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Special things...

Example: 30/ October




My goal today: convince you that something is special...
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This workshop, sponsored by AIM and the NSF, aims to explore several problems at the interface of harmonic analysis and analytic number theory, with an eye to bringing both groups of
researchers together to make progress in discrete restriction, arithmetic statistics, exponential sum estimates and discrete harmonic analysis by using tools from both fields.

Emanuel Carneiro
Number theory and analysis share many interactions, and there are several emerging areas where input from both fields will likely be quite fruitful. Arithmetic statistics is a subject focused
on countln'g olf objects 'of algebljaw |nt'erest, hals been extensively investigated by Bhargava tand collabc'nrators,'and seems ripe for Fourier analytic |nPut. Discrete relstnctlon, as plone('sred (ICTR Trleste / IMP A, RIO de ] aneer)
by Bourgain, is rooted in analysis but is sometimes amenable to number theoretic exponential sum estimates inaccessible to such tools as decoupling methods. Discrete analogues in

harmonic analysis have been classified in many ways, but are frequently impeded by limited progress on deep number theoretic problems. By bringing together researchers from both AIM F b 2021
analysis and number theory and having them interact on a variety of problems of emerging interest, we hope to make progress on several areas including: V4 € s



Fourier optimization wonderland

+ Tools from Fourier analysis are often useful when treating problems
in number theory.

+ Ideal situation: to be able to identify an analysis problem, as pure as
possible, inside your number problem (and hopefully solve it).



Part | - A bref overview




Our project

Equidistribution of Zeros of Polynomials

K. Soundararajan

Abstract. A classical result of Erdds and Turén states that if a monic polynomial has small
size on the unit circle and its constant coefficient is not too small, then its zeros cluster near
the unit circle and become equidistributed in angle. Using Fourier analysis we give a short and
self-contained proof of this result.

1. INTRODUCTION. Any set of N complex numbers may be viewed as the zero
set of a polynomial of degree N. If, however, we start with a polynomial that “arises
naturally”—for example, think of polynomials with coefficients +1—then the zeros
will tend to be “evenly distributed near the unit circle.” In [6], Erdds and Turdn proved
the beautiful result that if the size of a monic polynomial on the unit circle is small,
and 1its constant term is not too small, then its zeros cluster around the unit circle and
become equally distributed in sectors. We shall make precise both the hypothesis and
conclusion of this statement later, but we hope Figure 1 gives an impression of the
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P(Z) — ZN+ aN_IZN_l + ... + az o ap

= Erdos-Turdn (1950): If the size of P(z) in the unit circle is “small” and
the constant coefficient is “not too small” then the zeros of the
polynomial tend to cluster around the unit circle and the angles of
such roots tend to become equidistributed as the degree grows.
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Figure 1. Left: Zeros of a polynomial of degree 500 formed with the decimal digits of 7: 32700 4 749 4
4z*98 4 ... Right: Zeros of the Fekete polynomial 2162 (lé—3)zf where the coefficients are given by the

j=0
Legendre symbol (74) = 1 for I < j < 162.

Source: K. Soundararajan, Amer. Math. Monthly, 2019.



Height and discrepancy

N
P(Z)=H(Z—aj)=ZN+aN_1ZN_1+...+alz+a0 . 4, =0 aj=pjezmef.
j=1

+ Two notions of height have been considered:

PO 1 P( e27ri6?) ‘
E(F) = max and h(P) — J log™ do .
21=1 +/Tag 0 V ol

+ It can be shown that: A(P) < log H(P);

N
log <max {pj,pj_l }) = 20(E)
=1

J



+ Givenaninterval /CR/Z let N(,P)=#{a,=p,e”™ : 6, €l}.

+ Define the angular discrepancy by 2(P) :=sup |[N(I; P) — |I|N | :
I
D(P) < C\/NBEB) | = ¢\ NlogHP)
Erdos-Turan (1950) € =16
Ganelius (1954) ¢ — 7 561
Mignotte (1992) =256l
Soundararajan (2019) |C = 8/x = 2.546...

+ Theorem1: D(P) < (4\/7)\/NA(P) = (2.256...)A/Nh(P) .

PS: The example P(z) = (z — 1) shows that C > 1.75936...



P =G—1)

PD(P) = N
! . 3v/3 L(2,
h(P) = NJ logt|e?™ — 1 ‘ do =N G _ N(©322 )
0 A
(C. Smyth)

(D. Boyd, Appendix, 1981)

Flence if 2(P) < Gy NIP) = C > 1759



Hilbert transforms

’_Continuous world

| 1
For F: R - C: ?/(F)(x):=p.v.—J F(x—t);dt
TIr

A4

- (—i sen(?) ?(r)) (f F € LAR))

F ) = J Exle 7% dx

Z  LP(R) —» LP(R) (1 <p < o) is a bounded operator



Hilbert transforms

Periodic world

For f: R/Z - C : HUINE) =D V. J f(@ — a) cot(ra) da
R/Z

\'4

- (—isgn(k) f(k)) Gf f € LAR/Z))

fk) = J flye 7y

R/Z

7 (ARIZ) > ¢ 5(Z) (I <p =< c0) . isabounded operator



F: R — R even,continuous and non—negative;

i1
Class of functions| of = {SUPPUY T =]

F e L\(R).

For each F € &/ we consider its periodization fr: R/Z — R

1(0) = 2 FO+k).

keZ

| Extremal Problem 1 Find the infimum:

. max {|ZF)| sy » 1D Loz }
¢ = int :
0£FEs IFl Ly w)

1/C

T

Theorem 2: P(P) <

\/N h(P) Theorem 3 € = |



Part Il - How does the extremal
problem appear?




Simplification 1: Schur

N N
Let P(2) = | | (z=pe*™) and define Q(z) = | | (z — ¢*) . Then, for |z| = 1
J=1 j=1
2
2

— [P@)|/4/ a9l =2 |0 — H(P) = Hld)

2%16 270,
Pj = ‘z =
\/_ o

| Simplification 2:{ Since

NUEP)— || N=|I [N—=N{ F)

it suffices to prove upper bounds for N(I;P) - |I| N.



I (Given aninterval ICR/Z let &2 X

N
h(P)
NP = ITIN < ) gd6) = IINS ... SNo+——.

=

iProper implementation:! Let 0 # Fe & and 0 < 6 < 1. Assume ||F||; = 1.

Define Fs0):=<F(%) and f;0):= ) Fs0+k).
keZ

(note that supp(F;) C [—%,g]). Define I; as the interval “enlarged” by %

on each side and

25(0) = J 2@ [0 — @) da
R/Z




g5(0) := J

)(Ié(a)]%(e—a)da=>[ g0)de — || = |1] +6

R/Z R/Z
N
NI P) = IIN < ) g50) — TN
j=1
N 00
:2< Z Tg\é(k)e%rl@]k)_lIlN
= k=—00

|Use the identity:

N
= (NGO = UIN)+ 3 | X B ™

j=1 \ k0

<Ns+ ) gk i L

k=0 j=1

N
J e 0) I kl o 27ik0 log‘P<62m’9) lde - Z eZm’kHj .
R/Z i1



Z fg}(k)[ i eZﬂi@jk] i J Z - 2|k|fg’\5(k) o 2mik0 log‘P(ez’”H) ‘d@
= R

k==0) 17 k0
< ‘55J log| P(e2) | | do
R/Z
= (J 2logt | Ple ™ | ‘dé’ . J log‘P(ez”ig) ‘d@)
R/Z R/Z
= 2%, h(P)

where: .
?5 — ax Z 5 | k | fg; (k)e27rzk9
¢ k#0




Assume that I5 = [a, B]. Since 85 = X1, " Js

o e—27rika - e—Zﬂikﬂ .
?(s(k)=?15(k)ﬁs(k)=< >Jg(k).

2rik
Hence
21k o (k) ekt — l - 1) e (k) ( e27ik0-a) _ ,27ik(0—p)
Kl s (ke " = i sgn(k) f5 (k)(e e I
k0 4

and therefore

Z % | klfg\g(k) ekaH - Z - zsgn(k)fé (k) eZﬂlk(é’—a) i Z v ngIl(k)fé (k) o 27ik(0—=p)

T T
k70 k70 k0

1 1
—|# U6 - )| +—| 76~ p)

2
= ;H%(f(s)“Loo(R/Z)-




We ended up proving that

4
LB LN < No +;”%(f5)”L°°(IR/Z)°

Hence we need to understand how big 6 ||# (f5)|| L«r/z) can be.

Lemma: sup 6 | Z(f)ll s@z) = max { | ZF)|| pomy » 17 )l Loz } -
0<o<1

Calling @(F) := max { | #(F)l oy > 1Z U Loz ) -

46 (F)
N(; P)— |I|N < No + :
T O
44/ 6 (F
Choosing 6 = \/4%(17) ) —— NP —|IIN=< a \/Nh(P) .
N \/7_[
(B = A /N h(P)

T



Part 111 - Magic functions




Competition 1s fair...

FIGURE 1. For the function F defined in (4.3), on the left we have the graph of H(F)
and on the right we have the graph of H(fr).

f

01f0<|x|S% |
o= loti 1o f%_| [ i

1 . 1
S -eLl i 2 L ai<o
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The triangle function

1.0]
05!
I I I I | i I I i |
1 2

F(x) =2(1-2|x]), I (F,)

4
I F Dy = Z(F(57) = —log(l +V/2) = L12.

Leadsto 2(P) <(2.39...)\/Nh(P)



L1 L] L =
FEO)=—c(l 2|x|)‘jr

Lots and lots of convex combinations of convex combinations later...

1.0 f
0.8 f
0.6 f
0.4 f

02|

! | ! | ! | 1 ! f | I I I | ! I 1 |
0.2 0.4 0.6 0.8 1.0

C= 1015



The first miracle

1 1 L - ]
A By =—]| FEx—10)—dt=— F'(r) log dt
T Jn t T ) | x + ]

4.297
V' ez +b  dx 1 a+b
- . 1. 1 = b)1 —alna—>blnbd
I.S. GRADSHTEYN /0 nbm+a T+ 2)? a_b[(a+ ) In 5 alna n]
I. M. RYZHIK
[a>0, b>0] Bl (115)(16)
*® axr+b dx
2. 1 =0 b>0 Bl (139)(23
/0 nbx-l-al-i-x [ab > 0] (139)(23)
L 1—z T
3. In —— =5n2 Bl (115)(5)
0 T 1+:v 8
L1+ do
4. 1 =G Bl (115)(17
/0 n1—731+:1:2 (115)(17)
o0 1 d 2
5.11 / o r T BI (141)(13)
0 1_.’,E 1+./,E) 2
de 1 2
6. / In vitedr (ln U) [uv > 0] BI (145)(33)
“ u+xr x u
*bln(1 —aln(l+ b b
7 / a1 +az) —aln(d+b2) ;) _ pin >0, b>0] FI 11 647
0 T a
' 14 ax dx
8. In = marcsina al <1 GW (325)(21¢), BI (122)(2
[mitE lal <1 (325) (21c), Bl (122)(2)
9. / In L+ ax de 7 (arcsinav,g)
w 1—ax \/(3;2 —u?) (2 —22) v v
[lav| < 1] BI (145)(35)
1 2
a+y dy T
108 PV [ 1 ‘ = — 0<a<1]
fited by Alan Jeffrey and Daniel Zwillinger 0 a=Ylyy1l- y2 2

page 563 of 1170



A little bit of reverse engineereing...

1.0.
05 \
1.0 05 t 0.5 1.0
\ 0.5

FIGURE 3. On the left, the graph of the magic function §. On the right, the graph of
the Hilbert transform H(F).

1.0 0.5 0.5 1.0

2 1+\/1 —4x2 1 ]
F(x) :=—1 for.— < v < =
som(x), 1l 1| = %; Conclusion: C < 1

K (F)(x) =
i = arcsin (i), el

T 2%



How to prove a lower bound?

A duality argument

Assume that there exists a function G: R - R

||G||L1(R) e J

R

[Gl)lde = 1

H(G)=-1 a.e on —%<x<%

ok
2

Then, for any F € &/ normalized so that [[Fll gy = I F(x)dx =1,

| Z (F)|| Lo(m)

”%(F)”L“(R)J |G dy >

R

— J F&x) Z(G)(x) dx
R

2

]

1
2

1
D

J H (F)(x) G(x) dx
R

Fx)dx = 1




The second miracle

Elementary functions (con

t'd)

CALIFORNIA INSTITUTE OF TECHNOLOGY
BATEMAN MANUSCRIPT PROJECT

A. Erpfryr, Edilor
(:. Tricomi, Research Associates

W. Macnus, F. OBERHETTINGER, F.

Higher Transcendental Functions, 3 volumes.
Tables of Integral Transforms, 2 volumes.

f(x) ! 3[_00 flx) (x —y) " dx
—(xz—az)—l/‘ —0<x <—a |0 —o <y <-a
0 —a<x<a (az—yz)_l/" —a<y<a
(xz—az)_% a<x<o00 |0 a<y<o
1 1 ja-y 4 _ a
0 -~ <x <0 o cos '(-—
) v 2 wla+
(a-x) (a+x)” O<x<a Y Y
0 a<x<oo i & YK -
1 1/fa-y \* a+(a®—y )%
ot i log
2 mw\a+y -y
—a<y<a
1 1<y—a>l/‘ _|< a>
-+ — cos -
2 m\y+a y
(l<y<oo
0<cos™'<n
(25)| O —0 <x < —a —]+(a—y)y‘ |y+a|_%
(a-%) (a+x)"% —a<x<a —ly<-a
0 oS | =2 —a<y<a
-1+ (y—a)* (y + a)”¥%
a<y<o

page 248 of 451



Again, a little bit of reverse engineereing...

1.0 0.5 1.0 1.0 05 F 05 ' 1.0

-0.5

®

FIGURE 2. On the left, the graph of the magic function &. On the right, the graph of
the Hilbert transform H(®).

2
G(x) = —= (for - bmy
V1 — 4x2 : :
=]t (x| < %; Conclusion: C > 1
# (G)(x) = X
C e B



An mteresting related result

Class of functions =

supp(F) € [-7.1.

{FeLl(R) 0

| Z ()| L o(w)

Extremal Problem 2{ Find the infimum: C* :=

o£Fed*  |[FllLiw)

Theorem 3: C* =1 and the unique extremal function is

[1+\/1—4x2

2| x| ] Gl

2%
F(x) :=—1log
T

| . FeL(R) ; F>0
I F)l e = NIF if b
Consequence L(R) LR) supp(F) C 1.




Thank youl




