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1. INTRODUCTION

Let N ≥ 1 be an odd square-free integer, and let S2k(N) denote the

space of cusp forms of even weight 2k on the Hecke congruence group

Γ0(N). Following the definitions in [Ko82], we denote by S+
k+1/2

(4N) the

space of modular forms which transform like θ(τ)2k+1 under the action of

Γ0(4N), and belong to the plus space: this means that they have a fourier
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expansion of the form
∑

D>0c(D)qD, where c(D) = 0 unless

D∗ := (−1)kD ≡ 0, 1 (mod 4).

The spaces S2k(N) and S+
k+1/2

(4N) are equipped with an action of Hecke

operators and with a notion of newforms. (For forms of integral weight,

this is classical Atkin-Lehner theory, while for forms of half-integral weight

these notions are made precise in [Ko82].) The Hecke operators acting on

Sk+1/2(4N) are indexed by squares of integers, and the operators T 2̀ , for `

a prime not dividing 2N, preserve the subspace Snew
k+1/2

(4N) of newforms.

A basic theorem of Shimura and Kohnen [Ko82, Theorem 2, Section 5],

states that the spaces Snew
2k (N) and Snew

k+1/2
(4N) are isomorphic as Hecke

modules. More precisely, if f =
∑

anqn is any normalised newform of

weight 2k on Γ0(N), there is a newform g ∈ Snew
k+1/2

(4N), which is unique

up to scaling and satisfies

T 2̀g = a`g, for all primes ` - 2N.

The forms f and g are said to be in Shimura correspondence. We write

g(q) =
∑
D>0

c(D)qD

for the fourier expansion of g.

The fourier coefficients a` (for ` a prime) of the integral weight eigenform

f can be recovered from those of g by the rule

a` =


c(D`2)
c(D)

+
(

D∗

`

)
`k−1 if ` - N;

c(D`2)
c(D)

if ` | N,

where D is any integer for which c(D) 6= 0. (Cf. formula (11) of [Ko85].)

The arithmetic significance of the coefficients c(D) is revealed by the

following fundamental formula of Kohnen and Waldspurger (cf. Corollary 1
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of [Ko85]):

(1) |c(D)|2 =

 λgD
k−1/2L(f,D∗, k) if

(
D∗

`

)
= w` for all ` | N,

0 otherwise,

where

(a) The complex number λg is a non-zero scalar which depends only

on the choice of g;

(b) the function

L(f,D∗, s) =
∑

n

anχD∗(n)n−s

is the twisted L-series attached to f and the quadratic Dirichlet

character χD∗ :=
(

D∗ )
of conductor D∗;

(c) the integers w` ∈ {±1} are the eigenvalues of the Atkin-Lehner

involutions W` acting on f.

For example, suppose that f is of weight 2 and has rational fourier co-

efficients, so that it corresponds to an elliptic curve E over Q of conductor

N. The Birch and Swinnerton-Dyer conjecture then predicts that, if c(D1)

and c(D2) are non-zero, we have

c(D1)

c(D2)
= ±

√
#LLI(E−D1)

#LLI(E−D2)
,

where ED denotes the twist of the elliptic curve E by the quadratic Dirichlet

character attached to D. In this way, the coefficients of g package arith-

metic information concerning the twists of E. In particular, once a sign

for one of the non-vanishing coefficients c(D) has been fixed, the remain-

ing coefficients pick out well-defined choices of square-roots for #LLI(E−D).

The law that governs the variation of their signs is not well understood.
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We remark that the sign w(f,D∗) ∈ {±1} that appears in the functional

equation for L(f,D∗, s) is equal to

w(f,D∗) = (−1)kχD∗(−N)wN, where wN :=
∏

|̀N

w`.

In particular, w(f,D∗) = 1 whenever D satisfies χD∗(`) = w` for all ` | N.

When w(f,D∗) = −1, the central critical value L(f, D∗, k) vanishes

for parity reasons. It then becomes natural to study the central critical

derivative L ′(f,D∗, k). One of the motivating questions behind the present

paper is the following:

Question 1.1. Can the data of L ′(f,D∗, k), (at least for certain D sat-

isfying w(f,D∗) = −1) be packaged into the coefficients of a modular

generating series?

Our main result—Theorem 1.4 below—provides an element of answer

to this question by relating some of these central critical derivatives to

the fourier coefficients of p-adic families of modular forms of half-integral

weight.

p-adic families. Denote by Cp the completion of an algebraic closure Q̄p

of Qp. Fix a compact open region U ⊂ Zp, and let A(U) denote the ring

of Cp-valued p-adic analytic functions on U. Given a formal q series

(2) f :=
∑
n≥0

anqn

whose coefficients an belong to A(U), we will denote by

fk := f(k) =
∑
n≥0

an(k)qn

its specialisation to k ∈ U, viewed as a formal power series with coeffi-

cients in Cp. A point k ∈ U is said to be classical if

k ∈ Z≥1 and k ≡ 1 (mod p − 1),
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and the set of all classical points in U is denoted by Ucl.

For the purposes of this article, a p-adic family of modular forms on

Γ0(N) is a formal q-series f as in (2) with the property that fk is a nor-

malised eigenform of weight 2k on Γ0(N), for all k ∈ Ucl. More precisely,

the fourier coefficients of fk are required to generate a finite extension Kfk

of Q, and the image of fk under any complex embedding Kfk
↪→ C is a

classical modular form of the desired type. Note that Kfk
can be treated

as an abstract field, but the datum of fk also determines an embedding of

Kfk
into Cp.

Classical examples of p-adic families of modular forms include:

(a) Eisenstein series of varying weights,

Ek := ζ∗(1 − 2k) + 2

∞∑
n=1

σ∗
2k−1(n)qn,

where ζ∗(s) = (1 − p−s)ζ(s) is the Riemann zeta function with its

Euler factor at p removed, and σ∗
2k−1(n) =

∑
d|n

(p,d)=1

d2k−1.

(b) The binary theta series associated to the powers of a fixed Hecke

Grossencharacter Ψ of infinity type (1, 0) of an imaginary quadratic

field K. These theta series are defined by letting, for all ideals

a C OK of the ring of integers of K,

Ψ∗(a) =

 Ψ(a) if p - aā,

0 otherwise,

and setting

θk :=
∑

aCOK

Ψ∗(a)2k−1qaā.

A third class of examples arises from a theorem of Hida, which we will now

state in a special case.

Assume for this statement that f is a newform of weight 2 on Γ0(N), and

fix a prime p that divides N.
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Proposition 1.2 (Hida). There is a unique p-adic family f (defined on a

suitable neighbourhood U of k = 1) satisfying f1 = f.

This proposition attaches to f an infinite collection of normalised eigen-

forms fk, of varying weights, indexed by the k ∈ Ucl.

We mention in passing that Hida’s theorem is considerably more general

than the special case given in Proposition 1.2. For instance, f could be an

eigenform of arbitrary weight, and the condition p | N could have been

relaxed to the assumption that f be ordinary at p. However, Proposition

1.2 is the only case that is germane to the concerns of this article.

For classical points k > 1, the modular form fk obtained from Proposi-

tion 1.2 is not new at p. This is because fk is ordinary at p, i.e., of slope 0,

while newforms of level N and weight 2k have slope k − 1.

More precisely, writing N = pM, there is a unique normalised newform

f
]
k in S2k(M) satisfying

T`(f
]
k) = a`(k)f]

k, for all primes ` with (`,N) = 1.

Let

gk =
∑
D>0

c(D,k)qD

denote the (unique, up to scaling) eigenform in S+
k+1/2

(4M) that is associ-

ated to f
]
k by the Shimura-Kohnen correspondence, and let g = g1 be the

newform in S+
3/2

(4N) associated to f.

It is crucial for our main result that the half-integral weight forms gk have,

a priori, “twice as many” non-vanishing fourier coefficients as the modular

form g. The values of D for which c(D,k) need not vanish can be divided

into two categories.

I. The D for which χ−D(`) = w`, for all ` dividing N.
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II. The D for which χ−D(`) = w` for all ` | M,

χ−D(p) = −wp.

For these D, we have c(D) = 0; furthermore, L(f,−D, 1) = 0,

because w(f, −D) = −1.

We will call discriminants −D of the first type Type I discriminants, and

those of the second type, Type II discriminants.

Since the functions k 7→ an(k) on Ucl extend to analytic functions on U,

it is natural to expect a similar principle for the functions k 7→ c(D,k). The

fact that the individual forms gk are only defined up to a nonzero scaling

factor makes it necessary to introduce a normalisation. We do this by

fixing a type I discriminant −∆0 for which c(∆0) 6= 0. A theorem of Hida

and Stevens (cf. Theorem 5.5 and Lemma 6.1 of [St94]) then gives:

Proposition 1.3. There is a p-adic neighbourhood of k = 1 in U on which

c(∆0, k) is everywhere non-vanishing. After replacing U by such a neigh-

bourhood, the normalised coefficient attached to k ∈ Ucl∩ Z>1 by

c̃(D,k) =

(
1 −

(
−D

p

)
ap(k)−1pk−1

)
c(D,k)(

1 −
(

−∆0

p

)
ap(k)−1pk−1

)
c(∆0, k)

=
c(p2D,k)

c(p2∆0, k)

extends to a p-adic analytic function on U, which satisfies

c̃(D, 1) =
c(p2D)

c(p2∆0)
=

c(D)

c(∆0)
.

In particular, if −D is a type II discriminant, then c(D) = 0 and hence

c̃(D, 1) = 0. It then becomes natural to consider the derivative of c̃(D,k)

with respect to k at k = 1.

Assume now, for simplicity, that the newform f ∈ S2(N) has rational

fourier coefficients, so that it corresponds to an elliptic curve E of con-

ductor N. Since p divides N exactly, the curve E has (split or non-split)
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multiplicative reduction at p. Let

ΦTate : C×
p/qZ −→ E(Cp)

be Tate’s p-adic uniformisation of E, and let

logE : E(Cp) −→ Cp

be the p-adic formal group logarithm, which can be defined by

logE(P) = logq(Φ−1
Tate(P)),

where logq is the branch of the p-adic logarithm that vanishes on qZ. We

extend this logarithm to E(Cp) ⊗ Q by Q-linearity.

Let E(Q(
√

−D))− denote the submodule of E(Q(
√

−D)) on which the

involution in Gal(Q(
√

−D)/Q) acts as −1. When −D is a type II discrim-

inant, we have

χ−D(p) = −wp = ap,

and hence the quadratic twist E−D of E over Q(
√

−D) has split multiplica-

tive reduction at p. We also note that if P belongs to E(Q(
√

−D))−, then

logE(P) belongs to Qp.

One of the main theorems of this article is:

Theorem 1.4. Let −D be a discriminant of type II. There exists an ele-

ment PD ∈ E(Q(
√

−D))− ⊗ Q satisfying

(1) d

dk
c̃(D,k)k=1 = logE(PD);

(2) PD 6= 0 if and only if L ′(E,−D, 1) 6= 0.

Although the points PD only belong to E(Q(
√

−D)) ⊗ Q, the proof of

Theorem 1.4 will show that the collection {PD} has bounded denominators:
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there exists an integer tE, depending on E but not on the type II discrimi-

nant −D, such that

tEPD belongs to E(Q(
√

−D))−.

These global points, which are defined over a varying collection of qua-

dratic fields, display an a priori unexpected coherence, which can be sum-

marised by letting ε be a first order infinitesimal (satisfying ε2 = 0) and

considering the formal q-series with coefficients in Qp(ε):

g1+ε :=

 ∑
−D of type I

c(D)qD

 + ε

 ∑
−D of type II

logE(PD)qD

 .

Theorem 1.4 amounts to the statement that g1+ε is a “modular form of

weight (3/2 + ε)” associated to the Hida family f (or rather, to its spe-

cialisation to a first order neigbourhood of weight two) under the Shimura

correspondence.

The proof of Theorem 1.4 rests on two ingredients.

(i) A formula of Kohnen expressing the products c(D1, k)c(D2, k) of

fourier coefficients of gk in terms of certain geodesic cycles inte-

grals associated to f
]
k and to binary quadratic forms of discriminant

D1D2.

(ii) The theory of Stark-Heegner points, which relates these period in-

tegrals to global points defined (conjecturally, in general) over ring

class fields of real quadratic fields.

Sections 2 and 3 review these ingredients in turn. Section 4 describes

the proof of Theorem 1.4. This proof suggests studying generating series

whose coefficients are built out of Stark-Heegner points, in the spirit of the

Gross-Kohnen-Zagier formula of [GKZ87] relating classical Heegner points
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to coefficients of modular forms of weight 3/2. Several theorems of “Gross-

Kohnen-Zagier type” are formulated and proved in Section 5. This section

also formulates a more general Gross-Kohnen-Zagier conjecture for Stark-

Heegner points which in some cases falls squarely outside the scope of the

methods of this paper based on exploiting p-adic deformations of modular

forms. Some of the cases of the Gross-Kohnen-Zagier conjecture for which

a proof eludes us are discussed further in Section 6, and some numerical

evidence for them is provided.

2. KOHNEN’S FORMULA

In this section, and this section only, let f be a normalised newform

of weight 2k on Γ0(M), and let g =
∑

D c(D)qD be the newform in

Sk+1/2(4M) which is attached to it under the Shimura-Kohnen correspon-

dence.

Our purpose is to briefly recall a theorem of Kohnen which expresses

the product c(D1)c(D2) of two fourier coefficients of g in terms of Shintani

cycles which we proceed to describe, following the treatment in [Ko85].

If c(D1) and c(D2) are non-zero, then D∗
1 and D∗

2 are discriminants of

orders in a quadratic field, satisfying

(3) χD∗
1
(`) = χD∗

2
(`) = w`, for all ` | M,

by the definition of Kohnen’s plus space. Assume for simplicity that D∗
1 and

D∗
2 are both fundamental and prime to 2M. Then the product ∆ := D∗

1D
∗
2

is the discriminant of an order in a real quadratic field K, or of an order in

the split quadratic algebra Q × Q if D∗
1 = D∗

2. Note that all the ` | M are

split in K. In particular, it is possible to choose an integer δ such that

δ2 ≡ ∆ (mod 4M).
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A primitive binary quadratic form Q(x, y) = Ax2 + Bxy + Cy2 of dis-

criminant ∆ is said to be a Heegner form (relative to the level M) if

M | A, B ≡ δ (mod M).

Let CQ be the image in Γ0(M)\H of the geodesic in the Poincaré upper

half plane consisting of the complex numbers z = x + iy satisfying

A |z|
2
+ Bx + C = 0,

oriented from left to right if A > 0, from right to left if A < 0, and from

−C/B to i∞ if A = 0. For example, if ∆ is not a perfect square, let

r+ s
√

∆ be the fundamental unit of norm 1 in O∆ := Z[∆+
√

∆

2
], normalised

so that r, s > 0. Then the path CQ is equivalent to the path from τ to γQτ,

where

(4) γQ =
(

r+sB 2Cs
−2As r−sB

)
∈ Γ0(M)

is a generator for the stabiliser subgroup of Q in Γ0(M), and τ ∈ H is any

base point.

To each indefinite quadratic form Q is associated the Shintani cycle

(5) r(f,Q) =

∫
CQ

f(z)Q(z, 1)k−1dz.

Note that r(f, Q) depends only on the Γ0(M)-equivalence class of Q.

Let

F∆ = { Heegner forms Ax2 + Bxy + Cy2 of discriminant ∆.}.

This set of binary quadratic forms is preserved under the usual right action

of Γ0(M). Define a function

ωD∗
1
,D∗

2
: F∆/Γ0(M) −→ ±1
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by the rule

ωD∗
1
,D∗

2
(Q) =

 0 if gcd(a, b, c,D1) > 1;(
D∗

1

Q(m,n)

)
where gcd(Q(m,n), D1) = 1, otherwise.

Genus theory shows that ωD∗
1
,D∗

2
is well-defined, and that it is a quadratic

character on the class group of primitive binary quadratic forms of discrim-

inant ∆. This character cuts out the biquadratic field Q(
√

D∗
1,

√
D∗

2), an

unramified quadratic extension of Q(
√

∆).

The Shintani cycle associated to the pair (D∗
1, D

∗
2) is defined by the

formula

(6) r(f,D∗
1, D

∗
2) =

∑
Q∈(F∆/Γ0(M))

ωD∗
1
,D∗

2
(Q)r(f,Q).

The following theorem of Kohhen (cf. Theorem 3 of [Ko85]) plays a key

role in this paper:

Theorem 2.1. For all D1 and D2 satisfying (3),

c(D1)c(D2)

〈g, g〉
= (−1)[k/2]2k × r(f,D∗

1, D
∗
2)

〈f, f〉
.

3. STARK-HEEGNER POINTS

For this section, we revert to the notations that were in use in the state-

ment of Theorem 1.4 of the introduction. Thus, in particular, f is now a

newform of weight 2 and level N = pM associated to an elliptic curve E

of conductor N.

Let ∆ be a fundamental discriminant satisfying

(7) ∆ > 0, χ∆(p) = −1, χ∆(`) = 1, for all ` | M.

The article [Dar01] (see also [BD06] and [Dar06]) introduces a conjec-

tural p-adic variant of the Heegner point construction, associating to every

equivalence class of binary quadratic forms of discriminant ∆ a p-adic point
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in E(Q̄p). These local points are called Stark-Heegner points in [Dar01],

and are predicted to be defined over ring class fields of K = Q(
√

∆).

We will have no need for the original definition given in [Dar01] based on

the modular symbols attached to f. Rather, we will recall here an alternate

description exploited in [BD06] which relies on the p-adic family fk and the

classical newforms f
]
k attached to f by Hida’s Proposition 1.2.

For each eigenform fk with k ∈ Ucl, we begin by considering the com-

plex period integrals

(8) IC(fk, P, r, s) :=

∫s

r

fk(z)P(z)dz,

where P(z) ∈ Q[z][2k−2] is a polynomial of degree at most 2k − 2, and r, s

are elements of P1(Q) viewed as subsets of the extended Poincaré upper

half plane H∗. The integral (8) converges because fk is a cusp form. Note

that in order to define IC(fk, P, r, s) we had to choose a real embedding

Kfk
↪→ R, so that fk could be viewed as a complex analytic function on

H∗.

Let

I+
C(fk, P, r, s) := Real(IC(fk, P, r, s)),

I−
C(fk, P, r, s) := Imag(IC(fk, P, r, s)).

The following theorem of Shimura gives a rationality property for these

complex numbers.

Proposition 3.1 (Shimura). There exist periods Ω+
k ,Ω−

k ∈ C× depending

only on fk, for which

I±(fk, P, r, s) :=
1

Ω±
k

I±C(fk, P, r, s) belongs to Kfk
,

for all P ∈ Q[z][2k−2], and r, s ∈ P1(Q).
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It will lighten the notation to fix a choice of sign ε = {1,−1} and set

(9) I(fk, P, r, s) := Iε(fk, P, r, s).

For the proof of Theorem 1.4, it is only the value ε = −1 that is relevant,

so the reader may assume throughout Sections 3 and 4 that ε = −1.

However, the possibility to choose ε = 1 allows a more general definition

of Stark-Heegner points which will be crucial in the theorems, conjectures

and numerical experiments described in Sections 5 and 6.

The identification of the complex number I(fk, P, r, s) with an element

of Kfk
is made via the same complex embedding of Kfk

that was used

to define IC(fk, P, r, s). Recall that the collection {fk}k∈Uclalso determines

p-adic embeddings of Kfk
into Cp. Thanks to this data, we can—and will—

view the integrals I(fk, P, r, s) as elements of Cp. We can then extend their

definition to P ∈ Cp[z]
[2k−2] by Cp-linearity.

Let Qp2 ⊂ Cp be the quadratic unramified extension of Qp, let Op2 be

its ring of integers, and let

H0
p :=

{
τ ∈ Op2 such that τ 6≡ 0, 1, . . . , p − 1 (mod p)

}
.

We now invoke the following theorem of Stevens which asserts that the

quantities I(fk, P, r, s) can in some sense be p-adically interpolated.

Proposition 3.2 (Stevens). After eventually replacing the region U by a

smaller p-adic neighbourhood of 1, the complex periods Ωk can be chosen

in such a way that

(1) The function k 7→ I(fk, (z − τ)2k−2, r, s) extends to an analytic

function of k ∈ U, for all τ ∈ H0
p, and all r, s ∈ P1(Q).

(2) The function (r, s) 7→ I(f1, 1, r, s) takes its values in Q and is not

identically 0.
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Proof. This theorem is stated in Theorem 2.2.1 of [BD06]. In fact a more

precise version is stated there, and since the statement will be used later,

we recall it briefly here. Let (Z2
p)

′ denote the set of primitive vectors in

Z2
p, i.e., the vectors that are not divisible by p. Given a polynomial P ∈

Q[z][2k−2], write P̃(x, y) for its homogenisation of degree 2k − 2. (Note in

particular that P̃(x, y) depends on k.) Theorem 2.2.1 of [BD06] asserts

the existence, for each r, s ∈ P1(Q), of a suitable p-adic distribution µr,s

on (Z2
p)

′ of total measure 0, satisfying

(10) I(fk, P, r, s) =

∫
Zp×Z×

p

P̃(x, y)dµr,s(x, y), for all k ∈ Ucl.

¤

For the most part, it is only the existence of the periods Ωk and the

distributions µr,s that will be used. Of course, the periods Ωk are far from

unique, but if {Ωk} and {Ω ′
k} are any two choices, then

Ω ′
k = λ(k)Ωk,

where λ extends to an analytic function on U satisfying λ(1) ∈ Q×. All

the statements that will be made concerning the periods I(fk, P, r, s) will

be insensitive to a change in λ.

It is nonetheless useful to make a precise choice of periods {Ωk}k∈Ucl

satisfying the conclusion of Proposition 3.2. This can be done in terms of

the periods of (6) thanks to the following lemma.

Lemma 3.3. Let ∆0 be a fundamental discriminant satisfying

χ∆0
(p) = wp, L(f, ∆0, 1) 6= 0.

Assume that ∆0 is positive if the sign ε in (9) is 1, and that it is negative if

ε = −1. Then there exists a p-adic neighbourhood U of k = 1 such that

(11) Ωk := r(fk, ∆0, ∆0) = (1 − χ∆0
(p)ap(k)−1pk−1)2r(f]

k, ∆0, ∆0)
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is non-zero for all k ∈ Ucl. Furthermore, this choice of Ωk satisfies the

conclusion of Proposition 3.2.

Proof. Proposition 3.2 implies that r(fk, ∆0, ∆0) has all the required prop-

erties, provided that it is non-zero. A formula of Birch and Manin expresses

r(f, ∆0, ∆0) as a non-zero multiple of L(f, ∆0, 1). (Cf. for example the last

equation on Page 241 of [Ko85].) The result follows. ¤

We next define the periods I(f]
k, P, r, s) ∈ Cp as in Proposition 3.1, but

with fk replaced by f
]
k. (In particular, we use the same choice of complex

periods Ωk that was made define I±(fk, P, r, s).)

Finally, we “regularize” these periods by setting, for all k ∈ Ucl,

(12) J(f]
k, P, r, s) := (1 − ap(k)−2p2k−2)I(f]

k, P, r, s).

Proposition 3.4. For all τ ∈ H0
p and all r, s ∈ P1(Q), the function

k 7→ J(f]
k, (z − τ)2k−2, r, s)

extends to a p-adic analytic function of k which vanishes at k = 1.

Proof. This follows from Proposition 2.2.3 of [BD06]. This proposition also

expresses J(f]
k, P, r, s) in terms of the distributions µr,s alluded to in equa-

tion (10). More precisely,

(13) J(f]
k, P, r, s) =

∫
(Z2

p)′
P̃(x, y)dµr,s(x, y).

Proposition 3.4 then follows from the fact that P = (z − τ)2k−2 is a contin-

uous function on the compact space (Z2
p)

′ and is analytic as a function of

k. The fact that the function k 7→ J(f]
k, (z − τ)2k−2, r, s) vanishes at k = 1

follows from the fact that µr,s has total measure 0. ¤

Recall the set F(∆) of Heegner forms of discriminant ∆ attached to the

level M. In order to define this set, we had to choose a square root δ of ∆
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modulo M. We now choose a square root of ∆ in Cp, which we will simply

denote by
√

∆. For Q = [A,B,C] ∈ F(∆), let

τQ :=
−B +

√
∆

2A

be a root of Q(z, 1) = 0. Assumption (7) implies that this element belongs

to H0
p, for all Q ∈ F(∆). Recall the matrix γQ defined in (4). We now

choose an arbitrary base point r ∈ P1(Q) and define

(14) J(f,Q) =
d

dk

(
J(f]

k, (z − τQ)2k−2, r, γQr)
)

k=1
.

The following lemma collects some of the basic properties of the invari-

ants J(f,Q).

Lemma 3.5. (a) The expression J(f,Q) does not depend on the r ∈

P1(Q) that was chosen to define it.

(b) The function Q 7→ J(f,Q) depends only on the image of Q in the

class group F∆/Γ0(M).

(c) The element J(f,Q) belongs to the quadratic unramified extension

Qp2 of Qp. If x 7→ x denotes the non-trivial automorphism of this

field, then

J(f,Q) + J(f,Q) = 2
d

dk
(r̃(f]

k,Q)),

where

r̃(f]
k,Q) =

1

Ωk

× (1 − ap(k)−2p2k−2)r(f]
k,Q),

and r(f]
k,Q) is the invariant defined in (5).

Proof. (a) A direct calculation shows that

J(f]
k, (z − τQ)2k−2, r, γQr) − J(f]

k, (z − τQ)2k−2, s, γQs)

= (1 − ε2k−2)J(f]
k, (z − τQ)2k−2, r, s),
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where ε is a fundamental unit of the order of discriminant ∆, viewed as

an element of Q×
p2 . The expression on the right is a product of two p-adic

analytic functions which vanish at k = 1, and hence vanishes to order at

least 2 at k − 1. Part (a) follows. As for part (b), let Q ′ = Qα, where

α =

 a b

c d

. A direct calculation then shows that

J(f]
k,Q

′, α−1r, γQ′α−1r) = (cτQ + d)2k−2J(f]
k, Q, r, γQr).

Part (b) now follows from the fact that (cτ + d)2k−2 is a p-adic analytic

function of k ∈ U which is equal to 1 at k = 1. To prove part (c), we first

remark that, by (14),

J(f,Q) + J(f,Q) =
d

dk

(
J(f]

k, (z − τQ)2k−2, r, γQr)

+ J(f]
k, (z − τQ)2k−2, r, γQr)

)
k=1

.

By (13), the right-hand side in this equation can be rewritten as:

d

dk

(∫
(Z2

p)′
(x − τQy)2k−2 + (x − τQy)2k−2dµr,γQr(x, y)

)
k=1

= 2

(∫
(Z2

p)′
(logp(x − τQy) + logp(x − τQy))dµr,γQr(x, y)

)

= 2

(∫
(Z2

p)′
(logp A + logp(x − τQy) + logp(x − τQy))dµr,γQr

)

= 2

(∫
(Z2

p)′
logp Q̃(x, y)dµr,γQr(x, y)

)
,
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where we have used the fact that µr,s((Z2
p)

′) = 0 in deriving the penulti-

mate equality. We can rewrite this last expression as

J(f,Q) + J(f,Q) = 2
d

dk

(∫
(Z2

p)′
Q̃(x, y)k−1dµr,γQr(x, y)

)
k=1

= 2
d

dk

(
J(f]

k,Q
k−1, r, γQr)

)
k=1

= 2
d

dk

(
(1 − ap(k)−2p2k−2)I(f]

k,Q
k−1, r, γQr)

)
k=1

= 2
d

dk

(
1

Ωk

× (1 − ap(k)−2p2k−2)r(f]
k,Q)

)
k=1

,

where the third equality follows from (12). The result now follows from the

definition of r̃(f]
k, Q). ¤

Thanks to part (b) of Lemma 3.5, we can attach to any factorisation of ∆

as a product D1D2 of two fundamental discriminants, the invariants

r̃(f]
k, D1, D2) =

∑
Q∈F∆/Γ0(M)

ωD1,D2
(Q)r̃(f]

k,Q),

J(f,D1, D2) =
∑

Q∈F∆/Γ0(M)

ωD1,D2
(Q)J(f,Q),

where ωD1,D2
is the genus character that was introduced in Section 2. We

assume in this definition that the sign ε of (9) has been chosen to be 1 if

D1 and D2 are positive, and −1 if they are both negative.

Note that, for any pair (D1, D2) of fundamental discriminants occurring

in a factorisation of ∆, we necessarily have

D1D2 > 0, χD1
(p) = −χD2

(p), χD1
(`) = χD2

(`), for all ` | M.

In particular, the signs in the functional equations for the twisted L series

L(f,D1, s) and L(f,D2, s) are opposite. By interchanging D1 and D2 if

necessary, assume that

w(f,D1) = 1, w(f,D2) = −1.
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It is not hard to see that J(f,D1, D2) is in an eigenspace for the non-

trivial element in Gal(Qp2/Qp). More precisely, we have

(15) J(f,D1, D2) =

 J(f, D1, D2) if χD2
(p) = −wp;

−J(f,D1, D2) if χD2
(p) = wp.

We can now recall the following conjecture on “Stark-Heegner points” that

is formulated in [BD06].

Conjecture 3.6. Let H be the ring class field associated to the order

Z[∆+
√

∆

2
] of K = Q(

√
∆)).

(a) For each Q ∈ F∆/Γ0(M), there exists PQ ∈ E(H) ⊗ Q such that

J(f,Q) = logE(PQ).

(b) There is a global point P(f, D1, D2) ∈ E(Q(
√

D2))
−⊗Q such that

J(f,D1, D2) = logE(P(f,D1, D2)).

Furthermore, P(f,D1, D2) is of infinite order if and only if

L ′(E/Q(
√

∆),ωD1,D2
, 1) = L(f,D1, 1)L ′(f,D2, 1)

is non-zero.

While Conjecture 3.6 appears difficult, we have been able to prove the

following special case which will play a key role in the proof of Theorem

1.4

Theorem 3.7. Assume that

(a) The level N is divisible by at least two primes.

(b) We have χD2
(p) = −wp, (so that in particular J(f,D1, D2) be-

longs to Qp).

Then
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(1) We have

J(f,D1, D2) = logE(P(f,D1, D2)),

for some element P(f,D1, D2) ∈ E(Q(
√

D2))
− ⊗ Q.

(2) There exists an integer tE, depending on E but not on (D1, D2),

such that tEP(f,D1, D2) belongs to E(Q(
√

D2))
−.

(3) The invariant P(f, D1, D2) corresponds to a point of infinite order if

and only if

L ′(E/Q(
√

∆),ωD1,D2
, 1) = L(f,D1, 1)L ′(f,D2, 1)

is non-zero.

Theorem 3.7 is a special case of Theorem 1 of [BD06]. To recall the

proof here would take us too far afield. (The key idea is to use the main the-

orem of [BD07] to express the periods J(f,D1, D2) in terms of actual Heeg-

ner points arising from parametrisations of E by Shimura curves associated

to quaternion algebras that are ramified at p.) We will content ourselves

with drawing attention to the important relationship between J(f,D1, D2)

and the periods r̃(f]
k, D1, D2) that arise in Kohnen’s formula.

Lemma 3.8. Under the assumptions of Theorem 3.7,

J(f,D1, D2) =
d

dk

(
r̃(f]

k, D1, D2)
)

k=1
.

Proof. Since J(f,D1, D2) belongs to Qp,

2J(f,D1, D2) = J(f,D1, D2) + J(f,D1, D2) = 2
d

dk

(
r̃(f]

k, D1, D2)
)

k=1
,

where the last equality follows from part (c) of Lemma 3.5. ¤
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4. PROOF OF THEOREM 1.4

Let −D2 be a discriminant of type II. Choose an auxiliary discriminant

−D1 of type I satisfying

(a) gcd(D1, D2) = 1;

(b) c(D1) 6= 0.

This implies that the product ∆ = D1D2 satisfies assumption (7). Note

also that in this case

w(f,−D1) = 1, w(f,−D2) = −1, χ−D2
(p) = −wp.

Hence all the conditions in the statement of Theorem 3.7 are satisfied.

By definition of the normalised coefficients, we have

c̃(D1, k)c̃(D2, k) =
(1 − ap(k)−2p2k−2)c(D1, k)c(D2, k)

(1 − wpap(k)−1pk−1)2c(∆0, k)2
.

Hence by Theorem 2.1,

c̃(D1, k)c̃(D2, k) =
(1 − ap(k)−2p2k−2)r(f]

k,−D1,−D2)

(1 − wpap(k)−1pk−1)2r(f]
k,−∆0,−∆0)

=
(1 − ap(k)−2p2k−2)r(f]

k,−D1,−D2)

Ωk

,

where the last equality follows from the choice of Ωk that was made in

(11), in light of the fact that χ−∆0
(p) = wp. By the definition of the period

r̃(f]
k,−D1,−D2) given in Lemma 3.5, it follows that

c̃(D1, k)c̃(D2, k) = r̃(f]
k,−D1,−D2).

Differentiating both sides with respect to k, evaluating at k = 1 and apply-

ing Lemma 3.8, yields

(16) c̃(D1)
d

dk
c̃(D2, k)k=1 = J(f,−D1,−D2).



STARK-HEEGNER POINTS AND THE SHIMURA CORRESPONDENCE 23

The first part of Theorem 1.4 is now a consequence of Theorem 3.7 com-

bined with the rationality of c̃(D1). The second part follows from the fact

that c̃(D1) 6= 0 if and only if L(f, −D1, 1) 6= 0.

5. GROSS-KOHNEN-ZAGIER FORMULAE FOR STARK-HEEGNER POINTS

The conjectures of [Dar01] predict that Stark-Heegner points should

have many of the properties of their classical counterparts. It is there-

fore natural to look for analogues of the theorem of Gross, Kohnen and

Zagier relating Stark-Heegner points to the fourier coefficients of modular

forms of weight 3/2. In fact, the method of proof of Theorem 1.4 yields

some results in this direction.

For example, we have:

Theorem 5.1. Let −D2 be a fixed discriminant of type II associated to f.

Then

(a) The periods b(D1) := J(f,−D1,−D2), as −D1 varies over the

type I discriminants attached to f, are (proportional to) the fourier

coefficients c(D1) of a Shimura-Kohnen lift g ∈ S+
3/2

(4N) attached

to f.

(b) Assume further that N is the product of at least two primes. Then

the function D1 7→ b(D1) is non-zero if and only if

L ′(f,−D2, 1) 6= 0.

Proof. This follows directly from (16), which shows that the ratio between

b(D1) and c(D1) is equal to the expression d

dk
c̃(D2, k)k=1, which does

not depend on D1. When N is divisible by at least two primes, Theorem

3.7 relates this expression to a global point on E(Q(
√

−D2))
− ⊗ Q which

is non-zero precisely when L ′(f,−D2, 1) 6= 0. ¤
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Observe that Theorem 3.7 is not needed to prove part (a) of Theorem

5.1. In particular, when f is a form of prime conductor, the invariants

J(f,−D1, −D2) (as D1 varies, and D2 is fixed) can still be related to the

fourier coefficients of a modular form of weight 3/2, even though the proof

of Theorem 3.7 breaks down for such modular forms and we are unable

to relate J(f, −D1,−D2) to a global point on E(Q(
√

−D2))
−. This remark

leads to the following corollary which gives further evidence for the general

conjectures on Stark-Heegner points formulated in [Dar01].

Corollary 5.2. Let −D2 be a fixed discriminant of type II. Assume that

there exists a type I discriminant −D1 for which

J(f,−D1,−D2) = logE(P(f, −D1,−D2)) 6= 0,

with P(f,−D1,−D2) ∈ E(Q(
√

−D2))
− ⊗ Q. Then for all type I discrimi-

nants −D1, the expressions J(f,−D1,−D2) are equal to the formal group

logarithm of global points in E(Q(
√

−D2))
− ⊗ Q.

In order to generalise this discussion, let D2 be any fixed discriminant

(either positive, or negative) satisfying

w(f,D2) = −1,

but not necessarily of type II. Then the invariants J(D1, D2) are defined

on all fundamental discriminants D1 satisfying

(17) D1D2 > 0, χD1
(p) = −χD2

(p), χD1
(`) = χD2

(`) for all ` | M.

The coefficients b(D1) := J(f,D1, D2), as D1 varies over fundamental

discriminants satisfying (17), are really only defined up to sign, since they

depend on the choice of a p-adic square root of D1D2. But for discrimi-

nants D1 that are congruent to each other modulo p, it is possible to make

a consistent choice of square root and remove the sign ambiguity in the
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definition of b(D1) for D1 in a fixed residue class modulo p. Section 6.2

discusses this issue in more detail, and explains how in certain cases (for

example, when p ≡ 3 modulo 4) the coefficient b(D1) can even be defined

unambiguously for all D1.

Theorem 5.1 suggests the following conjecture.

Conjecture 5.3. The coefficients b(D) are proportional to the Dth fourier

coefficients of a modular form of weight 3/2 on Γ1(4N2) associated to f by

a (suitably generalised) Shimura-Kohnen correspondence. Furthermore,

these coefficients vanish identically if and only if L ′(f,D2, 1) = 0.

Conjecture 5.3 can be divided into two cases:

Case 1: The case where χD2
(p) = −wp.

In that case the invariants J(f,D1, D2) belong to Qp, and the key Lemma

3.8 still holds. One therefore has a hope of proving Conjecture 5.3 by suit-

ably generalising Kohnen’s formula. Some progress in this direction has

been made by work of Mao, Rodriguez-Villegas and Tornaría [MRVT07]

and of Mao [Ma07]. See also [PT07c] for more examples of the general-

ized Shimura-Kohnen correspondence in the case of composite levels.

Case 2: The case where χD2
(p) = wp.

In that case one has

J(f,D1, D2) = −J(f,D1, D2),

and the proof of Lemma 3.8 breaks down completely. In fact, the peri-

ods r̃(f]
k, D1, D2) vanish identically in this case, and there is therefore little

hope of controlling the Stark-Heegner points J(f,D1, D2) by exploiting the

p-adic variation of modular forms. In this setting, Conjecture 5.3 is more

mysterious, and we can give little theoretical evidence for it. We have how-

ever gathered some numerical evidence in its support in the next section.
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6. NUMERICAL EVIDENCE

In this section we present some numerical evidence for Conjecture 5.3,

in the case—which is the simplest and most natural for calculations—

where

(1) The elliptic curve E has prime conductor p and odd analytic rank,

so that wp = 1;

(2) the auxiliary discriminant D2 is equal to 1.

Under these hypotheses, we find ourselves in case 2 in the discussion

of Conjecture 5.3. This setting is therefore the most interesting from a

theoretical point of view because both hypotheses in Theorem 3.7 fail, and

Lemma 3.8 does not hold.

For fundamental discriminants ∆ > 0 satisfying χ∆(p) = −1 (i.e. for real

quadratic fields K in which p is inert), we can use the computer package

shp of [DP-SHP] to check and (conjecturally) compute the corresponding

global point P(∆) ∈ E(Q) (the “trace” of the Stark-Heegner points for K).

On the other hand, a construction given in [MRVT07] associates to f

a modular form g+ of weight 3/2 on Γ1(4p2) whose coefficients c(∆) are

indexed by real quadratic discriminants ∆ > 0 satisfying χ∆(p) = −1,

and are related to a square root of the central values L(f, ∆, 1). This com-

putation is done by a PARI/GP [PARI] package which computes modular

forms of half integral weight as linear combinations of generalised theta

series associated to positive definite ternary quadratic forms. The lin-

ear combinations are determined from Brandt matrices using the package

qalgmodforms from [CNT].

6.1. The curve 37a. The smallest prime conductor for which there is an

elliptic curve with sign −1 in its functional equation is p = 37. Indeed, the

quotient of the modular curve X0(37) by the Atkin-Lehner involution is an
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∆ h(∆) P(∆) m∆ ∆ h(∆) P(∆) m∆

5 1 (0, 0) 1 61 1 ∞ 0

8 1 (0, 0) 1 69 1 ∞ 0

13 1 (0,−1) −1 76 1 (0,−1) −1

17 1 (0,−1) −1 88 1 (0,−1) −1

24 1 (0,−1) −1 89 1 (0,−1) −1

29 1 (1, 0) 2 92 1 (1,−1) −2

56 1 (0,−1) −1 93 1 (1, 0) 2

57 1 (0,−1) −1 97 1 ∞ 0

60 2 (0, 0) 1 105 2 (0,−1) −1

TABLE 1. Traces of Stark-Heegner points in 37a

elliptic curve, denoted by 37a in the tables of Cremona, and given by the

equation

E : y2 + y = x3 − x.

Note that this curve is unique in its Q-isogeny class.

The computation of the Stark-Heegner points for this curve has been

discussed in [DP06], which focuses on a few small discriminants with rela-

tively large class number. This time we computed the traces of the Stark-

Heegner points over a much larger range—for discriminants ∆ ≤ 10000

with χ∆(37) = −1. The computations were carried to 20 significant 37-

adic digits, which was enough to recognize all of the traces but one (see

below).

To compare these traces with coefficients of modular forms of weight

3/2, we will write P(∆) = m∆P0, where m∆ ∈ Z and P0 = (0, 0) is a fixed

generator of E(Q). The traces P(∆) and the values m∆ for fundamental

discriminants ∆ ≤ 105 are shown in Table 1.
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Note that the values of m∆ in the table being rather small, the points

P(∆) are usually of small height, and thus rational reconstruction from the

37-adic approximation is very easy. For instance

P(461) ≡ (3606438279313387, 3005365232761155) (mod 3710),

is easily recognized as the global point P(461) =
(

1

4
,−5

8

)
= 5P0.

As the discriminant ∆ gets larger, so does m∆. In our computation for

∆ ≤ 10000 we found one discriminant for which the working precision of

20 significant 37-adic digits is not enough to recognize P(∆):

P(8357) =

(
51678803961

12925188721
, −

12133184284073305

1469451780501769

)
= −22P0.

It turns out this is the largest value of m∆ in our range. Of course we

expect |m8357| = 22 from reading a coefficient of a modular form of weight

3/2 (see Table 2), and we can still check a posteriori that this is consistent

with the value of P(8357) computed modulo 3720.

The computation of the modular form g+ of weight 3/2 corresponding to

37a can be done following [MRVT07]. The fourier expansion of g+ begins

g+ = q5 − q8 − q13 − q17 + q20 + q24 − 2q29 + O(q30).

Note that due to some choices in the construction, the sign of the coeffi-

cients is not well defined. The sign of the coefficients here may differ from

the ones given in [MRVT07].

The coefficients of g+ =
∑

c(∆)q∆ for the fundamental discriminants

∆ ≤ 105, ∆ = 461 and ∆ = 8357 are shown in Table 2.

6.2. The mysterious signs. The Stark-Heegner points as we have de-

scribed them have an inherent ambiguity of sign. This is because their

calculation depends essentially on a choice of
√

∆ ∈ Cp. In the case

of classical Heegner points in the original Gross-Kohnen-Zagier formula,
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∆ 5 8 13 17 24 29 56 57 60 61 69

c(∆) 1 -1 -1 -1 1 -2 -1 -1 -1 0 0

∆ 76 88 89 92 93 97 105 . . . 461 . . . 8357

c(∆) -1 1 -1 -2 2 0 -1 . . . 5 . . . 22
TABLE 2. Coefficients of g+ corresponding to 37a

square roots in C of imaginary quadratic discriminants are canonically cho-

sen to be in the upper half plane. At this stage, Conjecture 5.3 only makes

sense up to a sign; this is tantamount to a Gross-Zagier type formula for

the heights of the (traces of) Stark-Heegner points, and does not include a

statement about the “mysterious signs”.

We remark that g+ itself is not unique (not even up to a single constant,

unlike for the case of classical Heegner points). However, having the level

bounded at 4p2 restricts the choices quite a lot. There is still room to

change signs of the different coefficients so long as the change is periodic

modulo p. In particular, the sign of c(∆1)/c(∆2) is well defined, provided

∆1 ≡ ∆2 (mod p).

In harmony with this observation, notice that if ∆1 ≡ ∆2 6≡ 0 (mod p),

there is a natural way to choose
√

∆2 ∈ Cp once
√

∆1 ∈ Cp has been

choosen: namely, make the unique choice such that
√

∆2 is congruent to
√

∆1 modulo p. Thus, the ambiguity in sign can be resolved for Stark-

Heegner points attached to like discriminants modulo p.

For instance, the traces P(∆) and the values m∆ for fundamental dis-

criminants ∆ ≡ 2 (mod 37) with ∆ ≤ 2000 are shown in Table 3. The

coefficients of g+, which are displayed in Table 4, agree with the m∆ in-

cluding the sign.
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∆ h(∆) P(∆) m∆ ∆ h(∆) P(∆) m∆

76 1 (0,−1) −1 1001 2 (0, 0) 1

113 1 ∞ 0 1112 1 ∞ 0

409 1 ∞ 0 1149 1 (1, 0) 2

520 4 ∞ 0 1297 11 (0,−1) −1

557 1
(

21

25
,− 56

125

)
−8 1704 2 (0,−1) −1

668 1
(
−5

9
, 8

27

)
7 1741 1 (0,−1) −1

705 2 (0,−1) −1 1852 1 ∞ 0

853 1 (1, 0) 2 1889 1 (−1,−1) 3

TABLE 3. Traces of Stark-Heegner points in 37a for ∆ ≡ 2 (mod 37)

∆ 76 113 409 520 557 668 705 853

c(∆) -1 0 0 0 -8 7 -1 2

∆ 1001 1112 1149 1297 1704 1741 1852 1889

c(∆) 1 0 2 -1 -1 -1 0 3
TABLE 4. Coefficients of g+ for ∆ ≡ 2 (mod 37)

There is also a special case in which the signs can be completely well

defined. When p ≡ 3 (mod 4) we can employ the fact that the quadratic

character χ−p of conductor p is odd. Once
√

∆0 has been chosen, it de-

termines a canonical choice for
√

∆ ∈ Cp by requiring

χ−p(
√

∆/
√

∆0) = 1.

On the side of half-integral weight modular forms, the form g+ is also

determined uniquely up to a single constant by requiring it to have charac-

ter χ4p = χ−4χ−p of conductor 4p. This weight 3/2 modular form g+ can

be characterised as being in Shimura correspondence with the quadratic
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twist f ⊗ χ−p, of level p2. The Shimura correspondence for level p2 has

been worked out explicitly in [PT07a], and examples of its application to

central values of real quadratic twists, and in particular to computing the

fourier coefficients of g+, appear in [PT07b].

6.3. The curve 43a. The smallest conductor p ≡ 3 (mod 4) for which

there is an elliptic curve with sign −1 in its functional equation is p = 43.

The quotient of the modular curve X0(43) by the Atkin-Lehner involution is

again an elliptic curve, denoted by 43a in the tables of Cremona, and is

given by the equation

E : y2 + y = x3 + x2.

This curve is unique in its Q-isogeny class.

We computed the traces of the Stark-Heegner points for discriminants

∆ ≤ 10000 with χ∆(43) = −1, using a precision of 20 significant 43-adic

digits, which was enough to recognize all of the traces as global points in

E(Q) except for P(7613) = 21P0.

We will write P(∆) = m∆P0 with m∆ ∈ Z and P0 = (0, 0) is a fixed

generator of E(Q). These data, for discriminants ∆ ≤ 104, are show in

Table 5.

The computation of the modular form g+ of weight 3/2 corresponding

to 43a can be done following either [PT07b] or [MRVT07]. The fourier

expansion of g+ begins

g+ = q5 − q8 + q12 + q20 − q28 − q29 + O(q30).

In this case the sign of its coefficients is canonically defined, after setting

c(g+, 5) = 1. We verified that the resulting coefficients agree with the

values of m∆ computed above, for all ∆ ≤ 10000.
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∆ h(∆) P(∆) m∆ ∆ h(∆) P(∆) m∆

5 1 (0, 0) 1 69 1 (0,−1) −1

8 1 (0,−1) −1 73 1 (0, 0) 1

12 1 (0, 0) 1 76 1 ∞ 0

28 1 (0,−1) −1 77 1 (1, 1) −3

29 1 (0,−1) −1 85 2 (0, 0) 1

33 1 (0,−1) −1 88 1 (0,−1) −1

37 1 (−1,−1) 2 89 1 (0, 0) 1

61 1 (0, 0) 1 93 1 (1,−2) 3

65 2 (0,−1) −1 104 2 (0, 0) 1

TABLE 5. Traces of Stark-Heegner points in 43a

∆ 5 8 12 28 29 33 37 61 65

c(∆) 1 -1 1 -1 -1 -1 2 1 -1

∆ 69 73 76 77 85 88 89 93 104

c(∆) -1 1 0 -3 1 -1 1 3 1
TABLE 6. Coefficients of g+ corresponding to 43a

The coefficients of g+ =
∑

c(∆)q∆ for the fundamental discriminants

∆ ≤ 104 are shown in Table 6. A few more coefficients (for all ∆ < 200)

can be found in [MRVT07].

6.4. Other curves. In addition to the elliptic curves of 37a and 43a al-

ready discussed, we also did computations for the following 12 curves:
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53a : y2 + xy + y = x3 − x

61a : y2 + xy = x3 − 2x + 1

53a : y2 + xy + y = x3 − x

61a : y2 + xy = x3 − 2x + 1

79a : y2 + xy + y = x3 + x2 − 2x

83a : y2 + xy + y = x3 + x2 + x

89a : y2 + xy + y = x3 + x2 − x

101a : y2 + y = x3 + x2 − x − 1

131a : y2 + y = x3 − x2 + x

163a : y2 + y = x3 − 2x + 1

197a : y2 + y = x3 − 5x + 4

229a : y2 + xy = x3 − 2x − 1

269a : y2 + y = x3 − 2x − 1

277a : y2 + xy + y = x3 − 1

These are all the isogeny classes of elliptic curves of prime conductor p <

300 and rank 1. Note that for p up to 131, these are isomorphic to the

quotient of the modular curve X0(p) by the Atkin-Lehner involution. All of

these curves are unique in their Q-isogeny class.

For each of these curves we computed the traces of the Stark-Heegner

points for discriminants ∆ ≤ 10000 with χ∆(p) = −1. All the computations

were carried to 20 significant p-adic digits, which was enough to recognize

almost all of the traces. In Table 7 we indicate the number of discriminants

for each curve, and the number of discriminants for which the precision

was insufficient to recognize the point.

For the 5 curves with conductor p ≡ 3 (mod 4), the corresponding

modular forms of weight 3/2 level 4p2 and character χ4p (and many more)

can be obtained from the data in [To04]. We verified that their coefficients

agree with the values of m∆, for ∆ ≤ 10000.
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E #∆ x E #∆ x

37a 1483 1 101a 1514 0

43a 1491 1 131a 1515 0

53a 1490 3 163a 1508 2

61a 1504 0 197a 1524 1

79a 1504 0 229a 1525 10

83a 1513 10 269a 1519 4

89a 1509 0 277a 1524 106
TABLE 7. Number of discriminants ∆ ≤ 10000 we used for

each curve. The column labeled x indicates the number of

such discriminants for which the precision of 20 significant

p-adic digits was not enough to recognize the trace of the

Stark-Heegner point.

For the other 7 curves with conductor p ≡ 1 (mod 4), we computed

the corresponding modular forms of weight 3/2 for Γ1(4p2) following the

method explained in [MRVT07], and verified that their coefficients agree

with the values of m∆ up to a sign function defined modulo p, for all ∆ ≤

10000.

The complete set of data that we computed, comprising the traces of the

Stark-Heegner points and the values m∆ for discriminants ∆ ≤ 10000 with

χ∆(p) = −1, for each of the curves mentioned above, is available online

at [DT-SHP].
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