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Given a positive definite ternary quadratic lattice Λ, we construct

a free module M(Λ) with Hecke action, together with a family of

Hecke-linear maps ϑl from M(Λ) to certain spaces of modular forms

of half integral weight. The latter are given explicitly by a new kind

of generalized theta series, which we prove to be modular with level

independent of l. Key to our work is the introduction of a refinement
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Introduction

The “Basis Problem” for spaces of modular forms, as formu-

lated by Eichler (1973, p. 77), seeks “to give bases of linearly inde-

pendent forms of these spaces which are arithmetically distinguished

and whose Fourier series are known or easy to obtain.” For spaces of

cusp forms of integral weight k ≥ 2, the problem was first solved by

Eichler in many cases; the most complete solution is given in Hijikata,

Pizer, and Shemanske (1989).

The nice result of Shimura (1973) on the correspondence of

modular forms of half integral weight with those of even weight, leads

naturally to consider the Basis Problem for spaces of cusp forms of

half integral weight (k + 1)/2 ≥ 3/2. The formula of Waldspurger

(1981) relates the Fourier coefficients of cusp forms g of half integral

weight with the central values of a certain family of modular L-series,

namely those associated to (quadratic twists of) the even weight cusp

form in Shimura correspondence with g.





To emphasize the geometric and arithmetic importance of said

central values, the Conjecture of Birch and Swinnerton-Dyer should

be mentioned; a wonderful example of its application is the work of

Tunnell (1983) on the congruent number problem. Thus, construc-

tions that make explicit the inverse Shimura correspondence are of

enormous interest, from both theoretical and computational points of

view. For instance, there are some conjectures on the frequency of

vanishing at the center of such families of L-series predicted by ran-

dom matrix theory (Conrey, Keating, Rubinstein, and Snaith, 2002).

In this context, the computational aspects are quite important.

Essentially, to obtain the simplest of Eichler’s results on the

Basis Problem (Eichler, 1955), one has to study the arithmetic of a

maximal order R in the quaternion algebra ramified precisely at an

odd prime p and ∞. Let M(R) be the free module with basis the

left R-ideal classes. This module has a Hecke action given by the

Brandt matrices, and the eigenvectors for them are in one to one

correspondence with the eigenforms of weight 2 and level p.

A key idea of Gross (1987) is to consider a linear map ϑ from

M(R) to a certain space of ternary theta series—modular forms of

weight 3/2 and level 4p—by mapping a left R-ideal class to a ternary

lattice corresponding to its right order. Through this map the Hecke

operators in weight 3/2 act by the Brandt matrices, and thus this is





a concrete realization of the inverse Shimura correspondence.

However, this map ϑ is not in general injective: precisely when

the central value L(f, 1) = 0 for an eigenform f, the corresponding

eigenvector in M(R) is in the kernel of ϑ. This problem has been

completely overcome with the aid of certain weight functions for

maximal orders, by constructing a family of maps ϑl with no common

kernel (Mao, Rodriguez-Villegas, and Tornaŕıa, 2004). The analogues

of these weight functions in the context of ternary lattices will play

an important role in the present work.

Generalizations of Gross’s construction have been obtained by

Böcherer and Schulze-Pillot (1990, 1994) for odd squarefree levels

and for higher weights ≡ 2 (mod 4), and more recently by Pacetti

and Tornaŕıa (2004) for level p2; an example of weight 4 has been

constructed by Rosson and Tornaŕıa (2005). A general framework

has been developed by Pacetti and Tornaŕıa (2005) that permits, in

principle, to extend Gross’s construction to any quaternion order, pro-

vided one knows how to compute representatives for the ideal classes.

The case of level p2 already exhibits the difficulties of applying this

method to non-squarefree levels.

A different construction is discussed by Birch (1991); see also

Ponomarev (1981) and Lehman (1997). For a positive integer D,

he denotes by M(D) the free module with basis the set of classes of





positive definite ternary quadratic forms with integral coefficients and

discriminant D. The method of neighboring lattices of Kneser (1957)

provides a Hecke action on M(D), and the natural map ϑ from M(D)

to ternary theta series turns out to be Hecke-linear.

The similarities between the approaches are clear; they all rely

in the explicit construction of certain Brandt modules : free modules

with a Hecke action, together with one—or more—Hecke-linear maps

ϑ from M to certain spaces of modular forms of half integral weight,

given explicitly by theta series.

In view of the correspondence between ternary quadratic forms

and quaternion orders (Brandt, 1943; Llorente, 2000), one expects

the two kinds of constructions to be related. Indeed it is clear that

Gross’s map factors through the latter construction. However, the

usual equivalence of quadratic forms is too coarse; classes of ternary

forms correspond to types of orders, while the Brandt module M(R)

has classes of ideals as a basis. For instance, the eigenvectors in M(p)

are in one to one correspondence with those eigenforms of weight

2 and level p whose L-series have a + sign in their functional

equation. Besides, the maps ϑl mentioned above are not well defined

for classes of ternary quadratic forms.

Our program is to give an explicit construction of a new Brandt

module for positive definite ternary lattices, together with a family of





maps ϑl to generalized theta series. To overcome the limitations of

the above construction, we start by refining the notion of equivalence

of quadratic lattices to that of Θ-equivalence. I believe this is, in the

case of ternary lattices, akin to the introduction of proper equiva-

lence in the case of binary quadratic forms by Gauss (1801), which is

essential in his beautiful theory of composition. In that respect, it

might even lead to a theory of composition of ternary lattices.

We now give an outline of the content of this thesis:

Chapter 1 is preliminary. In Section 1.1 we set up the notation

for quadratic spaces that will be used throughout the thesis. In Sec-

tion 1.2 we discuss symmetries of a quadratic space, which we use in

Section 1.3 to recall the definition of the spinor norm of an autometry.

Everything here is classic and can be found e.g. in Cassels (1978).

Chapter 2 introduces the notion of Θ-equivalence, which is a

refinement to the classic notion of proper equivalence. Despite its

simplicity, it is the key ingredient that enables our theories of weight

functions and generalized theta series discussed in Chapters 4 and 5.

Section 2.1 is introductory. In Section 2.2 we give the definition

of Θ-equivalence, and that of θ-distance between properly equivalent

lattices. In Section 2.3 we develop the localized notions of Θ-genus

and U -genus. While the number of Θ-classes in a class is infinite, we





prove (Proposition 2.7) the finiteness of the number of Θ-classes in a

given U -genus (cf. the diagram in page  ). On the other hand, in

dimension at least 3, a U -genus has representatives for every proper

class in its genus (Proposition 2.8).

Section 2.4 provides examples to illustrate the similarities and

differences between the “classes in genus” and “Θ-classes in U -genus”

approaches. For instance, if p is an odd prime, there is exactly one

genus of ternary lattices of discriminant p. It is well known that the

number of classes in said genus equals the dimension of the space

M+
2 (p) of weight 2 modular forms of level p and trivial character

whose L-series have a + sign in their functional equation. The number

of Θ-classes on a U -genus in this genus, on the other hand, will equal

the dimension of the whole space M2(p).

Chapter 3 introduces the Brandt module of ternary lattices.

The novelty here relies on two observations: first, that neighboring

lattices are defined for actual lattices, not classes, and so we can work

with Θ-classes. Second, that with a slight modification, neighboring

lattices are in the same U -genus. In the case of ternary lattices of dis-

criminant p, the Brandt module thus constructed will be isomorphic,

as Hecke modules, to the whole of M2(p).

Section 3.1 reviews Kneser’s construction of neighboring lat-

tices. The presentation is ours, and unifies the case of p = 2 and

p | disc Λ, which are usually discussed separately or not discussed





at all. Compare our concise Theorem 3.5 with assertions (vi) and

(vii) in Schulze-Pillot (1991, p. 135)—note that all the complexity in

Schulze-Pillot treatment arises for the case p = 2, and for the most

part he assumes p - disc Λ.

Section 3.2 starts by computing the local θ-distance between

neighboring lattices, the fairly important Proposition 3.6. As a corol-

lary, neighboring lattices are in the same genus; this result is usually

stated with the proviso that p2 - disc Λ and p 6= 2. More important

for our purposes, up to acting by an autometry with spinor norm p,

they are in the same U -genus. We then define M(Λ) and the oper-

ators tp, and easily conclude that M(Λ) has a basis of simultaneous

eigenvectors for the tp (Proposition 3.8).

Section 3.3 finishes the examples started in Section 2.4, by

computing a basis of eigenvectors and comparing to modular forms

of weight 2.

Chapter 4 relates the Brandt module with modular forms of

half-integral weight and the Shimura correspondence. I learnt about

weight functions from Zhengyu Mao, in the context of maximal orders

in quaternion algebras and the Weil representation. The construction

in the context of ternary lattices, as well as the definition of the l-

symbol, are mine, inspired in the above. The relation with the spinor

norm (Proposition 4.5) is what led to my definition of Θ-equivalence.





Sections 4.1 and 4.2 define weight functions on a lattice. We

use weight functions to define the generalized theta series ϑl(Λ). For

l = 1 this is the usual theta series, which depends only on the class

of Λ. For general l it depends on the Θ-class of Λ. We show how

to transport a given weight function to other lattices in its U -genus.

Thus, by fixing a weight function of conductor l on Λ we obtain a

linear map ϑl : M(Λ) → Mn/2(N,χ), where N is the level of Λ and χ

is the quadratic character corresponding to the discriminant of Λ.

Sections 4.3 and 4.4 are restricted to Λ of dimension 3 and l

relatively prime to disc Λ. In Section 4.3 we define the l-symbol for

l-vectors in a ternary lattice Λ, prove its properties, and use it to con-

struct nontrivial weight functions on Λ of conductor l (Corollary 4.6).

This is done for odd primes l - disc Λ, but it is easy to extend to any

odd squarefree l relatively prime to disc Λ.

In Section 4.4 we prove that the map ϑl : M(Λ) → M3/2(N,χ)

preserves the action of the Hecke operators (Theorem 4.8). In other

words, since M(Λ) corresponds to modular forms of weight 2, these

maps give explicit inverses for the Shimura correspondence.

Chapter 5 is independent of the rest. There we prove that

the generalized theta series ϑl(Λ) are modular form of weight n/2,

with level and character independent of l (Theorem 5.11). The proof

mimics that given by Shimura (1973), with extra complications arising

from the use of weight functions.





1. The spinor norm

In this preliminary chapter we will set up the notation for

quadratic spaces. The focus is on the orthogonal group; the main

objective is to recall the definition of the spinor norm.

1.1 Quadratic spaces

Let k be a field of characteristic 6= 2. A quadratic space over k is

a vector space V of finite dimension n ≥ 1 together with a mapping

‖ ‖ : V → k such that

1. ‖xv‖ = x2 ‖v‖ for x ∈ k, v ∈ V ,

2. 〈v, v ′〉 := ‖v + v ′‖− ‖v‖− ‖v ′‖ is a symmetric bilinear form.

Note that

‖v‖ := 1
2
〈v, v〉,

so that ‖ ‖ is determined by the bilinear form. We will always assume

that V is regular, i.e. the bilinear form is non-degenerate.





If v1, . . . , vn is a basis of V , its determinant is defined by

det(v1, . . . , vn) := det
(
〈vi, vj〉

)
1≤i≤n
1≤j≤n

.

Since V is regular, this determinant is nonzero. If v ′1, . . . , v
′
n is another

basis of V, then

det(v ′1, . . . , v
′
n) = x2 det(v1, . . . , vn),

where x ∈ k× is the determinant of the matrix of change of basis.

Therefore, the determinant of any basis of V is a well defined element

of k×/(k×)2, which we call the determinant of V, and denote by

det V .

An autometry of V is a linear map σ : V → V which preserves

the quadratic structure of V , i.e.

‖σv‖ = ‖v‖ for v ∈ V.

The orthogonal group O(V) is the group of all autometries of V

under composition.

Lemma 1.1. If σ ∈ O(V) then det σ = ±1.

Proof. Let v1, . . . , vn be a basis of V . Note that

det(v1, . . . , vn) = det(σv1, . . . , σvn) = (det σ)2 det(v1, . . . , vn).

Since det(v1, . . . , vn) 6= 0 it follows that (det σ)2 = 1.





We say that an autometry σ is proper if det σ = +1, and

improper if det σ = −1. The proper autometries form a subgroup of

O(V), the proper orthogonal group, which we denote O+(V). In the

next section we will see that there are improper autometries. Thus

the map

det : O(V) → ±1

is a surjective group homomorphism with kernel O+(V); hence O+(V)

is a normal subgroup of O(V) of index 2.

1.2 Symmetries

A vector v ∈ V is called anisotropic if ‖v‖ 6= 0. There are anisotropic

vectors in V , since otherwise 〈 , 〉 would be identically 0 and V would

not be regular. If v is anisotropic, there is an orthogonal decomposi-

tion

V = kv + {v}
⊥
,

where {v}
⊥

:= {u ∈ V : 〈u, v〉 = 0}. Hence, there is a unique autom-

etry τv ∈ O(V) such that

τv v = −v,

τv u = u if 〈u, v〉 = 0.

This is called a symmetry of V ; it is given explicitly by

τv u := u −
〈u, v〉
‖v‖ v.





It is clear that det τv = −1.

Lemma 1.2. Let u, v ∈ V such that ‖u‖ = ‖v‖ and ‖u − v‖ 6= 0.

Then

τu−v u = v.

Proof. Note that

‖u − v‖ = ‖u‖+ ‖v‖− 〈u, v〉 = 2 ‖u‖− 〈u, v〉

= 〈u, u〉− 〈u, v〉 = 〈u, u − v〉.

Thus, using the definition of τu−v we get

τu−v u = u −
〈u, u − v〉
‖u − v‖ (u − v) = u − (u − v) = v,

as claimed.

Proposition 1.3. If u, v ∈ V are such that ‖u‖ = ‖v‖ 6= 0, then

there is σ ∈ O(V) such that σu = v. Moreover, if n > 1 we can

take σ to be the product of exactly two symmetries.

Proof. Note that ‖u + v‖ + ‖u − v‖ = 2 ‖u‖ + 2 ‖v‖ = 4 ‖u‖ 6= 0. If

‖u + v‖ 6= 0, take σ = τv τu+v. Otherwise, we must have ‖u − v‖ 6= 0,

and we can take σ = τu−v. If n > 1 there must be some w ∈ V

orthogonal to u with ‖w‖ 6= 0, and we can take σ = τu−v τw.





Proposition 1.4. Every autometry of V is product of symmetries.

Proof. Let σ ∈ O(V) and let v ∈ V such that ‖v‖ 6= 0. By Proposi-

tion 1.3, there is a product of symmetries ρ such that ρσv = v. But

then ρσ is an autometry of {v}
⊥, and the result follows by induction

on the dimension of V .

Remark. The above proves that σ is product of at most 2n sym-

metries. It is possible to prove that σ is the product of at most n

symmetries; see Example 8 in Cassels (1978, p. 30).

Lemma 1.5. Let v1, . . . , vs be anisotropic vectors in V. If

τv1
· · · τvs = 1V

then ‖v1‖ · · · ‖vs‖ ∈ (k×)2.

Proof. Since det 1V = +1, we have s even. In the Clifford algebra of

V, the action of the autometry τv1
· · · τvs is given by conjugation by

u = v1 · · · vs. Thus u is an even element in the center of the Clifford

algebra, hence u ∈ k× and it follows that ‖u‖ = ‖v1‖ · · · ‖vs‖ ∈ (k×)2.

For details see Chapter 10 in Cassels (1978).

1.3 The spinor norm

Consider an autometry σ ∈ O(V). By Proposition 1.4 we can write σ

as a product of symmetries

σ = τv1
· · · τvs.





The spinor norm of σ is defined by

θ(σ) := ‖v1‖ · · · ‖vs‖

Proposition 1.6. The map θ : O(V) → k×/(k×)2 is a well defined

homomorphism of groups.

Proof. Suppose that also

σ = τu1
· · · τur ,

then

τv1
· · · τvs τur · · · τu1

= σσ−1 = 1V ,

and it follows from Lemma 1.5 that

‖v1‖ · · · ‖vs‖ (k×)2 = ‖u1‖ · · · ‖ur‖ (k×)2.

It is clear that θ is an homomorphism.

We are interested in the restriction

θ : O+(V) → k×/(k×)2.

The kernel of this restriction will be denoted by Θ(V), that is

Θ(V) := {σ ∈ O+(V) : θ(σ) = 1}.

It is clear that Θ(V) contains the commutator subgroup of O(V), since

θ maps to an Abelian group.





Proposition 1.7. If n ≤ 3, Θ(V) is the commutator subgroup of

O(V).

Proof. We prove that any σ ∈ Θ(V) is a commutator. By Proposi-

tion 1.4, and since σ ∈ O+(V), we can write σ = τu τv with u, v ∈ V

anisotropic. Now, since θ(σ) = 1, it follows that ‖u‖ ‖v‖ ∈ (k×)2,

and we can assume after scaling v that ‖u‖ = ‖v‖. By Proposi-

tion 1.3 there is some autometry ρ ∈ O(V) such that ρu = v, hence

σ = τu ρ τu ρ−1 = τu ρ τ−1
u ρ−1 is a commutator.

We denote the image of O+(V) under θ by θ(V), i.e.

θ(V) := {θ(σ) : σ ∈ O+(V)} ⊆ k×/(k×)2.

When k is an ordered field, we will say that V is definite if θ(V) > 0.

This definition is related to the usual one in view of

Lemma 1.8. The following are equivalent

1. V is definite.

2. Either ‖V‖ ≥ 0 or ‖V‖ ≤ 0.

Proof. Suppose first that θ(V) > 0. Then ‖v1‖ ‖v2‖ > 0 for every pair

of anisotropic vectors v1, v2 ∈ V , and it follows that either ‖V‖ ≥ 0

or ‖V‖ ≤ 0.





Conversely, assume that all anisotropic vectors in V have norm

with the same sign, and let σ = τv1
· · · τvs ∈ O+(V). Since s is even,

θ(σ) = ‖v1‖ · · · ‖vs‖ > 0, hence θ(V) > 0.

For k = Q, we have the following

Proposition 1.9. Let V be a quadratic space over Q of dimension

at least 3. Then

θ(V) =

{
Q× if V is indefinite,

Q>0 if V is definite.

Proof. This is Lemma 3.2 in Cassels (1978, p. 207).





2. Θ-classes and U -genera

In this chapter we introduce the notion of Θ-equivalence of

quadratic lattices, which is a refinement to the classic notion of proper

equivalence.

In Section 2.3 we develop the local notion of Θ-genus. This

is not quite what we need; we will replace it by the slightly coarser

notion of U -genus of a quadratic lattice. Then we will prove that the

number of Θ-classes in a given U -genus is finite, and that a U -genus

of lattices of dimension at least 3 has representatives for every proper

class in its genus.

2.1 Quadratic lattices

Let I be an integral domain contained in k. A (quadratic) I-lattice

Λ in a quadratic space V over k is a finitely generated I-submodule

of V such that Λ⊗I k = V .





Two lattices Λ and Γ in V are equivalent if

σΛ = Γ, some σ ∈ O(V).

The lattices Λ and Γ are said to be properly equivalent, denoted

Λ ∼ Γ , if the above holds with some σ ∈ O+(V). This refinement to

the notion of equivalence is due to Gauss (1801, §157), and is key to

enable his beautiful theory of composition of binary quadratic forms.

An autometry of Λ is σ ∈ O(V) such that σΛ = Λ. The set of

autometries of Λ is a subgroup of O(V), which will be denoted O(Λ),

that is

O(Λ) := {σ ∈ O(V) : σΛ = Λ}.

The proper autometries of Λ form a subgroup

O+(Λ) := O(Λ) ∩O+(V) = {σ ∈ O+(V) : σΛ = Λ},

of index 1 or 2 in O(Λ) according to whether O(Λ) ⊆ O+(V) or

not. When O(Λ) contains an improper autometry, we say that Λ is

ambiguous. In that case, any lattice equivalent to Λ will be properly

equivalent to Λ. For example, when the dimension of V is odd every

lattice is ambiguous, since −1V ∈ O(Λ) is improper, hence the notions

of equivalence and proper equivalence coincide.

We will also need

θ(Λ) := {θ(σ) : σ ∈ O+(Λ)} ⊆ k×/(k×)2.





Lemma 2.1. If Λ and Γ are equivalent, then

θ(Λ) = θ(Γ).

Proof. If σΛ = Γ , then

O+(Λ) =
{
σ−1ρσ : ρ ∈ O+(Γ)

}
,

and θ(σ−1ρσ) = θ(ρ).

An I-lattice Λ is free if there is a basis v1, . . . , vn of V such

that

Λ = Iv1 + · · ·+ Ivn.

In this case we say that v1, . . . , vn is a basis of Λ, and define the

discriminant of Λ to be

disc Λ :=

{
(−1)n/2 det(v1, . . . , vn) if n is even,
1
2

det(v1, . . . , vn) if n is odd.

Note that this is a well defined element of k×/(I×)2, since the matrix

that changes this basis to another basis of Λ will be an invertible

matrix with coefficients from I, and so its determinant will be in I×.

An I-lattice Λ is said to be integral if ‖Λ‖ ⊆ I. If Λ is integral

and free, we have disc Λ ∈ I. If Λ is integral and disc Λ ∈ I×, we say

that Λ is unimodular.

Note that when I is a principal ideal domain (e.g. Z or Zp),

the structure theorem for I-modules implies that every I-lattice is

free, since a vector space has no torsion.





Lemma 2.2. Let Λp be an integral Zp-lattice of dimension n, and

assume

p
n(n−1)

2
0 - disc Λp, with p0 =

{
p if p odd,

4 if p = 2.

Then

θ(Λp) ⊇ Z×p (Q×p )2.

Proof. This is Theorem 20 (a) and (c) in Conway and Sloane (1993).

Note that the proof does not require Λp to be indefinite for those

parts.

Lemma 2.3 (p 6= 2). If Λp is a unimodular Zp-lattice, then every

autometry σ ∈ O(Λp) is a product of symmetries τv where v ∈ Λp

and ‖v‖ ∈ Z×p .

Proof. This is Corollary 2 in Cassels (1978, p. 115).

Lemma 2.4. Let Λp be a unimodular Zp-lattice of dimension at

least 2. Then

θ(Λp) = Z×p (Q×p )2.

Proof. Lemma 2.2 applies, so that θ(Λp) ⊇ Z×p (Q×p )2. The other

inclusion, for p 6= 2, follows directly from Lemma 2.3. In general, it

can be proved using Theorems 55 and 56 in Watson (1960, pp. 90–93);

see also Theorem 18 in Conway and Sloane (1993) and the algorithm

following it.





Lemma 2.5 (p 6= 2). Let Λp be a unimodular Zp-lattice of dimen-

sion at least 3. If v ∈ Λp is such that ‖v‖ ∈ Z×p , then there is

some σ ∈ O+(Λp) such that σv = v and
(

θ(σ)
p

)
= −1.

Proof. Let Λ̃p := {u ∈ Λp : 〈u, v〉 = 0}. It is not hard to see that,

since p - 〈v, v〉, there is an orthogonal decomposition

Λp = Zpv + Λ̃p.

Hence Λ̃p is unimodular of dimension at least 2. By Lemma 2.4 there

is σ ∈ O+(Λ̃p) such that
(

θ(σ)
p

)
= −1. We now extend σ to Λp by

setting σv := v.

2.2 Θ-equivalence

We will further refine the notion of equivalence of lattices; we say that

Λ and Γ are Θ-equivalent, denoted Λ ' Γ , provided

σΛ = Γ, some σ ∈ Θ(V).

This is clearly an equivalence relation: the Θ-class of Λ will be

denoted by
[
Λ

]
, namely

[
Λ

]
:= {Γ : Γ ' Λ} = {σΛ : σ ∈ Θ(V)}.

To understand the extent of this refinement, we are led to consider

the set

C (Λ) :=
{[

Γ
]

: Γ ∼ Λ
}
,





consisting of the Θ-classes of lattices properly equivalent to Λ. There

is a transitive action of θ(V) on C (Λ) given by

[
Γ
]θ(σ)

:=
[
σΓ

]

for σ ∈ O+(V). This is well defined: if θ(ρ) = θ(σ) for another

ρ ∈ O+(V), then

ρΓ = (ρσ−1)σΓ ' σΓ,

because ρσ−1 ∈ Θ(V). Similarly one sees that if Γ ′ ' Γ , then σΓ ′ '
σΓ .

Proposition 2.6. The set C (Λ) is a principal homogeneous space

(or torsor) for θ(V)/θ(Λ).

Proof. We have already shown that θ(V) acts transitively on C (Λ).

We prove that for Γ ∼ Λ we have
[
Γ
]s

=
[
Γ
]

if and only if s ∈ θ(Λ).

By Lemma 2.1, θ(Λ) = θ(Γ). If s = θ(σ), with σ ∈ O+(Γ), then

[
Γ
]s

=
[
σΓ

]
=

[
Γ
]
.

Conversely, if
[
Γ
]s

=
[
Γ
]
, with s = θ(σ) ∈ θ(V), it follows that

ρσΓ = Γ for some ρ ∈ Θ(V). But then ρσ ∈ O+(Γ), and thus

s = θ(σ) = θ(ρσ) ∈ θ(Γ),

proving the claim.





If Λ and Γ are two lattices in V, we define the θ-distance

between them by

θ(Λ, Γ) :=

{
∞ if Λ � Γ ,

θ(σ) ∈ θ(V)/θ(Λ) if σΛ = Γ .

Thus, Λ ∼ Γ if and only if θ(Λ, Γ) = s 6= ∞, in which case [Λ]s = [Γ ],

and Λ ' Γ if and only if θ(Λ, Γ) = 1. That is, θ(Λ, Γ) = ‘‘
[
Γ
]
/
[
Λ

] ′′
,

in the sense of torsor.

2.3 Localization

For simplicity, we will only work here with quadratic spaces over Q

and Z-lattices, and their localizations. Let V be a quadratic space

over Q. If p is a prime number, we will use a subscript p to denote

localization with respect to p. For instance

Vp := V ⊗Qp,

is a quadratic space over Qp, and for a Z-lattice Λ in V , we have

Λp := Λ⊗ Zp,

a Zp-lattice in Vp. Note that, for a given Z-lattice Λ, the localizations

Λp are unimodular for almost all p.

Two Z-lattices Λ, Γ in V are in the same genus if

Λp ∼ Γp all p.





As we did with the equivalence classes, we will further subdivide the

genera. We will say that Λ and Γ are in the same Θ-genus if

Λp ' Γp all p.

Note that a Θ-genus is not closed by the action of O+(V). The closure

of a Θ-genus by this action is, by definition, a spinor genus.

In general, a genus contains several spinor genera; the notion

of Θ-genus is too fine and has to be modified. Consider

U (Vp) :=
{
σ ∈ O+(Vp) : θ(σ) ∈ Z×p

}
.

We will say that Λ and Γ are in the same U -genus if

σpΛp = Γp, some σp ∈ U (Vp), for all p.

What is the same, θ(Λp, Γp) ∈ Z×p θ(Λp). Assume the dimension of V

is at least 2, since the case of dimension 1 is trivial. By Lemma 2.2

we have Z×p ⊆ θ(Λp) for almost all p, and so the definition of Θ-genus

and U -genus differ only at finitely many primes.

We have the following inclusions:

genus

U -genus

hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh spinor
genus

Θ-genus

hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh
class

Θ-class
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mmmmmmmmmmmmm
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Proposition 2.7. There is a finite number of Θ-classes in a given

U -genus.

Proof. It is well known that a genus contains a finite number of

classes. Hence, it will suffice to show that each class contains a fi-

nite number of Θ-classes in a given U -genus.

Let Λ be a Z-lattice of dimension at least 2—the case of di-

mension 1 is trivial—and let S be a finite set of primes such that

θ(Λp) ⊆ Z×p (Q×p )2, for p 6∈ S.

For instance, by Lemma 2.4 we can take S to be the set of primes p

such that Λp is not unimodular, a finite set.

Suppose Λ ∼ Γ , with θ(Λ, Γ) = sθ(Λ), with s a squarefree

integer. If they are in the same U -genus, then

θ(Λp, Γp) = sθ(Λp) ∈ Z×p θ(Λp).

But for p 6∈ S, we have θ(Λp) ⊆ Z×p (Q×p )2; it follows that s ∈ Z×p for

p 6∈ S, and so
[
Γ
]

=
[
Λ

]s
with a finite number of choices for s.

Remark. Indeed, when Λ is integral, it follows that S consists of

primes dividing disc Λ, and so the Θ-classes properly equivalent to Λ

in the U -genus of Λ are all given by

[
Λ

]s
, s | disc Λ,

with
[
Λ

]s
=

[
Λ

]s ′
if and only if ss ′ ∈ θ(Λ).





Proposition 2.8. Let Λ be a Z-lattice in V of dimension at least

3. The closure of the U -genus of Λ by the action of O+(V) is the

genus of Λ.

Proof. Let Γ be a lattice in the genus of Λ. We prove that Γ is

properly equivalent to a lattice in the U -genus of Λ. Consider the

matrix that changes a basis of Λ into a basis of Γ . This is an invertible

matrix with rational coefficients, hence an invertible matrix over Zp

for almost all p. It follows that

Λp = Γp, almost all p.

In particular θ(Λp, Γp) = 1 for almost all p, and so there exists some

x ∈ Q>0 such that

x ∈ Z×p θ(Λp, Γp), all p.

By Proposition 1.9, there is some σ ∈ O+(V) such that θ(σ) = x. It

follows that σΓ is in the U -genus of Λ.

2.4 Examples

We will give here a few examples of ternary Z-lattices, discussing

the classification in Θ-classes, Θ-genera and U -genera. Note that, in

view of Lemma 2.2, the Θ-genera and U -genera are the same when

the discriminant is cubefree.





Discriminant 11. Let V := Q3, with norm

‖(x, y, z)‖ := x2 + y2 + 3z2 − xz.

The lattice Λ1 := Z3 ⊆ V has discriminant 11. Another lattice in the

genus of Λ1 is given by Λ2 := Zv1 + Zv2 + Zv3, where

v1 =
(0, −1, −1)

2
, v2 =

(0, 1, −1)

2
, v3 = (2, 0, 0),

with corresponding quadratic form

‖xv1 + yv2 + zv3‖ = x2 + y2 + 4z2 + yz + xz + xy.

An easy calculation involving ternary quadratic forms shows that

there are two proper equivalence classes of lattices in the given genus,

and Λ1 and Λ2 are a complete set representatives. Alternatively, a

table of proper equivalence classes of ternary quadratic forms is avail-

able online (Tornaŕıa, 2004).

As in the proof of Proposition 2.8, one verifies that
[
Λ1

]
and

[
Λ2

]2
are in the same U -genus. By the remark following Proposi-

tion 2.7, one can see that the Θ-classes in the U -genus of Λ1 will be

among
[
Λ1

]
,

[
Λ1

]11
,

[
Λ2

]2
, and

[
Λ2

]2·11
,

with certain identifications given by the autometries of Λ1 and Λ2 of

nontrivial spinor norm. Indeed, Λ1 has 4 proper autometries, among

which (x, y, z) 7→ (−x, y, −z) has spinor norm 11, and Λ2 has 6 proper





autometries, among which (x, y, z) 7→ (−y, −x, −z) has spinor norm

11. It follows that

[
Λ1

]
=

[
Λ1

]11
, and

[
Λ2

]
=

[
Λ2

]11
;

thus we have two Θ-classes in the given U -genus. There is really

nothing new in the Θ-class approach in this example.

Discriminant 37. Let V := Q3, with norm

‖(x, y, z)‖ := x2 + 2y2 + 5z2 − yz − xz.

The genus of the lattice Λ1 := Z3 ⊆ V , of discriminant 37, contains

two proper equivalence classes; a lattice not equivalent to Λ1 is given

by Λ2 := Zv1 + Zv2 + Zv3, where

v1 =
(0, −1, 1)

2
, v2 =

(2, 1, 1)

2
, v3 =

(−2, 1, 1)

2
,

with corresponding quadratic form

‖xv1 + yv2 + zv3‖ = 2x2 + 2y2 + 3z2 + yz + 2xz + xy.

The autometry of Λ1 given by (x, y, z) 7→ (x − z, −y, −z) has spinor

norm 37, and so
[
Λ1

]
=

[
Λ1

]37
. On the other hand, Λ2 has no non-

trivial autometries, thus
[
Λ2

] 6= [
Λ2

]37
. As in the previous example,

[
Λ1

]
and

[
Λ2

]2
are in the same U -genus, and we conclude that

[
Λ1

]
,

[
Λ2

]2
, and

[
Λ2

]2·37
,





are the three Θ-classes in the given U -genus. We point out that

the space M2(37) of weight 2 modular forms of level 37 and trivial

character has dimension 3.

Discriminant 73. Let V := Q3, with norm

‖(x, y, z)‖ := x2 + 2y2 + 49z2 − xy.

The lattice Λ1 := Z3 ⊆ V has discriminant 73. There are three proper

equivalence classes in the genus of Λ1; a set of representatives is given

by Λ1, Λ2 = Zv1 + Zv2 + Zv3, and Λ3 = Zw1 + Zw2 + Zw3, where

v1 = (−1, 0, 0), v2 = (1, 2, 0), v3 =
(−1, −2, −1)

2
,

and

w1 = (1, 1, 0), w2 =
(−3, 1, 1)

3
, w3 = (2, −1, 0),

with corresponding quadratic forms

‖xv1 + yv2 + zv3‖ = x2 + 7y2 + 14z2 − 7yz,

and

‖xw1 + yw2 + zw3‖ = 2x2 + 7y2 + 8z2 − 7yz − xz.

In this case one checks that
[
Λ1

]
,
[
Λ2

]2
, and

[
Λ3

]3
are in the

same U -genus. On the other hand
(

3
7

)
= −1, and one verifies that

[
Λ3

]3
is not in the same Θ-genus as

[
Λ1

]
or

[
Λ2

]2
.





The autometries (x, y, z) 7→ (−x, −y, z) of Λ1, and (x, y, z) 7→
(x, −y, −z) of Λ2, have spinor norm 7. The third lattice Λ3 has one

nontrivial autometry, but with trivial spinor norm.

We conclude that the U -genus of Λ1 consists of two Θ-genera,

with two Θ-classes in each, namely

[
Λ1

]
,

[
Λ2

]2
,

in one of the Θ-genera, and

[
Λ3

]3
,

[
Λ3

]3·7
,

in the other.





3. The Brandt module

In this chapter we introduce the Brandt module of ternary

quadratic lattices. In order to define the Hecke operators, we need

to review the construction of p-neighboring lattices. With a suitable

modification, the lattices thus obtained will be in the same U -genus.

In Section 3.3 we complete the examples from the last chapter,

by showing a few cases of the p-neighbor construction, computing

some Hecke operators, and diagonalizing the Brandt modules.

3.1 Neighboring lattices

Let Λ and Γ be two integral Z-lattices in a quadratic space V over Q,

and fix a prime p. We say that Λ and Γ are p-neighbors if

1. (Λ : Λ ∩ Γ) = (Γ : Λ ∩ Γ) = p,

2. 〈Λ, Γ 〉 6⊆ Z.





By the second condition we mean that there are vectors v ∈ Λ and

w ∈ Γ such that 〈v, w〉 6∈ Z. This is equivalent to the lattice Λ + Γ

not being integral.

Remark. Note that two p-neighbors Λ and Γ are equal outside p,

and they are Qp-equivalent with the same discriminant. When p is

odd and p2 - disc Λ, this already implies Zp-equivalence, hence Λ and

Γ are in the same genus. This is true in general, and we prove in

Corollary 3.7 a stronger assertion.

Fix an integral Z-lattice Λ. We will describe now an explicit

construction that yields all the p-neighboring lattices of Λ, and gives

a characterization of them. For each v ∈ Λ, let

Λ0
v := {u ∈ Λ : 〈v, u〉 ≡ 0 (mod p)},

Λv := Z v
p

+ Λ0
v.

These lattices fit together as in the following diagram

Λ
22

22
Λv

ªª
ª

Λ0
v

where the lines denote inclusions.

The dual lattice of Λ is

Λ# := {v ∈ V : 〈x,Λ〉 ⊆ Z}.

This is another Z-lattice in V. Since Λ is integral, we have Λ ⊆ Λ#.





Lemma 3.1. The indices of the inclusions in the above diagram

are as follows:

1 22
22

22

1¯̄
¯̄
¯̄

v ∈ pΛ

1 22
22

22

p¯̄
¯̄
¯̄

v ∈ pΛ#

v 6∈ pΛ

p 22
22

22

p2

¯̄
¯̄
¯̄

v 6∈ pΛ#

p - 〈v, v〉

p 22
22

22

p¯̄
¯̄
¯̄

v 6∈ pΛ#

p | 〈v, v〉

Proof. Consider first the case where v ∈ pΛ#. This clearly implies

that 〈v, Λ〉 ⊆ pZ, hence Λ0
v = Λ. Moreover, Λ0

v = Λv if and only if

v ∈ pΛ, and (Λv : Λ0
v) = p otherwise.

Assume now v 6∈ pΛ#. Then there is a basis {v1, v2, . . .} of Λ

such that 〈v, v1〉 6∈ pZ, and by changing vi to vi + αiv1 if necessary,

for convenient αi ∈ Z, we can assume also that 〈v, vi〉 ∈ pZ for i > 1.

But then {pv1, v2, . . .} is a basis of Λ0
v , and it follows that (Λ : Λ0

v) = p.

Finally, v
p

is clearly not in Λ0
v , and v ∈ Λ0

v if and only if p | 〈v, v〉; in

this case (Λv : Λ0
v) = p, and otherwise (Λv : Λ0

v) = p2.

Lemma 3.2. Λv is integral if and only if p2 | ‖v‖.

Proof. The condition is clearly necessary, since v
p
∈ Λv . For the

sufficiency, note that 〈v,u〉
p

is an integer for any u ∈ Λ0
v , by definition,

hence ∥∥∥∥x
v

p
+ u

∥∥∥∥ = x2‖v‖
p2

+ x
〈v, u〉

p
+ ‖u‖

is an integer, provided p2 | ‖v‖.





Proposition 3.3. If v ∈ Λ, a necessary and sufficient condition

for Λ and Λv to be p-neighbors is that v 6∈ pΛ# and p2 | ‖v‖.

Proof. The necessity follows from Lemmas 3.1 and 3.2. Conversely,

if the condition is met, Lemma 3.2 proves that Λv is integral, and

Lemma 3.1 proves that Λ ∩ Λv = Λ0
v has index p in both Λ and

Λv . Now consider v
p
∈ Λv, and let w ∈ Λ such that w 6∈ Λ0

v. Then〈
v
p
, w

〉
6∈ Z, and hence Λ and Λv are p-neighbors.

Proposition 3.4. If Γ is any p-neighboring lattice of Λ, there is

some v ∈ Λ such that Γ = Λv.

Proof. There is a vector w ∈ Γ such that 〈Λ, w〉 6⊆ Z, i.e. w 6∈ Λ#,

and thus v := pw 6∈ pΛ#. On the other hand, since (Γ : Λ ∩ Γ) = p,

it follows that v ∈ Λ, and clearly p2 | ‖v‖. Now it is easy to check

that Γ = Λv .

Theorem 3.5. The map v 7→ Λv, for v ∈ Λ in the conditions of

the Proposition 3.3, induces a one-to-one correspondence between

the set of non-singular projective solutions of

(3.1) ‖v‖ ≡ 0 (mod p), v ∈ Λ,

and the p-neighboring lattices of Λ. Moreover, if Λ1 6= Λ2 are two

p-neighbors, then Λ1 ∩Λ2 ⊆ Λ.

Proof. Let v be a non-singular solution of (3.1). By Hensel Lemma

we can assume p2 | ‖v‖. Indeed, v being non-singular is equivalent to





v 6∈ pΛ#, and so there is a u ∈ Λ such that p - 〈v, u〉. Then we can

choose α ∈ Z such that ‖v + pαu‖ ≡ ‖v‖ + pα〈v, u〉 ≡ 0 (mod p2),

and v + pαu corresponds to the same projective solution.

Now suppose that v1 and v2 are vectors in Λ, with p2 | ‖v1‖
and p2 | ‖v2‖. If v1 and v2 correspond to the same solution of (3.1), we

have v2 = xv1 +pu for some x 6≡ 0 (mod p) and some u ∈ Λ. Taking

norms we conclude that 0 ≡ xp〈v1, u〉 (mod p2), and so u ∈ Λ0
v1

.

But then v2

p
= xv1

p
+ u ∈ Λv1

, hence Λv2
= Λv1

.

Conversely, if v1 and v2 correspond to different solutions, we

have v1

p
6∈ v2

p
+ Λ. Since Λv2

⊆ v2

p
+ Λ, it follows that v1

p
6∈ Λv2

,

but v1

p
∈ Λv1

, so Λv1
6= Λv2

. In addition, we have proved that v1

p
6∈

Λv1
∩Λv2

⊆ v1

p
+ Λ, and so Λv1

∩Λv2
⊆ Λ.

The surjectivity follows from Propositions 3.4 and 3.3.

3.2 Hecke operators

As we’ve already remarked, if Λ and Γ are p-neighbors, then Γq = Λq

for all primes q 6= p. The following Proposition gives us information

about the localization at p:

Proposition 3.6. Suppose Λ and Γ are p-neighbors. Then we have

Λp ∼ Γp and θ(Λp, Γp) = p, with θ(Λp) ⊇ Z×p .

Proof. Since Λ and Γ are p-neighbors, there are vectors v ∈ Λ and

w ∈ Γ such that 〈v, w〉 6∈ Z. Let Λ0 := Λ ∩ Γ , so that Λ = Λ0 + Zv





and Γ = Λ0 + Zw. Localizing we get

Λp = Λ0
p + Zpv, Γp = Λ0

p + Zpw, p〈v, w〉 ∈ Z×p .

Since pw ∈ Λ0
p, these relations are unchanged if we replace v with

v + xpw for x ∈ Zp, and similarly if w is replaced with w + ypv for

y ∈ Zp. Now note that

‖v + xpw‖ = ‖v‖+ xp〈v, w〉+ x2p2 ‖w‖

can take any value modulo p2; a fortiori it can take any value in Zp,

by Hensel’s Lemma, because p〈v, w〉 ∈ Z×p (even for p = 2), and the

same for ‖w + ypv‖. Thus we can assume that ‖v‖ = ‖w‖ ∈ Z×p .

We claim that

τv−w Λp = Γp.

Indeed, if u ∈ Λ0
p, then 〈u, v − w〉 ∈ Zp and so

〈u, v − w〉
‖v − w‖ ∈ pZp,

since ‖v − w‖ = ‖v‖+ ‖w‖− 〈v, w〉 6∈ Zp. Thus

τv−w u = u −
〈u, v − w〉
‖v − w‖ (v − w) ∈ Λ0

p,

because p(v − w) ∈ Λ0
p. We have proved that τv−w Λ0

p = Λ0
p, but

τv−w v = w by Lemma 1.2, so that τv−w Λp = Γp.

To finish the proof we note that, since ‖v‖ ∈ Z×p , we have

τv ∈ O(Λp), and so

σp = τv−w τv ∈ O+(Vp)





will be a proper equivalence between Λp and Γp, with

θ(σp) = ‖v − w‖ ‖v‖ ∈ pZ×p (Q×p )2.

The last statement completes the proof; we have already seen that

the vectors u = v + zpw ∈ Λ, for z ∈ Zp, have arbitrary ‖u‖ ∈ Z×p ,

hence τvτu ∈ O+(Λp) has arbitrary θ(τvτu) ∈ Z×p .

With a certain abuse of notation we will denote by Γ (p) a lattice

such that
[
Γ (p)

]
=

[
Γ
]p

, i.e. Γ (p) = σΓ for some σ ∈ O+(V) with

θ(σ) = p. Such a lattice exists by Proposition 1.9, but it is only

defined up to Θ-equivalence.

Corollary 3.7. If Λ and Γ are p-neighbors, then Λ and Γ are in

the same genus. Moreover, Λ and Γ (p) are in the same U -genus.

Proof. The first part follows immediately from the proposition. For

the second part, note that

θ(Λq, Γ (p)
q ) = pθ(Λq, Γq) ∈ Z×q θ(Λq)

trivially for q 6= p, and by the proposition for q = p.

Remark. More is true if we assume that

p ∈ θ(Λq), all q 6= p.

Note that the assumption is always true if q
n(n−1)

2 - disc Λ, since

Lemma 2.2 implies θ(Λq) ⊇ Z×q (Q×q )2 3 p. In this case

θ(Γ (p)
q , Λq) ∈ θ(Λq),





by assumption for q 6= p, and by the proposition for q = p. That

is, Γ (p) and Λ are in the same Θ-genus. For instance, this is the case

when p is a square modulo disc Λ.

Definition. Let M(Λ) be the free Z-module with basis the Θ-classes

in the U -genus of Λ. When Λ is a definite lattice of dimension 3,

we call M(Λ) the Brandt module of the ternary quadratic lattice Λ.

The Hecke operators tp : M(Λ) → M(Λ) are linear operators given

in the basis by

tp

[
Γ
]

:=
∑

i

[
Γi

]p
,

where the sum is over all the p-neighbors of Γ .

Clearly M(Λ) depends only on the U -genus of Λ. On the other

hand, if σ ∈ O+(V), we have an isomorphism

M(Λ) → M(σΛ)

given by
[
Γ
] 7→ [

Γ
]θ(σ)

, which preserves the action of the Hecke oper-

ators. Hence, by Proposition 2.8, M(Λ) really depends only, up to a

Hecke-linear isomorphism, on the genus of Λ.

From now on we will assume that V is a definite quadratic

space. This implies that O(Γ) is finite for any lattice in V . We thus

define an inner product in MR(Λ) := M(Λ)⊗R by

〈〈[
Γ
]
,
[
Γ ′

]〉〉
:= ] {σ ∈ Θ(V) : σΓ = Γ ′} =

{
]Θ(Γ) if

[
Γ
]

=
[
Γ ′

]
,

0 otherwise.





Proposition 3.8. The Hecke operators tp generate a commutative

algebra of self-adjoint operators. Hence MR(Λ) has an orthogonal

basis of simultaneous eigenvectors for the tp.

Proof. It is immediate that tp and tq commute for p 6= q. To prove

that tp is self-adjoint, note that

〈〈
tp

[
Γ
]
,
[
Γ ′

]〉〉

= ] {σ ∈ O+(V) : θ(σ) = p, σΓ ′ is a p-neighbor of Γ }

= ]
{
σ ∈ O+(V) : θ(σ) = p, Γ ′ is a p-neighbor of σ−1Γ

}

=
〈〈[

Γ
]
, tp

[
Γ ′

]〉〉
,

since θ(σ−1) = θ(σ). The last statement follows from this by the

spectral theorem.

3.3 Examples

We continue here with the examples from Chapter 2. We show how

to compute p-neighbors in a few examples, compute the matrices

(Brandt matrices) for the Hecke operators tp for a few p, compute

eigenvectors for the Brandt modules, and compare their eigenvalues

with those of eigenforms of weight 2.

The reader should not get the false impression that the eigen-

vectors and eigenvalues of a Brandt module are always rational. This

is a convenience for our examples, but it is not at all true in general.





Discriminant 11. Let Λ1 and Λ2 the lattices of discriminant 11 given

in Section 2.4. We show how to find the 2-neighbors of Λ1. Repre-

sentatives for the 3 projective solutions of

x2 + y2 + 3z2 − xz ≡ 0 (mod 2)

are (0, 1, 1), (1, 1, 1), and (1, 1, 0). The first two have norm 4, but the

last one has norm 2; we must replace it by the equivalent (1, 1, 2) of

norm 12 (divisible by 4).

Let v = (0, 1, 1). We compute 〈v, (x, y, z)〉 ≡ x (mod 2), and

thus Λ0
v =

{
(x, y, z) ∈ Z3 : x ≡ 0 (mod 2)

}
. To obtain Λv we need

to add v
2
; we easily find that Λv is indeed Λ2. In the same way com-

pute Λ(1,1,1) and Λ(1,1,2), and by reducing the corresponding quadratic

forms, we find out that Λ(1,1,1) ∼ Λ2 and Λ(1,1,2) ∼ Λ1. We summarize

this information by

t2

[
Λ1

]
=

[
Λ1

]
+ 2

[
Λ2

]2
;

note that there is no need to keep track of the Θ-equivalence classes

in this example.

Computing the 2-neighboring lattices of Λ2, we see that

t2

[
Λ2

]2
= 3

[
Λ1

]
,

which concludes the computation of the Hecke operator t2 = ( 1 3
2 0 ).

Since the eigenvalues of t2 have multiplicity 1, this is enough to find





a basis of eigenvectors, namely

E0 := 3
[
Λ1

]
+ 2

[
Λ2

]2
, E1 :=

[
Λ1

]
−

[
Λ2

]2
,

of eigenvalues 3 and −2 for t2, respectively.

By computing p-neighbors for other primes p 6= 11, one can

easily compute more Hecke operators:

t3 = ( 2 3
2 1 ) , t5 = ( 4 3

2 3 ) , t7 = ( 4 6
4 2 ) , t13 = ( 10 6

4 8 ) , t17 = ( 10 12
8 6 ) , . . .

The eigenvalues for E0 are 4, 6, 8, 14, 18, . . . , respectively; they corre-

spond to the Eisenstein series of weight 2 and level 11. The eigenval-

ues for E1 are −1, 1, −2, 4, −2, . . . , respectively, corresponding to the

modular form 11A of weight 2 and level 11.

Discriminant 37. Let Λ1 and Λ2 be the lattices of discriminant 37

given in Section 2.4. We compute the 2-neighbors of Λ1 as before.

Representatives for the 3 projective solutions of

x2 + 2y2 + 5z2 − yz − xz ≡ 0 (mod 2)

are (0, 1, 3), (1, 3, 1), and (0, 1, 2), all with norm divisible by 4. A

simple computation as before shows that Λ(0,1,3) = Λ2; again, by

reducing ternary quadratic forms, we can see that Λ(1,3,1) ∼ Λ2 and

Λ(0,1,2) ∼ Λ1. However, we need to be more specific about Λ(1,3,1). Is

it Θ-equivalent to
[
Λ2

]
, or to

[
Λ2

]37
? From the reduction matrices

one obtains a proper autometry σ such that σΛ(1,3,1) = Λ2; the spinor





norm is θ(σ) = 37. Thus,

t2

[
Λ1

]
=

[
Λ1

]
+

[
Λ2

]2
+

[
Λ2

]2·37
.

Similarly, one computes the 2-neighbors of Λ2, and concludes

t2

[
Λ2

]2
=

[
Λ1

]
+ 2

[
Λ2

]2·37
,

t2

[
Λ2

]2·37
=

[
Λ1

]
+ 2

[
Λ2

]2
;

hence t2 =
(

1 1 1
1 0 2
1 2 0

)
.

By computing p-neighbors for other primes p 6= 37, one com-

putes more Hecke operators:

t3 =
(

2 1 1
1 0 3
1 3 0

)
, t5 =

(
2 2 2
2 1 3
2 3 1

)
, t7 =

(
2 3 3
3 2 3
3 3 2

)
, t11 =

(
6 3 3
3 2 6
3 7 2

)
, . . .

The eigenvectors in this Brandt module are

E0 :=
[
Λ1

]
+

[
Λ2

]2
+

[
Λ2

]2·37
,

with eigenvalues 3, 4, 6, 8, 12, . . . , corresponding to the Eisenstein se-

ries of weight 2 and level 37;

E1 := 2
[
Λ1

]
−

[
Λ2

]2
−

[
Λ2

]2·37
,

with eigenvalues 0, 1, 0, −1, 3, . . . , corresponding to the modular form

37B of weight 2, level 37, and sign + in the functional equation; and

E2 :=
[
Λ2

]2
−

[
Λ2

]2·37
,





with eigenvalues −2, −3, −2, −1, −5, . . . , corresponding to the mod-

ular form 37A of weight 2, level 37, and sign − in the functional

equation.

Note that if we identify proper equivalence classes of lattices,

E0 and E1 are still well defined; however, E2 would become trivial.

Indeed, computing usual theta series for E0 and E1 makes perfect

sense, but computing a usual theta series for E2 would trivially yield

zero.

Discriminant 73. Let Λ1, Λ2 and Λ3 be the lattices of discriminant

73 given in Section 2.4. By computing p-neighbors of these lattices,

for primes p 6= 7 one is able to compute

t2 =

(
2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

)
, t3 =

(
0 0 2 2
0 0 2 2
2 2 0 0
2 2 0 0

)
, t5 =

(
0 0 3 3
0 0 3 3
3 3 0 0
3 3 0 0

)
,

t11 =

(
8 4 0 0
4 8 0 0
0 0 8 4
0 0 4 8

)
, t13 =

(
0 0 7 7
0 0 7 7
7 7 0 0
7 7 0 0

)
, t17 =

(
0 0 9 9
0 0 9 9
9 9 0 0
9 9 0 0

)
, . . .

Notice how the Hecke operator tp either preserves or permutes the

two Θ-genera, depending on the sign of
(

p
7

)
. Besides this, the action

on the two Θ-genera is identical.

The eigenvectors in this Brandt module are

E0 :=
[
Λ1

]
+

[
Λ2

]2
+

[
Λ3

]3
+

[
Λ3

]3·7
,

with eigenvalues 3, 4, 6, 12, 14, 18, . . . , which corresponds to the Eisen-

stein series of weight 2 and level 72;

E ′0 :=
[
Λ1

]
+

[
Λ2

]2
−

[
Λ3

]3
−

[
Λ3

]3·7
,





with eigenvalues 3, −4, −6, 12, −14, −18, . . . , which corresponds to a

twist of the Eisenstein series of weight 2 and level 72 (where the sign

of the eigenvalues is given by the quadratic character modulo 7);

E1 :=
[
Λ1

]
−

[
Λ2

]2
,

with eigenvalues 1, 0, 0, 4, 0, 0, . . . , which corresponds to the modular

form 49A of weight 2 and level 72; and

E2 :=
[
Λ3

]3
−

[
Λ3

]3·7
,

with the same eigenvalues 1, 0, 0, 4, 0, 0, . . .





4. Weight functions and Hecke operators

In this chapter we define weight functions for a lattice Λ, and

use them to construct generalized theta series ϑl(Λ), which will be

shown to be modular forms in the next chapter.

We will then give an explicit construction of nontrivial weight

functions for ternary lattices, and prove that ϑl preserves the action

of the Hecke operators. We remark that this is not true for lattices

other than ternary.

We restrict at first to the case of odd prime l, and for the most

part assume that l - disc Λ; however, it is not hard to extend the

definition and the construction in the case of ternary lattices to odd

squarefree l relatively prime to disc Λ, by multiplying together the

weight functions with the prime factors of l as conductors.

As a special case we allow l = 1, with constant weight func-

tions, which yields the usual theta series of a quadratic form.





4.1 Weight functions of prime conductor

Let Λ be an integral Z-lattice of dimension n, and let l > 0 be an

odd prime. An l-function on Λ is a function ω : Λl/lΛl → C. Note

that the natural inclusion Λ ⊆ Λl induces a group isomorphism

Λ/lΛ
∼

−→ Λl/lΛl,

so that an l-function on Λ is determined by its values on Λ. We say

that

· ω is normal :

if ω(v) = 0 for v ∈ Λ such that l - ‖v‖,

· ω is homogeneous :

if ω(dv) =
(

d
l

)n
ω(v) for v ∈ Λ and d ∈ Z×l ,

· ω is transportable :

if ω(σv) =
(

θ(σ)
l

)
ω(v) for v ∈ Λ and σ ∈ O+(Λl).

If all the above conditions are met, we say that ω is a weight function

on Λ of conductor l.

If ωΛ is a weight function on Λ of conductor l, we transport

it to any lattice Γ in the U -genus of Λ as follows. Let σl ∈ O(Vl)

with θ(σl) ∈ Z×l such that Γl = σlΛl. We set

ωΓ (σlv) :=

(
θ(σl)

l

)
ωΛ(v).

It is clear that ωΓ is a weight function on Γ of conductor l. Moreover,

ωΓ is independent of the choice of σl, because ωΛ is transportable.





4.2 More weight functions, and theta series

Let now l > 0 be an odd squarefree integer, and let l = l1 · · · ls be

its factorization. A weight function on Λ of conductor l is a product

ω = ω1 · · ·ωs, where ωi is a weight function of conductor li on Λ.

In the special case l = 1, a weight function is just a constant.

Note that a weight function defines a function on Λ/lΛ, which

is itself normal and homogeneous. The values of ω on Λ determine

the factors ωi up to multiplication by a nonzero constant.

Fix a weight function ωΛ on Λ of conductor l. If Γ is a lattice

in the U -genus of Λ, we let ωΓ be the weight function on Γ that is

obtained by transporting each of the factors of ωΛ, as explained in

the previous section.

We let, for m ∈ Z,

rl(Γ,m) :=
∑

v∈Γ
‖v‖=ml

ωΓ (v),

be the count, with multiplicity given by ωΓ , of vectors of norm ml in

Γ . When m 6∈ Z we have rl(Γ,m) = 0, since ωΓ is normal. We set

ϑl(Γ) :=
∑

m≥0

rl(Γ,m)qm,

where q = e2πiz as usual. Note that, when n is odd, ϑl(Γ) = 0 unless

l ≡ 1 (mod 4), since ωΓ is an odd function otherwise.

In Chapter 5 we will prove that this theta series is a modular

form of weight n/2, whose level N = N(Λ) and character χ = χΛ are





independent of l. Combine this with the fact that rl(Γ,m) depends

only on the Θ-class of Γ ; hence ϑl extends to a linear map

ϑl : M(Λ) → Mn/2(N,χ),

where Mn/2(N,χ) is the space of (holomorphic) modular forms of

weight n/2, level N, and character χ (see Section 5.3).

Consider an eigenvector E in the Brandt module M(Λ), with

Λ ternary. We expect an explicit version of Waldspurger’s formula,

in the spirit of Gross (1987), to hold; cf. Mao, Rodriguez-Villegas,

and Tornaŕıa (2004) for the case of prime level. A consequence of

such a formula would be that the vanishing of ϑl(E) is related to

the vanishing of the central value of certain modular L-series with a

twist by the quadratic character of discriminant l. The following very

plausible Conjecture would then follow by an application of a result

of Bump, Friedberg, and Hoffstein (1990).

Conjecture 4.1. Let E be an eigenvector in the Brandt module

M(Λ). There is an odd squarefree integer l, relatively prime to

any given integer, such that ϑl(E) 6= 0.

4.3 The l-symbol for ternary lattices

Consider an integral Z-lattice Λ of dimension 3 and discriminant D,

and fix an odd prime l - D, so that Λl is unimodular. An l-vector in

Λ is a vector v ∈ Λl such that ‖v‖ ≡ 0 (mod l), but v 6∈ lΛl.





Lemma 4.2. Let v, u be two l-vectors in Λ. If 〈v, u〉 ≡ 0 (mod l),

then there is some k ∈ Z×l such that v ≡ ku (mod lΛ).

Proof. Λ/lΛ is a regular quadratic space of dimension 3 over Z/lZ,

and every vector in the subspace spanned by v and u is isotropic,

since ‖v‖ ≡ ‖u‖ ≡ 〈v, u〉 ≡ 0 (mod l). But an isotropic subspace

has dimension at most 1, or else Λ/lΛ would not be regular. Hence

v ≡ ku (mod lΛ) for some k ∈ Z×l .

Definition. The l-symbol for l-vectors v and u in Λ, is defined by

(v, u)l :=





(
D 〈v,u〉

l

)
if 〈v, u〉 6≡ 0 (mod l),

(
k
l

)
if v ≡ ku (mod lΛ).

In addition we set (v, u)l := 0 whenever one or both of v, u ∈ Λ are

not l-vectors.

Remark. Lemma 4.2 ensures that the l-symbol is well defined.

Lemma 4.3. The l-symbol has the following properties:

1. (v, v)l =

{
1 if v is an l-vector,

0 otherwise.

2. (v, u)l = (v ′, u)l provided v ≡ v ′ (mod lΛ).

3. (v, u)l = (u, v)l.

4. (dv, u)l = (v, du)l =
(

d
l

)
(v, u)l for d ∈ Zl.

5. (v1, v2)l (v2, v3)l = (v1, v3)l, provided v2 is an l-vector.





Proof. Statements 1–4 are immediate from the definition. To prove

5, we may assume that the vi are all l-vectors, and also that

aij := 〈vi, vj〉 6≡ 0 (mod l) i 6= j,

so that (vi, vj)l =
(

D aij

l

)
. Hence the Z-lattice Λ ′ spanned by the vi

has discriminant

disc Λ ′ ≡ a23 a31 a12 6≡ 0 (mod l).

Thus (
D

l

)
=

(a23 a31 a12

l

)
,

since Λ and Λ ′ are lattices in the same quadratic space, and so

(
Da12

l

)(
Da23

l

)
=

(
Da31

l

)
,

which is the claimed statement.

Lemma 4.4. Let u ∈ Λl such that ‖u‖ ∈ Z×l . If v is an l-vector

in Λ, then τu v is also an l-vector in Λ, and

(v, τu v)l =

(
−D ‖u‖

l

)
.

Proof. Let v ′ := τu v, and note that ‖v ′‖ = ‖v‖. Consider first the

case when 〈v, u〉 6≡ 0 (mod l). Since

〈v, v ′〉 = 2 ‖v‖−
〈v, u〉2
‖u‖ ≡ − ‖u‖

(〈v, u〉
‖u‖

)2

6≡ 0 (mod l),

it follows that v ′ is an l-vector and, moreover,

(v, v ′)l =

(
D〈v, v ′〉

l

)
=

(
−D ‖u‖

l

)





If, on the other hand, 〈v, u〉 ≡ 0 (mod l), we conclude that

v ′ ≡ v (mod lΛ), so that (v ′, v)l = 1. Now, since v 6∈ lΛ, and

l - disc Λ, there must be w ∈ Λ such that 〈v, w〉 6≡ 0 (mod l). The

Z-lattice Λ ′ spanned by u, v, w has discriminant

disc Λ ′ ≡ −〈v, w〉2 ‖u‖ 6≡ 0 (mod l),

hence
(

D
l

)
=

(
−‖u‖

l

)
, and it follows that

(
−D‖u‖

l

)
= 1, as required.

Proposition 4.5. Let σ ∈ O+(Λl). If v is an l-vector in Λ, then

σv is also an l-vector in Λ, and

(v, σv)l =

(
θ(σ)

l

)
.

Proof. By Lemma 2.3, σ is a product of (an even number of) sym-

metries τu with u ∈ Λl and ‖u‖ ∈ Z×l . The result then follows from

Lemma 4.4, together with property 5 of Lemma 4.3.

Corollary 4.6. Fix an l-vector v0 in Λ. Then

ωΛ(v) := (v, v0)l

is a weight function on Λ of conductor l.

Proof. Immediate by Lemma 4.3 and Proposition 4.5.





4.4 Ternary lattices and Hecke operators

Let Λ be an integral Z-lattice of dimension 3 and discriminant D,

as in the previous section. Fix an odd squarefree integer l relatively

prime to D, and a weight function ωΛ on Λ of conductor l.

Let p be a prime such that p - D Recall that in this case

‖v‖ ≡ 0 (mod p)

is the equation of a non-degenerate conic modulo p, which has p + 1

projective solutions, all of them non-singular. We let v1, . . . , vp+1 be

representatives of the different solutions, such that p2 | ‖vi‖, and

set Λi := Λvi
. Thus Λ1, . . . , Λp+1 are all the distinct p-neighboring

lattices of Λ, by Theorem 3.5.

Lemma 4.7. Let v ∈ Λ. The number of p-neighbors Λi of Λ such

that v ∈ Λi is p + 1 if v ∈ pΛ, and

1 +

(
−D ‖v‖

p

)

otherwise.

Proof. If v ∈ pΛ, then v ∈ Λi for all i; as remarked above, the

number of p-neighbors of Λ is exactly p + 1.

Consider now the case when v 6∈ pΛ. Note that v ∈ Λi if and

only if p | 〈vi, v〉. Thus, we need to count the number of projective

solutions of

‖w‖ ≡ 0 (mod p), w ∈ Λ̃,





where

Λ̃ := {w ∈ Λ : 〈w, v〉 ≡ 0 (mod p)}

is a quadratic space over Fp := Z/pZ of dimension 2. These will be

given by the solutions of a quadratic equation of discriminant disc Λ̃.

But over Fp we have an orthogonal decomposition

Λ = Fp v + Λ̃,

hence disc Λ̃ ≡ −D ‖v‖ (mod p), and the result follows.

Theorem 4.8. Suppose p - lD. Then

∑

i

rl(Λ
(p)
i ,m) = rl(Λ, p2m) +

(
−Dm

p

)
rl(Λ,m) + p rl(Λ,m/p2),

where the sum is over all p-neighbors Λi of Λ. In other words,

ϑl(tp Λ) = ϑl(Λ)|T(p2),

i.e. ϑl is a Hecke-linear map (outside l).

Remark. We do not prove linearity of ϑl for the Hecke operators tp

with p | l. We believe that an elementary proof in the same lines, but

with additional complications, should be possible. Nevertheless, we

prove it below under the assumption of Conjecture 4.1.

Proof. We assume l ≡ 1 (mod 4) since, as it was already remarked,

both sides are trivially 0 otherwise. The conic given by (3.1) has no

singular solutions, and thus

{
v ∈ Λ − pΛ : p2 | ‖v‖} =

⋃

i

(pΛi − pΛ),





where the union is over all p-neighbors of Λ. By the last statement of

Theorem 3.5, this union is disjoint. Counting vectors of norm p2ml

with weight ωΛ, and noting that

rl(pΛ, p2m) =
(p

l

)
rl(Λ,m) = rl(Λ

(p),m),

we conclude

rl(Λ,p2m) −
(p

l

)
rl(Λ,m) =

∑

i

rl(Λ
(p)
i ,m) −

(p

l

) ∑

i

rl(Λi ∩Λ,m).

It remains only to evaluate

∑

i

rl(Λi ∩Λ,m) =
∑

i

rl(Λi ∩ pΛ,m) +
∑

i

rl(Λi ∩ (Λ − pΛ))

By Lemma 4.7, we have

∑

i

rl(Λi ∩ pΛ,m) = (p + 1) rl(pΛ,m)

= (p + 1)
(p

l

)
rl(Λ,m/p2),

and

∑

i

rl(Λi ∩ (Λ − pΛ), m)

=

(
1 +

(
−Dml

p

))
rl(Λ − pΛ,m)

=

(
1 +

(
l

p

)(
−Dm

p

))
rl(Λ,m) −

(p

l

)
rl(Λ,m/p2).

Since we are assuming l ≡ 1 (mod 4), we have
(

p
l

)(
l
p

)
= 1, and the

claimed formula follows.





For the last statement, write the formula as

rl(tp Λ,m) = rl(Λ,p2m) + χ1(p)

(
m

p

)
rl(Λ,m) + p rl(Λ,m/p2),

where

χ1(p) :=

(
−D

p

)
= χΛ(p)

(
−1

p

)
,

and compare this formula with the action of the Hecke operators

on modular forms of weight 3/2, as given in terms of their Fourier

coefficients by Theorem 1.7 in Shimura (1973, p. 450).

Proposition 4.9. Assume Conjecture 4.1 holds. Then ϑl is linear

for the Hecke operators tp with p | l as well.

Proof. Let E be an eigenvector in the Brandt module MR(Λ). We

prove that ϑl(tpE) = ϑl(E)|T(p2) for all p - N; the result follows from

this by Proposition 3.8. Assume ϑl(E) 6= 0, as the claim is trivial

otherwise. Let l ′ be an odd squarefree integer relatively prime to l

and such that ϑl ′(E) 6= 0, as in the Conjecture.

By Theorem 4.8, we know that ϑl(E) and ϑl ′(E) are eigenforms

of T(p2) with the same eigenvalues as E for all p - lD and for all

p - l ′D, respectively. The next Lemma implies that ϑl(E) and ϑl ′(E)

are indeed eigenforms of T(p2) with the same eigenvalues for all p - N.

Since l and l ′ are relatively prime, these eigenvalues are equal to those

of E for all p - N, and it follows that ϑl(tpE) = ϑl(E)|T(p2) for all p - N,

as claimed.





Lemma 4.10. Let f, g be modular forms of weight 3/2 and level

N, and assume f and g are common eigenforms of T(p2) with

the same eigenvalue for all prime numbers p - AN, where A is a

given integer. Then f and g are indeed eigenforms of T(p2) with

the same eigenvalue for all prime numbers p - N.

Proof. Let V be the subspace of modular forms of weight 3/2 and level

N which are common eigenforms of T(p2) with the same eigenvalue as

f and g for all p - AN. Suppose h1, h2 ∈ V are two common eigenforms

of T(p2) for all p - N, and let H1 and H2 be their images under the

Shimura correspondence. Then H1 and H2 are a modular forms of

weight 2 and level dividing N which are common eigenforms of T(p)

for all p - N, with same eigenvalues as h1 and h2, respectively. In

particular, their eigenvalues of h1 and h2 are the same for all p - AN.

But then the strong multiplicity one Theorem for modular forms of

integral weight implies that the eigenvalues are indeed the same for

all p - N, and thus the same is true for the eigenvalues of h1 and h2.

It follows that V is a common eigenspace of T(p2) for all p - N, and

the result follows since f, g ∈ V .





5. Generalized theta series

Throughout this chapter, Λ will be a positive definite integral

Z-lattice of dimension n. The aim is to prove transformation formulas

for the generalized theta series ϑl(Λ). In particular we show that they

are modular forms of level and character independent of l.

5.1 Dual l-functions

Let l be an odd squarefree integer, and consider an l-function ω on

Λ. The dual l-function ω̂ on Λ# is defined by

(5.1) ω̂(h) := l−n/2
∑

u∈Λ/lΛ

ω(u) e

(〈u, h〉
l

)
,

for h ∈ Λ#, where

e (z) := e2πiz.

Note that ω 7→ ω̂ is the Fourier transform on the finite group Λ/lΛ,

and so it is natural to expect the following Lemma to hold.





Lemma 5.1. For v ∈ Λ we have ̂̂ω(v) = ω(−v).

Proof.

̂̂ω(v) = l−n/2
∑

h∈Λ#/lΛ#

ω̂(h) e

(〈h, v〉
l

)

= l−n
∑

h∈Λ#/lΛ#

u∈Λ/lΛ

ω(u) e

(〈h, u + v〉
l

)

= l−n
∑

u∈Λ/lΛ

ω(u)
∑

h∈Λ#/lΛ#

e

(〈h, u + v〉
l

)

= ω(−v),

since
∑

h∈Λ#/lΛ#

e

(〈h, u + v〉
l

)
=

{
ln if u + v ∈ lΛ,

0 otherwise.

In what follows we will assume that l is odd and relatively

prime to disc Λ. This way Λ ⊆ Λ# induces a group isomorphism

Λ/lΛ
∼

−→ Λ#/lΛ#,

so that l-functions on Λ and Λ# are really the same. We remark that

the definition of ω̂ is independent of whether we consider ω as an

l-function on Λ or as an l-function on Λ#; we can assume that the

summation in (5.1) is always over Λ/lΛ.

Let N = N(Λ) be the level of Λ, the smallest positive integer

such that

N ‖h‖ ∈ Z, all h ∈ Λ#.

Note that NΛ# ⊆ Λ, disc Λ | Nn, and N | 4 disc Λ.





Lemma 5.2. Let h, k ∈ Λ#, and let d be an integer relatively

prime to l. The following generalization of (5.1) holds:

(5.2)
∑

v∈Λ/lΛ

ω(h + dv) e

(〈h + dv, k〉
dl

)
= ln/2 e

(
y〈h, k〉

d

)
ω̂d(k),

where y is an integer such that yl ≡ 1 (mod dN), and where

ωd(v) := ω(dv).

Proof. Note that (1 − yl)h ∈ dΛ, hence

∑

v∈Λ/lΛ

ω(h + dv) e

(〈h + dv, k〉
dl

)

= e

(
y〈h, k〉

d

) ∑

v∈Λ/lΛ

ω((1 − yl)h + dv) e

(〈(1 − yl)h + dv, k〉
dl

)

= e

(
y〈h, k〉

d

) ∑

v∈Λ/lΛ

ωd(v) e

(〈v, k〉
l

)

(5.1)
= ln/2 e

(
y〈h, k〉

d

)
ω̂d(k)

Lemma 5.3. Let h ∈ Λ#, and let b and d be integers such that d

is relatively prime to l. If ω is a normal l-function on Λ, then

(5.3) ω(h) e

(
b ‖h‖

dl

)
= ω(h) e

(
by ‖h‖

d

)
,

where y is an integer such that yl ≡ 1 (mod dN)

Proof.

ω(h) e

(
b ‖h‖

dl

)
= ω(h) e

(
b(1 − yl) ‖h‖

dl

)
e

(
by ‖h‖

d

)

= ω(h) e

(
by ‖h‖

d

)
,

since ω(h) = 0 unless b1−yl
d
‖h‖ ∈ Z is a multiple of l.





Lemma 5.4. If ω is a transportable l-function on Λ of dimension

at least 3, then ω̂ is normal.

Proof. We assume l is prime. Let v ∈ Λ such that l - ‖v‖; Lemma 2.5

gives some σ ∈ O+(Λl) with σv = v and θ(σ) = −1. Then

ln/2 ω̂(v) =
∑

u∈Λ/lΛ

ω(u) e

(〈u, v〉
l

)

=
∑

u∈Λ/lΛ

ω(σu) e

(〈σu, v〉
l

)

=

(
θ(σ)

l

) ∑

u∈Λ/lΛ

ω(u) e

(〈u, v〉
l

)

= −ln/2 ω̂(v),

and so ω̂(v) = 0.

5.2 Generalized theta series

We prove now a general transformation formula for generalized theta

series. Recall that a spherical function of order ν ≥ 0 is an homo-

geneous polynomial of degree ν (with complex coefficients) satisfying

the Laplace differential equation.

Although we don’t use theta series with spherical polynomi-

als in this thesis, we include them here for the sake of generality,

since the proofs remain almost the same. The extra generality will

undoubtfully find applications, as it has been exemplified by Rosson

and Tornaŕıa (2005).





We do note, however, that our weight functions could be re-

garded, in a sense, as the non-archimedean analogues of spherical

functions.

Definition. Let Λ be a positive definite integral Z-lattice, ω an l-

function on Λ#, and P a spherical function of order ν. For h ∈ Λ#

we define a generalized theta series with variable z ∈ H:

ϑl(z;Λ,ω, h) :=
∑

v∈Λ

P(h + v)ω(h + v) e

(
z ‖h + v‖

l

)
.

We do not include P in the notation, since P will always be the same.

Note that ϑl(z; Λ,ω, h) really depends only on h modulo Λ.

When h ∈ Λ, we will drop the h and write

ϑl(z;Λ,ω) :=
∑

v∈Λ

P(v)ω(v) e

(
z ‖v‖

l

)
,

If P = 1, this agrees with the definition given in the last chapter.

In particular, for l = 1 and ω = 1, we have the usual theta

series

ϑ(z; Λ, h) := ϑ1(z;Λ, 1, h) =
∑

v∈Λ

e (z ‖h + v‖) ,

for which we recall the following

Lemma 5.5. Let Λ be a positive definite integral Z-lattice of di-

mension n and determinant ∆. For h ∈ Λ#, the following trans-

formation formula holds:

(5.4) ϑ
(

−1
z

;Λ, h
)

= ∆−1/2 (−iz)n/2 (−z)ν
∑

k∈Λ#/Λ

e (〈h, k〉) ϑ(z; Λ, k).





Proof. This is a classical result; it follows by applying the Poisson

summation formula for the lattice Λ and its dual Λ# to the function

v 7→ P(h + v) e
(

−1
z
‖h + v‖) ,

defined in Λ⊗R, whose Fourier transform is

k 7→ P(−zk)(−iz)n/2 e (〈h, k〉) e (z ‖k‖) ,

and by noting that e (〈h, k〉) depends on k modulo Λ.

Proposition 5.6. Let Λ be a positive definite integral Z-lattice of

dimension n and determinant ∆; let l > 0 be an integer relatively

prime to ∆, and let ω be a normal l-function on Λ. For h ∈ Λ#,

and for b, d ∈ Z with d > 0 and relatively prime to l, the following

transformation formulas hold:

(5.5) ϑl

(
−1

d2z
;dΛ,ω, h

)

= ∆−1/2 (−iz)n/2 (−dz)ν
∑

k∈Λ#/dΛ

e

(
y〈h, k〉

d

)
ϑl(z; dΛ, ω̂d, k),

(5.6) ϑl

(
z +

b

d
;Λ,ω, h

)

=
∑

u∈Λ/dΛ

e

(
by ‖h + u‖

d

)
ϑl(z;dΛ,ω, h + u),

where y is an integer such that yl ≡ 1 (mod dN).

Proof. Note that

ϑl(z;Λ,ω, h) =
∑

v∈Λ/lΛ

ω(h + v) ϑ
(z

l
; lΛ, h + v

)
.





We will obtain the first formula as an application of the lemma to

the lattice dlΛ, of determinant (dl)2n∆, whose dual lattice is given

by (dlΛ)# = (dl)−1Λ#:

ϑl

(
−1

d2z
; dΛ,ω, h

)
=

∑

v∈Λ/lΛ

ω(h + dv) ϑl

(
−1

d2lz
; dlΛ, h + dv

)

(5.4)
= l−n ∆−1/2 (−ilz)n/2 (−d2lz)ν ·

∑

v∈Λ/lΛ

k∈Λ#/d2l2Λ

ω(h + dv)

depends on k modulo dlΛ︷ ︸︸ ︷
e

(〈
h + dv,

k

dl

〉)
ϑl(d

2lz; dlΛ, k
dl

)︸ ︷︷ ︸
ϑl(

z
l
;d2l2Λ,k)·(dl)−ν

= l−n/2 ∆−1/2 (−iz)n/2 (−dz)ν ·
∑

v∈Λ/lΛ

k∈Λ#/dlΛ

ω(h + dv) e

(〈h + dv, k〉
dl

)
ϑl(

z
l
;dlΛ, k)

(5.2)
= ∆−1/2(−iz)n/2 (−dz)ν

∑

k∈Λ#/dlΛ

e

(
y〈h, k〉

d

)
ω̂d(k) ϑl(

z
l
; dlΛ, k)

= ∆−1/2(−iz)n/2 (−dz)ν
∑

k∈Λ#/dΛ

e

(
y〈h, k〉

d

)
ϑl(z; dΛ, ω̂d, k)

For the second formula, denoting Pω(v) := P(v)ω(v),

ϑl

(
z + b

d
; Λ,ω, h

)
=

∑

v∈Λ

Pω(h + v) e

(
b ‖h + v‖

dl

)
e

(
z ‖h + v‖

l

)

(5.3)
=

∑

v∈Λ

Pω(h + v) e

(
by ‖h + v‖

d

)
e

(
z ‖h + v‖

l

)

=
∑

u∈Λ/dΛ

e

(
by ‖h + u‖

d

) ∑

v∈u+dΛ

Pω(h + v) e

(
z ‖h + v‖

l

)

=
∑

u∈Λ/dΛ

e

(
by ‖h + u‖

d

)
ϑl(z;dΛ, ω, h + u),





since e
(

by‖h+v‖
d

)
depends only on v modulo dΛ, because h ∈ Λ#.

Corollary 5.7. With the same notation as in the proposition,

(5.7) ϑl

(
z +

b

d
; dΛ,ω, h

)
= e

(
by ‖h‖

d

)
ϑl(z;dΛ,ω, h).

Proof. Note that the right hand side depends only on y modulo dN,

so we can assume yl ≡ 1 (mod d2n+1N). Since h ∈ Λ# ⊆ (dΛ)#, we

can then apply (5.6) to the lattice dΛ:

ϑl

(
z +

b

d
; dΛ,ω, h

)

(5.6)
=

∑

u∈dΛ/d2Λ

e

(
by ‖h + u‖

d

)
ϑl(z;d

2Λ,ω, h + u)

= e

(
by ‖h‖

d

) ∑

u∈dΛ/d2Λ

ϑl(z; d
2Λ, ω, h + u)

= e

(
by ‖h‖

d

)
ϑl(z;dΛ,ω, h),

since e
(

by‖h+u‖
d

)
= e

(
by‖h‖

d

)
for u ∈ dΛ.

Recall the usual action of the modular group SL2(Z) on the

upper-half plane; if γ = ( a b
c d ) ∈ SL2(Z), then γ(z) := az+b

cz+d
.

Proposition 5.8. Let γ = ( a b
c d ) ∈ SL2(Z) such that c ≥ 0, and

d > 0 is relatively prime to l. Assume ω is an l-function such

that both ω and ω̂ are normal. For h ∈ Λ# we have

ϑl(γ(z); Λ,ω, h) = (cz + d)n/2+ν
∑

g∈Λ#/Λ

Ψl
Λ,γ(h, g) ϑl(z; Λ,ωd, g),





where

Ψl
Λ,γ(h, g) := ∆−1

∑

k∈Λ#/Λ

Φl
Λ,γ(h, k) e (−y〈k, g〉) ,

Φl
Λ,γ(h, k) := d−n/2

∑

u∈Λ/dΛ

e

(
by ‖h + u‖+ y〈k, h + u〉− cy ‖k‖

d

)
.

As before y is an integer such that yl ≡ 1 (mod dN).

Proof. First we note that ω̂d(v) = ω̂(xv), where x is an integer such

that xd ≡ 1 (mod l), hence ω̂ normal implies that ω̂d is normal too.

We can write

γ(z) =
b

d
+

z

d(cz + d)
,

and thus

ϑl(γ(z); Λ,ω, h)

(5.6)
=

∑

u∈Λ/dΛ

e

(
by ‖h + u‖

d

)
ϑl

(
z

d(cz + d)
; dΛ,ω, h + u

)

(5.5)
= ∆−1/2

(
i(cz + d)

dz

)n/2 (
cz + d

z

)ν

·
∑

u∈Λ/dΛ

k∈Λ#/dΛ

e

(
by ‖h + u‖+ y〈k, h + u〉

d

)
ϑl

(
−

c

d
−

1

z
;dΛ, ω̂d, k

)

(5.7)
= ∆−1/2

(
i(cz + d)

z

)n/2 (
cz + d

z

)ν

·
∑

k∈Λ#/dΛ

Φl
Λ,γ(h, k) ϑl

(
−1

z
;dΛ, ω̂d, k

)
.

It will follow from Lemma 5.9 below that Φl
Λ,γ(h, k) depends only on

k modulo Λ, and so we can group terms modulo Λ.





The expression then becomes

∆−1/2

(
i(cz + d)

z

)n/2 (
cz + d

z

)ν

·
∑

k∈Λ#/Λ

Φl
Λ,γ(h, k) ϑl

(
−1

z
;Λ, ω̂d, k

)
.

We are now ready to apply (5.5) again; before doing it we note that

(
i(cz + d)

z

)n/2

(−iz)n/2 = (cz + d)n/2,

since c ≥ 0 and d > 0. Hence

ϑl(γ(z); Λ,ω, h)

= (−1)ν ∆−1(cz + d)n/2+ν ·
∑

g∈Λ#/Λ

k∈Λ#/Λ

Φl
Λ,γ(h, k) e (y〈k, g〉) ϑl(z;Λ, ̂̂ωd, g)

= (cz + d)n/2+ν
∑

g∈Λ#/Λ

Ψl
Λ,γ(h, g) ϑl(z; Λ,ωd, g),

because ϑl(z;Λ, ̂̂ωd, g) = (−1)ν ϑl(z;Λ,ωd, −g) by Lemma 5.1.

Lemma 5.9. For h, k ∈ Λ# we have

Φl
Λ,γ(h, k) = e (ay〈h, k〉− acy ‖k‖) Φl

Λ,γ(h − ck, 0).

In particular, Φl
Λ,γ(h, k) depends only on h and k modulo Λ.

Proof. It’s clear that Φl
Λ,γ(h, k) depends on h modulo Λ, hence it will

follow from the claimed formula that it also depends on k modulo Λ.





Since 1 = ad − bc, we get

Φl
Λ,γ(h, k) = d−n/2

∑

u∈Λ/dΛ

e

(
by ‖h + u‖+ y〈k, h + u〉− cy ‖k‖

d

)

= d−n/2
∑

u∈Λ/dΛ

e

(
by ‖h + u‖− bcy〈k, h + u〉+ bc2y ‖k‖

d

)
·

e (ay〈k, h + u〉− acy ‖k‖)

= e (ay〈k, h〉− acy ‖k‖) d−n/2
∑

u∈Λ/dΛ

e (by ‖h + u − ck‖)

= e (ay〈k, h〉− acy ‖k‖) Φl
Λ,γ(h − ck, 0),

as stated.

5.3 Weight functions and modularity

We will prove now that if ω is a weight function on Λ of conductor

l, the generalized theta series

ϑl(z;Λ,ω) := ϑl(z; Λ,ω, 0)

is a modular form of weight n/2 + ν, level N = N(Λ), and character

χ(d) = χΛ,ν(d) :=

(
(−1)(n+1)ν disc Λ

d

)
.

We remark that Pω is either even or odd, and ϑl(z;Λ,ω) = 0 unless

Pω is even. If we set s :=
(

−1
l

)n
(−1)ν, then Pω is even if s = 1, and

odd if s = −1.

We briefly recall now the definition of modular forms of integral

and half-integral weight, and refer the reader to Shimura (1973) for





details. For a positive integer N we let

Γ0(N) := {( a b
c d ) ∈ SL2(Z) : c ≡ 0 (mod N)},

and define automorphy factors

jn(γ, z) := (cz + d)n/2 γ ∈ Γ0(1), n even,

and

jn(γ, z) :=
( c

d

)
ε−n

d (cz + d)n/2 γ ∈ Γ0(4), n odd,

where εd is 1 or i according as d ≡ 1 or 3 (mod 4).

A (holomorphic) modular form of weight n/2, level N, and

character χ : (Z/NZ)× → C is a holomorphic function f : H → C such

that

f(γ(z)) = χ(d) jn(γ, z) f(z), γ = ( a b
c d ) ∈ Γ0(N),

and such that f is holomorphic also at the cusps. If, in addition, f

vanishes at the cusps, we say that f is a cusp form. Implicitly we are

requiring that N be divisible by 4 when n is odd.

Lemma 5.10. Let γ = ( a b
c d ) ∈ SL2(Z), and assume d > 0 is an

odd prime such that d - l disc Λ. Then

(cz + d)n/2+ν Φl
Λ,γ(0, 0)

(
d
l

)n
=

( s

d

)
χΛ,ν(d) jn+2ν(γ, z),

where s =
(

−1
l

)n
(−1)ν.





Proof. Since d is an odd prime, Λ/dΛ is a quadratic space over the

finite field Z/dZ, and therefore it has an orthogonal basis. We can

lift such a basis to a basis v1, . . . , vn of Λ, so that

〈vi, vj〉 ≡ 0 (mod d) i 6= j.

Setting αi := ‖vi‖, we have

Φl
Λ,γ(0, 0) = d−n/2

∑

u∈Λ/dΛ

e

(
by ‖u‖

d

)

= d−n/2

n∏

i=1


 ∑

x∈Z/dZ

e

(
byαix

2

d

)


= εn
d

(
(2by)n∆

d

)
,

where ∆ is the determinant of Λ.

If n is even, εn
d =

(
−1
d

)n/2
, hence

Φl
Λ,γ(0, 0) =

(
(−1)n/2∆

d

)
=

( s

d

)
χΛ,ν(d),

since disc Λ = (−1)n/2∆ and s = (−1)ν.

When n is odd, εn
d =

(
(−1)ν+1

d

)
ε

−(n+2ν)
d . If we now use that

bc ≡ −1 (mod d) and yl ≡ 1 (mod d), we get

Φl
Λ,γ(0, 0)

(
d

l

)
=

(
(−1)ν+1

d

)
ε

−(n+2ν)
d

(
−cl

d

)(
2∆

d

)(
d

l

)

=
( s

d

)
χΛ,ν(d)

( c

d

)
ε

−(n+2ν)
d ,

since disc Λ = 1
2
∆, and

(
(−1)ν

d

) (
l
d

) (
d
l

)
=

(
s
d

)
by the quadratic reci-

procity law.





Theorem 5.11. Let Λ be a positive definite integral Z-lattice, and

suppose l is an odd squarefree integer relatively prime to disc Λ.

Let ω be a weight function on Λ of conductor l, and assume ω̂

is normal. Then

ϑl(γ(z); Λ,ω, h) =
( s

d

)
χΛ,ν(d)jn+2ν(γ, z) e (aby ‖h‖) ϑl(z, Λ,ω, ah)

for γ = ( a b
c d ) ∈ Γ0(N), where N = N(Λ) is the level of Λ. Here n is

the dimension, ν is the order of the (implicit) spherical function,

y is an integer such that yl ≡ 1 (mod N), and s =
(

−1
l

)n
(−1)ν.

In particular ϑl(z;Λ,ω) is a modular form of weight n/2+ν,

level N, and character χΛ,ν.

Remark. When the dimension of Λ is at least 3, the hypothesis on ω̂

is redundant, by Lemma 5.4.

Proof. The formula is invariant under γ 7→ −γ, so we will assume

c ≥ 0. Indeed, χΛ,ν(d) and jn+2ν(γ, z) are even functions of γ except

in the case n+2ν ≡ 2 (mod 4), when they are both odd. On the other

hand, the parity of
(

s
d

)
depends on the sign of s which, as already

remarked, corresponds to the parity of Pω, and hence to the parity

of ϑl(z,Λ, ω, ah) as a function of a. Thus, the right hand side of the

equation is an even function of γ; but so is the left hand side.

Note also that, for m ∈ Z,

jn+2ν(γ, z + m) = jn+2ν(γm, z)





where γm(z) := γ(z + m) = az+(b+am)
cz+(d+cm)

. Moreover,

e (aby ‖h‖) ϑl(z + m,Λ, ω, ah) = e (a(b + am)y ‖h‖) ϑl(z,Λ, ω, ah)

by (5.6), and thus the formula is also invariant under γ 7→ γm. We

may then, by Dirichlet Theorem of primes in arithmetic progressions,

assume that d > 0 is an odd prime such that d - l disc Λ. We will also

assume, without loss of generality, that yl ≡ 1 (mod dN).

The hypothesis implies that c ‖k‖ ∈ Z and ck ∈ Λ, and also

that h = adh − bch ≡ adh (mod Λ). Hence

Φl
Λ,γ(h, k) = e (ay〈h, k〉) Φl

Λ,γ(adh, 0).

by Lemma 5.9. Now notice that

Φl
Λ,γ(adh, 0) = e (aby · ad ‖h‖)Φl

Λ,γ(0, 0)

= e (aby ‖h‖)Φl
Λ,γ(0, 0),

since ‖h‖ = ad ‖h‖− bc ‖h‖ ≡ ad ‖h‖ (mod Z). Hence

Ψl
Λ,γ(h, g) = Φl

Λ,γ(0, 0) e (aby ‖h‖) · ∆−1
∑

k∈Λ#/Λ

e (y〈ah − g, k〉)

= Φl
Λ,γ(0, 0) e (aby ‖h‖) ·

{
1 if ah − g ∈ Λ,

0 otherwise.

Since ω̂ is normal, Proposition 5.8 now implies

ϑl(γ(z); Λ,ω, h)

= (cz + d)n/2+νΦl
Λ,γ(0, 0) e (aby ‖h‖) ϑl(z,Λ, ωd, ah),





and the result follows by the lemma, since ωd =
(

d
l

)n
ω.

When h = 0, the formula reads

ϑl(γ(z); Λ,ω) =
( s

d

)
χΛ,ν(d)jn+2ν(γ, z)ϑl(z,Λ,ω),

which proves the modularity of ϑl(γ(z); Λ,ω) as claimed, provided

s = 1. Otherwise, s = −1, and Pω is an odd function, hence

ϑl(γ(z); Λ,ω) = 0.





Bibliography

B. J. Birch. 1991. Hecke actions on classes of ternary quadratic

forms, Computational number theory (Debrecen, 1989), pp. 191–

212. ↑3
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