε, δ, a) ≤

(
n

2

)
E

{
(|Zε(e1)| + ερ)m−2

(
|Zε(e1)| + ερ + C1

√
m

ε
nρ
)

I{‖(D̃Zε)(e1)‖<δ}∩{−a≤Zε(e1)≤ερ}∩Eq∩{|a11−a21|<2ερ}

}

≤
(
n

2

)
E
{
Gδ((D̃Zε)(e1))g�,2(Zε(e1))I{|a11−a21|<2ερ}IMρ

}

where

g�,2(z) = g
(1)
�,2(z)+ C1

√
m

ε
nρ g

(2)
�,2(z)

with

g
(1)
�,2(z) = g�(z) (|z| +�)m−1 , g

(2)
�,2(z) = g�(z) (|z| +�)m−2 .

We apply Proposition 8 (i) to express the right-hand member of the last
inequality:

I •
2 (ε, δ, a) ≤

(
n

2

)∫
Bm−1(0;ρ)

Gδ(ζ )dζ

∫
|α1−α2|<2ερ

pg�,2ε,α (ζ )

n∏
k=1

[ϕ(αk)dαk]

=
(
n

2

)∫
Bm−1(0;ρ)

Gδ(ζ )dζ

∫
|α1−α2|<2ερ

[
p
g
(1)
�,2
ε,α (ζ )+C1

√
m

ε
nρ p

g
(2)
�,2
ε,α (ζ )

] n∏
k=1

[ϕ(αk)dαk] .

Letting δ → 0 and applying dominated convergence:

lim
δ→0

I2(ε, δ, a) ≤
(
n

2

)∫
|α1−α2|<2ερ

[
p
g
(1)
�,2
ε,α (0)+ C1

√
m

ε
nρ p

g
(2)
�,2
ε,α (0)

]
n∏
k=1

[ϕ(αk)dαk] .

We want to obtain a bound for the upper limit of the right-hand side above as
ε → 0. Note that this right-hand side splits as the sum of two integrals (corre-

sponding to the two terms p
g
(1)
�,2
ε,α (0) and C1

√
m

ε
nρ p

g
(2)
�,2
ε,α (0) in it). To bound the

upper limit of each of these integrals we use, for each of them, Proposition 10
with t = 2, k1 = 1, l1 = 2, and λ = 2ρ = 2q

√
m.

It is easy to see that the upper limit for the first of these integrals, the one

corresponding to p
g
(1)
�,2
ε,α (0), is zero. This is due to the term 1/ε in the left-hand

side of the inequality in Proposition 10.
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Thus, using Proposition 10 on the second integral, we obtain:

lim
ε→0

lim
δ→0

I2(ε, δ, a) ≤
(
n

2

)
4C1nm

3/2q2 1

(2π)
m+1

2

∫ +∞

−∞
g
(2)
�,2(x) [�(x)]n−3

.
[√
π(n− 2)�(x

√
2)ϕ(x)+ 2

m
2 e−x

2
�(x)
]
dx

and therefore, since � may be any positive number,

lim
ε→0

lim
δ→0

I2(ε, δ, a) ≤
(
n

2

)
4C1nm

3/2q2 1

(2π)
m+1

2

∫ 0

−a
|x|m−2 [�(x)]n−3

.
[√
π(n− 2)�(x

√
2)ϕ(x)+ 2

m−1
2 e−x

2
�(x)
]
dx.

This inequality yields the term corresponding to t = 2 in Proposition 7.
Case t > 2 The method follows closely the previous calculations.

Lemma 10 Assume ω ∈ {θ(ε) = t} ∩ {(D̃2Zε)(e1) � 0
}∩Eq , t > 2. Then

there exists an orthonormal basis {v2, . . . , vn} of {x1 = 0} such that

det(D̃2Zε)(e1) ≤


∣∣∣− ∂Zε

∂x1
(e1)

∣∣∣m−t ∣∣∣− ∂Zε
∂x1
(e1)+ C1

√
m

ε
nρ

∣∣∣t−1
if t < m∣∣∣− ∂Zε

∂x1
(e1)+ C1

√
m

ε
nρ

∣∣∣m−1
if t ≥ m.

Proof. We only prove the case t < m. The other case is proved in the same
way. Applying Lemma 9, there exists a proper chain C = {{k1, l1

}
,
{
k2, l2
}
,

. . . ,
{
kt−1, lt−1

}}
on X such that d(e1, Fkj ,lj ) < ε for j = 1, . . . , t − 1. Let

EC ⊂ R
m be the subspace defined by

EC =

 t−1⋂
j=1

Fkj lj


 ∩ {x1 = 0}

(which plays the role E12 had in the case t = 2). Almost surely, EC has
dimension m − t , and the argument in the case t = 2 on the differentiation
in directions parallel to EC can be extended to this case without significant
changes. That is, we can construct an orthonormal basis {v2, . . . , vm} of
{x1 = 0}, so that vt+1, . . . , vm ∈ EC and, for j = t+1, . . . , m, and a certain
ε′ > ε,

∂Z

∂vj
= const on B(e1; ε′ − ε).

Therefore, for j = t + 1, . . . , m and � = 2, . . . , m,

∂2Zε

∂vj∂v�
(e1) = 0.(15)
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Write (D̃2Zε)(e1) in the basis {v2, . . . , vm} of {x1 = 0}. Then, it follows
from Proposition 6, Remark 5, and (15) that its matrix has the form


[

−∂Zε
∂x1

(e1)
]
It−1 +M 0

0
[

−∂Zε
∂x1

(e1)
]
Im−t




where Ik denotes the k × k identity matrix and M is the (t − 1) × (t − 1)
matrix given by

M =




∂2Ze
∂v2

2
(e1) . . . . . . ∂2Ze

∂v2∂vt
(e1)

∂2Ze
∂v2∂v3

(e1)
∂2Ze
∂v2

3
(e1) . . . . . .

...
...

. . .
...

∂2Ze
∂v2∂vt

(e1) . . . . . . ∂2Ze
∂v2
t

(e1)



.

Then,

det(D̃2Zε)(e1) =
(

−∂Ze
∂x1

(e1)

)m−t
det

([−∂Zε
∂x1

(e1)

]
It−1 +M

)
.

Since (D̃2Zε)(e1) is positive definite,

det

([−∂Zε
∂x1

(e1)

]
It−1 +M

)
≤

 tr
([

−∂Zε
∂x1

(e1)
]
It−1 +M

)
t − 1



t−1

where tr( ) denotes the trace. Therefore

det(D̃2Zε)(e1) ≤
∣∣∣∣−∂Zε∂x1

(e1)

∣∣∣∣
m−t
∣∣∣∣∣∣−
∂Zε

∂x1
(e1)+ 1

t − 1

t∑
j=2

∂2Zε

∂v2
j

(e1)

∣∣∣∣∣∣
t−1

.

Use now inequality (14) to finish the proof. 
�
Reasoning as in the case t = 2 we obtain for lim

δ→0
It (ε, δ, a) an upper

bound of the form

∑
{X :#X=t}

∑∗ ∫
{|αkj−α�j |<2ερ for j=1,... ,t−1}

[
t∑

h=1

Ah

εh−1
p
g
(h)
�,t
ε,α

]
n∏
k=1

[ϕ(αk)dαk]

where the outer sum is over all subsets X of {1, . . . , n} having t elements,∑∗ extends over all proper chains on X , and in each term the notation for
the chain is that of Proposition 10. Also, the functions g(h)�,t , h = 1, . . . , t ,
are defined as in the case t = 2 and the Ah are real numbers depending on
n and m but independent of ε. Again, when taking the limit for ε → 0, only
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the term corresponding to h = t in the last summation has a nonzero limit
and its corresponding coefficient, it can be shown with the same arguments
used in the case t = 2, is At = (C1n

√
mρ)t−1.

Since the value of the integral above does not depend on X or on the con-
sidered chain, we may use Lemma 8 to obtain for lim

δ→0
It (ε, δ, a) the bound

(
n

t

)
(t − 1)!

πt

(
e2

2

)t ∫
{|αkj−α�j |<2ερ for j=1,... ,t−1}

[
t∑

h=1

Ah

εh−1
p
g
(h)
�,t
ε,α

]

n∏
k=1

[ϕ(αk)dαk]

where now C = {kj , �j}j=1,... ,t−1 is an arbitrary —but fixed— proper chain
and

X =
t−1⋃
j=1

{
kj , �j
}

satisfies that #X = t .
Using Proposition 10 we obtain, for 1 ≤ t ≤ m,

lim
ε→0

lim
δ→0

It (ε, δ, a) ≤
(
n

t

)
(t − 1)!

πt

(
e2

2

)t (
4C1nm

3/2q2)t−1 1

(2π)
m+t−1

2

×
∫ a

−a
|x|m−t (�(x))n−t−1

[√
2π

t
�(

√
tx)(n− t)ϕ(x)+ t

m
2 e−

t
2 x

2
�(x)

]
dx.

Actually for t < m one can replace
∫ a
−a by

∫ 0
−a but this is irrelevant in what

follows.
Also note that, if t > m we obtain

lim
ε→0

lim
δ→0

It (ε, δ, a) = 0

by Proposition 10 and using the bound

det(D̃2Zε)(e1) ≤ K

εm−1

which is valid for ω ∈
{
(D̃2Zε)(e1) � 0

}
∩ {|Zε(e1)| ≤ 1} ∩ Eq and some

constant K .
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3.6 Putting the pieces together

Recall

D(n,m) = 1

6qm

( e
m

)m
2
(�(1))n−2(1 + (m ∧ n)m2 ) (K0n

2mq2)(m∧n)
.

Proposition 11 For 0 ≤ a ≤ 1, we have:

P({|Z| < a} ∩ Eq) ≤ aD(n,m).

Proof. First note that if a ≤ 1, the bound for lim
ε→0

lim
δ→0

I (ε, δ, a) in Proposi-

tion 7 is at most

m∧n∑
t=1

(
n

t

)
(t − 1)!

πt

(
e2

2

)t (
4C1nm

3/2q2)t−1

1

(2π)
m+t−1

2

2a (�(1))n−t−1

(
n− t√
t

+ t
m
2

)

= ae2(�(1))n−2(2π)−
m
2

m∧n∑
t=1

(
n

t

)
(t − 1)!

πt

×
(
C1

√
2e2nm3/2q2

�(1)
√
π

)t−1 (
n− t√
t

+ t
m
2

)

≤ ae2(�(1))n−2(2π)−
m
2

m∧n∑
t=1

nt

πt2

(
C1

√
2e2nm3/2q2

�(1)
√
π

)t−1 (
n− t√
t

+ t
m
2

)

≤ ae2(�(1))n−2(2π)−
m
2
n

π

(
n+ (m ∧ n)m2 − 1

) m∧n∑
t=1

(
K0n

2m3/2q2)t−1

= ae2(�(1))n−2(2π)−
m
2
n

π

(
n+ (m ∧ n)m2 − 1

) (K0n
2m3/2q2

)(m∧n) − 1

K0n2m3/2q2 − 1

where we have denoted K0 = C1

√
2e2

√
π�(1)

. Therefore,

P({|Z| < a} ∩ Eq) ≤ lim
ε→0

P({|Zε| < a} ∩ Eq)
≤ σm−1(S

m−1)lim
ε→0

lim
δ→0

I (ε, δ, a)

≤ 2π
m
2

�(m2 )
ae2(�(1))n−2(2π)−

m
2
n

π

(
n+ (m ∧ n)m2 − 1

) (K0n
2m3/2q2

)(m∧n)

K0n2m3/2q2 − 1
.
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By Stirling’s inequality, the last expression is bounded by

2π
m
2 e

m
2

√
2π
(
m
2

)m−1
2

ae2(�(1))n−2(2π)−
m
2

n

π

(
n+ (m ∧ n)m2 − 1

) (K0n
2m3/2q2

)(m∧n)

K0n2m3/2q2 − 1

= a
( e
m

)m
2
(�(1))n−2e2n

√
m

π3

(
n+ (m ∧ n)m2 − 1

) (K0n
2m3/2q2

)(m∧n)

K0n2m3/2q2 − 1

≤ a

6qm

( e
m

)m
2
(�(1))n−2(1 + (m ∧ n)m2 ) (K0n

2m3/2q2)(m∧n)

= aD(n,m).

Note in the last inequality we used that

√
1
π3 e

2n2m3/2q

K0n2m3/2q2−1 ≤ 1
6 for all m, n ≥ 1.


�
Proof of the main theorem. Consider first the first moment of ln C(A), i.e.
ν = 1. If

√
mqe−α ≤ 1, i.e. α ≥ α0 = 1

2 lnm+ ln q, we may apply Proposi-
tions 3 and 11 to obtain

E(ln C(A)) = E
(

ln
1

|D|
)

≤ 2

(
α +
∫ +∞

α

P
({|Z| < √

mqe−x
} ∩ Eq) dx

)

≤ 2

(
α +D(n,m)

√
mq

∫ +∞

α

e−xdx
)

= 2
(
α +D(n,m)

√
mqe−α

)
.

This bound is minimized if one chooses

α =
{
α0 if D(n,m) ≤ 1
α0 + lnD(n,m) if D(n,m) > 1.

Hence,

E(ln C(A)) ≤
{

lnm+ 2 ln q + 2D(n,m) if D(n,m) ≤ 1
lnm+ 2 ln q + 2 lnD(n,m)+ 2 if D(n,m) > 1.

For higher moments we proceed in a similar way. Consider ν ∈ N, ν ≥ 2.
Reasoning as above and using the (easy to check) formula

∫ +∞

α

e−x
1
ν
dx = e−α

1
ν

ν−1∑
k=0

ν!

k!
αk/ν
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we deduce

E ((ln C(A))ν) ≤ 2

(
α +D(n,m)

√
mqe−α

1/ν
ν−1∑
k=0

ν!

k!
αk/ν

)
.

If D(n,m) ≤ 1 taking α = αν0 we obtain

E ((ln C(A))ν) ≤ 2

(
αν0 +D(n,m)

√
mqe−α0

ν−1∑
k=0

ν!

k!
αk0

)

≤ 2ν!
ν∑
k=0

1

k!

(
1

2
lnm+ ln q

)k
.

Else, if D(n,m) > 1, taking α = (α0 + lnD(n,m))ν so that D(n,m)√
mqe−α

1/ν = 1 we get

E ((ln C(A))ν) ≤ 2

(
α +

ν−1∑
k=0

ν!

k!
αk/ν

)
= 2ν!

ν∑
k=0

α
k
ν

k!

≤ 2ν!
ν∑
k=0

1

k!

(
lnD(n,m)+ 1

2
lnm+ ln q

)k
.


�

4 Some consequences

4.1 On the expected value of lnCR(A)

A first consequence of the Main Theorem is that it also yields bounds for
CR(A). From Theorem 4 (ii) we have

E(lnCR(A)) ≤ E(ln C(A))+ 5 ln n

2
+ lnm

2
+ 2 ln 2.

Therefore, the following result follows.

Theorem 6 Let A be an n×m Gaussian matrix. Then

E(lnCR(A)) ≤
{

2 ln q + 2D(n,m)+ 5 ln n
2 + 3 lnm

2 + 2 ln 2 if D(n,m) ≤ 1

2 ln q + 2 lnD(n,m)+ 5 ln n
2 + 3 lnm

2 + 2 ln 2 + 2 if D(n,m) > 1.


�
Note that in the most interesting case, when n � m, the bound for

E(lnCR(A)) is significantly worse than that for E(ln C(A)). We don’t know
whether this is inherent to CR(A) or a better bound for E(lnCR(A)) can be
obtained (for instance, improving the first inequality in this section).
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4.2 Running time and round-off analysis of an interior-point algorithm

Recall, in §1.2 we considered the problem

Given a n × m real matrix A, decide which of (1) or (2) is strictly
feasible and return a strict solution for it

where (1) and (2) are the systems

Ax ≤ 0, x �= 0

and
ATy = 0, y ≥ 0, y �= 0

respectively. We remarked there that one of these systems is strictly feasible
if and only if the other is not feasible.

In [Cucker and Peña 2001] a finite (but variable) precision algorithm for
solving the problem above is described. Due to the finite precision assump-
tion, if the system having a strict solution is (2), there is no hope to exactly
compute one such solution y since the set of solutions is thin in R

n (i.e., has
empty interior). One can however (and the algorithm in [Cucker and Peña
2001] does) compute good approximations.

Definition 1 Let γ ∈ (0, 1). A point y ∈ R
n is a γ -forward solution of the

system Ay = 0, y ≥ 0, y �= 0, if there exists ȳ ∈ R
n, ȳ �= 0, such that

Aȳ = 0, ȳ ≥ 0

and, for i = 1, . . . , n,
|yi − ȳi | ≤ γyi.

The point ȳ is said to be an associated solution for y.

The algebraic complexity of an algorithm is the number of arithmetic op-
erations performed by the algorithm. If the precision is fixed, this is a good
measure of the amount of work realized by the algorithm. If the precision is
variable the cost of each operation needs to be considered as well. In §1.1 we
defined the round-off unit of an algorithm to be a number u ∈ R, 0 < u < 1,
such that during the execution of the algorithm real numbers x are systemati-
cally replaced by approximations r(x) satisfying |r(x)−x| ≤ u|x|. Roughly,
| log u| corresponds with the number of bits (digits if the log is in base 10)
of the mantissa in the floating-point representation of r(x). The cost of an
arithmetic operation with machine precision u is quadratic in | log u|. The
total cost of an algorithm with variable precision is the addition of the costs
of all the operations performed by the algorithm.

The main result of [Cucker and Peña 2001] can be stated as follows.
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Theorem 7 There exists a round-off algorithm which, with input a matrix
A ∈ R

m×n and a number γ ∈ (0, 1), finds either a strict γ -forward solution
y ∈ R

n of ATy = 0, y > 0, or a solution x ∈ R
m of the system Ax ≤ 0,

x �= 0. The machine precision varies during the execution of the algorithm.
The finest required precision is

u = 1

c(m+ n)12CR(A)2
,

where c is a universal constant. The algebraic complexity of the algorithm is
bounded by O ((m+ n)3.5(ln(m+ n)+ lnCR(A)+ | ln γ |)). The total cost
of the algorithm is bounded by

O ((m+ n)3.5(ln(m+ n)+ lnCR(A)+ | ln γ |)3) .
The bounds above are in case (2) is strictly feasible. If (1) is, then similar
bounds hold with the | ln γ | terms removed. 
�

The complexity bounds in Theorem 7 cannot be written as a function
of m and n solely due to the unboundedness of CR(A). One can, however,
eliminate the ocurrences of lnCR(A) in these bounds at the cost of trading
worst-case by average-case complexity. This is done using Theorem 6.

5 Proof of Propositions 8, 9 and 10

5.1 Proof of Proposition 8

We introduce the following notations:

H(1)
ε,α(M) = Zε(e1),

H (h)
ε,α (M) = ∂Zε

∂xh
(e1) for h = 2, . . . , m.

We are writing the matrix A = ((akj ))k=1,... ,n
j=1,... ,m

as

A =



α1 a12 . . . a1m

α2 a22 . . . a2m
. . .

αn an2 . . . anm


 = (α,M)

that is, we fix a11, . . . , an1 equal to α1, . . . , αn respectively and M is the
n × (m − 1) matrix M = ((akj ))k=1,... ,n

j=2,... ,m
, and we consider the functions
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Zε(e1) and ∂Zε
∂xh
(e1) as functions ofM for each fixed α ∈ R

n. We also identify

the set of these matrices M with R
n(m−1) and denote

Lε,α : R
n(m−1) → R

m−1

M �→ (H(2)
ε,α(M), . . . , H

(m)
ε,α (M)

)
.

Also, ϕ̄(M) denotes the density

ϕ̄(M) =
n∏
k=1

m∏
j=2

ϕ(akj )

in R
n(m−1).

The proof of (i) is divided in two parts. Firstly we exhibit the function
p
g
ε,α that verifies, for any continuousG : R

m−1 → R with support contained
in Bm−1(0; ρ)

Eα

{
g(Zε(e1))G

(
∂Zε

∂x2
(e1), . . . ,

∂Zε

∂xm
(e1)

)
IMρ

}

=
∫
Bm−1(0;ρ)

G(ζ ) pgε,α(ζ ) dζ.(16)

Secondly, we show the continuity of pgε,α.
For the first part we consider the Borel measure µε,α in Mρ ⊂ R

n(m−1)

given by

µε,α(dM) = g
(
H(1)
ε,α(M)

)
ϕ̄(M)dM.

One can express the left-hand side of (16) as

Eα

{
g(Zε(e1))G

(
∂Zε

∂x2
(e1), . . . ,

∂Zε

∂xm
(e1)

)
IMρ

}

=
∫

Rn(m−1)
g
(
H(1)
ε,α(M)

)
G
(
Lε,α(M)

)
IMρ

(M)ϕ̄(M)dM

=
∫
Mρ

G
(
Lε,α(M)

)
µε,α(dM).

Then, according to the coarea formula, if Lε,α : R
n(m−1) → R

m−1 is C1 and
DLε,α(M) has full rank at every point M ∈ Mρ , the image measure of µε,α
by Lε,α has the density pgε,α given by

pgε,α(ζ ) =
∫
L−1
ε,α({ζ })∩Mρ

g
(
H(1)
ε,α(M)

)
ϕ̄(M)(17)

· [det(DLε,α(M))((DLε,α(M))
T)
]−1/2

σζ,ε,α(dM).
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For each ζ ∈ R
m−1, L−1

ε,α({ζ })∩Mρ is a compact C1 manifold of dimension
(n−1)× (m−1) embedded in R

n(m−1) and σζ,ε,α(dM) denotes the standard
geometric measure on it.

Thus, to prove the first part of (i) it is enough to show that Lε,α is C1 and
that DLε,α(M) has full rank at every point M ∈ Mρ . With this aim let us
compute the partial derivatives of the coordinates of Lε,α with respect to the
coordinates of M in R

n(m−1).

Lemma 11 For k = 1, . . . , n and j = 1, . . . , m,

∂Zε

∂akj
(x) =

∫
Rm

ψε(x − y)yj IUk (y)dy.

For h, j = 2, . . . , m and k = 1, . . . , n,

∂H(h)
ε,α

∂akj
= cm

∫
Rm

ψ ′(‖w‖)whwj‖w‖ IUk (e1 − εw)dw.

Proof. It is useful to start with

∂Zε

∂akj
(x) =

∫
Rm

ψε(x − y)
∂Z

∂akj
(y)dy =

∫
Rm

ψε(x − y)yj IUk (y)dy(18)

which is valid for k = 1, . . . , n and j = 1, . . . , m. The first equality fol-
lows from the fact that akj �→ Z(y) is absolutely continuous, toghether with
Fubini’s Theorem. The second follows from the simple computation

∂Z

∂akj
(y) = yj IUk (y)

which holds for almost all y ∈ R
m.

For the computation of

∂H(h)
ε,α

∂akj
= ∂

∂akj

∂Zε

∂xh

∣∣∣∣
x=e1

h, j = 2, . . . , m and k = 1, . . . , n

it is convenient to reverse the order of differentiation and to compute

∂

∂xh

∂Zε

∂akj

∣∣∣∣
x=e1

.

One must check that

∂

∂xh

∂Zε

∂akj
,
∂Zε

∂xh
, and

∂Zε

∂akj

are continuous functions of the pair (xh, akj ) which follows from the forego-
ing formulae ([Courant 1988] p.56).
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Now, using (18),

∂

∂xh

∂Zε

∂akj

∣∣∣∣
x=e1

= ∂

∂xh

∫
Rm

ψε(x − y)yj IUk (y)dy

∣∣∣∣
x=e1

=
∫

Rm

∂

∂xh
ψε(x − y)yj IUk (y)dy

∣∣∣∣
x=e1

.

So, for h, j = 2, . . . , m and k = 1, . . . , n,

∂H(h)
ε,α

∂akj
= ∂

∂xh

∂Zε

∂akj

∣∣∣∣
x=e1

= cm

εm+1

∫
Rm

ψ ′
(‖e1 − y‖

ε

)( −yh
‖e1 − y‖

)
yj IUk (y) dy

= cm

∫
Rm

ψ ′(‖w‖)whwj‖w‖ IUk (e1 − εw)dw

where the last equality comes from the change of variables

1 − y1

ε
= w1,

−y2

ε
= w2, . . . ,

−ym
ε

= wm. 
�

The continuity of ∂H
(h)
ε,α

∂akj
as a function of M is now immediate.

Lemma 12 For all values of ε > 0, α and M one has

det
[
(DLε,α)(M)

(
(DLε,α)(M)

)T] ≥
(

1

n

)m−1

.

In particular, (DLε,α)(M) has full rank.

Proof. Write θ = (θ2, . . . , θm) ∈ R
m−1 and consider the quadratic form

θ(DLε,α)(M)
[
(DLε,α)(M)

]T
θT =

m∑
h,h′=2

θhθh′
n∑
k=1

m∑
j=2

∂H(h)
ε,α

∂akj

∂H (h′)
ε,α

∂akj
(19)

=
n∑
k=1

m∑
j=2

(
m∑
h=2

θh
∂H(h)

ε,α

∂akj

)2

≥
m∑
j=2

1

n

(
n∑
k=1

m∑
h=2

θh
∂H(h)

ε,α

∂akj

)2

the last by the Cauchy-Schwartz inequality. Using Lemma 11
n∑
k=1

m∑
h=2

θh
∂H(h)

ε,α

∂akj
= cm

m∑
h=2

θh

∫
Rm

ψ ′(‖w‖)whwj‖w‖ dw

because
∑n

k=1 IUk (y) = 1 for almost all y ∈ R
m. The last integral is easily

evaluated:
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• If h �= j it is zero by a symmetry argument.
• If h = j integration by parts and the compactness of the support of ψ

gives

∫
Rm

ψ ′(‖w‖) w
2
j

‖w‖dw =
∫

Rm−1

m∏
�=1
��=j

dw�

∫
R

ψ ′(‖w‖) w
2
j

‖w‖dwj

=
∫

Rm−1

m∏
�=1
��=j

dw�

(
−
∫

R

ψ(‖w‖)dwj
)

= −
∫

Rm

ψ(‖w‖)dw

= − 1

cm
.

Hence, (19) implies that, for all θ ∈ R
m−1,

θ(DLε,α)(M)
[
(DLε,α)(M)

]T
θT ≥ 1

n

m∑
j=2

θ2
j

which implies that the determinant

det
[
(DLε,α)(M)

[
(DLε,α)(M)

]T] ≥
(

1

n

)m−1

for any values of ε, α and M . 
�
It now remains to prove the second part of (i) namely, the continuity of

p
g
ε,α.

Let us denote by Kε,α the (compact) image of Mρ by the function Lε,α,
i.e. Kε,α = Lε,α(Mρ).

Lemma 13 For all α ∈ R
n,

Bm−1(0; ρ) ⊆
⋂
ε>0

Kε,α.

Proof. Let ζ = (ζ2, . . . , ζm) be such that ‖ζ‖ ≤ ρ. Choose,M = (akj ), k =
1, . . . , n, j = 2, . . . , m such that akj = ζj for k = 1, . . . , n, j = 2, . . . , m.
Then, for all ε > 0 and h = 2, . . . , m,

H(h)
ε,α (M) = ζh

∫
Rm

ψε(e1 − y)

(
n∑
k=1

IUk (y)

)
dy = ζh

i.e. Lε,α(M) = ζ . 
�
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Now, a close look at the implicit function theorem shows that for fixed
g, ε and α the function

ζ �→ pgε,α(ζ )

is continuous on the set Kε,α. This is due to the C1 character of Lε,α, the
lower bound in Lemma 12, the continuity of the function M �→ ϕ̄(M), and
the compactness of L−1

ε,α({ζ })∩Mρ for ζ ∈ Kε,α. In addition, for fixed g, the
value of pgε,α(ζ ) is bounded by a constant which does not depend on ε, α, ζ
when 0 < ε ≤ 1, α ∈ R

n and ζ ∈ Bm−1(0; ρ). This follows from ((17))

and the uniform boundedness of ∂H
(h)
ε,α

∂akj
which is implied by the formulae in

Lemma 11.
This finishes the proof of Proposition 8 (i).
We now focus on part (ii).

Lemma 14 Let α ∈ R
n satisfy

αk > α� for � = 1, . . . , n, � �= k̄

for some k. Then,

(i)
H(1)
ε,α(M) →

ε→0
αk

and, for h, j = 2, . . . , m and k = 1, . . . , n,

(ii)
H(h)
ε,α (M) →

ε→0
akh

and
(iii)

∂H(h)
ε,α

∂akj
(M) →

ε→0
−δjhδkk.

The convergence in (i), (ii) and (iii) is uniform on M ∈ Mρ .

Proof. We only prove (i). For (ii) and (iii) the same arguments, mutatis mu-
tandis, can be used.

To prove (i) note that

H(1)
ε,α(M) =

∫
Rm

ψε(e1 − y)Z(y)dy

=
n∑
k=1

∫
Rm

ψε(e1 − y)


αky1 +

m∑
j=2

akjyj




I{
αky1+

∑m
j=2 akj yj>α�y1+

∑m
j=2 a�j yj for all � �= k

}.(20)
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Denote η = αk − max{α� : 1 ≤ � ≤ n, � �= k}. If M ∈ Mρ and one chooses

ε <
η

η + 2ρ

then, for all y ∈ R
m such that ‖e1 − y‖ ≤ ε one has that, for � �= k,

(αk − α�)y1 +
m∑
j=2

(akj − a�j )yj ≥ η(1 − ε)− 2ρε > 0

which means that in the integrand in the right-hand side of (20) the indicator
function is equal to 1 if k = k and vanishes for k �= k.

So, if ε < η

η+2ρ ,

H(1)
ε,α(M) =

∫
Rm

ψε(e1 − y)


αky1 +

m∑
j=2

akjyj


 dy

for all M ∈ Mρ and

∣∣H(1)
ε,α(M)− αk

∣∣ =
∣∣∣∣∣∣
∫

Rm

ψε(e1 − y)


αk(y1 − 1)+

m∑
j=2

akjyj


 dy
∣∣∣∣∣∣

≤
∣∣∣∣
∫
B(e1;ε)

ψε(e1 − y)dy

∣∣∣∣ sup
y∈B(e1;ε)

∣∣∣∣∣∣αk(y1 − 1)+
m∑
j=2

akjyj

∣∣∣∣∣∣
≤ ε(|αk| + ρ).

The remainder is plain. 
�
Remark 6 We have already used the uniform boundedness of the functions
∂H

(h)
ε,α

∂akj
to prove the uniform boundedness of pgε,α. We note now that it follows

from Lemma 14 that the functions ∂H
(h)
ε,α

∂akj
are not uniformly continuous in α.

This produces some technical problems we will have to deal with in our proof.

Lemma 15 Let α ∈ R
n satisfy the hypotesis of Lemma 14. Then⋂

ε>0

Kε,α = Bm−1(0; ρ).

Proof. We have already shown one of the inclusions in Lemma 13. To show
the other, note that Lemma 14 (ii) implies that

sup
M∈Mρ

m∑
j=2

(
H(j)
ε,α (M)− akj

)2 −→
ε→0

0
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so that

lim
ε→0

sup
M∈Mρ

‖Lε,α(M)‖ ≤

 m∑
j=2

a2
kj




1/2

≤ ρ.

From this inequality it follows that, for every η > 0, if ε > 0 is small enough,
Kε,α ⊆ Bm−1(0; ρ + η). This finishes the proof. 
�
End of the Proof of Proposition 8 (ii). Parts (i), (ii) and (iii) in Lemma 14
and the argument used to show that pgε,α is continuous show that, actually,
for fixed g and α the set of functions

{pgε,α}0<ε≤1(21)

defined on Bm−1(0; ρ) is equibounded and equicontinuous. Using this, we
next show that for fixed g and α, the functions pgε,α converge uniformly on
Bm−1(0; ρ), as ε → 0, to a continuous function which we will denote by qgα .

To do so, by the Arzela-Ascoli theorem applied to the family of functions
(21) onBm−1(0; ρ), it suffices to prove that, for all sequence {εν}, 0 < εν < 1,
if ευ → 0 and

{pgευ,α}υ=1,2,...

is a uniformly convergent sequence of functions, then the limit function does
not depend on the sequence {ευ}. Let {ευ} be such a sequence and put

q(ζ ) = lim
υ→∞{pgευ,α}(ζ ),(22)

take any function G : R
m−1 → R continuous with support in Bm−1(0; ρ),

replace ε by ευ in (16), and let υ → ∞. The limit on the right-hand side of
(16) is equal to ∫

Rm−1
G(ζ)q(ζ )dζ.

For the left-hand side, use Lemma 14 (i) and (ii) plus the fact that g and G
are continuous and bounded to obtain the limit

Eα
{
g(αk)G(ak2, . . . , akm)IMρ

}
= g(αk)

[
P(χ2

m−1 ≤ ρ2)
]n−1

E
{
G(ak2, . . . , akm) I {∑m

j=2 a
2
kj

≤ρ2
}
}

= g(αk)
[
P(χ2

m−1 ≤ ρ2)
]n−1

E
{
G(ak2, . . . , akm)

}
(23)

since the random variables ak, k = 1, . . . , n, are independent and the support
of G is contained in Bm−1(0; ρ).
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We conclude that

g(αk)
[
P(χ2

m−1 ≤ ρ2)
]n−1
∫

Rm−1
G(ζ)

m∏
j=2

ϕ(ζj ) dζ =
∫

Rm−1
G(ζ)q(ζ )dζ.

So,

q(ζ ) = g(αk)
[
P(χ2

m−1 ≤ ρ2)
]n−1

m∏
j=2

ϕ(ζj )(24)

almost everywhere inBm−1(0; ρ) since both sides are continuous on this ball.
This proves that the limit q does not depend on the sequence {ευ} and at the
same time identifies this limit, that we have denoted

qgα(ζ )

as the right-hand member of (24). 
�

5.2 Proof of Proposition 9

Integrate both sides of the equality in Proposition 8 (i) with respect to the
distribution of (a11, . . . , an1) a random vector which is independent of the
event Mρ . We obtain

E
{
g(Zε(e1))G

(
∂Zε

∂x2
(e1), . . . ,

∂Zε

∂xm
(e1)

)
IMρ

}

=
∫
Bm−1(0;ρ)

G(ζ )pgε (ζ )dζ

with

pgε (ζ ) =
∫

Rn

pgε,α(ζ )

(
n∏
k=1

ϕ(αk)

)
dα.(25)

The uniform boundedness of pgε on Bm−1(0; ρ) for ε > 0 follows from the
uniform boundedness ofpgε,α. To prove part (ii) apply dominated convergence
as ε → 0 in (25). We have, using Proposition 8 (ii),
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pgε (ζ ) −→
∫

Rn

qgα(ζ )

(
n∏
k=1

ϕ(αk)

)
dα

=
∫

Rn

(
n∏
k=1

ϕ(αk)

)
g

(
max

1≤k≤n
αk

) [
P(χ2

m−1 ≤ ρ2)
]n−1

m∏
j=2

ϕ(ζj )dα

= E
{
g

(
max

1≤k≤n
ak1

)} [
P(χ2

m−1 ≤ ρ2)
]n−1

m∏
j=2

ϕ(ζj )

=
(∫

R

g(r)nϕ(r)(�(r))n−1dr

) [
P(χ2

m−1 ≤ ρ2)
]n−1

m∏
j=2

ϕ(ζj )

since the random variable max
1≤k≤n

ak1 has density nϕ(r)(�(r))n−1 by a standard

calculation. 
�

5.3 Proof of Proposition 10

As a first step towards the proof of Proposition 10 we first show the following
result.

Proposition 12 In the hypothesis of Proposition 10,

lim
ε→0

1

εt−1

∫
{∣∣∣αkj−αlj

∣∣∣<λε for j=1,... ,t−1
} pgε,α(0)

n∏
k=1

[ϕ(αk)dαk]

≤ (2λ)t−1

(2π)
m−1

2

[∫ +∞
−∞ (ϕ(x))tdx

∫ +∞
x

g(y)(n− t)ϕ(y) (�(y))n−t−1 dy

+t m2 ∫ +∞
−∞ g(x)(ϕ(x))t (�(x))n−t dx

]

We prove the statement first in the case t = 2, k1 = 1, l1 = 2. This is done
in Lemma 16 below. The general case will follow using similar arguments.

Lemma 16 Let g : R → R be continuous with compact support and λ a
positive constant. Then

lim
ε→0

1

ε

∫
|α1−α2|<λ.ε

pgε,α(0)
n∏
k=1

[ϕ(αk)dαk]

≤ λ

π

1

(2π)
m−1

2

∫ +∞

−∞
g(x) [�(x)]n−3

×
[√
π(n− 2)ϕ(x)�(x

√
2)+ 2

m−1
2 e−x

2
�(x)
]
dx
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Proof. Perform in the left-hand side of the inequality in the statement the
change of variables α1 = α2 + ετ so that it becomes

∫
Rn−1

n∏
k=2

[ϕ(αk)dαk]
∫ λ

−λ
p
g

ε,α(ε)(0)ϕ(α2 + ετ)dτ(26)

where

α(ε) = (α2 + ετ, α2, . . . , αn)

To pass to the limit in (26) as ε → 0 we want to proceed again as in
the proof of Proposition 8 (ii). For that purpose we have a difficulty, namely
that in the proof of this proposition we have assumed that α is fixed and
αk = max

1≤k≤n
αk > α� for � �= k. It is not hard to see that the proof of Proposi-

tion 8 (ii) still works when α is not fixed but depends on ε and converges to
a limit with the additional condition that the difference between αk and the
remaining αk’s is bounded below by a positive number. This will be the case
when we fix α2, . . . , αn, τ in the integral (26) so that α2 < max{α3, . . . , αn}
but it is not the case if α2 ≥ max{α3, . . . , αn}. So, we divide the integral into
two parts.

For

∫
α2<max{α3,... ,αn}

n∏
k=2

[ϕ(αk)dαk]
∫ λ

−λ
p
g

ε,α(ε)(0)ϕ(α2 + ετ)dτ

we pass to the limit as ε → 0 and use Proposition 8 (ii) to obtain

∫
α2<max{α3,... ,αn}

n∏
k=2

[ϕ(αk)dαk]
∫ λ

−λ
q
g

α(0)(0)ϕ(α2)dτ

=
[
P(χ2

m−1 ≤ ρ2)
]n−1

(2π)
m−1

2

2λ
∫
α2<max{α3,... ,αn}

g(max{α3, . . . , αn})ϕ(α2)

×
n∏
k=2

[ϕ(αk)dαk]

=
[
P(χ2

m−1 ≤ ρ2)
]n−1

(2π)
m−1

2

2λE
{
g(max{ξ3, . . . , ξn})ϕ(ξ2)I{ξ2<max{ξ3,... ,ξn}}

}

where ξ2, . . . , ξn are i.i.d. standard normal. The expectation in the right-hand
side can be written as

1

2π

∫ +∞

−∞
e−y

2
dy

∫ +∞

y

g(x)(n− 2)ϕ(x)(�(x))n−3dx.
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For the integral over the set� = {α2 > max{α3, . . . , αn}} we need to go back
to the proof of Proposition 9 (ii) to understand the behaviour of pgε,α(ε)(ζ ),

ζ ∈ Bm−1(0; ρ) as ε → 0, when (α2, α3, . . . , αn) ∈ �.
As ε → 0 the statement that pgε,α(ε) converges uniformly on Bm−1(0; ρ)

remains valid. To see this, applying the same method as in Proposition 9 (ii),
it suffices to show that the existence of the limits (i), (ii), (iii) in Lemma 14
hold true, only that these limits are not the same. This is next Lemma.

Lemma 17 Let α(ε) = (α2 + ετ, α2, . . . , αn) and τ , (α2, . . . , αn) be fixed,
α2 > max{α3, . . . , αn}. Then,

(i)

H
(1)
ε,α(ε)(M) −→

ε→0
α2(27)

(ii)

Lε,α(ε)(M) −→
ε→0

γ1ã1 + γ2ã2,(28)

with

γ1 = cm

∫
Rm

ψ(‖w‖)IE(τ)dw, γ2 = cm

∫
Rm

ψ(‖w‖)I[E(τ)]cdw

where we denote w̃ = (w2, . . . , wm),

E(τ) = {w ∈ R
m | 〈̃a1 − ã2, w̃〉 < τ

}

and 〈 , 〉 denotes here scalar product in R
m−1.

(iii) For j, h = 2, . . . , m

∂H
(h)

ε,α(ε)

∂a1j
(M) −→

ε→0
cm

∫
Rm

ψ ′(‖w‖)whwj‖w‖ IE(τ)dw = �1,j,h

∂H
(h)

ε,α(ε)

∂a2j
(M) −→

ε→0
cm

∫
Rm

ψ ′(‖w‖)whwj‖w‖ I[E(τ)]cdw = �2,j,h

∂H
(h)

ε,α(ε)

∂akj
(M) −→

ε→0
0 for k = 3, . . . , n.

Note that �1,j,h + �2,j,h = δjh.

The convergence in (i), (ii) and (iii) is uniform on M ∈ Mρ .
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Proof. Note first that, as in the proof of Lemma 14, there exists ε0 > 0 such
that if 0 < ε < ε0, simultaneously for allM ∈ Mρ one hasUk∩B(e1; ε) = ∅
for k = 3, . . . , n. Hence:

H(1)
ε,α(M) = cm

2∑
k=1

∫
Rm

ψ(‖w‖)

αk(1 − εw1)− ε

m∑
j=2

akjwj




I{
αk(1−εw1)−ε

∑m
j=2 akjwj>α�(1−εw1)−ε

∑m
j=2 a�jwj for all � �= k

}dw

where α1 = α2 + ετ .
Almost everywhere in �,

I{
α1(1−εw1)−ε

∑m
j=2 a1jwj>α�(1−εw1)−ε

∑m
j=2 a�jwj for all � �= 1

}→ IE(τ)

I{
α2(1−εw1)−ε

∑m
j=2 a2jwj>α�(1−εw1)−ε

∑m
j=2 a�jwj for all � �= 2

}→ I[E(τ)]c .

This shows thatH(1)
ε,α(ε)(M) −→

ε→0
α2. It is easy to see that the convergence

is uniform on A ∈ Mρ .
Similar computations show (ii) and (iii). 
�
We go back to the proof of Lemma 16. Replace α by α(ε) in (16) to obtain

Eα(ε)

{
g(Zε(e1))G

(
∂Zε

∂x2
(e1), . . . ,

∂Zε

∂xm
(e1)

)
IMρ

}

=
∫
Bm−1(0;ρ)

G(ζ )p
g

ε,α(ε)(ζ )dζ.

Let ε → 0 in both sides of this equality.
We use the same type of reasoning as in the proof of Proposition 9 (ii).

Suppose that pgε,α(ε)(ζ ) converges uniformly on some sequence ευ → 0 on

ζ ∈ Bm−1(0; ρ) to some function q̃α2,..,αn(ζ ). The right-hand side in the
equality above tends to

∫
Bm−1(0;ρ)

G(ζ )̃qα2,... ,αn(ζ )dζ.

On the left-hand side, according to Lemma 17 (i), Zε(e1) → α2 a.s. and the

random vector
(
∂Zε
∂x2
(e1), . . . ,

∂Zε
∂xm
(e1)
)

→ ζ̃ , the limit in (ii) of the same

lemma. A standard Gaussian regression shows that (use γ1 + γ2 = 1) the
conditional distribution of the random vector ζ̃ given that ã1−ã2 = v ∈ R

m−1

is Gaussian with mean 1
2v(γ1 − γ2) and covariance matrix 1

2Im−1. Note that
γ1, γ2 are functions of v.
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Hence, the density of the random vector ζ̃ has the form:

pζ̃ (ζ ) = 1

(π)
m−1

2

∫
Rm−1

e
− 1

2 .2
m−1
∥∥∥ζ− 1

2 v(γ1−γ2)

∥∥∥2
pã1−ã2(v)dv

where pã1−ã2 denotes the density of the random vector ã1 − ã2. It follows that

pζ̃ (ζ ) ≤ 1

(π)
m−1

2

for all ζ.

So,

E(α2,... ,αn)

{
g(α2)G

(̃
ζ
)
IMρ

} =
∫
Bm−1(0;ρ)

G(ζ )̃qα2,... ,αn(ζ )dζ

which obviously implies

g(α2)E(α2,... ,αn){G(̃ζ )} = g(α2)

∫
Bm−1(0;ρ)

G(ζ ) pζ̃ (ζ )dζ

=
∫
Bm−1(0;ρ)

G(ζ )̃qα2,... ,αn(ζ )dζ

because ζ̃ is a convex combination of ã1 and ã2.
The same type of arguments as in Proposition 9 (ii) imply that

q̃α2,... ,αn(ζ ) = g(α2) pζ̃ (ζ ), ζ ∈ Bm−1(0; ρ)
is the uniform limit of pgε,α(ε)(ζ ) as ε → 0.

It follows that

lim
ε→0

∫
α2≥max{α3,... ,αn}

n∏
k=2

[ϕ(αk)dαk]
∫ λ

−λ
p
g

ε,α(ε)(0)ϕ(α2 + ετ)dτ

=
∫
α2≥max{α3,... ,αn}

g(α2)pζ̃ (0)ϕ(α2).2λ
n∏
k=2

[ϕ(αk)dαk]

≤ 2λ
1

(π )
m−1

2

∫
α2≥max{α3,... ,αn}

g(α2) ϕ(α2)

n∏
k=2

[ϕ(αk)dαk] .

The proof of Lemma 16 follows now by grouping the two terms in the integral.

�

Proof of Proposition 12 (continued). We can now proceed with the case t >
2. As we have already mentioned, the proof goes through the same lines as
for t = 2 and we only give a brief sketch of it. Denote

X =
t−1⋃
j=1

{kj , lj }.
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Note that X is a deterministic set of integers that one should consider as a
realization of the random set X . Clearly, X has t different elements.

In the left-hand side of Proposition 12 make the change of variables

αkj − αlj = ετj , j = 1, . . . , t − 1(29)

We obtain:

∫
[−λ,λ]t−1

dτ1 . . .dτt−1

∫
Rn−t+1

p
g

ε,α(ε)(0)
t−1∏
j=1

ϕ(αkj (ε))

n∏
k=1

k �=kj (j=1,... ,t−1)

[ϕ(αk)dαk]

where α(ε) = (α1(ε), . . . , αn(ε)) and the αk(ε) are computed from (29).
Clearly

αk(ε) → αl1 for k ∈ X .
There is again the easy part that corresponds to the integral over the set of
α’s such that αl1 < max

k /∈X
αk which converges, as ε → 0, to the first term in

the right-hand side of Proposition 12.
As for the integral overαl1 > max

k /∈X
αk one proves that onα = α(ε), ε → 0,

almost surely: (
∂Zε

∂x2
(e1), . . . ,

∂Zε

∂xm
(e1)

)
→ ζ̃

where the conditional distribution of the random vector ζ̃ given that ãk− ãl =
vkl for k, l ∈ X , k �= l is normal with mean

1

t

∑
k,l∈X ,
k �=l

γkvkl

and variance matrix

1

t
Im−1.

Here the γk’s are non-negative functions of the vkl’s such that
∑

k∈X γk = 1.
This allows one to pass to the limit in the second term, as we did for t = 2.


�
Proof of Proposition 10. The expression between the square brackets in the
statement of Proposition 12 can be written as Q1 +Q2 where

Q1 =
∫ +∞

−∞
(ϕ(x))tdx

∫ +∞

x

g(y)(n− t)ϕ(y) (�(y))n−t−1 dy
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and

Q2 = t
m
2

∫ +∞

−∞
g(x)(ϕ(x))t (�(x))n−t dx.

Write

H(x) =
√

2π

t
�(x

√
t) andG(x) =

∫ +∞

x

g(y)(n− t)ϕ(y) (�(y))n−t−1 dy.

Then,

H ′(x) =
√

2π

t
ϕ(x

√
t)

√
t = e−

1
2 tx

2

and we haveH(+∞) =
√

2π
t

,H(−∞) = 0,G(+∞) = 0, andG(−∞) ∈ R

due to the convergence of the integral. Now note

Q1 = 1

(2π)t/2

∫ +∞

−∞
H ′(x)G(x) dx

= 1

(2π)t/2

[
H(+∞)G(+∞)−H(−∞)G(+∞)−

∫ +∞

−∞
H(x)G′(x) dx

]

= 1

(2π)t/2

∫ +∞

−∞

√
2π

t
�(x

√
t)g(x)(n− t)ϕ(x)(�(x))n−t−1 dx

the second equality by integration by parts. We conclude

Q1 +Q2 = 1

(2π)t/2

∫ +∞

−∞
g(x)(�(x))n−t−1

×
[√

2π

t
�(x

√
t)(n− t)ϕ(x)+ t

m
2 e−

1
2 tx

2
�(x)

]
dx

from which the proposition follows. 
�
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